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Abstract: Heavy rainfall leads to severe flooding problems with catastrophic socio-economic impacts
worldwide. Hydrologic forecasting models have been applied to provide alerts of extreme flood
events and reduce damage, yet they are still subject to many uncertainties due to the complexity
of hydrologic processes and errors in forecasted timing and intensity of the floods. This study
demonstrates the efficacy of using eXtreme Gradient Boosting (XGBoost) as a state-of-the-art machine
learning (ML) model to forecast gauge stage levels at a 5-min interval with various look-out time
windows. A flood alert system (FAS) built upon the XGBoost models is evaluated by two historical
flooding events for a flood-prone watershed in Houston, Texas. The predicted stage values from
the FAS are compared with observed values with demonstrating good performance by statistical
metrics (RMSE and KGE). This study further compares the performance from two scenarios with
different input data settings of the FAS: (1) using the data from the gauges within the study area
only and (2) including the data from additional gauges outside of the study area. The results suggest
that models that use the gauge information within the study area only (Scenario 1) are sufficient
and advantageous in terms of their accuracy in predicting the arrival times of the floods. One of the
benefits of the FAS outlined in this study is that the XGBoost-based FAS can run in a continuous
mode to automatically detect floods without requiring an external starting trigger to switch on as
usually required by the conventional event-based FAS systems. This paper illustrates a data-driven
FAS framework as a prototype that stakeholders can utilize solely based on their gauging information
for local flood warning and mitigation practices.

Keywords: flood; flood warning; flood alert system; stream gauge; rain gauge; stage forecasting;
machine learning; XGBoost

1. Introduction

As one of the most destructive natural disasters, flood causes tremendous damage to
agriculture, infrastructure, and human lives with catastrophic socio–economic impacts [1].
In the year 2020, there were 16 flood events as billion-dollar natural disasters in the
U.S. [2]. To best mitigate the damages resulting from flood events, strategies for sustainable
flood-risk management should be developed, with a focus on prevention, protection, and
preparedness [3]. Flood-warning systems built upon the prediction models present a
proactive method for hazard assessment and flood management [4], where robust and
accurate predictions further contribute to strategies, policy suggestions, and analyses in
water resources management. The major functionality of flood-warning systems is to
provide a reliable lead time for watches and warnings at flood-prone locations [5,6]. An
effective, real-time flood alert system is usually based on the regular collection of local
rainfall, stream level, and streamflow data through gauge networks [7]. Specifically, the
data is used by flood forecasting models to predict the information of stage and/or flow
with certain lead times at critical locations so that stakeholders can be given more time to
compare the predicted information with predefined threshold values and make prompt
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decisions to protect themselves from potential floods. Therefore, a reliable flood forecasting
model is essential to mitigate the impact of flood disasters.

Flood forecasting models are mainly categorized into two major groups: physics-
based and data-driven models [8]. Physics-based models perform mathematical mod-
eling to simulate a flood dynamic process. Many types of physics-based models have
been developed to predict hydrologic and hydraulic processes in various events, such as
storms [9], rainfall/runoff [10,11], and shallow water conditions [12], as well as global
circulation phenomena, such as the coupled effects of atmosphere, ocean, and floods [13].
The physics-based models are widely used in forecasting of flood stage: Franchini and
Lamberti [14] developed a river level forecasting model based on the Muskingum routing
model. Krzysztofowicz and Herr [15] presented a precipitation-dependent hydrologic un-
certainty processor to perform probabilistic river stage forecasting. Krzysztofowicz [16,17]
also used Bayesian in forecasting to produce a short-term probabilistic river stage fore-
cast. Fang and Bedient [18] used NEXRAD radar rainfall data in a hydrologic model
to simulate channel flow in real time to provide flood warnings in a highly urbanized
watershed in Texas. While physics-based models have shown great capabilities for sim-
ulating hydrologic processes and predicting river stages at a diverse range of flooding
scenarios [10,19–21], the prediction of lead times and stages of floods is subject to errors
and uncertainties due to the fundamentally complex nature of representing meteorology,
hydrology, and hydraulics in any physics-based models [22]. Typically, unavoidable errors
can be introduced from the restrictions of the physical processes, including initialization
and boundary conditions, model parametrization, and formulation, due to the chaotic
and nonlinearity of the atmospheric system, as well as nonstationary of the hydrologic
processes [19]. Additionally, the accuracy of the physics-based modeling is highly depen-
dent on the quality of hydro-geomorphological data, as well as adequate calibration of the
parameters, which both require intensive computation efforts and limit its usefulness in
real-time applications [19,23,24].

As an alternative approach, data-driven models, especially machine learning models,
are becoming popular as substitutes or companions to hydrologic/hydraulic models [25],
and in general provide excellent nonlinear modeling improvements compared to other exist-
ing data-driven techniques [26]. Algorithms such as artificial neural networks (ANNs) [27]
and least-squares support vector machines (LS-SVMs) [28] have better capacity of emulating
complex hydrologic processes and, thus, become increasingly popular in the flood-related
applications. Chang and others [29] employed linear regression models and ANNs to build
a regional flood inundation forecasting model, which provided flood inundation maps
that were compared well with those obtained with a 2-D non-inertial overland flow model.
ANNs have also been successfully used to identify flooding and estimate flood volumes in
the context of urban pluvial simulations [30]. Liu and Pender [31] investigated the use of
LS-SVM regression to effectively predict the evolution of floodwater depth and velocity
obtained from a fine grid Snow Water Equivalent (SWE) model at given locations. The data-
driven models have also been widely applied for rainfall-runoff modeling and streamflow
(or stage) forecasting [32]. These studies have shown that the data-driven approaches can
also achieve comparable performance to physics-based models in flood forecasting.

With the improvement of data-driven modeling in hydrologic applications, ensemble
learning method (e.g., Gradient Boosted Decision Tree (GBDT)) is proposed to achieve better
performance by composing multiple weak models into a stronger model in hydrologic
modeling [33]. As one of the most favored ensemble learning methods, the XGBoost
(Extreme Gradient Boosting) algorithm was introduced by Chen and Guestrin [34], which
is based on the framework of GBDT with intensive optimization, resulting in superior
performance in flash-flood risk assessment [35], flash-flood susceptibility mapping [36],
and flood event peak discharge prediction [37]. While variations of XGBoost models have
been investigated for hourly water-level predictions [38,39], they are expected to have
predictions in finer temporal interval and longer lead time and to operate in a real-time
and continuous mode. In this research, the authors elaborate on the suitability of a novel
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XGBoost-based ensemble forecasting methodology and demonstrate the applications of
multiple XGBoost models to create a real-time flood alert system for forecasting stages in
continuous operations.

This paper is organized into four sections. The section of data and methods is in-
troduced along with the study area (Section 2.1) and flood alert system development
(Section 2.2), which includes the data collection (Section 2.2.1), performance evaluation
(Section 2.2.2), model development (Section 2.2.3), and flood alert design (Section 2.2.4).
The results section presents the evaluation and analysis of stage forecasting performance
based on two major rainfall events for the study area. Section 3.1 evaluates the overall
model performance, including quantitative analysis (Section 3.1.1) and comparison of the
observed and forecasted stages for both events (Section 3.1.2). In Section 3.2, the capability
of FAS in predicting the stage in rising limb is further evaluated for its performance in the
operational practice. Finally, the results are discussed in detail in Section 4 followed by
Section 5 with the conclusions.

2. Data and Methods
2.1. Study Area

The study area is the White Oak Bayou (WOB) watershed located in central Harris
County, Texas, and within the city limits of Houston (Figure 1). WOB originates near the
intersection of U.S. Highway 290 and Texas State Highway 6 and flows south-easterly
for 40 km until it joins Buffalo Bayou in Houston Downtown as shown in Figure 1 [40].
The watershed covers about 285 square kilometers, serves an estimated population over
430,000 [41].
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Figure 1. White Oak Bayou (WOB) watershed with geographical location map (right top).

WOB is one of the most flood-prone areas in the U.S. [42], particularly for the mid- to
downstream sections in the major channel (section from Gauge 540 “White Oak Bayou @
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Alabonson Road” to Gauge 520 “White Oak Bayou @ Heights Boulevard”, as shown in
Figure 1). Many homes and businesses have experienced floods repeatedly, and thousands
of structures are at risk from extreme flood events [40]. During Hurricane Harvey (2017),
unprecedented flooding occurred along the downstream portion of WOB, where water
surface elevations in Downtown Houston are averaged between the 1% (100-year) and 0.2%
(500-year) annual exceedance probabilities [43]. An estimate of 7830 houses were flooded
during Harvey within the WOB watershed [43].

2.2. Development of XGBoost-Based Flood Alert System

The workflow of the development of XGBoost-based Flood Alert System (FAS) is
presented in Figure 2. The details of each workflow component are described in the
following sections, including (1) data collection; (2) model development including model
tuning and training; (3) operational FAS deployment; and (4) evaluation of the performance.
Additionally, the details about the mathematical implementation of the XGBoost algorithm
are presented in Supplementary Materials.
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2.2.1. Data Collection

In this study, the rainfall and stream level data are retrieved from the gauge networks
of the Harris County Flood-Warning System (HCFWS, https://www.harriscountyfws.org/
assessed on 8 January 2021) for the study area (Figure 1). The gauges measure the rainfall
(mm) and elevation (m) data at 5-min time interval during the period of January 2010 to
December 2019.

The gauge observation data then is allocated into training, validation, and testing
datasets for the model development with an objective to minimize the stage difference at
watch points. Two watch points (Gauge 520: “White Oak Bayou @ Heights Boulevard”
and Gauge 540: “White Oak Bayou @ Alabonson Road”) are selected for this study since
both locations are classified as high-risk locations in the watershed (Gauge 520 is the most
downstream gauge location in the WOB and Gauge 540 is the gauge location immediate
upstream of the confluence section) (Figure 1). The percentages of the training, validation,
and testing datasets are carefully determined with a focus to ensure that the training dataset
is sufficiently large (70% and 7 years of the total datasets) to capture most of the variability
present in the historical period of record (10 years). Table 1 displays information of each
dataset, including the percentages, time coverages, and notable historical flood events
occurring in the time period of each dataset.

https://www.harriscountyfws.org/
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Table 1. Data Selected for Model Development.

Training Data Validation Data Testing Data

% of total observations 70% 22.5% 7.5%

Time coverages 1 January 2010 to 31
December 2016 1 January 2017 to 31 March 2019 1 April 2019 to 30 September 2019

Notable Historical
Flood Events

Memorial Day
(2015) Hurricane Harvey (2017) Flash Flood in May (2019)

Tax Day
(2016) Independence Day (2018) Hurricane Imelda (2019)

The training dataset provides direct examples of observed inputs and prediction
targets for model calibration. Among the training data, two major flood events were
included—Memorial Day (2015) and Tax Day (2016). The Memorial Day and the Tax
Day storms were both close to a 50-year storm [44]. The validation data (2 years and
3 months) is used to tune XGBoost’s large number of hyperparameters. It is noted that
Hurricane Harvey (2017) is included within the validation dataset. Hurricane Harvey
(2017) is regarded as one of the most severe tropical cyclones in the United States’ history,
according to spatial coverage and peak rainfall amount, during which the entire Harris
County received over 70 cm (about 2.3 ft) of rainfall [45]. The extreme nature of the event
does not bias model calibration but is still used to evaluate performance in the validation
dataset to mimic the impact of a previously unseen extreme event. This leaves 5 months of
the testing dataset, which covers two flood events—Flash Flood in May 2019 and Hurricane
Imelda in September 2019.

Another objective of this study is to demonstrate and evaluate the performance of real-
time XGBoost-based FAS in stage forecasting during major rainfall events. The evaluation
metrics are calculated for each watch point under different input configurations (S#1 and
S#2). Two major rainfall events occurring at WOB as the test dataset that are targeted by
the daily average precipitation time-series analysis in Figure 3. The events occurred on
9 May 2019 (Flash Flood in May) and 19 September 2019 (Hurricane Imelda). Other smaller
rainfall events would not be accounted for because they did not cause severe floods.
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2.2.2. Performance Evaluation Metrics

Performance of all models is evaluated with Root Mean Squared Error (RMSE)
(Equation (1)) and Kling-Gupta Efficiency (KGE) (Equation (2)) [47]. RMSE is used to
model the fit of model predictions against observations only in terms of the values of pre-
dictions and observations. RMSE is also often used in evaluating the performance of stage
forecasting models. Additionally, KGE is a unitless metric that goes incorporating Pearson’s
Correlation Coefficient (R), the mean of both the observations (µobs) and the predictions
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(µpred ), and the standard deviation of both the observations (σobs ) and the predictions
(σpred ). KGE = 1 indicates a perfect agreement between simulations and observations

RMSE =

√√√√ 1
N

N

∑
i=1

(
Qobs,i − Q f ore,i

)2
, RMSE > 0 (1)

KGE = 1 −
√
(R − 1)2 + (α − 1)2 + (β − 1)2

α =
σpred
σobs

, β =
µpred
µobs

, 0 < KGE < 1 (2)

2.2.3. Model Development

In a typical process of machine learning modeling, two types of tunable parameters
should be considered: (1) model parameters that are determined during the training phase;
and (2) hyperparameters that are set by users before the model training phase (e.g., learning
rate, and depth of the tree in XGBoost). In this study, the optimization of hyperparameters
is used for balancing the model efficiency and precision which is critical for FAS (Figure 2).

In the model training component, the input variables include the timestamps of
the data, rainfall observations, difference between the current and past stage levels, and
the output of the learning process is the difference between the current and forecast
stages at different lead times (Figure 2). A total of 24 models are trained for the target
24 lead times from 5 to 120 min defined as look-out time windows in 5-min intervals. The
models are trained using the same training dataset but with varying hyperparameters. The
performance of each model is evaluated with the validation dataset. The differences in
model performance are attributed to varied hyperparameters chosen for each model. The
best performing models then inform which hyperparameters should be further investigated
during the training of additional models. The optimized hyperparameters is established by
up to 100 gradient boosted estimators, with a learning rate of 0.1 and maximum tree depth
of 4.

One of the objectives of this study is to evaluate if additional hydrologic information
is needed to enhance the model performance in terms of both lead time and accuracy, as
suggested by a previous study [48]. Therefore, two scenarios are examined in this study:
Scenario #1 (S#1) utilizes the 12 rain gauges and 12 stage gauges located within WOB, while
Scenario #2 (S#2) includes all gauges used in Scenario #1 with additional 20 rain gauges
nearest but outside of the WOB watershed boundary. The rain and stream gauges included
in S#1 are illustrated in Figure 1 as “Rain and Stream Gauges” or “Rain Gauges” in round
shape while S#2 includes all S#1 gauges in addition to the “20 Nearest Rain Gauges” in
diamond shape. This study will also test if the rainfall information in the surrounding areas
of the watershed will be applicable to extend the lead times of the FAS.

For each gauge and scenario pair, and for each target lead time (denoted 1–24 when in
5-min intervals), a model is trained for a series of lookback windows (also denoted 1–24
when in 5-min intervals) and then selected a specific lookback window based on validation
error (Figure 2). The overall performance of the best model for the target lead time in both
scenarios is presented in term of RMSE (Table 2) and KGE (Table 3).

Table 2. RMSE range for trained XGBoost model with four target lead times in Scenario #1 (S#1) and
Scenario #2 (S#2) at two watch points.

Target Lead
Time (min)

Gauge 520
S#1 (m)

Gauge 540
S#1 (m)

Gauge 520
S#2 (m)

Gauge 540
S#2 (m)

5–30 0.089–0.101 0.028–0.032 0.088–0.101 0.04–0.054
35–60 0.091–0.101 0.033–0.043 0.092–0.103 0.041–0.051
65–90 0.105–0.122 0.042–0.049 0.106–0.129 0.047–0.056

95–120 0.128–0.152 0.052–0.065 0.133–0.142 0.049–0.063
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Table 3. KGE range for four target lead times in Scenario #1 (S#1) and Scenario #2 (S#2).

Target Lead
Time (min) Gauge 520 S#1 Gauge 540 S#1 Gauge 520 S#2 Gauge 540 S#2

5–30 0.961–0.976 0.99–0.998 0.961–0.976 0.992–0.997
35–60 0.978–0.981 0.982–0.988 0.978–0.98 0.979–0.989
65–90 0.975–0.98 0.976–0.982 0.972–0.98 0.974–0.98

95–120 0.961–0.972 0.961–0.972 0.966–0.97 0.964–0.973

For RMSE, the performance of the models of both Gauges 520 and 540 decreases from
5 min consistently until 120 min of lead time. For KGE, the performance of the models of
Gauge 520 increases gradually from 5 min to around 60 min of lead time, then decreases
consistently until 120 min of lead time. In contrast, the performance of the models of Gauge
540 decreases consistently from 5 min until 120 min of lead time. There is no significant
difference between Scenario #1 and Scenario #2 for both watchpoints indicated by RMSE
and KGE metrics. Overall, the XGBoost models demonstrate good performance with the
adequacy in potential for further development of FAS.

2.2.4. Flood Alert Design

In this study, a continuous mode of the operating FAS is constructed with an ensemble
approach with individual models trained for each lead time. At a given moment in time,
the system begins by comparing the current observed stage at the watch point to its critical
stages (e.g., flooding likely and flooding possible stage levels, according to HCFWS). The
flood-warning decision is made based on the following logics:

1. If the current stage exceeds the critical stage, then the system will report flooding;
2. If the current stage does not exceed the critical stage, then predictions for all available

target lead times will be made using a set of trained models;
3. If none of the predicted stages exceeds the critical stage, then all-clear will be re-

ported; and
4. If one or more models predict stages exceeding the critical stage, then the smallest

target lead time will be reported by the system.

Due to the uncertainties from solely using one model’s output, the ensemble approach
is employed to improve the performance of FAS. Based on critical experiments and valida-
tion, FAS issues alerts when at least three (3) models forecast stages exceeding the critical
stages. The performance of the operational FAS is discussed in the result section in terms of
both the accuracy of stage forecasting and the timeliness of the alerts issued by the system.

3. Results
3.1. Model Performance Evaluation
3.1.1. Quantitative Analysis of Model Performance

The performance of the FAS in forecasting stages is evaluated by both KGE and RMSE
metrics as presented in Figure 4 (S#1) and Figure 5 (S#2) for two major storm events in
WOB (9 May 2019 and 19 September 2019). Each model with lead time between 5 min and
2 h (24 models in total) is included in each figure, with the primary axis showing KGE and
the secondary axis showing RMSE, for both scenarios.

During the May 2019 event, the S#1 models at Gauge 520 (Figure 4a) show slow
increase of RMSE up to 0.2 m with lead times less than 80 min. Then the RMSE values
rapidly increase up to 0.6 m at the 120-min lead time. Unlike Gauge 520, the S#1 models
at Gauge 540 (Figure 4b) show RMSE values gradually increase up to around 0.3 m at the
120-min lead time. The KGE values decrease along with longer lead times and the lowest
value is around 0.95, as presented in both gauges (Figure 4a,b). During the September 2019
event, the S#1 models at Gauge 520 (Figure 4c) show rapid increase of RSME up to around
1 m at the 120-min lead time, while the S#1 models at Gauge 540 (Figure 4d) show RMSE
values gradually increase up to around 0.5 m at the 120-min lead time. Unlike the May



Water 2022, 14, 747 8 of 18

2019 event, the September 2019 event shows lower KGE values especially for the models
with lead time longer than 60 min in both gauges (Figure 4c,d).
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During the May 2019 event, the S#2 models at Gauge 520 (Figure 5a) show gradual
increase up to 0.6 m at the 120-min lead time. Unlike Gauge 520, the S#2 models at Gauge
540 (Figure 5b) show RMSE values gradually increase up to around 0.3 m at the 120-min
lead time, which is similar to what is shown in Figure 4b. The KGE values at Gauge 540
show generally lower values than those at Gauge 520 (Figure 5a), with lowest value around
0.93 at the 115-min lead time (Figure 5b). During the September 2019 event, the S#2 models
at Gauge 520 (Figure 5c) also show rapid increase of RSME up to around 1 m at the 120-min
lead time, which is comparable to what is shown in Figure 4c. Similar to what is presented
in Figure 4d, the S#2 models at Gauge 540 (Figure 5d) show RMSE values gradually increase
up to above 0.4 m at the 120-min lead time. In addition, there is generally no significant
pattern difference between the S#1 (Figure 4c,d) and S#2 (Figure 5c,d) models in terms
of KGE values in September 2019 event, while the S#2 models show slightly higher KGE
values than the S#1 models at Gauge 540 (Figure 5d). It is noted that both scenarios have a
consistent performance within 60–80 min lead-time models evaluated by RMSE, as shown
in the red boxes in Figure 4a,d and Figure 5a,d.
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Above all, the S#1 models show a slightly better performance than the S#2 models
during the May 2019 event at Gauge 520 (Figures 4a and 5a), while the S#2 models show a
marginally better performance than that the S#1 models during the September 2019 event
at Gauge 540 (Figures 4d and 5d). Both models have similar performances in other cases
(Figure 4b,c and Figure 5b,c), suggesting that the models using external gauge information
(S#2) yield similar performance with the models without (S#1) evaluated by both KGE and
RMSE metrics.

3.1.2. Comparison of Measured and Forecasted Stages

Furthermore, model performance in predicting the rising and falling limbs of the
stages is also evaluated by comparing predicted stage hydrographs against observed stage
hydrographs in Figure 6 (S#1) and Figure 7 (S#2). The red dotted lines represent observed
stage hydrographs and other lines represent the predicted stage hydrographs in 5 min,
30 min, 60 min, 90 min, and 120 min models (colored as yellow, blue, black, green, and
magenta, respectively). To a certain extent, each model’s forecast fits the shape of the
observed stage. The predicted stage hydrographs from the 5-min and 30-min lead-time
models match the observations admirably, indicating a good performance of XGBoost-
based FAS in shorter lead time forecasts. However, the 60-min lead-time models still reach a
good amount of agreement in both the stage and peak timing. Beyond 60 min, the lead-time
models tend to underestimate the rising limbs and overestimate the falling limbs for both
Gauge 520 and 540 locations. It is also noted that the longer lead-time models (e.g., 120-min
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lead-time model) tend to delay the prediction of the rising and falling of the stages in
comparison to the observed stages.
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Comparing the system performance between different scenarios, one should note
that in S#1 (Figure 6a,c) the predictions fit the observation curves better than those in S#2
(Figure 7a,c) at Gauge 520. At Gauge 540, both results tend to overestimate the peak stages
(Figures 6d and 7d), where the overestimation that is found in the S#2 models is less than
that of the S#1 models.

3.2. Evaluation of Real-Time Stage Forecasting

In the essence of evaluating flood-warning systems, assessment has been focused on
predicting the timing of the rising limb of an event so the emergency responders can have
time to act before flood occurs. In addition, accurate prediction of the critical stage levels
that are closely linked with the severity of floods is also required. Hence, the XGBoost-based
FAS is evaluated during the rising limbs for both events (May and September 2019) with
respect to both scenarios (S#1 and S#2) at Gauges 520 and 540 as shown in Figures 8–13 and
each figure represents a specific case. In Figures 8–13, forecasts (blue lines) are made to the
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right of the now lines (vertical dotted lines) corresponding to each target lead-time model
(blue dots). Left of the now lines is to show observed stages (red lines). As described in
Section 2.2.4, the system issues either flooding possible (FP) or flooding likely (FL) warning
when at least three (3) forecasted stages are higher than the critical stages of FP or FL,
respectively. Visually, it means at least three blue dots enter into the yellow (FP) or orange
(FL) area to trigger the warning. Both FP and FL stages are determined and provided
by the local authority (e.g., https://www.harriscountyfws.org/GageDetail/Index/520?
From=1/6/2022%204:23%20PM&span=2%20Days&r=1&v=surfaceBox&selIdx=0 assessed
on 8 January 2021), where FL stage is typically the road/bridge deck elevation and FP
stage is slightly lower than FL stage. The observed critical stages of either FP, FL, or
peak stage (PS) that are notified by the red vertical dotted lines with the times when the
certain stages are observed. The information of Figures 8–13 is summarized into Table 4,
where the “Forecasted Lead Time” indicates the differences between the current time and
predicted time of critical stages and the “Observed Lead Time” indicates the differences
between the current time and observed time of critical stages. The differences between
these two types of lead time are calculated and summarized in the “Difference of Lead
Times (Forecasted—Observed)”.
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Table 4. Summarized information of each figure from Figures 8–13.

Figure
IDs

Storm
Events Gauge # Scenario Forecasted

Lead Time
Observed
Lead Time

Difference of Lead Times
(Forecasted—Observed)

Figure 8a 9 May Flood 520 S#1 65 min (FP) 70 min (FP) −5 min
Figure 8b 9 May Flood 520 S#1 90 min (FL) 85 min (FL) 5 min
Figure 9a 19 September Flood 520 S#1 55 min (FP) 45 min (FP) 10 min
Figure 9b 19 September Flood 520 S#1 55 min (FL) 50 min (FL) 5 min
Figure 10a 9 May Flood 520 S#2 110 min (FP) 70 min (FP) 40 min
Figure 10b 9 May Flood 520 S#2 110 min (FL) 90 min (FL) 20 min
Figure 11a 19 September Flood 520 S#2 95 min (FP) 40 min (FP) 55 min
Figure 11b 19 September Flood 520 S#2 85 min (FL) 40 min (FL) 45 min
Figure 12a 9 May Flood 540 S#1 55 min (PS) 55 min (PS) 0 min
Figure 12b 9 May Flood 540 S#2 55 min (PS) 30 min (PS) 25 min
Figure 13a 19 September Flood 540 S#1 95 min (PS) 90 min (PS) 5 min
Figure 13b 19 September Flood 540 S#2 95 min (PS) 10 min (PS) 85 min

Notes: FP: flooding possible; FL: flooding likely; PS: peak stage.

Starting with Gauge 520 in S#1, at 9 May 2019 21:15 during the May 2019 event, the
models for S#1 issue the FP warning with the forecasted lead time of 65 min (Figure 8a,
Table 4), which is 5 min ahead of the observed FP stage (22:25). For the same event, the S#1
models issue the FL warning at 9 May 2019 21:35 with the forecasted lead time of 90 min
(Figure 8b, Table 4), which is 5 min later than the observed FL stage (23:00).

At 19 September 2019 11:00 during the September 2019 event, the S#1 models issue
the FP warning at Gauge 520 with the forecasted lead time of 55 min (Figure 9a, Table 4),
which is 10 min later than the observed FP stage (11:45). For the same event, the S#1 models
issue the FL warning at 19 September 2019 11:05 with the forecasted lead time of 55 min
(Figure 9b, Table 4), which is 5 min later than the observed FL stage (23:00).

Continuing with Gauge 520 in S#2, at 9 May 2019 21:15 during the May 2019 event,
the S#2 models issue the FP warning with the forecasted lead time of 110 min (Figure 10a,
Table 4), which is 40 min later than the observed FP stage (22:25). For the same event,
the S#2 models issue the FL warning at 9 May 2019 21:30 with the forecasted lead time of
110 min (Figure 10b, Table 4), which is 20 min later than the observed FL stage (23:00).

At 19 September 2019 11:05 during the September 2019 event, the S#2 models issue
the FP warning at Gauge 520 with the forecasted lead time of 95 min (Figure 11a, Table 4),
which is 55 min later than the observed FP stage (11:45). For the same event, the S#2 models
issue the FL warning at 19 September 2019 11:15 with the forecasted lead time of 85 min
(Figure 11b, Table 4), which is 45 min later than the observed FL stage (23:00).

At Gauge 540, the stages do not reach the FP or FL stages during the testing time-
period, thus the models are evaluated based on the peak stage forecasting during the events
for both scenarios. For the May 2019 event, the S#1 models precisely predict the arrival
time of the peak stage (09 May 2019 21:45) with lead time of 55 min (Figure 12, Table 4).
Comparably, the S#2 models predict the peak stage 25 min later than the observed peak
stage (Figure 12b, Table 4). For the September 2019 event, the S#1 models also achieve
accurate forecasted peak stage 5 min later than the observed peak stage (Figure 13a, Table 4),
while the forecasts of S#2 models significantly delay the arrival time of peak stage, which is
85 min later than the observed peak stage (Figure 13b and Table 4).

4. Discussion

In this study, a flood alert system (FAS) based on individual XGBoost models has
demonstrated a good usability for running in a continuous mode. Unlike other event-based
FAS, the XGBoost-based FAS does not require an external starting trigger to switch on. It
can constantly run in the backend, detect an impending event according to pre-determined
critical stages, and automatically generate notifications to first-responders in real time.
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Besides its unique feature of continuous operations, the XGBoost-based FAS demon-
strates good performance in predicting stages according to the evaluation criteria of: RMSE
and KGE metrics; forecast of rising limbs, and prediction of the timings of critical stages.

Firstly, the XGBoost-based FAS is evaluated by RMSE and KGE metrics. The results
in Tables 2 and 3 show superior performance by both metrics for the model validation.
The results in Figures 4 and 5 further demonstrate sufficient performance for both the
May and September 2019 events during the model-testing phase. Compared with RMSE,
KGE serves as a more favorable criterion that has been commonly applied and suggested
for evaluating the performance of hydrologic models for its less sensitivity to the high
values [47]. Comparing the KGE values of the models, one can see better performance to
be achieved at Gauge 520 (Figure 4a,c and Figure 5a,c) than Gauge 540 (Figure 4b,d and
Figure 5b,d) while the RMSE values at Gauge 520 are found generally higher than Gauge
540 in this study.

Secondly, the forecast of rising limbs of stage hydrographs is critical for evaluating
the performance of FAS. While rising limbs are relatively challenging to predict due to
the uncertainties in rainfall intensity and location, initial soil moisture conditions, etc.,
the rising limbs of predicted stage hydrographs from the XGBoost-based FAS certainly
demonstrate a satisfactory consistency with the observed stages in terms of timings and
shapes (Figures 6 and 7). This is very important for emergency personnel to initiate prompt
flood mitigation measures during real-time operations.

Lastly, the accuracy in predicting of the occurring times of critical stages (flooding pos-
sible, flooding likely, and peak stage) is also a key element in evaluating FAS performance.
Figure 8a,b Figure 9a,b, Figures 12a and 13a show that the S#1 models can achieve good
performance in forecasting the timings of critical stages (no more than 10 min difference as
shown in “Difference of Lead Times” in Table 4) with longer lead times (55–95 min) (Table 4).
It is noted that some of the S#1 models have 5–10 min delay in predicting the times of the
critical stages mainly due to the mechanism of how the system triggers the flood possible
(FP) and flood likely (FL) alerts only when at least three models predict the stage levels are
over the FP or FL levels. It is a conservative engineering approach that will likely result in
a short delay as shown in Table 4. From a flood-warning system/application standpoint,
we believe that this conservative engineering design can reduce unnecessary overreactions
and the delay of less than 10 min is acceptable in flood practices, considering that system
interval is at a 5-min step based on the temporal resolution of the source data. The delay
times can be reduced by utilizing finer temporal resolution (e.g., 1-min) data, as well as
implementing a more aggressive alerting design (e.g., triggering flood alert whenever one
of the models firstly predicts higher values than the critical stages). On-going research will
be reported in a forthcoming paper for this particular effort.

While Young and others [48] suggested additional hydrologic information (e.g., ad-
ditional input from HEC-HMS predictions) for improving the model performance, this
study counterintuitively shows the models using more gauge information (S#2) lead to
diminished performance compared with S#1 models (Table 4) and that KGE and RMSE
metrics remain relatively similar for both scenarios (Figures 4 and 5). The authors think
that there could be several reasons: firstly, using more information of the watershed might
have weakened the overall performance as shown in S#2 (S#2 includes additional rain
gauges from outside the watershed in addition to the same information with which the S#1
is configured). It is noted that stage data from the stream gauges as used in the S#1 serves
as more direct information for stage forecasting than the information obtained from the rain
gauges. Secondly, it is also likely that the major storms recorded by the gauges outside the
watershed have a negative impact on the stage prediction through less accurate and indirect
information. Lastly, the XGBoost models utilize all the input variables directly without
preprocessing or selection and a proper selection of input variables is needed to improve
the performance of the XGBoost models [49]. Overall, the results of this study suggest that
including the gauge information only from the inside of the watershed as configured in S#1
is adequate and advantageous for training XGBoost models for flood-warning practices.
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Instead, the internal spatial information of the watershed, such as variables of physical con-
ditions (e.g., soil moisture, land cover, land use, etc.), as well as other available geological,
geomorphological, and hazard data can be more applicable when they are integrated into
the flood-alert system to improve its performance in flood-critical areas for civil-protection
purposes [50].

5. Conclusions

The performance of flood-alert systems (FAS) directly depends on the accuracy and
timings of the forecasted stages. Because of the limitations of physics-based hydrome-
teorological models in representing complex meteorological and hydrologic processes,
data-driven models as an alternative approach have become increasingly necessary to
improve the performance of FAS.

In this study, the XGBoost-based FAS is developed and evaluated, which runs in a
continuous mode and automatically detects flood events by forecasting stage information
from 5 min up to 2 h in a 5-min temporal interval. Quantitative evaluations of the models
show good performance indicated by RMSE and KGE metrics and the shapes of the
predicted stage hydrographs match well with the observed stage hydrographs. Moreover,
XGBoost-based models are tested with Scenario #1 (utilizing the gauge data within the
study area only) and Scenario #2 (having additional gauge data outside the study area).
The results from the comparative analysis suggest that while both scenarios achieve similar
performance, as indicated by KGE and RMSE metrics, the additional information from the
gauges outside of the watershed as configured in Scenario #2 has a negative impact on
predicting the critical stages.

While the XGBoost-based FAS achieves satisfactory performance with showing promis-
ing future for operational deployment, the authors believe that the performance of the
system can be further improved in the following perspectives:

1. Improving the design of the FAS warning criteria: the current system issues alerts
when at least three (3) target lead-time models predict all stage values over a critical
level. Although the criteria have been proved to be effective based on the experiments
and engineering judgement, this design is still regarded as an empirical approach and
will need to be further investigated with more analyses.

2. Considering the rainfall characteristics of flood events: the types of the rainfall are not
currently classified in the testing and validation datasets for the FAS (e.g., the May
2019 event was produced by a cold front and the 19 September event was caused by
a tropical cyclone—Hurricane Imelda). Different types of rainfall may have distinct
impacts on the FAS performance due to their spatiotemporal characteristics that are
indirectly reflected in the gauge readings (Table 4). An on-going study on this topic
will be reported in a forthcoming paper.

3. Introducing spatial information relative to the watershed: the XGBoost-based FAS
is built solely based on the temporal scale without incorporating any level of spatial
information. Gauge readings are fed to the models as independent inputs without
any spatial weighting as performed. The authors think that the spatial information
representing the physical conditions of the watershed (e.g., initial soil moisture,
watershed size, land use, etc.) need to be factored in the training process to further
enhance the prediction performance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w14050747/s1, Introduction to XGBoost Algorithm.
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