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In many applications, we have access to the complete dataset but are only interested in the prediction of a particular
region of predictor variables. A standard approach is to find the globally best modeling method from a set of
candidate methods. However, it is perhaps rare in reality that one candidate method is uniformly better than the
others. A natural approach for this scenario is to apply a weighted Lo loss in performance assessment to reflect
the region-specific interest. We propose a targeted cross-validation (TCV) to select models or procedures based on
a general weighted Lo loss. We show that the TCV is consistent in selecting the best performing candidate under
the weighted Lo loss. Experimental studies are used to demonstrate the use of TCV and its potential advantage
over the global CV or the approach of using only local data for modeling a local region.

Previous investigations on CV have relied on the condition that when the sample size is large enough, the rank-
ing of two candidates stays the same. However, in many applications with the setup of changing data-generating
processes or highly adaptive modeling methods, the relative performance of the methods is not static as the sam-
ple size varies. Even with a fixed data-generating process, it is possible that the ranking of two methods switches
infinitely many times. In this work, we broaden the concept of the selection consistency by allowing the best can-
didate to switch as the sample size varies, and then establish the consistency of the TCV. This flexible framework
can be applied to high-dimensional and complex machine learning scenarios where the relative performances of
modeling procedures are dynamic.
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1. Introduction

Cross-validation (CV) is one of the most powerful tools for selecting models or procedures. Different
CV methods include leave-one-out [1, 15, 29], leave-p-out [25, 36], V-fold [15], repeated learning
testing [7, 8, 36], Monte-Carlo CV [23], and generalized CV [11].

There are various works related to the asymptotic properties of CV. For model selection, the con-
sistency of CV in both linear regression and time series models has been studied, e.g., [19], [25, 26],
and [24]. For a broader setting of selecting general models or modeling procedures, [31, 32] provided
conditions for consistency of CV in the context of regression and classification. The application of
CV to selecting a model selection procedure in a high-dimensional setting was studied in [37]. Apart
from CV, the methods from [5] and [6] can also be used to select general modeling procedures for
function estimation. It has been shown that CV can select tuning parameters for optimal nonparametric
estimations such as the Nadaraya-Watson estimator [30], smoothing spline [11, 27], and nearest neigh-
bor method [18]. A comprehensive summary about CV-related works can be found in [2, 12]. More
recently, [3] designed a CV-based method to detect change points in the heteroscedastic framework. A
closed-form expression of risks from the leave-p-out CV, which provides insights into the choice of p
in both estimation and identification problems, was derived in [10]. A non-asymptotic oracle inequality
for the V-fold CV was obtained in [4] , and it shows that the V-fold CV is asymptotically optimal when
V' — o0 in a nonparametric setting. A classification procedure that combines CV with aggregation was
introduced in [20]. A consistent CV procedure for selecting high-dimensional generalized linear mod-
els was studied in [14]. A CV-based method that selects a subset of candidate models containing the
best one with high probability was introduced in [17].
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In various applications, we may want to select a candidate method with the best performance in a
small region of interest. One may attempt to build a model for the region alone. However, this may
not be a good solution because the local data are often limited for efficient estimation, and the full
data may help a good candidate model or procedure achieve optimal or near-optimal performance. The
current studies about CV focus on selecting the candidate method with the best global performance
and do not apply to finding the best one for a specific region. An effort was made in [33], where the
issue of selecting the best candidate at a single point has been studied, and the data-generating model
is considered fixed.

In this work, we propose a method named targeted CV (TCV) for the above problem of selecting an
optimal candidate method for any particular region of interest. Our method allows for the consideration
of flexible high-dimensional regression methods as candidates. More generally, it incorporates a weight
function to reflect where the comparison of the candidate models or procedures is of most interest. A
straightforward way for the weight is to assign a 0/1 value according to whether an observation is in
the region. Compared with CV without weight, which selects the best global model, the TCV may
work better than the regular CV when the globally best candidate does not perform uniformly the best.
Additionally, the TCV can be used to compare the methods applied to the complete dataset with those
based on the local data only. On the one hand, candidate methods based on the complete dataset have
the advantage of a larger sample size. On the other hand, the data outside the local region may introduce
undesirable biases. Fortunately, the TCV provides a data-adaptive way to compare them.

For the intended application of our TCV, the candidates are allowed to include non-model-based
procedures in addition to models. We have found an apparently ignored but important aspect in pre-
vious theoretical developments on selection consistency when comparing general learning procedures.
The issue is that the existing results assume that one procedure stays the best as the sample size ap-
proaches infinity. However, this view ignores the fact that in many applications, the comparison of
the competing procedures is dynamic. Specifically, the performance ranking of the candidate proce-
dures may keep changing as the sample size varies, especially when the candidate methods are highly
adaptive and evolving with the sample size. We will provide an example to show that even with a
fixed data-generating process, the ranking of two sensible models changes infinitely many times. To
accommodate for this inevitable complication in reality, we enable the TCV to work for a triangular
array setup where the best candidate method may not be fixed. Under this broad setting, the goal is to
find out the best candidate method under the current sample size. To define the best candidate in an
asymptotic sense, we introduce a new concept of performance comparison elaborated in Section 3.

The outline of the paper is given below. Section 2 defines the problem. Section 3 introduces new con-
cepts for performance comparison. Section 4 introduces our TCV and shows its consistency, Section 5
presents the numerical studies. Section 6 concludes the paper. The appendixes include the proofs.

2. Problem

We consider the random design regression model Y; = f(X;) + &;, where 1 < i < n. Predictors
X, =(X 1-(1), X i(p )) are independent and identically distributed p-dimensional random variables.

For each k € {1,2,--- ,p}, X Z-(k) can be either continuous or discrete. Let Px denote the joint prob-
ability distribution of the predictors and S denote the domain of X. Let 1, - , &, be independent
random errors with E(g;|X;) = 0 and E(?|X;) < oo almost surely. Let Wy, (x) be a nonnegative
weight function that satisfies

/ Wi () Px (dz) = 1. @1
S
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We define the weighted Ly norm || f||g w, = ([ Wn(z) - \f(:c)\qPX(d:c))l/q, where 0 < ¢ < o0.
We require that || f||2 y,, < oo and ess-sup|W,| < occ.

We have a set of candidate regression procedures §; € M, where j € J = {1,2,...,m}, and each
candidate is based on a regression model or a general procedure. The set M may p0551bly change

with n, but the number of candidate methods m is upper bounded by a fixed constant. Let fn 7 be the
fitted regression function from ¢; with training data size n. We want to find the candidate d;+ with
j*¥ =argmin|f — ﬁ(L] ) l|l2,w,, - Three examples of the weight function are as follows.

JjeJ

Example 1. (Region-based weight) Suppose we are only interested in the performances of the can-
didate methods in a fixed region A. We can take an indicator weight W, (x) = C~11(z € A)
where C' equals the probability of X € A and 1(-) is the indicator function.

Example 2. (Conditional variance-based weight) Suppose we know that the conditional variance of
the response satisfies Var(Y;| X;) = Var(e;) = 0?(X;), where o2 is a positive function of
predictors such that
/. sl Jo?(x) Px (dz) < co. We can adjust the Ls loss according to the conditional variance by

1/0%(x)
Wa(x) = Js1/02(x) Px (dz)’

Example 3. (Single point-based weight) Suppose we are interested in modeling f(x) evaluated at a
single point & = x*. We can define the weight by a positive function centered at * that shrinks
toward that point as the sample size n goes to infinity. For instance,

exp (f||m - :1:*||% n)

Wa(@) = Jsexp (—|lz — z*[|j3 - n) Px (dz)’

3. A Neglected Aspect in Selection Consistency Theories for CV

In Section 3.1, we address the need to extend the scope of the CV to a more flexible framework that
is based on the triangular array setting with possibly changing data-generating distributions. We also
present the definition of the best candidate method under the extended setting. In Section 3.2, we
exemplify the choice of splitting ratios needed to identify the best candidate method.

3.1. A triangular array setting

The selection consistency of CV has been established both for parametric model selection and for
procedure selection. For the former, the candidates are assumed to be fixed linear models [25]. As the
sample size increases to infinity, there is no ambiguity in terms of which model is the best. For the latter,
results that allow the inclusion of general regression procedures are given in [32] and [37]. A major
limitation of these theoretical results is that they assume a static ordering of the candidate procedures in
terms of performance. In many applications, however, the relative performances among the candidate
procedures may be dynamically changing with the sample size even if the true data-generating process
stays fixed (see Section 4.3). Moreover, modeling methods for high-dimensional data usually assume
changing true sparsity or true coefficients in deriving theoretical properties [13, 35], which implicitly
indicate a triangular array setup.
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Now, consider two variable selection methods, and the goal is to choose between them. Suppose
they are known to perform optimally under severe or moderate sparsity, respectively (e.g., the number
of non-zero coefficients being of order log n and ni/10, respectively). In this context, for an interesting
theoretical investigation, it makes most sense to allow the unknown data generating model and the best
candidate to change according to the sample size. This is just one example of situations where the
relative ranking is not static due to the fact that the modeling procedures may react quite differently
with more or fewer observations. The present CV framework unfortunately cannot handle this reality.
Thus, it is essential to explicitly set up a flexible framework that gives each candidate method a chance
to work better and confront the reality of possibly changing relative performances. Otherwise, a fixed
truth or a rigid triangular array setup may lead to the conclusion that one of the two methods would
always be preferred when n is large enough, which is detached from many real applications. The
above reasons motivate us to study the consistency of the TCV under the following triangular array
framework, where data are represented in a triangular array.

(X1,1,Y1,1)
(X21,Y21),(X22,Y22)

In each row, the random pairs are i.i.d. For each n, Xy, 1,--+ Xy p follow the distribution Px, , and
the weighted Lo norm is defined according to Px, . Under this setting, the goal is to find out the best
candidate method given the current sample size.

The fitted regression function ﬁ(@jl) with j € J was obtained by first sampling (without replacement)
n1 observations as the training set and then applying the candidate methods d; with j € J to this
dataset. Let C(ny,n) be a sequence of positive numbers. Let [,, be a sequence of positive integers such
that I, < n, and [,, — oo as n — oo. For illustrative purposes, we first focus on the case with two
candidate methods. Let g, and b, be two sequences that take values from 7 = {1,2} and satisfy
gn + bp, = 3, where g,, stands for “good” and b,, for “bad”.

Definition 1 (W, I, c(nlm))-better). The candidate method 6g,, is said to be the (W, L, c(nhn))—
better one asymptotically out of the two candidates 61, d2 at sample size n if for all I, <ni <n, we
have

P(|f = T llaw, > U+ ey mp) 1 = B llaw,) = 1, 3.1)

as n — oQ.

The quantities involved in the above definition capture the key aspects in the TCV comparison. The
sequence c(,,, ) characterizes the difference between the losses of the two candidate methods. It is
related to n1 in the sense that the convergence rate of the fitted regression function depends on the
training data size. It may also depend on n since the data-generating process, weight W,,, and better
candidate g, may change with n. In the high-dimensional setting with the number of predictor variables
increasing to infinity, C(ny,n) May need to go to 0 when the two candidate methods are very close. An
example concerns the choice of C(n1,n) for comparing the underlying true model with an over-fitting
model with one additional term. As will be seen in our main theorem, the TCV will require a higher
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portion of the test data to handle the challenge of a decreasing performance difference in such a case.
If [, is much smaller than n, then for a wide range of choices of ny for the TCV, the comparison result
of §g, and &y, at the reduced sample size 1 matches that at the full sample size. In contrast, suppose
for instance, dg,, is (W, ln, C(, ))-better than d,, but dg,, is not better even at a slightly reduced
sample size n] < n, then one may not be able to tell which candidate is better at the full sample size n
when data splitting is done. In this case, it is hard to get a consistent selection for the TCV, as expected.

In the general case where M may contain more than two candidate methods, we let g, denote the
to-be-defined best candidate and

T E{jeT j#gn} (3.2)

We define the following extension of Definition 1.

Definition 2 ((Wn,ln,c(nhn))-best). A candidate method b4, from M is said to be the (Wi, ln,
c(nhn))-best one asymptotically if there exist 0 < l,, <n and C(ny,n) > 0, such that the method dg,, is
(Wh, ln, c(nlm))—better than 0; for each i € T,

3.2. An example of the changing [,,

Recall that under the (W, I, C(ny,n) )-better condition, g, is better than &, as long as the training set
size ny is larger than or equal to a lower bound [,,. In this subsection, we provide a toy example of /,,,
which shows that the increasing speed of n1 cannot be too slow compared with n, in order to guarantee
that the performance ranking of the candidate methods at the sample size n1 remains the same as that
of n.

We consider the data-generating process Y; = f(X;) + &;, where f(x) = 22, g;’s are i.i.d. from
N(0,02), and X;’s are i.i.d. from U(0,1). We are interested in estimating f(z) where z is close to 0.
We consider

c-l ifo<z<n"s,
Wn - .
0 otherwise,

.. -1/8 .
where the normalizing constant C' = ' dz =n"1/%. The candidate models are

n1

1 1
Model 1: i} () =22 + — Y (5 —a?) = f(2) + — Y e,
ny “ ny <
i=1 i=1
2
Model 2: 7 (z) = 0.
For model 1, we have
_1 2 2
8 ni ni
2 " 1 , 1, 4
If = o |\2,an/0 <f(r)f(:v)mzez Cldr={ =3 i)
i=1 =1
Therefore, || f — ﬁ(ﬁ) ||% w,, converges at the rate nl_l. For model 2,
-4 -4
2 " _ n 11 _1
Hf—ﬁ(n)”g,wn:/o (f(z)-0)%-C 1d:£:/0 x4dx~n8:g-n 2
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1
Thus, || f — ﬂz) H% W, converges exactly atrate n” 2, regardless of n;.

f(l) ||2

n 12w,
_ #2)2 -1 -1 : : (1)

and || f — fn"’||5,yy, aren™ " and n” 2, respectively. Therefore, the weighted Lo loss of fr ~ converges

For the estimators f,S” and ﬁ(?) using the complete dataset, the convergence rates of || f —

faster than the weighted Lo loss of ﬁ(Lz). However, in order to get the same ranking of ﬁ(ﬁ) and ﬁ(ﬁ)
based on the training data with size n1, we need n1/y/n — oo as n — oo.

The above example is meant for a quick illustration. In reality, suppose that 41 and d2 denote two
teams of data scientists participating in an online data competition. It is conceivable that the two teams
may try various learning tools with validation feedback on their performances, and their relative rank-
ing may not be static. In this case, to fairly evaluate their performances at a reduced sample size n1 < n,
the lower bound /,, needs to be carefully chosen.

4. Method and Main Result

In Section 4.1, we present the TCV method. In Section 4.2, we introduce the theoretical result that
shows the model selection consistency of the TCV. In Section 4.3, we present a nonparametric regres-
sion example with alternating best candidate method and verify the requirements for the property of
the TCV. In Section 4.4, we extend the theoretical result of the TCV from a single splitting to multiple
splittings that aim to stabilize the selection result.

4.1. Targeted cross-validation

Recall that we have randomly partitioned the dataset into a training set with size n; and a test set with
size ng =n — no. We define our weighted squared prediction error by

n
TCVi, (7)) = 3 (¥ - I (X)) Wa(X), @.1)
1=n1+1
where j € J and the summation is taken over the test set, and for notational simplicity, (X;, Y;) denote
(Xn,i> Yn,i)- The TCV selects the candidate j = argmin TCVw, ( 7(131))

JjeJ
4.2. The main theorem
We first introduce some necessary definitions and conditions.
Definition 3 (IV,,-consistent selection). We assume that there exists a candidate method 6, that is

the (W, ln,c(nlvn))-best out of M at sample size n. A selection rule is called Wy,-consistent if its
probability of selecting &4, goes to 1 asn — 0.

Definition 4 (Lower bound of the rate of the weighted Lo loss). A fitted regression function ]/";11 is
said to have (W, 1, )-convergence rate lower bounded by Uny n) under the weighted Lo loss if for

each 0 < € < 1, there exist ce >0, N € ZT such that for alln > N and l,, <nj <n,

P (Hf — Faullow, > cea(nl,n)) >1—e. 4.2)
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Condition 1 (Error variances). The error variances E(¢%|X;) are upper bounded by a constant
@2 > 0 almost surely for all i > 1.

Condition 2 (Relating weighted L4 and Lo losses). There exists a sequence of positive numbers My,
such that for all I, <ny <n,

sup (I = £ law, /1 = 75 llzsw,) = Op(M),
JjeT
as n — Q.

Condition 3 (Lower bound of the convergence rates). There exists a sequence q such that for

ni,n)

each j € Jy, ﬁ(ﬂl) has (W, ly,)-converge rate lower bounded by U(n1,n) under the weighted Lo loss.

Condition 1 is a mild requirement that is satisfied when, e.g., the random errors have the same finite
variance. For Condition 2, it has been shown that for some familiar function classes, the estimators
may have the same rates for both L4 and Lo losses. For instance, Lipschitz class [Section 1.2, 22],
Holder class (see, e.g., Section 1.3 of [22] and [28]). and Sobolev class [Section 2.1&2.2, 22]. Also,
an example that compares AIC-based and BIC-based selection procedures with M,, =1 can be found
in Section 3 of [37]. For Condition 3, similar to Clny,n)> both n1 and n are involved in determining the
rate g(,, n)- For instance, in the example from Section 3.2, when n1/y/n — 0o as n — oo, we have
that A(ni,n) = 1/\/5

Let Syy,, denote ess-sup(Vy, (x)). Our main theorem is as follows.

xeS

Theorem 1 (W,,-consistency of the TCV). Assume that Conditions 1-3 hold, and the data splitting
is such that for all I, < ny <n, we have
(0. no - c%

nl,n)/(SWanl) - 00,
(). 12 - (C(ny n) * U(nam)) >/ Sw = 00,

as n — 0o. Then, the TCV is W,-consistent.

The detailed proof can be found in Appendix 7. The requirements (i) and (i) indicate that the TCV
needs the test size ng to be sufficiently large. In the case of comparing nested high-dimensional regres-
sion models with a fixed number of additional predictors, under some mild conditions from Section 4.2
of [37], we have (c(,,, ) - q(n17n))2 = Op(1/n1). Then, if My =1 and both Sy, and q(,, ) are
bounded above by fixed constants, the requirements (i) and (if) can be simplified by ng — co and
ng/n1 — oo. This requirement on the splitting ratio is in accordance with those from Theorem 1 of
[25] for classical linear regression and Theorem 3.3 from [10] for density estimation. It is interesting
to note that this splitting ratio direction may be opposite to that for risk prediction or asymptotically
optimal estimation in some contexts, which need ny/n; — 0 (see, e.g., [4, 8, 9]). When Wy, (z) is
chosen to focus on a region R,, with decreasing probability, which implies that Sy, goes to infinity,
the two conditions (Z) and (i) require ng to be larger compared with the global CV. In such cases, it is
crucial to have enough evaluation data points in order to separate close competitors on a small region.

Compared with former related works, e.g., [32] and [37], our theoretical results differ in three major
aspects. First, our theory takes the effect of the weight into account. It applies to a broader range of
CV applications such as illustrated by Examples 1 to 3 in Section 2, and our result highlights the need
to adjust the data splitting ratio accordingly. Second, our method works in a more general and realistic
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framework with possibly changing relative performances of the candidate methods. Third, with an
improved derivation, we have removed the requirements on the upper bound of the sup-norm loss and
exact rate of the Lo loss as those in Condition 1 and Definition 3 of [32] and Conditions 1 and 4 of
[37].

4.3. An illustrative example with an alternating better candidate method

In this subsection, we present an example where we observe the alternating relative performances
between two candidate methods. This example is particularly interesting in that the data-generating
process is fixed. We also verify the conditions for the TCV and provide a valid range for the required
data splitting ratio.

We consider the i.i.d. data-generating process y = f(x) + €, where f(z) = 3”;1 Bjd;(x), v ~
U(0,1), the random error ¢, assumed to be independent of z, has mean zero and variance one, and for
convenience, ¢;(z) = v/2sin4/wz. Let S = {2(12X3q_1) : ¢ € N}, where N denotes the set of natural
numbers. Let S1 denote the subset of S with odd ¢ and Sg denote those with even ¢. The data-generating
coefficients are

1

5[0 when j € Uy s, [[v1/12], [v1/4]],
- 5z otherwise,

where |z | stands for the largest integer no bigger than 2. Our candidate models with training set size
ny are

(1) (2)
Pnq Pny

Model 1: fi)) =37 3"0;(2), Model2: 52 =3 "o, (a),
i=1 i=1

where Bj(-m) = n% ] yi¢j(xi),p,g11) = Ln}/ﬂ -1, andp,(fl) = Ln}/ﬂ. This definition is valid if we

consider n; > 16. The coefficient 5[,(2) , which corresponds to the additional variable in model 2 not

in model 1, has an alternating pattern as shown in Figure 1. We want to find out the better candidate
model when n € S.

n 212 236 2108 2324
n,; € [n1/3, 1) [24,212) [212,236) [236,2108) [2108 2324)
@) |,1/4 [2,2%) [23,29) [2°,227) [227,281)

pn1= ny J

ﬁp%zl) =0 —
1

B> =

Dny (pr(lzl))z

Figure 1: An illustration of Bp@) when ny € [n!/3 n) and n €S.
ni
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Proposition 1 (Alternating relative performance). Take [, = nl/3, ny € [ln,n), and Wy(x) = 1.
Then, when n € S1, model 1 is (W, ln, n1_1/3/3)—better than model 2, and when n € So, model 2 is
(Wh,ln, n;1/3/3)-better than model 1.

Proposition 2 (Verifying the requirements for the TCV). Assume that ny/ ”17/ 12

With ¢(,,, n) = n1_1/3/3 and Wy, (x) = 1, we have

— 00 as n — o0

; 2 4

ing- c(nhn)/]\/[n — 00,

.. )

ii. N2+ (C(ny m) ~ dna,n)” — 00,

as n — oo. That is, the requirements for consistency of the TCV in this example are satisfied.

The proofs are in Appendices 8 and 9.

4.4. Multiple data splittings

In practice, we apply the TCV with multiple data splittings in order to lower the variability of the
selection result. The need of a number of data splittings to achieve stability in the outcome of selection
is numerically demonstrated in [34]. The training set and test set in each single splitting are assumed
to be independent. With any multiple-splitting method, we obtain a set of MSEs for each candidate.

f(] ) k with j € J be the estimators from the

candidate procedures based on the training set in the k-th sphttmg Let K denote the total number of
splittings. We define

Next, we introduce two ways to combine the results. Let

K

MTCV, (6 Z TCViy, u(F7)), (4.3)
1 K

MTOV, (5) = 7o >_ 1 = argmin TCViy, & (7,1 ) (4.4)

for the multiple splitting TCV by averaging and by voting, respectively. The two multiple splitting
TCV methods will select §; € M that minimizes MT'CVij, (d;) and maximizes MTCVy, (), re-
spectively. The following corollary shows that the TCV w1th multiple splittings is also Wy, -consistent.

Corollary 1 (Consistency of the TCV with multiple splitting). Under the same conditions as in The-
orem 1, if the number of splittings K is independent of the data, the multiple splitting TCV by voting is
W -consistent. If additionally, K is upper bounded by a fixed constant (independent of n), the multiple
splitting TCV by averaging is also Wy, -consistent.

5. Simulations and Real Data Example

The goal for the simulation and real data examples is to investigate if the TCV can indeed improve over
(regular) CV when one’s focus is not on the global performance. We also include local-dataset-based
methods as candidates in some cases. The examples are chosen to highlight the differences among the
competing methods. For multiple splittings, we apply the scheme of Monte-Carlo CV and aggregate
the results by averaging as shown in Equation (4.3).
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5.1. Simulation 1: a simple model versus a comprehensive model

Consider an example that involves the comparison between a simple model and a comprehensive
model.

Let the data-generating process with predictors X (0), o X (100) and 7 be

Y=XO 4 1-7)(x® 4.4 xA00)y 4

where X (0), . ¢ (100) follow a multivariate normal distribution with mean 0 and covariance matrix
200 0 ... 0
00.10.1...0.1
00.10.1...0.1
0010.1...0.1
Z follows Bernoulli(0.1) and is independent of X ©),...,x(100) "and the random error & follows

N(0,02). We consider error variances o = 25 or 3. The goal is to find out the best candidate method
for the local region

2,22 ... £ (100))T c 101y (5.1)
Our candidate models are:
01: Y = [ X ©) 4 e, fitted on the complete dataset,

52V = BoX @ - 4 B1o0X 100 4 81017 XV .- BT - X100 ¢

fitted on the complete dataset,
03: Y = B X ©) 4 e, fitted on the local dataset, where Z = 1.

The candidate models §7 and &3 are only correct in the local region in (5.1) and ds is the overall correct
model. Intuitively, 41 can be better than d2 in the local region since d9 has too many parameters to be
estimated. As for d; versus ds3, it depends on whether the gain from the increased sample size outweighs
the loss from the variability introduced by X1, ..., X (100) Thus, the two error variances o} and 03
are likely to result in different outcomes.

First, we randomly generate a dataset with n = 800. Next, we apply both the CV and TCV with
Whp,(x) = 1(Z = 1). The training set and test set sizes n1 = ng = 400, and the number of splittings
K =100. To measure the performance of the candidate models and selection results, we independently
generate an evaluation set from the data-generating model with size 5000 and calculate i) weighted
MSE with 0/1 weight on Z, which measures the local performance, and ii) MSE without weight,
which measures the overall performance, for the three candidate models and the models selected by
the CV and TCV. The MSEs and associated standard errors based on 500 replications are shown in
Table 1.

It can be seen from Table 1 that d> is not the best model for the local region. Therefore, in this case,
the complex global model, while being correct, does not perform as well as the simple model or that
based on the local region due to the relatively small sample size given the complexity of the whole
model. The table also shows that for o = 25, 41 outperforms d3 for the local region. This is because
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Table 1. The MSEs from §1, do, d3, TCV, and CV for both the local and overall performances. The standard
errors of the MSEs are shown in parentheses. The bold numbers stand for the better one out of the CV and TCV.

o1 do d3 TCV CvV

0=25 Local 628 65.6 63.3 63.1 656
(0.2) 0.2) 0.2) (0.2) 0.2)

Overall 15283  631.7  1533.1 15180 631.7

(1.4) (0.6) (1.5) 4.9) (0.6)

o=3 Local 0997 0945 0911  0.914 0.945
(0.007)  (0.004) (0.003) (0.003)  (0.003)

Overall 9108 9.1 9099 8866 9.1

(0.861)  (0.009) (0.864) (6.474)  (0.009)

with the use of more observations, d; gains much in variance reduction and has a better performance
than J3 for the local region. For o = 3, however, the gain from the variance reduction is blown away by
the bias introduced by the outside data (recall that X (1), o, X (100) are not included in d1), resulting
in the worse local performance. In both cases, do always has the best overall performance. For the
selection results, the TCV has better performance than CV for the local region as desired, but worse
for the overall performance.

To demonstrate the effect of the number of data splittings in TCV, we calculate the weighted cross
validation MSEs (as defined in (4.3)) with K = 1 and K = 100 respectively. As shown in the left panel
of Table 2, for the weighted cross validation MSEs of the candidate models, the respective standard
deviations based on 500 replications decrease with the increased number of splittings. The same is true
for the weighted squared Lo loss (simulated based on 5000 independently generated predictor values)
of the regression estimators from the models selected by TCV, as seen in the right panel of Table 2.

Table 2. Effect of the number of data splittings (KX = 1 versus 100) on cross validation errors and regression
estimation losses.

(b) Standard deviations of the weighted

(a) Standard deviations of the weighted cross validation squared Lo losses of the models selected by
MSE:s of the candidate models. TCV.
Candidate Model o K=1 K =100 o K=1 K=100
01 25 15.07 10.61 Local 25 525 493
3 0.37 0.21 3 0.089 0.073
&9 25 8586.74 5724.64 Overall 25 32325 86.60
3 123.65 82.43 3 372.85 154.93
d3 25 7700.46 5368.10

3 110.89 77.30
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5.2. Simulation 2: a continuous weighting for TCV

Sometimes, it may be preferable to assign weights between 0 and 1, e.g., W (x) = a if  is in a certain
region, where 0 < a < 1 and W(x) = 1 — a otherwise. In this way, we aim to find out the candi-
date methods with excellent performance for the region with the larger weight value and acceptable
performance on the remaining part.

We consider the data-generating process

~ J250(X +0.1)2 46, if0<X<0.1,
100X +e¢, if0.1<X <1,

where the predictor X is generated i.i.d. from U (0, 1), and the random error ¢’s are i.i.d. from N (0, 1).
It can be seen that the underlying true regression function is quadratic on the left and linear on the right.
Figure 2 is an example of a random sample of this model. Our candidate methods are the Nadaraya-

100 - i a
l RN
1 'd
1 .5‘
1

75- [ P
! T
1 ")
: .‘.oo

> 50 : ‘*
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| . ™
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Figure 2: An example of simulated data points from the data-generating model, where the regression
function is quadratic when X < 0.1 and linear otherwise.

Watson estimator [21] with Gaussian kernel and linear regression. The Nadaraya-Watson estimator
is estimated by “npreg” from the R package “np” with bandwidth selected by least-squares cross-
validation. Intuitively, the Nadaraya-Watson estimator may have better performance on the quadratic
part and the linear regression may have better performance on the linear part. We compare four kinds
of TCVs with weights:

0.5, X <0.1 0.8, X <0.1
W X — b b W X — b b
n05(X) {oa X>01, n08(X) {oz X>01,
09, X <0.1 1, X<0.1

W X — ) b — ) bl
n.09(X) {QL X>01, n1(X) {Q X >0.1.

We randomly generate a dataset with the size 200 and apply the TCVs with the different weight
functions to the candidate methods with the training and the test sizes n; = no = 100 and the number
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of splittings K = 100. The evaluation procedure is the same as in Section 5.1. The weighted MSE for
local performance, performance outside the local region, and the overall performance are considered.
The MSEs and their standard errors based on 500 replications for the candidate methods and TCVs
are shown in Table 3. The notations “NW” and “Linear” stand for the Nadaraya-Watson estimator and
linear regression, respectively. The notation “TCV,” with a = 0.5,0.8,0.9,0.1 stand for the TCVs
with the corresponding weight W, ., respectively.

Table 3. MSEs from the Nadaraya-Watson estimator, linear regression, and TCVs with different weights. We con-
sider their local region performances, outside local region performances, and overall performances. The standard
errors of the MSEs are shown in parentheses.

NwW Linear TCVgs TCVgg TCVgg TCVy

Local 0.126 0.186 0.186 0.162 0.152 0.150
(0.001)  (0.001)  (0.001) (0.002) (0.002) (0.002)

Outside  1.120 0.927 0.927 1.013 1.043 1.051
(0.003)  (0.001)  (0.001) (0.005) (0.005) (0.005)

Overall  1.245 1.112 1.112 1.176 1.195 1.201
(0.003)  (0.001)  (0.001) (0.004) (0.004) (0.004)

We see that the Nadaraya-Watson estimator performs better in the local region (X < 0.1), and linear
regression performs better outside the local region (X > 0.1). Additionally, linear regression has better
overall performance. With W), ¢ 5, the TCV is equivalent to CV, and it prefers linear regression. As the
weight in the local region increases, the performance of the TCV gets closer to that of the Nadaraya-
Watson estimator, with improved local region performance. Nevertheless, as a tradeoff, it has worse
global and outside the local region performances. The results show that the TCV can address the
problems where we need a balance between local and overall performance.

5.3. Simulation 3: a high-dimensional case

In this example, we apply TCV in a high-dimensional setting. We consider the data-generating process

Y =2exp(-5XD%) 4+ 2XD £ X® 1 05X® 1 01xD 1 c.

The 1000 predictors X (1), o X (1000) follow a multivariate normal distribution with mean 0 and
covariance matrix V € R1000 with Vij= 0.11"=31. The random error ¢’s are i.i.d. from N(0,1). We
want to find out the best candidate method for the local region

{(2M), 22 ... x(000T (1) 2T ¢ (—0.5,0.5)2, (2(3) ... £(1000))T ¢ R998Y

Four candidate models/procedures are considered. They are random forest and lasso regression fitted
on the complete dataset, and their local versions fitted on the local region data.

. 2 . . . .
The nonlinear term exp(fSX ey ) has a large influence on the regression function when X M) is
near 0. According to this, the random forest may have the best performance in the local region centered
at 0. However, lasso regression also has a chance to overperform the random forest if the influence
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of the nonlinearity is relatively small compared with the advantage obtained from sparsity. The local
candidate models are more specific to the local region compared with their global counterparts, but
they have fewer data.

We randomly generate datasets with size 200, evaluate the candidate methods and CV selection
results, and independently repeat this process 100 times. The other simulation settings are the same as
previous subsections. The random forest is fitted by 500 trees, and it selects 32 variables each time.
The tuning parameter of the lasso regression is selected by the 10-fold CV.

The MSEs and their standard errors are shown in Table 4. The notations “lasso” and “RF” stand for
lasso regression and random forest based on the complete dataset, respectively, and “lasso_local” and
“RF_local” stand for the corresponding local versions. It can be seen that the random forest based on
the complete dataset has the best local performance, and lasso regression based on the complete dataset
has the best overall performance. The TCV selects the complete dataset-based random forest for most
of the times, and CV often selects the complete dataset-based lasso regression. Consequently, the TCV
has better local performance and the CV has better overall performance, as expected.

Table 4. MSEs from lasso regression and random forest built on all or local data, TCV, and CV. We consider
their local region performances and overall performances. The standard errors of the MSEs are shown in paren-
theses. The bold numbers stand for the better one out of the CV and TCV. A t-test at the significance level of
0.05 shows that there is no significant difference between the local performances of ‘lasso’(with MSE 2.02) and
‘lasso_local’ (with MSE 2.00).

lasso RF lasso_local RF_local TCV CvV
Local 2.02 1.47 2.00 1.90 1.62 2.02

(0.02) (0.01) (0.02) (0.01) (0.03) (0.02)
Overall 1.74 2.78 7.48 7.86 3.85 1.75

(0.01) (0.02) (0.13) (0.05) 0.23) (0.02)

5.4. Boston housing data

We demonstrate the application of the TCV using the Boston housing data from [16] with 506 obser-
vations. They fitted a model for the median value of owner-occupied homes based on the model

log(MV) = a1 + asRM? + a3 AGE + a4log(DIS) + as log(RAD)+
agTAX + a7 PTRATIO + agB + aglog(LSTAT) + a10CRIM + (5.2)
a11ZN + a1o2INDUS + a13CHAS + ajaNOX? + €.

Instead of fitting a model of the overall house price like (5.2), we consider the house prices of
relatively new buildings. Since the age of a house is one of the most important factors that a home
buyer typically considers, it will definitely make a difference in terms of the price. According to this
fact, other candidate models may perform better than the global model (5.2).

The predictor AGF is the proportion of owner-occupied homes built prior to 1940, which measures
the overall age of the houses in a census tract. Here, we are particularly interested in the medium home
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value in relatively new areas with less than 50% of the houses built before 1940 (AGFE < 50). There
are 147 observations with AGE < 50 in the data. We consider the following three natural candidate
models:

1. 071 uses the model (5.2) with all the available data.
2. J9 performs an additive regression, using the model

log(MV) = a1 4 ag f(RM?) + a3 f(AGE) + a4 f(log(DIS))+
a5 f(log(RAD)) + ag f(TAX) + a7 f(PTRATIO)+
agf(B) + agf(log(LSTAT)) 4 a1of(CRIM)+ (5.3)
a11f(ZN) + a1 f(INDUS) + a;3CHAS+
a1 f(NOX?) +e,

with all available data, where each f represents a smoothing spline with three degrees of freedom
3. d3 is from model (5.2) but only based on the local data with AGE < 50.

Note that the local version of d is not considered as a candidate since we do not have enough local
data to support the nonparametric estimation.

We first randomly set aside 20% of the observations as the evaluation set and apply half-half splitting
100 times on the rest of the observations for the CV and TCV. To avoid not having enough local data
in the randomly splitted data, we apply a stratified sampling. The weight for the TCV is Wj,(X) =
1(AGE < 50). We calculate the weighted MSE based on the local region and the overall MSE for
the three candidate models together with the TCV and CV on the evaluation set. The above procedure
is independently repeated 500 times. The MSEs, together with their standard errors, for the candidate
models, the TCV, and CV are shown in Table 5.

Table 5. MSEs of 1, d9, 3, TCV, and CV. We consider both their local region performances and overall perfor-
mances. The standard errors of the MSEs are shown in parentheses. The bold numbers stand for the better one out
of the CV and TCV.

01 02 03 TCV Ccv
Local  0.0049 0.0037 0.0018 0.0018 0.0037
(6.7x107°)  (6.4x107°) (24x107°%) (25x107°%) (6.4x1079)
Overall ~ 0.0360 0.0303 0.1710 0.1707 0.0304
(3.3x107%)  (3.1x107%)  (0.007) (0.007) (3.1 x10™%)

It can be seen that d3 has the best performance in the local region where AGFE < 50. For the overall
performance, d9 is the best. The TCV always selected d3 and the CV always selected J2. Clearly, the
TCV has excellent performance since it selected the candidate with the best performance for the region
of interest.
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6. Concluding Remarks

We have proposed the TCV for selecting the best candidate regression procedure defined via weighted
Lo losses. An application of the TCV is to find a candidate method with the best performance for a
local region. With a proper data splitting, our method can consistently identify the best-performing
candidate that possibly varies with the sample size. Simulation and real data examples have illustrated
that the TCV can outperform the regular CV when the candidate methods do not rank uniformly over
the local region and outside that region.

With the availability of large numbers of observations, often with high input dimensions, highly
adaptive non-traditional methods can better approximate complicated regression functions. In this
background, the traditional framework of a fixed best model or procedure waiting to be identified may
be overly simplistic in real applications. In this paper, we utilize a triangular array setup to facilitate
the needed flexibility for selecting the dynamically best candidate. This more dynamic framework may
be generally helpful or even necessary in establishing adaptive learning theories for high-dimensional
and big data when data splittings are involved.

It is interesting to observe that when a weighting function is used to define the loss of interest, it
may have a major impact on how we need to split the data. Indeed, when we care most about a small
region, for instance, the task of finding out the best candidate procedure among close competitors in
that region becomes harder, compared with that of identifying the globally best. Then, we need to shift
the data splitting ratio more towards the evaluation part. Our main theorem gives sufficient conditions
to enable consistent selection in terms of the natures of the weighting function and the convergence
rates of the candidate procedures. We have also observed that the TCV may exhibit poor performance
or high variability in terms of the global performance. Therefore, a proper CV method should be chosen
according to the interest of the application.

In this work, the number of candidate procedures to be compared is essentially not allowed to grow
as the sample size increases. One interesting future direction is to handle the situation where the list
of candidate procedures expands when more observations become available, which provides more
flexibility in regression modeling.

7. Proof of the Main Theorem

Since the number of candidate methods in M is upper bounded, it suffices to show that the TCV is W), -
consistent when comparing the (W, ln, Clny,n) )-best candidate method dg,, and every other candidate
method from M. We take an arbitrary candidate method that is not d,,, from M and denote it by dp, .

In this proof, we will show that when l,, < nj < n, the probability of selecting the (W, I, C(n1,n) )-
better candidate

P (TCViy, (785) > TCViy,, () = 1, (7.1)
as n — oo. Since Yy, ; = f(Xy, ;) + €54, We have

n n

TCVi, (F) = 30 2, WalXn)+ S (f(Xni) = 1 (X))
1=ni1+1 i=ni1+1

n

WalXni) 42 S enilf(Xng) = I (X)) - W Xni),
i=ni+1
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where j =1 or 2. We have

TCViy, (F) = TCViy, (F9) <

2 3 e (X) — T (X ) Wi (X) 2 KO0 K, 72

i=ni+1
where
KO = 3 (F(Xn ) = B0 (X )2 W X ), (7.3)
1=n1+1
KO = S (F(Xni) = 5 (X i) W (X, 74
1=n1+1

Denote the event {IC(b") — Klon) > 0} by Sy, and the training data by Zj,,. Conditional on Z,,, the

predictor data X 7(12)

inequality, we have

from the test set, and given Sy, holds, by the result from (7.2) and Chebyshev’s

P (TCViy, (F1”) < TCViy,, (J5)1 Z0y, X2, 1) (75
_P<2 > (f(b” (Xn) — P (X )) W X)) > (7.6)
i=ni1+1

Kn) _iclon)| 7, X2, Sﬂ)

<Var(2zzn:n1+1 Ez(f(bn (X ) A(gn (Xn,z ) W (X nz)‘Zn17X7(z )7Sn)
B ( (bn) — ]C(gn))2

42n1+1<“b”>< )= T (X )2 - (WX )2 - 52

< sy
(Kn) — (gn>)2 =Q

472500 3 (PS5 (X, )= PSS (Xn,0))% Wi (X i)-Sw

(’C(bn)_K(gn))Q - (recall that Sy, de-

notes ess-sup,, (Wp,(x)) ). Therefore, (7.5) is upper bounded by min (1, @y, ), Thus, for the uncondi-
tional probability we have

almost surely, where @y, =

(chwn(%bw) <TOW Wn(%gn)»
=E [P <{TCVWn(f(b" ) < TCViyr (790} 0 S| Zy, X (2))] N
{ ({TCVW A(bn))<TCVWn(A(9n )}QSC%DX@)”
[ ({TOVW T8Ny < Teviy (79N 2, X2, S, )} . [P (SfLIan,X,(f)H
min

1,Qn) + P(S5).
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For the bound of P(S5), we first assume that for I,, < nj < n, there exists an upper bounded positive

sequence G, such that
> 14+« — /.
K(gn) - ni ) ( )

as n — oo. The above inequality implies that P(Sy,) — 1 as n — oo. For the bound of F min(1,Qy),
we have

K (gn) 1

P </c(bn) =7 +an1>
(0n) _ xc(gn)
) (bn) 14 ap,

(ba) _ fclgn) 2
<P K Ko >1
- (1=1/(1+ ap,))Kl) |

(bn) _ fclgn) ?
=P k k “Qn=>Qn

(1—=1/(1+ gy ))K(r)

4250 (0 (X) — P90 (X)) WX - S,
(1= 1/(1 + i, ))KB0))?

=P Qnﬁ

Combining the above result and inequality (7.7), we have

402 Z1+1 (f(bn ( ) J/L:(gn ( nz))ng(Xn,i)'SWn

Pl Q,< —1, (7.8)
(1= 1/(1 + ay ))n))?
as n — co. By the fact that (a + b)? < 2(a? 4 b?), we have
Z (J’;(bn (Xns) - 0 m)>2 Wi (Xa) < 2(K00) 1 (o). (7.9)

ni+1
Given (7.7), by combining (7.8) and (7.9), we obtain

21 (bn Y.
plg,<> () + Kla)) SW"2 1, (7.10)
(1=1/(1 4 apy ))Kn))

as n — 0o. When (7.7) holds, we also have

K:(bn) +]C(gn) 1
P( K (br) S1+1+oznl
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b 872 (K(br)  fclon)) . Sy - 852(1+1/(1+ am,)) - S,
(1= 1/(1+ an )Y — (1= 1/(1+ an, ))2K0n)

as n — oo. It follows from (7.10) and (7.11) that

802(1+1/(1+an1))~SWn>
P(QnS (Lt o)) —1, (7.12)

) -1, (7.11)

as n — oo. Therefore, by the fact that (), > 0 and the dominated convergence theorem, to control the
upper bound of Emin(1,Qy,), it suffices to show

2 .
n1

a2 KO /Sy B, (7.13)

According to the above results, to prove Thereom 1, it suffices to show (7.7) and (7.13). Next, we will
establish one inequality between K(9) and || f — A(b” ||2 y,, and another 1nequahty between KC(bn)

and || f — A(b )H2 w,,- We first derive the inequality between K@) and || f — ||2 w,,- We define

Dpij 2 (F(Xni) = B (X )2 Wa( X i) = |1 = |3 1y, - Let Bz, (-) and Vary, () denote
the expectation and variance conditional on Z,,,, respectively. We have

N 2
Vargz,, (Pnmni+1,4) < Ez,, <(f(Xn,n1+1) - fn1,j(Xn,n1+1))4 - (Wn(Xnn,+1)) )

<|If = 1L, - S (7.14)

The above inequality holds for both the (Wn,lmc(m’n))—better candidate 0p, and worse candidate
dg,,- Therefore, by (7.14) and Chebyshev’s inequality, we obtain that for each a > 0,

) < naVarz, (Dnny+1,g,)

Pz, (K(gn) —no|f - J?r(un)H%,Wn 20 2

a

_nallf = Bl - S

a? ’

where Pz, is the probability conditional on the training data Zy,. We take a = 01 n,nal|f —

A(g" ||2 W, where 01 ,,, > 0 and will be determined latter. According to the above inequality, we
have

If = F 14 - Sw,

62 2l f = 218

Py, (KO > (14600 )malf = FE 130, ) < (7.15)

We denote event {Hf A(b" 112 w,/If = A(g” 112 W, =Ly, n)} by Dy. Then, according to
Definition 2, we have

P(Dy) =1, (7.16)

as n — oo. Without losing generality, we require that the sequence {c(nl,n)} is upper bounded (oth-

erwise, we can always replace the original {c (n1 n)} by a bounded sequence). To obtain the inequal-

bn
ity between K(9) and || f — ||2 w, we take 015, = || f — A( )H2 w/ ((1 + c(nhn)/Q) lf—
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/\(

g" ||2 w,,) — 1. Conditional on Dy, we have

17 = F N3 v, — 1 = B30, (L gy /2)
17 = B2 1y, (L iy /2)

A(bn ’\(bn 1+C(n1 ,n)/2
15 = F 1 = 1 = B, S/

1ng =

If — Fion) ||2Wn<1+c(n1 /2)

_ ol - ””Vnw . (7.17)
2(1+C(n1,n))(1+C(n1,n)/2)||f ) ”2 Wn
According to (7.17) and (7.15), we obtain
Jl e —— "
( T 1+, n)/2||f i |2Wn>
<P ({Klom) > o) N D, | + P(DS
= ( _1+Cn1n/2|‘f ||2Wn n | + ( n)7
<P Klon) > |2 | D | + P(DS
< ( 1+cmn/2”f 34w, | Da | + P(DS).
—E(P 146 Flon) 12 Dy | + P(DE
zn1 > (14010, )n2lf - 15w, ) | +P(Dy,)
SE(Q P(Dg), (7.18)
n)
where O 2 min {1’ A0y m)* (e /D 1= I Hb4 e sWn}
(n1 n) TLQHf f " HQ Wn
Next, we derive the other inequality that compares K(n) and

IIf - A(b” 12 w,,- Let {02, } be a positive sequence whose complete definition will be given latter.
We requlre it to be bounded above by 1. By Chebyshev’s inequality and (7.14), we have

Pt < (1— 6 m)n2\|f e 13w,

= P(=KO) Lol f = FE N3 e > 02 mymallf — ||2W,L>
= (rz, (—fc“’n) sl = F B, > Oamnal] = 7 B, ) )
< E(QY), (7.19)

b.
1F—=F5 14 v, -Sw, }

b
03 . m2ll F— o113

where Qg) = min{l
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To show (7.7), we take 02, = % and oy = C(y, n)/4 By combining (7.18) and
ni,n
(7.19), we have P (K(b”) > (14 ap,) -IC(Q")> >1-P(Dg) — E(Q%1 ) — E(Qg’))7 where Qn

(2) _ ey m) /4
Q@ with 927,11 =1- Erm—pL

by the dominated convergence theorem, it remains to show that

Recall that the sequence {c(m,n)} is upper bounded. Therefore,

O et R U S it [ TPRE T
2 ’ b'n 2 ’ n )
Gy 2l =P M Sy m2llf — A1
A(n)4
f=1 -Sw,,
K = R, Sw 520

b
Sy 12l = F N

asn — oo and [, < n1 < n. According to Condition 2, to obtain the above results, it suffices to show
that M2 - Sy, /(c? n,n) -ng) — 0, as n — oo, and this is required by Theorem 1.

For (7.13), recall that we have an, = ¢y, p) /4. Therefore, it suffices to show that

Gy ) KO /Sy B oo, (7.21)

1+C(n1 n) /
1+C(n1 n)/2 i
and 1, we have that the rate of K (») is lower bounded by 4(ny n)- Therefore, we obtain (7.21) by the
requirement (ii) from Theorem 1. Thus, we obtain (7.7) and (7.13) and complete the proof.

as n — oo. By (7.19), (7.20), and the fact that 1 — 63 ,,, = which is bounded between 1/2

8. Proof of Proposition 1

By the fact that (1/1 + n;1/3 - 1)/”;1/3

large and ny € [y, n),

— 1/2 as n; — oo, we have that when n is sufficiently

If = 713, = a7 = 13,
:W—%fhmzu+m“%wv A0 o,

Therefore, it suffices to show that as n — oo,

_ D)2
whenn €Sy, P(nl_l/3~ A(!{ . fo'll2 R < 1) —1, (8.1
Hf_fn1 HQ_ ||f_f7’l1 ”2

£(2) 12
WhennESg,P<n1_1/3~ (q{ fui'll3 el <1> 1. (8.2)
1f = fad 15 =1 = Fa? 13

Note that form =1, 2,

(m)
Pny 0
IF =3 =3"08 - B2+ Y 8 8.3)
i=1 J=piy) +1
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17 =SB =15 = SN == (3, — )" + B

For n € Sy, since p,(fl) = n}/4 e [n'/12 n1/4], we have ﬁ2(2) = 0. Thus,
Pry

IF =213 - 1F - 7113

2
:(ﬂ @~ 8 ?25))

1 2
<B (2) — *Zf ()9, @ (i) Zempgl) (fﬂi)) :

=1

Since 3;, f(x;), and ¢ (x;) are all uniformly upper bounded by fixed constants for all i and j, we have

that E(8; — f(x)¢j(x) — €p; (z))? and E(Bj — f(x)p;(x) — ep; ()3 are uniformly upper bounded.
Also, by

E(Bj — f(2)9;(z) — e¢j(2))* =E(Bj — f(2)$;(2))? + Ee*¢p;(w)*~
2B¢gj(x)(Bj — f(x)¢;(x))
=E(Bj — f(2);(x))* + E$j(x)* — 0
>E¢(x)?
_1,

we have that E(B; — f(z)¢;(x) — ep;(x))? is uniformly lower bounded away from 0. Therefore, by
the Lyapunov CLT, we have

1 A(n
cny (ﬂp(g) — ﬂ(@l))) —d ]\7(07 1) (8.4)

V
pgl) ni Pnq

asn — 0o, where V 2y = \/Z?:ll E(B 2y — f(2:)9 2)(x;) — € (2)(x;))?. Next, we denote the uni-
Pnq Pnq Pnq Pny
form upper bound of E(B; — f(x)d;(x) — ep; (z))? by C. Then,

”1

ny 2
E((3; - B")2) = E ((Z(ﬂj — fe)gs(ai) - e@-(m)) )

=1
1 e
:n—%E <; (Bj — f(i)dj(x;) — edj (%))2) <C/n;.
By Markov’s inequality, for each ¢ > 0,
W) Py 5(n1)2
o (ST -AMP)
P(Z(Bj —B;")? >t> < " < Zit : (8.5)
j=1
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Thus,

phy

5 —3/4
> (85— B2 = 0, (n7 ). (8.6)
j=1
Also, by p7(11) = p7(1 ) +1len 1/12 1/4] we have that (note that when n € S; USs, n/4 is an integer)

1 1 1
EOO (1)+1 O-I-Zj n1/4ﬁj < n1/4 135 =dj = 7.W.Theref0re,

S BZ=0,(n7Y. (8.7)

J=p4) +1

According to (8.6), (8.7), and the fact that n1 < n, we have that
A1 —3/4
1 = 13 = 0p(n %), (8.8)

Therefore, by (8.4), (8.8), and the fact that n;3/4 ‘np = ni/4, which goes to infinity at a slower rate

than n}/3, we obtain (8.1).

2
~(1 A2
For n € 85, we have [1f = FAD13 = 17 = A0 = (8,0 ~ 30) + 2 = (50 -
n nq ni
2

ﬂ“gf) + n1_1/2. According to the result from (8.4), (Bp(g) B((Q))) goes to 0 at the exact rate
Pnq n1
1/n1, which is faster than that of n1_1/2. Therefore, || f — fy(ﬁ) 13 — Hf (3) 13 — 0 as n — oo with
the rate lower bounded by 1/n. With a similar derivation of (8.6), we have that

2

>3- B2 = 0y (ny ). (8.9)
7=1

We also have Z

2 _ oo 2 oo 1 . 1 —3/4 ..
@1 B3 Z A B < fni/zl 5 dj =3 -ny "’ ". Combining the above result

with (8.9), we that || f — fnl) 13 =0p(n 1_3/ 4). Therefore, according to the above results, we also obtain
(8.2) and complete the proof.

9. Proof of Proposition 2
17/12

First, we show the existence of the ny such that no/n
17/12

17/12 _
— 00 as n — 00. Since ng/n;

(n— nl)/nN/ , it suffices to have n/n; — 00 as . — 00. According to n2/17 /1, = n'9/51 and

ny € [ln,n), we have verified the existence of such an n.
Next, we verify the requirement (ii). It can be seen from the derivation from Appendix 8 that both
IIf— ﬁ%) |2 and || f — f@) |3 converge at the exact rate n1_3/4. Thus, q(2n1 n) = n1_3/4. Since c%nl =
-2/3 /9, when ng - ng o34 ;2/3 = ng/n%?/12 — 00, the requirement (ii) is satisfied.
For the requirement (i), it remains to show that M, = Op(1). According to the proof of The-

o Bidi()|[y =

orem 1 and Corollary 3.1. from [37], it suffices to show that as p — oo,



24 J. Zhang, J. Ding, and Y. Yang

O(|[>2232, Bi¢(x) ||‘21) First, we have

IS 8i05()[l, = (3 82)° Zﬂ4+2 DO
Jj=pr Jj=p

p<j<k

Second, for a < b < ¢ < d from the set {4nz, 427z, 437z, - - - }, we have sin(a)sin(b) sin(c) sin(d) =
%(cos(a—b—&—c—d) +cos(a—b—c+d)—cos(a—b+c+d)—cos(a—b—c—d)—cos(a+b+c—
d) —cos(a+b—c+d)+cos(a+b+c+d)+cos(a+b—c—d)). It can be seen that a — b+ ¢+ d,
a—b—c—d,a+b+c—d,a+b—c+d, a+b+ c+dare all in the form of w2 times a non-zero even
factor. Therefore, fol (sin(a) sin(b) sin(c) sin(d))dz = % fol (cos(a—b+c—d)+cos(a—b—c+d)+
cos(a+b—c—d))dz. It can been seen that for cases witha <b<c<d,a=b<c<d,a<b=c<d,
a<b<c=d,a=b=c<d,a<b=c=d,wehavea—b+c—d,a—b—c+d,anda+b—c—d
are all in the form of 7z times a non-zero even factor. Therefore, fol (sin(a) sin(b) sin(c) sin(d))dz =0
in these cases. For a = b < ¢ = d, we have fO sin(a) sin(b) sin(c) sin(d))dx = %(1 +14+0)= %. For

a=b=c=d, we have fO sin(a) sin(b) sin(c) sin(d))dz = §(1+ 1 + 1) = 3. Therefore,

4 1
1’) :/0 (Z(ﬂ](% +6 Z 5j¢j (Bkd)k(x))z)dx
4

Jj=p p<j<k

95 (

72/3] +f > 878

p<J<k
||Z]':pﬂj¢j(z)“i 3 %Zp<j<k; 3]2'51% 3 3 3 .
=2 = < g 2 =2 =
We have TS 56, & + Y SRILEE Y Sz R + g = 1. Thus, we obtain My, Op(1)

and complete the proof.

10. Proof of Corollary 1

For the multiple splitting TCV by voting, we have

E(MTCVyy, (0g,)) =3 Z E(1(j = argmin TCViw, & T
k=1

—p (TCVWn(f(g" )=minTCViy, (ﬁj}))
1€
Therefore, when the requirements in Theorem 1 are met, we have
E(MTCVy; (6g,)) = 1,

as n — oo. Since MTCVyy, (dg,) < 1, we have that MTCVy, (dg,) —p 1, which implies that the
multiple splitting TCV by voting is W,,-consistent.
For the multiple splitting TCV by averaging, we have

P (MTCVVU{/ (8,) = min MTCVi (51-))
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o . gn) : i)
1€

Since K is upper bounded by a fixed constant, we also have the
Wy, -consistency of the multiple splitting TCV by averaging given the requirements in Theorem 1.
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