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ABSTRACT
In recent years, many nontraditional classification methods, such as random forest, boosting, and neural
network, have been widely used in applications. Their performance is typically measured in terms of
classification accuracy. While the classification error rate and the like are important, they do not address
a fundamental question: Is the classification method underfitted? To our best knowledge, there is no
existing method that can assess the goodness of fit of a general classification procedure. Indeed, the lack
of a parametric assumption makes it challenging to construct proper tests. To overcome this difficulty, we
propose a methodology called BAGofT that splits the data into a training set and a validation set. First, the
classification procedure to assess is applied to the training set, which is also used to adaptively find a data
grouping that reveals the most severe regions of underfitting. Then, based on this grouping, we calculate a
test statistic by comparing the estimated success probabilities and the actual observed responses from the
validation set. The data splitting guarantees that the size of the test is controlled under the null hypothesis,
and the power of the test goes to one as the sample size increases under the alternative hypothesis. For
testing parametric classificationmodels, the BAGofT has a broader scope than the existingmethods since it
is not restricted to specific parametric models (e.g., logistic regression). Extensive simulation studies show
the utility of the BAGofT when assessing general classification procedures and its strengths over some
existing methods when testing parametric classification models. Supplementary materials for this article
are available online.
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1. Introduction

The development of various classification procedures has been a
backbone of the contemporary learning toolbox to solve various
data challenges. This work addresses the following fundamen-
tal problem in classification learning: How to assess whether a
classification procedure is good enough, in the sense that it has
no systematic defects, as reflected in its convergence to the data-
generating process, for given data?

We highlight that the assessment raised in the above ques-
tion is fundamentally different from assessing the predictive
performance. In most applications, a classification procedure’s
performance is o#en assessed based on its classification accuracy
on preset validation data or through cross-validation. Concep-
tually, the predictive accuracy does not characterize a proce-
dure’s deviation from the underlying data generating process
per se. For instance, when the conditional probability function
of success given the covariates is simply 0.5, the best possible
classifier is a random guess, which provides a low classification
accuracy.

It is critical to address the above question in several
emerging learning scenarios where the classification accuracy
alone cannot solve the problems. For example, an increas-
ing number of entities use Machine-Learning-as-a-Service
(MLaaS) (Ribeiro, Grolinger, and Capretz 2015) or cooperative
learning protocols (Xian et al. 2020) to train a model from
paid cloud-computing services. It is economically significant
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to decide whether the current learning method has a significant
discrepancy from the data and needs to be further improved.
Another example concerns the use of “benchmark data” for
comparing classification procedures, for example, those from
Kaggle (https://rb.gy/bvepug) or UCI (https://archive.ics.uci.
edu/ml/datasets.php). Based on the validation accuracy as an
evaluation metric, the winning procedure selected from many
candidate learnersmay have already been overfitting luckily and
deviating from the underlying data generating process. In this
case, assessing the deviation of the learning procedures from
the data distribution is also very helpful.

In dealing with a parametric model, the existing literature
addresses the above problem from a goodness-of-fit (GOF) test
perspective. For binary regression, two classical approaches are
the Pearson’s chi-squares (χ2) test and the residual deviance test,
which group the observations according to distinct covariate
values. When the number of observations in each group is
small, for example, there is at least one continuous covariate,
the above two tests cannot be applied. Various tests have been
developed to address this issue. These include the tests based
on the distribution of the Pearson’s χ2 statistic under sparse
data (McCullagh 1985; Osius and Rojek 1992; Farrington 1996),
kernel smoothed residuals (Le Cessie and Van Houwelingen
1991), the comparison with a generalized model (Stukel 1988),
the comparison between an estimator from the control data and
an estimator from the joint data in the context of case-control
studies (Bondell 2007), the Pearson-type statistics calculated
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from bootstrap samples (Yin andMa 2013), information matrix
tests (White 1982; Orme 1988), the grouping of observations
into a finite number of sets (Hosmer and Lemeshow 1980;
Pigeon and Heyse 1999; Pulkstenis and Robinson 2002; Xie,
Pendergast, and Clarke 2008; Liu, Nelson, and Yang 2012), and
the predictive log-likelihood on validation data (Lu and Yang
2019).

However, there are two weaknesses of the existing GOF
tests for parametric classification models. First, most tests only
control the Type I error probability, but without theoretical
guarantees on the test power. Second, the existingmethods focus
on the GOF of specific models, such as logistic regression, and
may not be applied to general binary regression models.

For general classification procedures such as decision trees,
neural networks, k-nearest neighbors, and support vector
machines, to our best knowledge, there is no existing method
to assess their GOF. We broaden the notion of the GOF test to
address the question above for general classification procedures.

We propose a new methodology named the binary adap-
tive goodness-of-fit test (BAGofT) for testing the GOF of both
parametric classification models and general classification pro-
cedures. The developed tools may guide data analysts to under-
stand whether a given procedure, possibly selected from a set
of candidates, deviates significantly from the underlying data
distribution. We focus on assessing binary classification pro-
cedures that provide estimates of the conditional probability
function.

The BAGofT employs a data splitting technique, which helps
the test overcome the difficulties in the general setting where
there is noworkable saturatedmodel to comparewith, as used in
Pearson’s chi-squares and deviance-based tests. On the ‘training’
set, the BAGofT applies an adaptive partition of the covariate
space that highlights the potential underfitting of the model or
procedure to assess. Then, the BAGofT calculates a Pearson-
type test statistic on the remaining ‘validation’ part of the data
based on the grouping from the adaptive partition.

For parametric classifications, the BAGofT enjoys theoretical
guarantees for its consistency under a broad range of alternative
hypotheses, including those concerning misspecified covariates
and model structures. Its adaptive partition can flexibly expose
different kinds of weaknesses from the parametric classification
model to test. Importantly, unlike the previous methods, it
allows the number of groups to grow with the sample size when
a finer partition is needed.Moreover, the probability of the Type
I error is well controlled due to data splitting.

For a general classification procedure without a workable
benchmark to compare with, one major challenge is to define
the GOF. Unlike parametric models, whose convergence is well
understood, general classification procedures can have different
convergence rates. If we choose the splitting ratio of the BAGofT
according to a specific rate, then the size of the test can be con-
trolled as long as the procedure to assess converges not slower
than the specified rate under the null hypothesis; the BAGofT
consistently rejects the hypothesis otherwise. In practice, since
the convergence rate of the procedure to assess is unknown, we
advocate a method based on the BAGofT with multiple data
splitting ratios. Our experimental results show that this method
can faithfully reveal possible moderate or severe deficiency of a
classification procedure.

The outline of the article is given as follows. In Section 2,
we provide the background of the problem. In Section 3, we
introduce the BAGofT and establish its properties. In Section 4,
we provide some practical guidelines on implementing the
BAGofT. We present simulation results in Section 5 and real
data examples in Section 6. We conclude the paper in Section 7.
The proofs and additional numerical results are included in the
supplementary material.

2. Problem Formulation

2.1. Setup

Let Y be the binary response variable that takes 0 or 1, and X be
the vector of p covariates. The support of X is S ⊆ Rp. Let π(·)
be the conditional probability function:

π(x) = P(Y = 1|X = x), x ∈ S. (1)

The data, denoted by Dn, consist of n iid observations from a
population distribution of the pair (Y ,X). The conditional prob-
ability function π(·) is allowed to change with the sample size.
We denote the fitted conditional probability function obtained
from a classification model (or a procedure) on Dn by π̂Dn(·).

2.2. Testing Parametric ClassificationModels

A parametric classification model assumes that π(·) = f (·,β),
where f is known and the unknown parameter β is in a finite-
dimensional set B. For example, a generalized linear model
assumes that f (x,β) = g−1(xTβ), where g(·) is a link function.
The null and alternative hypotheses of the GOF for testing a
parametric classification model are defined by

H0 : π(·) ∈ {f (·,β) | β ∈ B}, H1 : π(·) /∈ {f (·,β) | β ∈ B}.

We refer to the parametric classification model to assess as
MTA.

2.3. Assessing General Classification Procedures

Compared with parametric classificationmodels, general classi-
fication procedures are not restricted to be in a parametric form.
They include any modeling technique that maps the data Dn to
a fitted conditional probability function π̂Dn(·) : S → [0, 1].
For a general classification procedure, the convergence rate of
π̂Dn(·) is essential from a theoretical viewpoint. Let rn be the
convergence rate of the classification procedure we assess under
the null hypothesis. The null and alternative hypotheses of the
GOF test for a general classification procedure to assess (PTA)
are

H0 : sup
x∈S

|π̂Dn(x) − π(x)| = Op(rn),

H1 : ∃ Mn ⊆ S with P(x ∈ Mn) bounded away from 0 such that
inf
x∈Mn

|π̂Dn(x) − π(x)|/rn →p ∞,

as n → ∞, where the setMn may change with n. So under H0,
π̂Dn(·) converges to π(·) not slower than rn, and under H1, it
converges slower (or does not converge) to π(·).
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3. Binary Adaptive Goodness-of-fit Test (BAGofT)

3.1. Test Statistic

The BAGofT is a two-stage approach where the first stage
explores a data-adaptive grouping and the second stage
performs testing based on that grouping. The adaptive grouping
consists of the following steps. 1. Split the data into a training set
Dn1 with size n1 and a validation set Dn2 with size n2. 2. Apply
the MTA or PTA to Dn1 and obtain the estimated probabilities
for both the training set and validation set. 3. Generate a
partition {ĜDn1 ,1, . . . ĜDn1 ,Kn} of the support S. This partition
can be obtained by any method that meets the following two
requirements. (i) Denote the set of responses and covariates
in Dn2 by Dye and Dxe , respectively. The partition needs to be
independent of Dye conditional on Dxe . It means that we may
obtain a partition based on the performance of theMTA/PTAon
the training set.We can also useDxe to control the group sizes for
the partition ofDn2 . (ii) The number of groupsKn ≥ 2.Note that
Kn can be data-driven and is not required to be uniformly upper
bounded. We propose an adaptive partition algorithm, which is
elaborated in Section 4.2. 4. Group Dn2 into sets based on the
obtained partition. Let xe,i (i = 1, . . . , n2) denote the covariates
observations from the validation set. For i = 1, . . . , n2, the ith
observation in the validation set is said to belong to group k, if
xe,i ∈ ĜDn1 ,k.

For the testing stage, let Ri = ye,i − π̂Dn1 (xe,i), σ 2
i =

π̂Dn1 (xe,i)
{
1 − π̂Dn1 (xe,i)

}
, where i = 1, . . . , n2 and ye,i is the

response observation from the validation set, and

T =
Kn∑

k=1





∑
{i: xe,i∈ĜDn1 ,k}

Ri
√∑

{i: xe,i∈ĜDn1 ,k}
σ 2
i





2

.

We define the following p-value statistic based on the CDF of
the chi-squared distribution with degrees of freedom Kn:

bag = 1 − P(χ2
Kn ≤ T|T,Kn). (2)

We reject H0 when bag is less than the specified significance
level, since bag tends to be small when the discrepancy between
π̂Dn1 (·) and π(·) as quantified by T is large.

Compared with the Hosmer–Lemeshow test and other
relevant methods, the proposed method allows desirable
features such as pre-screening candidate grouping methods
(we do not need the Bonferroni correction when considering
different groupings), incorporating prior or practical knowledge
that is potentially adversarial to the MTA or PTA (e.g., the
BAGofT partition can be based on some potentially important
variables not in theMTAor PTA), and providing interpretations
on the data regions where the MTA or PTA is likely to fail. The
above flexibility o#en leads to a significantly improved statistical
power (elaborated in Section 4.2). It is worth noting that the
BAGofT exhibits a tradeoff in data splitting. On the one hand,
sufficient validation data used to perform tests can enhance
power due to a more reliable assessment of the deviation. On
the other hand,more training data enables a better estimation of
π(·) and the selection of an adversarial grouping that increases
power. We will develop theoretical analyses and experimental
studies to guide the use of an appropriate splitting ratio.

3.2. Theory for Testing Parametric ClassificationModels

We first establish a theorem that the BAGofT p-value statistic
converges in distribution to the standard uniform distribution
under H0, which asymptotically guarantees the size of the test.
We need the following technical conditions.

For positive sequences an and bn, we write an = ω(bn) if
an/bn → ∞ as n → ∞.

Condition 1 (Sufficient number of observations in each group).
There exists a positive sequence {mn} such that mink=1,...,Kn∑n2

i=1 I{xe,i ∈ ĜDn1 ,k} ≥ mn a.s., and mn = ω(n25/7) as
n → ∞.

Condition 2 (Bounded true probabilities). There exists a positive
constant 0 < c1 < 1/2 such that c1 ≤ π(x) ≤ 1 − c1 for all
x ∈ S.

Condition 3 (Parametric rate of convergence under H0). Under
H0, sup

x∈S
|π̂Dn(x) − π(x)| = Op

(
1/

√
n
)
as n → ∞.

Condition 1 ismild and can be guaranteed bymerging small-
sized groups on Dn2 . Condition 2 is a technical requirement so
that the Pearson residuals in the theoretical derivations would
be bounded, which is satisfied, for example, under the GLM
framework with compact parameter and covariates spaces, and
it can be relaxed if more assumptions are made on the tail
of the covariate distributions. Condition 3 holds for a typical
parametric model and a compact set S.

Throughout the article, we letU denote the standard uniform
distribution.

Theorem1 (Convergence of bag for parametricmodels underH0).
Assume that Conditions 1–3 hold.UnderH0, if n1, n2 → ∞ and
n2 = o(n3/51 ) as n → ∞, we have bag →d U.

Accordingly, if we reject the MTA when the BAGofT p-value
statistic is less than 0.05, we obtain the asymptotic size 0.05. The
requirement of n1 and n2 in the above theorem indicates that
the number of observations for estimating the parameters and
forming groups (n1) needs to be much larger than the number
for performing tests (n2). Otherwise, the deviation introduced
by a random fluctuation due to a small training size (instead
of true misspecification) may be picked up by the BAGofT. It
is interesting to note that this data splitting ratio direction is
opposite to that for the consistent selection of the best classifica-
tion procedure via cross-validation (Yang 2006; see also Yu and
Feng 2014), although other splitting ratios in between have been
recommended for the purpose of tuning parameter or model
selection (Bondell, Krishna, and Ghosh 2010; Lei 2020).

Next, we establish the theorem that shows the BAGofT
asymptotically rejects an underfitted model under H1.

Condition 4 (Convergence under H1). There exists a function
πa : S → [0, 1], which is not in {f (·,β) | β ∈ B} and allowed to
change with n, such that under H1,

sup
x∈S

|π̂Dn(x) − πa(x)| →p 0 as n → ∞. (3)

Moreover, there exists a constant 0 < c2 < 1/2 such that c2 ≤
πa(x) ≤ 1 − c2 for x ∈ S.
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Condition 5 (Identifiable difference under H1). Under H1, with
probability going to one, there exists Mn ⊆ S, which may
depend on Dn1 , such that

ess inf
x∈Mn

(π(x) − πa(x)) ≥ c, or (4)

ess sup
x∈Mn

(π(x) − πa(x)) ≤ −c, (5)

for a positive constant c < 1. We also require that there exists
a positive constant c0 < c such that there is at least one group
indexed by k∗ with

P(n̂Mn
2,k∗/n̂2,k∗ > (1+ c0)/(1+ c)) → 1, (6)

as n → ∞, where n̂2,k = ∑n2
i=1 I{xe,i ∈ ĜDn1 ,k} denotes the

number of validation observations in the kth group, and n̂Mn
2,k =

∑n2
i=1 I{xe,i ∈ ĜDn1 ,k ∩ Mn} denotes the number of validation

observations in both the kth group and the setMn.

Condition 4 requires the convergence of the model under
the alternative. We can obtain Equation (3) under the reg-
ularity conditions for the convergence of misspecified maxi-
mum likelihood estimators (White (1982); specifically for GLM,
Fahrmexr (1990)) . Condition 5 guarantees that under H1, the
deviation between the true model and the fitted model can be
captured by the adaptive partition. In particular, Equation (6)
requires the adaptive selection of a set that contains sufficiently
many observations that deviate in the same direction. This is
an intuitive and mild condition. The required proportion of
observations satisfying Equation (4) or (5) is lowed bounded
by 1/(1 + c), which gets smaller when the bias c is larger. We
will provide a practical algorithm in Section 4.2 to adaptively
search for the most revealing partition according to the Pearson
residual (which measures the discrepancy between πa(·) and
π(·)). Further discussions on how that algorithm meets Condi-
tion 5 are included in the supplementary material. Theoretical
properties of the algorithm (including the case for assessing
general classification procedures) can be found in our discussion
section.

Theorem 2 (Consistency of bag for parametric models under H1).
Suppose that Conditions 1, 2, 4, and 5 hold. Under H1, if the
training and validation sizes satisfy n1, n2 → ∞ as n → ∞, we
have bag →p 0, which implies the consistency of the test.

In applications, we do not know whether H0 or H1 holds. If
we take n1 and n2 such that n1, n2 → ∞ and n2 = o(n3/51 )

as n → ∞, under the conditions for Theorems 1 and 2,
respectively, then the BAGofT achieves the desired asymptotic
Type I error control and consistency in power.

3.3. Theory for Assessing General Classification
Procedures

In this section, we establish properties of the BAGofT for general
classification procedures.

Condition 6 (Convergence at a general rate under H0). Under
H0, sup

x∈S
|π̂Dn(x) − π(x)| = Op (rn) as n → ∞, with rn → 0 as

n → ∞.

Theorem 3 (Convergence of bag under H0 for classification pro-
cedures). Under H0, given Conditions 1, 2, and 6, if n2 → ∞
and n2 = o(r−6/5

n1 ) as n → ∞, we have bag →d U.

Condition 7 (Existence of an identifiable slow converging set under
H1). UnderH1, with probability going to one, there existsMn ⊆
S, which may depend on Dn1 , such that ess infx∈Mn(π̂Dn1 (x) −
π(x)) ≥ 0 or ess supx∈Mn(π̂Dn1 (x) − π(x)) ≤ 0, and
inf
x∈Mn

|π̂Dn1 (x) − π(x)|/r(a)n1 ≥ ζ almost surely, for a positive

constant ζ and a positive sequence r(a)n1 → 0 as n → ∞. We
also require that there is at least one group indexed by k∗ with

n̂2,k∗ − n̂Mn
2,k∗

n̂2,k∗r(a)n1
→p0, (7)

as n → ∞, where n̂2,k and n̂Mn
2,k are defined in Condition 5.

Condition 8 (Bounded predicted probability). There exists a
constant 0 < c3 < 1/2 such that c3 ≤ π̂Dn(x) ≤ 1 − c3 almost
surely for x ∈ S and for all n.

Condition 7 requires the existence of an identifiable region
where π̂Dn(·) from the PTA converges slowly (or not at all) to
the data generating π(·) as n → ∞. Further discussions on
the theoretical guarantee to identify an Mn in Condition 7 are
included in the supplementary material.

For positive sequences an and bn, we write an = &(bn) if
there exists C > 0, such that an/bn ≥ C.

Theorem 4 (Consistency of bag under H1 for classification pro-
cedures). Under the alternative, assume that Conditions 1, 2, 7,
and 8 hold, n2 → ∞, and n2 = &((r(a)n1 )

−6) as n → ∞. Then,
we have bag →p 0 as n → ∞.

The theorem shows that the BAGofT can flag a slow converg-
ing classification procedure when there is sufficient validation
data. Theorems 3 and 4 imply the following corollary.

Corollary 1 (Obtaining both size control and consistency for learn-
ing procedures). Assume that r(a)n1 = &(rc∗n1) as n → ∞ with
0 < c∗ < 1/5 and Conditions 1, 2, 6, 7, and 8 hold, respectively.
If we take n2 = &

(
r−6c∗
n1

)
and n2 = o(r−6/5

n1 ) as n → ∞, then
we have bag →d U as n → ∞ under H0 and the asymptotic
consistency of the BAGofT under H1.

For example, suppose that the PTA is a neural network-
based method and the number of covariates p > 46. Also
suppose underH0,π(·) admits a neural network representation,
and under H1, π(·) is in the Besov class with the smoothness
parameter α = 2 (details about the two classes of functions
can be found in Yang 1999). According to Yang (1999), typically
we have rn = O((n/ log n)−(p+1)/(4p+2)) and r(a)n = n−2/(4+p).
Then, rn = O(n−1/4) and r(a)n = &(n−1/25), so r(a)n = &(r4/25n ).
If we set n2, for example, of the order n124(p+1)/(25(4p+2)), given
the other required conditions for Corollary 1, then the BAGofT
asymptotically controls the Type I error probability under H0
and rejects H0 with probability going to one under H1.
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4. Practical Guidelines for Implementing the BAGofT

Unlike previous methods in the literature, our approach allows
the number of groups to be adaptively chosen, and it may grow
when finer partitions are needed to pinpoint the poorly fitted
regions. We recommend setting the largest allowed number of
groups toKmax =

√n2 as a default choice, where ,a-denotes the
largest integer less than or equal to a. We suggest n2 = 5

√
n for

the training-validation splitting for testing parametric models,
which can guarantee enough validation size when n ≥ 100.
In this way, Kmax → ∞ as n → ∞, despite that the selected
Kn may be small. Our experimental results in Section 5 and the
supplementary material show the desirable performance of the
default choices under both H0 and H1.

4.1. Splitting Ratios and Interpretations in Assessing
General Classification Procedures

This subsection includes more details on how to assess the GOF
of classification procedures. In practice, the convergence rate
rn under H0 may not be known. Moreover, when the sample
size is finite, the convergence rate rn1 provides limited insight
on selecting a suitable splitting ratio. For practical implemen-
tations, we advocate considering three splitting ratios where
the training set takes 90%, 75%, and 50% of the observations,
respectively. The four typical results are given as follows.

Pattern 1: The BAGofT fails to reject H0 under all the three
splitting ratios. The conclusion is that the classification proce-
dure converges quite fast to the underlying conditional proba-
bility function, and there is little concern about the lack of fit.

Pattern 2: The BAGofT rejects H0 only at 50% training.
The conclusion is that the classification procedure converges
moderately fast, and the procedure fits the data well.

Pattern 3: The BAGofT rejects H0 at both 50% and 75% and
fails to reject at 90%. The conclusion is that the classification
procedure converges slowly, but the current sample size is most
likely enough for the procedure to fit the data properly.

Pattern 4:The BAGofT rejectsH0 under all the three splitting
ratios. The conclusion is that the classification procedure fails to
capture the nature of the data generating process.

A caveat is that there may exist “boundary” cases where
the 90% training set is still insufficient for the PTA to work
well, but the 10% validation set is not enough to identify the
weakness of the PTA. In such cases, the failure of rejection may
not necessarily be reliable. In general, the BAGofT may have a
low power when there is not enough validation data. When the
10% validation set is perceived possibly too small, one possible
solution is adding a splitting ratio, for example, 80%, in order to
offer more information. Also, note that if π̂(·) from the PTA is
very sensitive to the sample size and data perturbation, we may
fail to observe the gradual change of the rejection results as listed
in Patterns 1–4. Since unstable procedures are not really reliable
anyway, we recommend applying proper stabilization methods
to improve the procedure fit first.

4.2. Adaptive Partition for the BAGofT

The asymptotic theory of the BAGofT from the earlier sec-
tion requires a grouping scheme based on the training set that

asymptotically reveals at least one regionwith π̂Dn(·) converging
slowly or not converging toπ(·). In this section, we introduce an
adaptive grouping algorithm that may efficiently discover such
a region.

The idea of the adaptive grouping is that instead of applying
one prescribed partition, we select a partition from a set of
partitions based on the training data Dn1 . According to The-
orems 1 and 3, while protecting the size of the test, we have
much flexibility to adaptively select a grouping rule (including
the number of groups Kn) as long as it is independent of Dye
conditional on Dxe . Meanwhile, with the adaptive grouping, the
power under H1 is expected to be high.

One way to find a partition to exploit the regions of model
misspecification is to fit the deviations (e.g., Pearson residuals)
using a nonparametric regression method and choose a parti-
tion based on the fitted values. Then, we group the observations
with large positive deviations and those with large negative
deviations into separate groups to calculate the statistic T for
the BAGofT and consequently avoid their cancelation.

In particular, we develop a Random Forest-based adaptive
partition scheme as the default choice in our R package
‘BAGofT.’ It shows excellent performance in our simulation
studies. The procedure of the scheme is outlined as follows.
On the training set, we first apply the MTA or PTA. We then
fit a Random Forest on the training set Pearson residuals and
obtain fitted values q̂(1)i , i = 1, . . . , n1. For different numbers of
groups K = 1, . . . ,Kmax, where Kmax > 2, we partition [0, 1]
into intervals

{
G(K)
1 , . . .G(K)

K
}
by the K-quantiles of {q̂(1)i }n1i=1,

and calculate the statistic

BK =
K∑

k=1





∑
{i: q̂(1)i ∈G(K)

k }(yt,i − π̂Dn1 (xt,i))
√∑

{i: q̂(1)i ∈G(K)
k } π̂Dn1 (xt,i)

(
1 − π̂Dn1 (xt,i)

)





2

(8)
using the training set.We choose the partition

{
G(Kn)
1 , . . .G(Kn)

Kn

}

whereKn is theK ∈ 2, . . . ,Kmax thatmaximizesBK−BK−1. The
pseudocode is summarized in Algorithm 1.

Next, we obtain the random forest prediction on the valida-
tion set q̂(2)i (i = 1, . . . , n2). We calculate

T =
Kn∑

k=1





∑
{i: q̂(2)i ∈G(Kn)

k } Ri
√∑

{i: q̂(2)i ∈G(Kn)
k } σ

2
i





2

,

and then, the p-value statistic bag in (2).
Note that we may use a set of covariates different from those

in the MTA or PTA when applying the random forest learning.
For example, we can apply a variable screening to drop some
covariates before fitting the classification model or procedure to
obtain a parsimonious model or stabilize the fitting algorithm.
In this case, our random forest-based adaptive partition may
consider all the available covariates to check the GOF. This
algorithm also provides some insights on possible misspecifi-
cations via the random forest variable importance. Since the
random forest is fitted on the Pearson residual of the MTA
or PTA, variables with larger importance are more likely to be
associated with the misspecifications. More details and related
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simulations for this algorithm are included in the supplemen-
tary material.

Algorithm 1 A default choice of BAGofT adaptive partition
1: procedure Partition(Dn1 ,Kmax, parVar) . parVar is

the set of variables to construct the partition, which can be different from
those in the MTA or PTA (see Section 4.2).

2: Fit the MTA or PTA on the set Dn1 and calculate the
Pearson residual.

3: Fit a Random Forest on the Pearson residual with
respect to the partition variables parVar and obtain the
fitted value on the training set {q̂(1)i }n1i=1

4: for K in 1, . . . ,Kmax do
5: Partition [0, 1] by K-quantiles of {q̂(1)i }n1i=1 into{

G(K)
1 , . . .G(K)

K
}
.

6: Calculate BK in Equation (8).
7: end for
8: Kn ← argmaxK=2,...,Kmax(BK − BK−1).
9: return

{
G(Kn)
1 , . . .G(Kn)

Kn

}
.

10: end procedure

In high-dimensional settings with many covariates, we have
found that a pre-selection used to reduce the number of covari-
ates for the adaptive grouping can help the test performance
and save computing cost. We rank the covariates by the correla-
tion distance (Székely, Rizzo, and Bakirov 2007) that measures
the dependence relation between the Pearson residual and the
covariates, and keep the top ones. More details can be found in
the supplementary material.

4.3. Combing Results fromMultiple Splittings

Recall that our test is based on splitting the original data into
training and validation sets. Due to the randomness of data
splitting, wemay obtain different test results from the same data.
To alleviate this randomness, we can randomly split the data
multiple times and appropriately combine the test result from
each splitting.

We propose the following procedure. First, we randomly split
the data into training and validation sets multiple times and
calculate the p-value statistic defined in Equation (2); Second,
we calculate the sample mean of the p-value statistic values.
Other ways to combine results from multiple splittings include
taking the sample median or minimum of the p-value statistic
values. It is challenging to derive the theoretical distribution of
the statistics from the combined results. Thus, we evaluate the
obtained statistic using the bootstrap p-values.

The bootstrap p-value is based on parametric bootstrap-
ping. First, we fit the model using all the data and obtain
the fitted probabilities. Second, we generate some bootstrap
datasets from the Bernoulli distributions with those fitted con-
ditional probabilities. Third, we calculate the p-value statistic on
each of the bootstrap datasets, so these p-value statistics corre-
spond to the case where the MTA or PTA is “correct,” Fourth,
we compare the p-value statistic from the original data with
those from the bootstrap datasets and calculate the bootstrap
p-value.

5. Experimental Studies

In the following subsections, we present simulation results
to demonstrate the performance of the BAGofT in various
settings.

In Section 5.1, we check the performance of the BAGofT in
parametric settings and compare it with some existingmethods,
including the recently proposed Generalized Residual Predic-
tion (GRP) test (Janková et al. 2020). The GRP calculates a test
statistic by pivoting the Pearson residuals from the MTA. It has
a different focus compared with the BAGofT. First, the GRP
test works for generalized linear models (GLM). In contrast,
the BAGofT tests general classification models, for example,
linear discriminant models and naive Bayes models that do
not belong to GLM. Secondly, the GRP test focuses on the
cases where the link function of the generalized linear model
is correctly specified. The BAGofT can have power against a
general deviation of theMTA from the truth. Additionally, when
covariates outside the MTA are considered (as mentioned in
Section 4.2), the GRP test requires the true model to have the
linear effects of these covariates only; the BAGofT can test on
other misspecifications, including missing quadratic effects and
interactions of the missed covariates. For comparison, we only
choose simulation settings that work for both the GRP and
BAGofT in this part. A discussion about the required conditions
for the BAGofT in the experimental settings is included in the
supplementary material.

In Section 5.2, we demonstrate the application of the BAGofT
to assess general classification procedures, where we are not
aware of any method to compare with.

5.1. Testing on Parametric Models

We choose some commonly studied parametric settings that are
similar to those in Pulkstenis and Robinson (2002); Yin andMa
(2013); Canary et al. (2017).

Setting 1. The response is generated from P(y = 1|x1, x2, x3)
= 1/(1 + exp(−(β1x1 + β2x2 + β3x3))), where x1, x2, and x3
are independently generated from Uniform[−3, 3], N (0, 1),
and χ2

4 , respectively. We test the correctly specified model
(named Model A) and the model that misses x3 (named
Model B).

Setting 2. The response is generated from P(y = 1|x1, x2) =
1/(1 + exp(−(β1x1 + β2x2 + β3x1x2))), where x1 and x2 are
independently generated fromUniform[−3, 3]. We test the cor-
rectly specifiedModelA andModelB thatmisses the interaction
term.

Setting 3. The response is generated from P(y = 1|x1, x2, x3)
= 1/(1+exp(−(β1x1+β2x2+β3x3+β4x21))), where x1, x2, and
x3 are independently generated from Uniform[−3, 3], N (0, 1),
andχ2

2 , respectively.We test the correctly specifiedModelA and
Model B that misses the quadratic term.

For Model A, we check the null distribution of the BAGofT
statistic. For Model B, we compare the power of the BAGofT
with the Hosmer-Lemeshow test (Hosmer and Lemeshow
1980), le Cessie-van Houwelingen (CH) test (Le Cessie and
Van Houwelingen 1991), and GRP test (Janková et al. 2020).
These three tests are fitted by packages ResourceSelection
(Lele, Keim, and Solymos 2019), rms (Harrell Jr 2019), and
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Figure 1. The Q-Q plot of the BAGofT bootstrap p-values from Model A versusUniform[0, 1] distribution in Setting 1. The x-axis and y-axis correspond to the theoretical
quantiles and observed sample quantiles, respectively. The red straight line corresponds to the perfect match between the theoretical and observed sample quantiles.

Figure 2. The rejection rates of tests for Model B in Settings 1-3. We take standard deviation γ = 1 or 0.5 for β3 in Setting 1, Setting 2, and β4 in Setting 3, respectively. A
smaller γ makes it harder to reject. The BAGofT is compared with the HL, CH, and GRP tests. The significance level is 0.05.

GRPtests (Janková et al. 2019), respectively, with their default
values. The BAGofT applies 40 data splittings, with all the
available covariates considered for the adaptive partition,
namely (x1, x2, x3), (x1, x2), and (x1, x2, x3) in Settings 1–3,
respectively.

To avoid cherry-picking,we independently generate the coef-
ficients from normal distributions with unit standard deviation.
Coefficients β3 in Setting 1 and Setting 2, and β4 in Setting
3 are generated with mean 1 and others are generated with
mean 0. To reflect different degrees of deviation of the MTA
from the data generating distribution when testing Model B, we
consider an additional setting with standard deviation 0.5 for
those coefficients generated with mean 1. The other coefficients
remain the same as before. The considered sample sizes are
100, 200, and 800, and the testing process in each setting is
independently replicated 100 times.

The BAGofT results with the three ways to combine multiple
splitting results in Section 4.3 (namely, those based on mean,
median, and minimum, respectively) are very close. We thus
only present those based on the mean. For Model A, the Q-

Q plots of the BAGofT p-value statistic against Uniform[0, 1]
in Setting 1 are shown in Figure 1. We observe that in gen-
eral, the statistic has a good approximation to Uniform[0, 1]
under H0. When the sample size is small, the simulated Type
I error tends to be less than nominal. The results of the other
settings are included in the supplementary material, and they
show similar results. For Model B, the rejection rates of the
BAGofT compared with the other tests at the significance level
of 0.05 are shown in Figure 2. Due to the random generation of
the coefficients, a small portion of the datasets is unbalanced.
It caused computation errors for the CH and GRP tests. We
dropped these cases when computing the rejection rates. From
the results in Figure 2, the BAGofT (in circles) has the best
performance in all of the cases. The GRP test (in squares) gets
close to the BAGofT in Settings 2 and 3.

We also study the relationship between the number of split-
tings and the variation of the BAGofT p-value statistic. Recall
that the purpose of multiple splitting is to obtain a test statistic
with smaller variation. The results show that 10 to 20 splittings
are usually good enough to get stable results. Additionally, we
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check the covariates with the largest variable importance (from
the Random Forest fitted on the Pearson residuals) in Settings
1 and 3 when the models are misspecified (Model B). Recall
that the covariates with large variable importance tend to be
the major source of misspecification. Most of the times in our
simulation, the missing variable x3 in Setting 1 has the largest
variable importance; x1 in Setting 2, whose quadratic effect is
missing, has the largest variable importance. Additional experi-
mental details on the variations of the statistics and the variable
importance are included in the supplementary material.

5.2. Assessing Classification Learning Procedures

In this subsection, we demonstrate the application of the
BAGofT to assess classification procedures. We focus on a
high-dimensional setting with 1000 covariates and a sample
size of 500. A low-dimensional study is included in the
supplementary material. The response is generated by the
Bernoulli distributions with the following settings.

Setting 1: P(y = 1|x1, . . . , x1000)
= 1/(1+ exp(−(−6+ 3 · I{−2 < x1 < 2}
+ 0.5(x2 + x3 + x4 + x5)))).

Setting 2: P(y = 1|x1, . . . , x1000)
= 1/(1+ exp(−(0.5x1 + 0.3x2 + 0.1x3 + 0.1x4 + 0.1x5))).

The covariates x1, . . . , x1000 are independently generated from
Uniform[−5, 5]. The PTAs are the logistic regression with
LASSO penalty, Random Forest, and XGBoost (Chen and
Guestrin 2016).

We first randomly generate the sample data and apply the
BAGofT with the three splitting ratios to the PTAs. We apply
20 data splittings, and the adaptive partition is based on all the
available covariates x1, . . . , x1000. The RandomForest is fitted by
the package randomForest (Liaw and Wiener 2002) with maxi-
mum nodes 10. The XGBoost is fitted by the package xgboost
(Chen et al. 2020) with 25 iterations. The above process is
performedwith 100 replications, and the results are summarized
in Figure 3.

The result of the LASSO logistic regression in Setting 1
belongs to Pattern 4 since the LASSO logistic fails to capture
the nonlinearity in the data-generating model. For Setting 2,
it belongs to Pattern 1 (converging quite fast). The Random
Forest has moderate fast or slow convergence speed (Pattern
2 or Pattern 3) in Setting 1. It has a slow convergence speed
(Pattern 3) or fails to capture the nature of the data generating
process (Pattern 4) in Setting 2. The Random Forest’s overall
slow convergence is because its single trees are fitted on some
small subsets of the available covariates. As a result, it tends
to miss important signals in the sparse setting. The XGBoost
converges quite fast (Pattern 1) in both settings.

6. Real Data Example

In the following three subsections, we demonstrate the appli-
cation of the BAGofT by real-world data examples. In Sec-
tion 6.1, we test a parametric classification model and com-
pare the BAGofT with other methodologies. In Section 6.2,
we present a graphical illustration on how the adaptive parti-
tion brings an insight on which variables may be responsible
for the deficiency of the procedure. In Section 6.3, we apply
the BAGofT to assess three classification procedures. We take
20 data splittings and pre-selection size 5 (see Section 4.2)
for the BAGofT throughout this section. The significance level
is 0.05.

6.1. Tesing Parametric ClassificationModels: Micro-RNA
Data

We consider the study of Shigemizu et al. (2019), where the
data is available from the Gene Expression Omnibus (GEO)
databasewith accession numberGSE120584. They fitted logistic
regressions on micro-RNA data to predict several dementias.
Our study focuses on the model that predicts whether a subject
has Alzheimer’s disease (AD) or not. The data contain n = 1309
observations. Shigemizu et al. (2019) selected 78 micro-RNA
and computed 10 principal components from the data to fit the

Figure 3. The BAGofT p-value boxplots in the high-dimensional settings. The red dashed lines correspond to the 0.05 significance level.
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predictionmodel for AD.We first consider a subsetmodel using
the first 7 principal components as the covariates.

Model 1: log
( p
1 − p

)
= β0 + β1PC1 + · · · + β7PC7. (9)

The available covariates for the BAGofT are the first 20 prin-
cipal components PC1, . . . , PC20. The bootstrap p-value of the
BAGofT is 0. The averaged (random forest) variable importance
shows that PC9 has the largest importance value and is likely to
be the major reason for the underfitting.

Next, we add PC9 to the model and consider:

Model 2: log
( p
1 − p

)
= β0+β1PC1+· · ·+β7PC7+β9PC9.

(10)
The p-value from the BAGofT is 0.21. So this model cannot be
rejected at the significance level of 0.05.

To compare the performance of the BAGofT with other GOF
tests, we also consider the HL, CH, and GRP tests. The results
are shown inTable 1. In contrastwith theBAGofT, the other tests
fail to reject the simpler model, reflecting their lack of power in
this case.

6.2. Testing Classification Procedures: FashionMNIST
Data

We consider the FashionMNIST data (Xiao, Rasul, and Vollgraf
2017), which contain images of different clothes with a pixel size
of 28 × 28. We take the first 500 images of trousers and the
first 500 images of dresses with a total sample size of 1000. An
example snapshot of these images is shown in Figure 4. The PTA
is a feed-forward neural network with one hidden layer and one
neuron.

Table 1. P-values for models from Equations (9) and (10).

Test HL CH GRP BAG

Model 1 0.42 0.26 0.17 0.00
Model 2 0.17 0.23 0.23 0.15

The BAGofT has a bootstrap p-value 0 in each of the three
splitting ratios. It indicates that the neural network fails to
capture at least one major aspect from the data (Pattern 4). To
interpret the testing results, we plot the (random forest) variable
importance of the 28 × 28 covariates from the BAGofT (with
90% data for training) in Figure 5. As is remarked in Section 4.2,
the covariates with high variable importance are likely to be the
major reason for the underfitting. It can be interpreted from
Figure 5 that the space between the two legs of the trousers is
where the PTA underfits. This is indeed the major difference
between the two kinds of clothes.

6.3. Testing Classification Procedures: COVID-19 CT Scans

Coronavirus disease 2019 (COVID-19) has had a massive
impact on the world. We consider the data in the study from
He et al. (2020), which is available at https://github.com/UCSD-
AI4H/COVID-CT. The training and test sets contain a total of
339 positive cases and 289 negative cases.

Our study considers assessing classification procedures fitted
on the 1000 features generated from the pre-trained deep learn-
ing model MobileNetV2 (Sandler et al. 2018). The images are
resized into 224×224 RGB pixels before enteringMobileNetV2.
The PTAs are two one-layer neural networks and two XGBoost
classifiers. The two neural networks consist of 1 and 7 neurons,
respectively. The two XGboost classifiers consist of 10 and 500
base learners, respectively. The details of the PTAs are included
in the supplementary material.

The p-values are summarized in Table 2. It can be seen that
both the neural network with 1 neuron and XGBoost with 10
base learners are too restrictive to capture the nature of the
data (Pattern 4). Both the neural network with 7 neurons and
XGBoost with 500 base learners belong to Pattern 1, and thus
handle the data quite well.We also calculate the prediction accu-
racies of the PTAs by taking 0.5 as the threshold and averaging
the accuracies over 100 replications under the three splitting
ratios (namely 90%, 75%, and 50%). The result shows that the
models not rejected by the BAGofT have accuracies uniformly
better than those that are rejected. Note that when assessed

Figure 4. An example of trouser and dress images from the Fashion MNIST data.

https://github.com/UCSD-AI4H/COVID-CT
https://github.com/UCSD-AI4H/COVID-CT
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Figure 5. Variable importance of the neural network fitted to the Fashion MNIST
data. Covariates with higher variable importance are marked by brighter color. The
neural network still has room for a major improvement with those highlighted
covariates.

Table 2. P-values andprediction accuracies from classification procedures fitted on
the COVID-19 data (He et al. 2020). NNET-1, NNET-7, XG-10, and XG-500 denote the
neural networkwith 1 neuron, the neural networkwith 7 neurons, the XGBoostwith
10 base learners, and the XGBoost with 500 base learners, respectively.

P-values Accuracy

Splitting ratio 90% 75% 50% 90% 75% 50%

NNET-1 0.03 0.00 0.00 0.71 0.70 0.69
NNET-7 0.62 1.00 0.32 0.72 0.71 0.70
XG-10 0.00 0.00 0.00 0.65 0.65 0.64
XG-500 1.00 0.25 0.60 0.72 0.72 0.70

by prediction accuracies, the neural network with 1 neuron is
only slightly worse than the one with 7 neurons. Nevertheless,
the BAGofT is able to indicate that the difference in accuracies
comes from a systematic defect of the 1-neuron network.

7. Conclusion and Discussion

We have developed a new methodology called the BAGofT to
assess the GOF of classification learners. One major novelty
is that, unlike the previous methodologies in the literature,
it can assess general classification procedures, which is more
challenging and has a more extensive application scope than
testing parametric models. We have shown both theoretically
and experimentally that the BAGofT can effectively reveal dif-
ferent performance patterns of the PTA. Another novelty is
the adaptive grouping, which can flexibly expose the MTA or
PTA’s weaknesses andmake the developed tool highly powerful.
The adaptive grouping may also be used to interpret which
covariates are possibly associated with the underfitting. In the
context of assessing parametric models, numerical results have
demonstrated the significant advantages of the BAGofT com-
pared with some existing tests, including the popular Hosmer–
Lemeshow test.

It is worth emphasizing that the BAGofT has a different
usage compared with the assessment tools centered on the
classification accuracy. Instead of directly measuring the
prediction performance of an MTA/PTA, the BAGofT checks
whether it has a detectable systematic issue that leads to slow
or non-convergence for the observed data. In one application,
the BAGofT can be used by scientists to justify the postulated
parametric models and consequently interpret the results on
the data-generating mechanism. In another application, data

analysts may use the BAGofT to check for systemic defects and
make critical business decisions on whether to put more effort
on improving an existing MTA/PTA. For many medical and
financial applications, it may be valuable to pursue even the
smallest improvement of existing methods when we know that
they are defective. On the other hand, for other applications
where the accuracy at a certain level is fully acceptable, there is
no need to perform the BAGofT or other GOF test as long as
the accuracy of the MTA/PTA is high enough.

One remaining challenge for the BAGofT is the identification
of an overfitted MTA/PTA. When an MTA/PTA is substantially
overfitted, the adaptive partition may fail to discover the devi-
ation using the training set because the Pearson residuals may
look clean. Nevertheless, in the case of severe overfitting, the
chi-squared statistic calculated on the validation set may be able
to capture the enlarged variance, and thus the BAGofT may
still reject the MTA/PTA. An interesting future direction is to
effectively identify large variances from an overfittedMTA/PTA.
Another future direction is to extend the BAGofT to the classi-
fication problems with d > 2 classes. A possible way is to define
the statistic T by

∑Kn
k=1 RkTVk−1Rk where Rk is the sum of dif-

ferences between the observed response vectors and estimated
probabilities from the kth group, andVk is the estimated covari-
ance matrix for that group. It can be verified by the multivariate
Berry–Esseen theorem that bag = 1 − P(χ2

Kn·(d−1) ≤ T|T,Kn)
has an asymptotic standard uniform distribution under H0.
Nevertheless, a large d brings in computational challenges for
the adaptive partition.

The R package “BAGofT” and codes to reproduce the
results in Sections 5 and 6 are available at https://cran.r-project.
org/web/packages/BAGofT/index.html, and https://github.com/
JZHANG4362/BAGofT, respectively.

Supplementary Materials

In the supplementary file, we provide proofs of the theorems in the main
paper and justify/discuss conditions required for the theoretical results.
Additional simulations in various settings and real data detailed results are
offered as well on performance of BAGofT.
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