
Graphite: Optimizing Graph Neural Networks on CPUs Through
Cooperative So�ware-Hardware Techniques

Zhangxiaowen Gong
University of Illinois at

Urbana-Champaign and Intel Labs
USA

zhangxiaowen.gong@intel.com

Houxiang Ji
University of Illinois at
Urbana-Champaign

USA
hj14@illinois.edu

Yao Yao
University of Illinois at
Urbana-Champaign

USA
yaoy4@illinois.edu

Christopher W. Fletcher
University of Illinois at
Urbana-Champaign

USA
cw�etch@illinois.edu

Christopher J. Hughes
Intel Labs

USA
christopher.j.hughes@intel.com

Josep Torrellas
University of Illinois at
Urbana-Champaign

USA
torrella@illinois.edu

ABSTRACT
Graph Neural Networks (GNNs) are becoming popular because
they are e�ective at extracting information from graphs. To execute
GNNs, CPUs are good platforms because of their high availabil-
ity and terabyte-level memory capacity, which enables full-batch
computation on large graphs. However, GNNs on CPUs are heavily
memory bound, which limits their performance.

In this paper, we address this problem by alleviating the stress of
GNNs on memory with cooperative software-hardware techniques.
Our software techniques include: (i) layer fusion that overlaps the
memory-intensive phase and the compute-intensive phase in a
GNN layer, (ii) feature compression that reduces memory tra�c
by exploiting the sparsity in the vertex feature vectors, and (iii) an
algorithm that changes the processing order of vertices to improve
temporal locality. On top of the software techniques, we enhance
the CPUs’ direct memory access (DMA) engines with the capability
to execute the GNNs’ memory-intensive phase, so that the proces-
sor cores can focus on the compute-intensive phase. We call the
combination of our software and hardware techniques Graphite.

We evaluate Graphite with popular GNNmodels on large graphs.
The result is high-performance full-batch GNN training and infer-
ence on CPUs. Our software techniques outperform a state-of-the-
art GNN layer implementation by 1.7-1.9x in inference and 1.6-2.6x
in training. Our combined software and hardware techniques speed-
up inference by 1.6-2.0x and training by 1.9-3.1x.

CCS CONCEPTS
•Computingmethodologies!Neural networks; •Computer
systems organization ! Multicore architectures; Single in-
struction, multiple data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527403

KEYWORDS
Graph Neural Networks, hardware-software co-design, CPU, DMA
ACM Reference Format:
ZhangxiaowenGong, Houxiang Ji, Yao Yao, ChristopherW. Fletcher, Christo-
pher J. Hughes, and Josep Torrellas. 2022. Graphite: Optimizing Graph
Neural Networks on CPUs Through Cooperative Software-Hardware Tech-
niques. In The 49th Annual International Symposium on Computer Architec-
ture (ISCA ’22), June 18–22, 2022, New York, NY, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3470496.3527403

1 INTRODUCTION
Deep Neural Networks (DNNs) have attained state-of-the-art re-
sults across a range of tasks from image recognition [30] to speech
recognition [2], scene generation [37], and game playing [44]. How-
ever, traditional DNNs such as Convolutional Neural Networks
(CNNs) are only applicable to Euclidean data, such as a grid of
pixels in an image. They lack the power to process non-Euclidean
data, such as graphs [51].

Graphs model a set of objects (vertices) and their relationships
(edges). Many important types of data are represented as graphs
— e.g., a network of e-commerce products that are purchased to-
gether, the biologically meaningful associations between proteins,
or a citation network of papers [23]. Graphs are often irregular.
They have a set of unordered vertices, and each vertex may link
to a di�erent number of neighbors. Consequently, operations like
convolutions are di�cult to apply in the graph domain [51]. As a
result, there is an increasing demand for a DNN model that can
operate on graphs. Graph Neural Networks (GNNs) �ll this need.
They have been proven e�ective in social science [21, 29], physical
systems [41], knowledge graphs [20], and other domains [12, 14].

Although the community often uses GPUs to run GNNs [26],
and has proposed several accelerators for GNNs [15, 33, 54], run-
ning GNNs on CPUs has bene�ts. First, CPUs are ubiquitous. For
example, data centers possess a high number of spare CPUs during
o�-peak hours that can be utilized to perform GNN tasks, lowering
the Total Cost of Ownership (TCO) [1, 40, 46, 53]. Second, CPUs can
be equipped with terabytes of memory [40, 53]. Memory capacity
is a major limiting factor in GNN execution. Real-world graphs can
have millions to billions of vertices [4, 6], and their footprint may
occupy tens to hundreds of gigabytes.

https://orcid.org/0000-0003-4892-5654
https://doi.org/10.1145/3470496.3527403
https://doi.org/10.1145/3470496.3527403

ISCA ’22, June 18–22, 2022, New York, NY, USA Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas

Although techniques such as neighborhood sampling and vertex
mini-batching are proposed to cope with GPUs’ limited memory
capacity [21], these workarounds have drawbacks. They induce vast
under-utilization of the compute capacity [24, 31], may degrade the
network accuracy [21, 26], and induce signi�cant overhead through
additional costly operations [47]. Instead, a CPU can work with
full-batches without sampling for large graphs. It also enables wider
and deeper network structures, which are trending [31, 32, 34]. In
light of these bene�ts, the goal of this paper is to characterize and
optimize the execution of GNNs on CPUs.

E�ciently executing GNNs on CPUs is non-trivial. While tradi-
tional DNN workloads are usually regular and compute-intensive,
GNNs are irregular and often memory-intensive, which is due to
the sparse connections in graphs. Therefore, GNNs pose distinct
performance challenges compared to other DNNs.We pro�led GNN
workloads using the state-of-the-art DGL framework [49] on a CPU
server and found that the executions are heavily DRAM-bandwidth
bound — less than 10% of the pipeline slots are spent on useful
computation. Therefore, alleviating the stress on memory is key to
speeding-up GNN workloads on CPUs.

In this paper, we propose cooperative software-hardware tech-
niques to tackle this memory problem. We call the combination of
our techniques Graphite. We start with three software techniques.
First, we note that a GNN layer is composed of a memory-intensive
aggregation phase, where each vertex collects information from its
neighbors, and a compute-intensive update phase, where a deep
learning operator such as a fully-connected layer processes the
collected information [56]. Hence, to speed-up the execution, we
fuse the two phases, overlapping the memory accesses of the ag-
gregation phase with the computation of the update phase. Second,
we observe that the vertex features in the hidden GNN layers often
contain a moderate number of zeros due to the use of the recti�ed
linear unit (ReLU) and dropout. Hence, we reduce memory tra�c
by compressing the sparse features before writing to memory and
decompressing them after reading from memory. Third, we develop
an e�ective algorithm to improve temporal locality by rearranging
the processing order of the vertices.

Although these three software optimizations are e�ective, there
are still remaining issues to address. Speci�cally, processor cores
stall while fetching low-locality data in the aggregation phase.
Therefore, we propose a light-weight near-memory compute unit
on top of the software techniques. We observe that modern Di-
rect Memory Access (DMA) engines include the gather function-
ality [25, 42, 52]. Since the aggregation is generally a gather and
a reduce, we propose to augment the DMA engines to o�oad the
aggregation from the processor cores. Since the aggregation reuses
many existing resources in the original DMA engines, the hardware
extensions are limited.

The Graphite software and hardware techniques are synergistic
in most cases. Their combined capabilities result in greatly reduced
private cache accesses and miss rates, higher DRAM bandwidth
utilization, and substantial compute-memory overlap.

Overall, in this paper, we make the following contributions. First,
we develop e�ective software techniques to relieve the DRAM
bandwidth pressure in GNN workloads running on CPUs. Second,
we address the remaining memory issues by proposing a novel
DMA engine that o�oads the GNN aggregation. We apply these

software-hardware optimizations to both inference and training.
Third, we validate our techniques with full-batch computation on
medium to large scale graphs. We evaluate our software techniques
on a 28-core server, and our hardware technique on a simulator.
Our software techniques outperform a state-of-the-art GNN layer
implementation on popular GNN models by 1.7-1.9x in inference
and 1.6-2.6x in training. Our combined software and hardware
techniques speed-up inference by 1.6-2.0x and training by 1.9-3.1x.

2 BACKGROUND
2.1 Graph Neural Networks (GNNs)
GNNs have become popular tools to extract information from
graphs, which is hard for other types of DNNs [51]. To introduce
the general formulation of GNNs, we use the notations in Table 1.

Table 1: List of symbols.

Description Description

G graph G = (V, E) V vertices of G
E edges of G ⇡E degree of vertex E
N (E) all neighbors of vertex E S (E) sampled subset of N (E)
4D,E edge between vertex D and E A adjacency matrix
 number of layers � vertex feature vector length
h feature matrix hE feature vector of vertex E
a aggregation feature matrix aE aggregation feature vector
W update weight matrix of vertex E
b update bias vector k feature processing function

The inputs to GNNs are graphs. A graph G = (V, E) has vertices
V and edges E . Each vertex/edge can have a feature vector. Each
element in a feature vector is a scalar feature. In this paper, we
study the cases where vertices have features while edges do not.

A GNN has layers. Each layer contains an aggregation phase
and an update phase [56]. In the aggregation phase of layer : , each
vertex E reduces its neighbors’ as well as its own feature vectors at
layer : � 1 to create the aggregation feature vector a:E through an
aggregation function:

a:E = AGGREGATE(h(:�1)D | 8D 2 N (E) [{E}) (1)

Next, in the update phase, the vertex computes its output feature
vector h:E by applying an update function on a:E :

h:E = UPDATE(a:E) (2)

After layers, each vertex’s feature vector is a function of its
neighbors up to hops away.

To execute GNNs with large input graphs on memory-limited
devices such as GPUs and accelerators, it is essential to �rst divide
the graph into mini-batches of vertices. Then, one may perform a
breadth-�rst search (BFS) to �nd the -hop neighborhood of each
vertex in a mini-batch. Finally, only the input feature vectors of the
neighborhoods need to be transferred to the device memory.

However, depending on the graph structure and the depth of the
network, the BFS can span the entire connected components that
contain the vertices in the mini-batch, which can still be too large
for the device memory. Hence, to con�ne eachmini-batch’s memory
footprint, some networks sample each vertex’s neighborhood before

Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative So�ware-Hardware Techniques ISCA ’22, June 18–22, 2022, New York, NY, USA

the aggregation phase [21, 55], by randomly selecting up to some
pre-determined number of neighbors for each vertex:

S (E) = SAMPLE: (N (E)) (3)

With a �xed sample size, the upper bound of the working set of
each mini-batch is predetermined. The sampling process is gener-
ally performed on CPUs [10, 39].

Di�erent GNN models may adopt various aggregation and up-
date functions. Table 2 presents two popular GNN models: the
Graph Convolutional Network (GCN) [29] and the GraphSAGE
(SAGE) with the mean aggregator [21].

Table 2: Example GNN models.

GNN Aggregation Update

GCN
Õ(h(:�1)

D /
p
⇡E · ⇡D) | 8D 2 N (E) [{E } '4!* (W:0:E + b:)

SAGE
Õ
h(:�1)
D /(⇡E + 1) | 8D 2 N (E) [{E } '4!* (W:0:E + b:)

Both models use the same update function: a fully-connected
(FC) layer activated with the recti�ed linear unit (ReLU). Their
di�erence lies in the aggregation function. In GCN, each vertex
�rst normalizes each neighbor’s and its own feature vectors. It then
sums the normalized feature vectors. In GraphSAGE, each vertex
takes the element-wise average of its neighbors’ and its own feature
vectors. Despite the di�erence, the aggregation functions of the two
models both gather each vertex neighbors’ feature vectors, process
each gathered feature vector with a functionk , and �nally perform
a reduction. Both models can adopt sampling by replacing N (E)
with S (E) in the aggregation.

Training GNNs follows the general DNN training principles. The
training process iteratively updates the trainable parameters (i.e.,
W and b in the two example models) with a loop of the forward pass
and the backward pass. The forward pass computes the outputs
with the current parameters, compares them with the ground truth,
and produces errors. The backward pass propagates error gradients
with the chain rule and updates the parameters accordingly.

Popular GNN frameworks include PyTorch Geometric (PyG) [11]
and the Deep Graph Library (DGL) [49].

2.2 Sparsity in GNNs
Sparsity in a neural network is the presence of zeros in any of
the input or output tensors. Zero-valued inputs result in useless
multiplications and/or additions during the aggregation and update
phases. Reading these zero-valued inputs from memory also wastes
bandwidth. If we can e�ciently “skip over” the zeros, we may save
computation and/or memory bandwidth.

A GNN model can contain sparsity from various sources. First, a
typical graph often has highly-sparse connections, i.e., each vertex
is connected to a small subset of other vertices.When expressing the
connections as an adjacency matrix, A, the matrix is usually over
99% sparse. For example, the Amazon product co-purchasing net-
work dataset (products) [23] has 2.4M vertices and 62M undirected
edges, suggesting that A is 99.998% sparse. When uncompressed,
the footprint of � is $ (|V |2), but when using a typical compressed
format such as compressed sparse row (CSR), the footprint is only
approximately $ (|E | + |V |). In addition, as the graph structure is

�xed, so are the locations of the zeros. For these reasons, the adja-
cency matrix is often compressed. Frameworks such as DGL use
the CSR format.

The second source of sparsity lies in the features. Some GNNs
employ ReLU, which sets any negative scalar output feature to
zero [51]. ReLU typically induces 40-90% sparsity [17]. In addition,
feature dropout can also sparsify the features. It is widely adopted
to reduce over�tting [45]. During training, a prede�ned fraction
of the hidden features, often 50%, are randomly selected and set to
zero. We pro�led a 20-epoch training of a three-layer GraphSAGE
on the ogbn-products dataset, and found that ReLU sparsi�es the
input features to the second layer by over 60%, and dropout further
sparsi�es them to over 80%. Furthermore, the sparsity of the input
features to the third layer is even higher, reaching over 90%.

Sparsity in the features is hard to exploit. Both ReLU and dropout
introduce a moderate amount of zeros. Also, the sparsity pattern
changes dynamically, so frequent compression becomes costly.
Therefore, feature sparsity is rarely exploited, and features are
typically stored in a regular (dense) representation.

2.3 Scatter-Gather DMA
The aggregation phase of GNNs consists of each vertex gathering
its neighbors’ feature vectors and performing a simple reduction.
Currently, machines execute this phase very ine�ciently: proces-
sors spend substantial time fetching data from the lower levels of
the cache hierarchy to only perform a simple computation, and are
then unlikely to reuse the data from their caches because the data
has poor locality.

One direction to improve e�ciency is to o�oad the aggrega-
tion to a near-memory processor. However, these processors add
signi�cant hardware overhead and do not currently exist in com-
mercial systems. On the other hand, we notice that Direct Memory
Access (DMA) engines, such as various FPGA IPs [42, 52], do ex-
ist in current systems and are light weight. They support minimal
functionality like a scatter-gather function. Hence, there is an oppor-
tunity to augment DMA engines to implement hardware-assisted
aggregation with relatively low cost and minimal intrusiveness.

Existing DMA engines usually employ a descriptor-based pro-
gramming interface. A descriptor encodes the source and destina-
tion addresses of the data block to be transferred, as well as its size.
The scatter/gather operations supported are essentially batched
data transfers. To describe a gather operation, the software needs
to supply a chain of descriptors, where each one encodes the move-
ment of a contiguous data block. The chain can be in the form of a
linked list (e.g., Xilinx AXI [52] in Figure 1a) or an array (e.g., Intel
DSA [25] in Figure 1b).

next desc.

other fields

next desc.

other fields

desc. 0 desc. 1

(a) Linked-list based.

desc. 0
desc. 1
desc. 2

address

(b) Array based.

Figure 1: Scatter-gather DMA descriptor chain.

ISCA ’22, June 18–22, 2022, New York, NY, USA Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas

3 MOTIVATION: GNNS ON CPUS
GPUs and accelerators are popular platforms for various types of
DNNs due to their high compute power. While this is true for GNNs
too [15, 26, 33, 54], CPUs are also a viable platform for GNNs [36]
for at least two reasons. First, CPUs are ubiquitous. For example,
data centers possess a high number of spare CPUs during o�-peak
hours that can be utilized to perform GNN tasks, lowering the Total
Cost of Ownership (TCO) [1, 40, 46, 53].

The second reason is that GNN execution requires large memory
capacities. For example, real-world graphs can have millions to
billions of vertices [4, 6], so the footprint of their feature matrices
may occupy tens to hundreds of gigabytes. Traditionally, the mem-
ory devices used in GPUs and accelerators prioritize throughput
over capacity. As a result, GNN memory footprints typically exceed
GPUs and accelerators’ memory capacity.

To run large input graphs on those devices, onemay use sampling
and mini-batching to con�ne the working sets. However, these tech-
niques have drawbacks. First, the size of the -hop neighborhood
grows exponentially with the number of layers . With enough
layers, GPU users may be forced to use a tiny mini-batch size to �t
the working sets in the device memory, which vastly under-utilizes
the compute capacity [24, 31]. Second, sampling may degrade the
network accuracy [21, 26]. Third, the techniques induce signi�cant
overhead [10, 39].

To examine the overhead of the sampling and mini-batching
techniques, we pro�led the training of a sampled GraphSAGE on
the products dataset with DGL on a CPU-GPU heterogeneous plat-
form. The GNN layers are computed on a Nvidia Titan V GPU while
the sampling is performed on a 12-core CPU.We experimented with
mini-batch sizes from 1024 to 4096. Figure 2 shows the breakdown
of the training epoch time. The numbers in the �gure are the time
spent on: (i) sampling/mini-batching and (ii) GNN layer compu-
tation. We see that the sampling and mini-batching astoundingly
contribute to over 80% of the total training time. Moreover, the
training time increases signi�cantly as the mini-batch size shrinks.

53.7
40.2

29.1

7.0
3.3

1.8

0.0

20.0

40.0

60.0

batch-1024 batch-2048 batch-4096

Ti
m

e
(s

)

sampling+minibatching GNN layers

Figure 2: Training epoch time breakdown of a sampled GSC
on a GPU with di�erent mini-batch sizes.

While GPUs and accelerators are equipped with tens of giga-
bytes of memory, CPUs’ memory capacity has reached the order
of terabytes [40, 53]. This enables full-batch training without sam-
pling for large graphs. It also bene�ts wider and deeper network
structures, which are trending [31, 32, 34].

This paper aims to improve the performance of full-batch GNN
training and inference on multi-core SIMD CPUs without sampling.
To understand the performance bottlenecks of these workloads, we

pro�led GNN training on a 28-core Intel Cascade Lake CPU server
with DGL using the Intel VTune pro�ler. Figure 3 is a breakdown
of the pipeline slots either doing useful work or wasted on di�erent
bottlenecks during the training.

10.1%

3.3%

23.6% 61.7%

0% 20% 40% 60% 80% 100%
Percentage of Pipeline Slots

retiring frontend bound core bound memory bound

Figure 3: Breakdown of the pipeline slots spent on retiring
micro-ops or stalled by di�erent bottlenecks during a full-
batch training of GraphSAGE on a CPU.

We observe that only 10% of the pipeline slots are attributable
to useful work. Further, in 62% of the slots, the pipeline is stalled
waiting for loads and stores. In addition, it can be shown that the
L1 data cache line �ll bu�er is full almost 100% of the time, hinting
that L1 misses are often satis�ed from deep in the memory hierar-
chy, such as from main memory. This is because the aggregation
phase typically constitutes over 80% of the execution time. Since
the aggregation performs a simple reduction for each vertex after
gathering its neighbors’ feature vectors, the operation is highly
memory-intensive. Therefore, reducing main memory bandwidth
pressure appears to be key to optimize GNN workloads on CPUs.

In the rest of this paper, we present and evaluate new software
and hardware techniques to accomplish this goal.

4 SOFTWARE OPTIMIZATION TECHNIQUES
This section presents our software techniques to optimize GNN
execution onmulti-core CPUs. The optimizations in Sections 4.1-4.3
bene�t both training and inference, while the one in Section 4.4
further optimizes training.

4.1 Parallel Vectorized Aggregation
The aggregation phase dominates the execution time of a GNN
layer. In the aggregation, each vertex E �rst gathers the feature
vectors from D 2 N (E) [{E}, then performs an element-wise
reduction, and �nally updates its aggregation feature vector, aE . All
working sets but a: , are read-only. Therefore, we output-parallelize
the aggregation by letting threads compute di�erent subsets of a: .
This avoids race conditions and requires no synchronization among
threads.

Algorithm 1 shows our parallel vectorized aggregation. In Line 1,
we divide V into chunks of) vertices. Each parallel task operates
on a chunk. The processing time of a chunk correlates with the
degrees of the vertices in it. The degrees can vary signi�cantly and
sometimes follow a power law distribution [36]. To balance the
load among threads, we schedule the parallel tasks with OpenMP’s
dynamic scheduler.

A parallel task performs aggregation on each vertex E in the
assigned chunk (Lines 4-7). Because the feature vector of a vertex
often has hundreds of elements, we vectorize the feature gathering,
processing, and reduction (Line 7).

Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative So�ware-Hardware Techniques ISCA ’22, June 18–22, 2022, New York, NY, USA

Algorithm 1: Parallel vectorized aggregation.
input :graph G = (V, E) , input feature matrix h:�1, reduction

operator �, feature processork
output :aggregation feature matrix a:
constant : task size) , vector length+ , prefetch distance ⇡

1 for 8 = 0 to |V | � 1 step) in parallel do
2 for 9 = 0 to) do
3 E = V8+9
4 a:E = {0}
5 for D 2 N (E) [{E } do
6 for< = 0 to |a:E | step+ do
7 aE [<:<++�1] = aE [<:<++�1] �k (h:�1D [<:<++�1])

8 E0 = V8+9+⇡
9 PREFETCH(h(:�1)

D0 | 8D0 2 N (E0) [{E0 })

After the aggregation of each vertex, we prefetch the features
needed by a later aggregation with a distance ⇡ (Line 9). Since the
execution is mainly DRAM bandwidth bound, the L1D �ll bu�er
is often full of pending misses. In such cases, adding excessive
software prefetch can instead degrade the performance. Hence,
although not shown in the algorithm, we empirically choose to
prefetch only the �rst two cache lines of each feature vector.

We use a just-in-time (JIT) assembler to tailor the aggregation
kernel to each layer’s speci�cation (e.g., the length of the feature
vectors). Dynamically generated kernels use registers more e�-
ciently by using layer-speci�c constants. They also avoid overhead
such as unnecessary boundary checking. The kernels are generated
only once during the entire training/inference session because the
code is tailored to the model but not the data. Hence, the overhead
of the dynamic code generation is amortized [16, 17].

4.2 Layer Fusion
The aggregation phase is irregular and memory-intensive, while
the update phase is regular and compute-intensive. Conventionally,
a GNN layer �rst aggregates all vertices, placing little pressure
on compute hardware but a lot on the memory hierarchy, and
then updates the vertices, �ipping the hardware utilization. We
propose to fuse the phases to overlap the memory movement with
the compute.

Algorithm 2 describes the fusion.We parallelize it by partitioning
the output working sets, which are both the aggregation feature ma-
trix a: and the output feature matrix h: . Each parallel task performs
a fused aggregation-update on) blocks of ⌫ vertices per block in
the 9-loop (Lines 2-10). It iterates through the assigned vertices
with a block size ⌫ (Line 2). In each 9-loop iteration, it aggregates
⌫ vertices in Lines 3-7 and then updates them in Lines 8-10. The
AGGREGATE function is equivalent to Lines 4-7 in Algorithm 1.

Memory and compute overlap in two ways. First, within a sin-
gle thread, the prefetch operations in the 9-loop iteration 9 0 may
prefetch for a future 9-loop iteration 9 0 + =. Therefore, during an
update phase, the hardware prefetches features needed by a future
aggregation phase. Second, when we consider all of the threads,
aggregation and update operations may happen simultaneously for
di�erent threads.

Algorithm 2: Fused aggregation and update.
input :graph G = (V, E) , input feature matrix h:�1
output :aggregation feature matrix a: , output feature matrix h:
constant :block size ⌫, blocks per task) , prefetch distance ⇡

1 for 8 = 0 to |V | � 1 step) · ⌫ in parallel do
2 for 9 = 0 to) · ⌫ � 1 step ⌫ do
3 for< = 0 to ⌫ � 1 do
4 E = V8+9+<
5 a:E = AGGREGATE(h(:�1)

D | 8D 2 N (E) [{E })
6 E0 = V8+9+<+⇡
7 PREFETCH(h(:�1)

D0 | 8D0 2 N (E0) [{E0 })
8 for< = 0 to ⌫ � 1 do
9 E = V8+9+<

10 h:E = UPDATE(a:E)

Figure 4 shows how the two phases on three threads running
on separate cores may overlap. Critically, we do not synchronize
threads within the parallel loop; thus, we do not force threads to be
out of phase with respect to each other, but expect this to happen
naturally. In the �gure, the aggregation phases on di�erent cores
take varied latency, so the subsequent updates start at di�erent
times and can overlap with the aggregation phases on other cores.

P0
P1
P2

aggregation updatetime

Figure 4: Aggregation and update on three cores P0-P2 can
overlap without synchronization.

Besides inducing compute-memory overlap, layer fusion also
reduces DRAM tra�c and/or footprint, as shown in Figure 5. With-
out fusion, when a: is much larger than the cache, the aggregation
writes the entire a: to DRAM, and the subsequent update fetches
a: from DRAM again (Figure 5a). In contrast, the fused implemen-
tation produces less DRAM tra�c in both training and inference.
In each 9-loop iteration, the aggregation produces a block of a: ,
which is then consumed by the subsequent update. With a proper
⌫, the a: block resides in cache between the two phases (Figure 5b).
Additionally, in inference, since there is no back-propagation, the
fused implementation does not need to keep the entire a: for all
vertices. Instead, we only need a reusable bu�er to hold the block of
a: . We can discard the bu�er’s content after an update, and use it
for the next a: block (Figure 5c). In training, the entire a: is needed
for back-propagation, so this footprint reduction is inapplicable.

4.3 Feature Compression
The feature matrix h may be moderately sparse because of ReLU
and/or feature dropout. Since aggregation uses so much DRAM
bandwidth, we can improve performance by avoiding transferring
zero-valued elements in the features. However, as discussed, using

ISCA ’22, June 18–22, 2022, New York, NY, USA Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas

k-1h ka ka kh

in DRAM

read write read write

updateaggregation

(a) The basic implementation writes the whole a: to
DRAM in the aggregation and reads it back in the
update.

read write
k-1h ka ka kh

read write

in cache

updateaggregation

(b) The fused training kernel keeps the a: working
set in the cache between the aggregation and the
subsequent update in the same 9 loop iteration in
Algorithm 2.

read write
k-1h buffer

update
kh

read writebuffer

in cache

aggregation

(c) The fused inference kernel uses a single bu�er to
hold the a: block used by the aggregation and the
subsequent update in each 9 loop iteration in Algo-
rithm 2.

Figure 5: Layer fusion produces less main memory tra�c and/or footprint than the basic implementation.

a traditional compressed format such as CSR would be counter-
productive for h. Therefore, we need a more space/time-e�cient
compression technique for the purpose.

Modern CPU vector extensions such as x86’s AVX-512 provide
mask-based compression/decompression instructions. The com-
pression instruction takes a vector and a bit mask as input. It uses
the set-bits in the mask to select the non-zero elements from the
source vector to compress into a contiguous destination vector. The
decompression instruction uses a mask to expand elements from
a contiguous input vector to a sparse destination vector. Figure 6
shows how we use the above instructions. The example uses a
hardware vector length +=8.

1 1 0 1 0 0 0 1bit mask

10 7 0 43 0 0 0 22input vector

0 0 0 0 0 0 0 0zero vector
≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠

(a) Compression step 1: produce a bit mask tomark
non-zero elements using vector comparison.

10 7 43 22compressed vector

10 7 0 43 0 0 0 22input vector

1 1 0 1 0 0 0 1bit mask
bubble-collapse

(b) Compression step 2: bubble-collapse the input
vector according to the bit mask.

10 7 43 22compressed vector

10 7 0 43 0 0 0 22decompressed vector

1 1 0 1 0 0 0 1bit mask
bubble-expand

(c) Decompression: bubble-expand the compressed vector ac-
cording to the bit mask.

Figure 6: Examples of a mask-based (de)compression.

To compress a sparse vector, the �rst step is to compare it with
a vector of zeros, using a vector compare instruction, to produce
a mask (Figure 6a). Each of the set bits in the mask indicates the
position of a non-zero element in the sparse vector. The second step
executes the compression instruction with the mask (Figure 6b). It
collapses all the bubbles in the original vector and compacts it to
a dense vector. We save both the mask and the compacted vector.
To restore the sparse vector from the compacted form, we execute
the decompression instruction with the mask generated during

compression (Figure 6c). This expands the dense vector back to the
sparse vector.

The only meta data of the compression scheme is the mask. Each
feature element requires one bit. Hence, if each feature has 32 bits,
the space overhead is 1/32 = 3.125% of the uncompressed feature
matrix, regardless of the sparsity level. For moderate sparsity, as we
expect, this overhead is small. For example, when 32-bit features are
50% sparse, the tra�c from reading/writing the features is e�ciently
reduced by 50% � 3.125% = 46.875%.

While one could use the compression method to also reduce
the memory footprint of h, we do not do this. It would make com-
pressed feature vectors occupy variable spaces and consequently
requires an additional indirection to access them. This harms fast
random accesses to feature vectors, which are critical. Therefore,
we maintain a constant-sized storage for each feature vector, and
simply use only the fraction of it needed by the compressed data.
Our purpose in compressing feature vectors is purely to save DRAM
bandwidth when reading and writing them, which is achieved with
this scheme.

4.4 Temporal Locality Improvement
We also reduce DRAM bandwidth pressure by reducing the reuse
distance of each feature vector. In aggregation, each vertex gathers
its neighbors’ features. If we process two vertices with a common
neighbor close together in time, that common neighbor’s features
will have a small reuse distance, and will likely be cached for the
second access. Thus, the processing order of vertices in�uences the
temporal locality.

We access a given vertex’s feature vector a number of times equal
to the degree of the vertex plus one. Thus, to minimize overall reuse
distance, we prioritize the temporal reuse of the features of high-
radix vertices. Algorithm 3 describes a method to do this. In the
algorithm, ! is a collection of |V | sets. The algorithm builds the
sets such that each vertex is placed in only one of these sets, and
any vertex placed in set LE reads vertex E ’s feature vector during
aggregation. However, not all the vertices reading E ’s features are
guaranteed to be in LE because a vertex is only assigned to the set
of its highest-degree neighbor. In this way, we build up the sets of
high-degree vertices at the expense of those of low-degree vertices.

The algorithm works as follows. Each set is initially empty
(Line 1). We populate the sets using a greedy algorithm (Lines 2-7).
For each vertex E , we assign it toLD0 , whereD 0 is the vertex with the
highest degree amongN (E) [{E}. After all vertices are assigned,
we generate a processing order M of vertices in Lines 8-12. During
aggregation, vertex M8+1 is processed immediately afterM8 .

Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative So�ware-Hardware Techniques ISCA ’22, June 18–22, 2022, New York, NY, USA

Algorithm 3: Computing a processing order of vertices to
improve the temporal locality in aggregation.
input :graph G = (V, E)
output :processing orderM
variable :vertex groups L

1 LE = ú | 8E 2 V
2 for E 2 V do
3 D0 = E
4 for D 2 N (E) do
5 if ⇡D > ⇡D0 then
6 D0 = D

7 LD0 = LD0 [{E }
8 8 = 0
9 for E 2 V do
10 for D 2 LE do
11 M8 = D
12 8 = 8 + 1

The time complexity of the algorithm is$ (|E |+|V |), which scales
well with large graphs. For inference, the overhead can exceed the
bene�t. However, for training, we reuse graphs in each training
iteration, so the cost of the algorithm is easily amortized. Therefore,
we only apply this optimization in training.

5 HARDWARE ASSISTED AGGREGATION
While the previous software techniques are e�ective at speeding-up
GNNworkloads, they still leave performance on the table: processor
cores are often stalled waiting for data during aggregation. To
address this problem, we propose to o�oad aggregations from the
cores to DMA engines.

In our design, we augment DMA engines that already include
gather functionality. Figure 7 shows a block diagram of the en-
hanced DMA engine. Figure 7a is the top level diagram. It shows
that each core is equipped with a DMA engine attached to its L2
cache. The engine takes commands from the core and shares the
port to the network on chip (NoC) with the L2. We choose to place
the DMA engine near the L2 for several reasons. First, this enables
the DMA engine to have easy access to the second-level TLB (STLB).
The DMA engine uses virtual addresses and accesses the STLB for
address translation. Second, the DMA engine can easily place the
results of the aggregation into L2, so that the core can fetch them
quickly in the subsequent update phase. Last but not least, the
aggregation can bene�t from the locality captured in the shared L3.

Our DMA engine works in user space. Modern DMAs such as
Intel’s Data Streaming Accelerator (DSA) [25] can work in this way.

Figure 7b shows the components in the DMA engine, with stor-
age components shaded. The engine works as follows. The core
issues a command by enqueuing a descriptor in user space with a
dedicated instruction. To perform an aggregation, the control unit
�rst fetches the indices of the inputs from memory to the index
bu�er. It then fetches the input data blocks to the input bu�er, ac-
cordingly. It may also optionally fetch an array of factors to the
factor bu�er, as will be discussed later. It tracks all memory re-
quests in the Memory Request Tracking Table. Next, it computes

DMAL2$

L1-D$
core

STLB

NoC
L3$ slice
directory

(a) Top level.

desc. queue

index buff
output buff vect. unit
addr. unit

L2$
STLB

core

NoC

control

input buff factor buff

memory
request

tracking table

(b) The DMA engine.

Figure 7: Our enhanced DMA engine.

the reduction in a 4-lane vector unit, holding intermediate results
in the output bu�er. We choose the width of the vector unit such
that the computation does not become a bottleneck. After all inputs
are processed, the engine �ushes the output bu�er to the L2 cache.
During the process, the engine performs address translation by
looking up the STLB with an address unit.

We opt not to implement the feature compression in the DMA
engine. This is because the compression hardware is expensive.
Since only the models that use ReLU or dropout bene�t from feature
compression, the use case does not justify the hardware cost. Next,
we discuss the descriptor and the aggregation operation in detail.

5.1 The Aggregation Descriptor
Existing DMA designs use a chain of descriptors to encode a gather
operation (Section 2.3). Each descriptor in the chain describes a
continuous block of data being gathered. This approach is subop-
timal for typical GNN aggregations since the data blocks (in this
case, the feature vectors) are relatively small. For example, a 256-
element single precision feature vector is only 1KB. Furthermore,
rather than describing a set of arbitrarily-sized blocks, we need to
only describe a set of �xed-size blocks. Thus, we encode the entire
aggregation operation with a single, new descriptor.

Figure 8 shows our proposed 64-byte descriptor and its �elds. In
the descriptor, red_op encodes the reduction operator. bin_op en-
codes the optional binary operator applied on the gathered feature
vectors and the elements from a factor array. This is to support the
feature processing function k described in Algorithm 1. We will
discuss the actualization ofk in Section 5.2. idx_t and val_t describe
the data types of the index array elements and of the input/output
elements, respectively.

byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 bytes
0
8

16
24
32
40
48
56

of values in each data block (E)red_op bin_op idx_t val_t
of input data blocks (N)padded size of each data block (S)

index start address (IDX)
input base address (IN)

output start address (OUT)
factor start address (FACTOR)

completion record start address (STATUS)
reserved

Figure 8: Proposed descriptor for the aggregation operation.

Field ⇢ contains the number of elements in each gathered data
block. Since the usermaywant to align data blocks, e.g., to cache line
boundaries, the descriptor also includes the (�eld, which encodes

ISCA ’22, June 18–22, 2022, New York, NY, USA Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas

the padded size of each data block in bytes — which may include
some padding bytes. Field # is the number of data blocks being
gathered. IDX is the starting address of the index array. IN is the
base address of the memory that contains all the data blocks being
gathered. OUT is the starting address where the aggregation results
are written to. FACTOR points to the optional factor array when
performing a binary operation. Finally, the DMA engine writes the
completion status of each operation to the completion record array
STATUS. Note that all the addresses are virtual.

Figure 9a shows how the �elds are set in an example aggregation.
The example is for a graph with 4 vertices. Hence, the adjacency
matrix A has a dimension of 4 ⇥ 4, and the input feature and the
aggregation feature matrices each has 4 rows. In the example, val_t
is one word. Assume that each vertex has 3 one-word features. Since
we want to align each feature vector to 4-word cache lines, each
feature vector is padded with one additional element. Figure 9a
shows the input feature matrix and the aggregation feature matrix
before the operation is performed. We see the values of ⇢ and (.

E × sizeof(val_t)

h0
h1

data emptySS

h2
h3

IN

input features

a0
a1
a2
a3

OUT

aggregation
features

(a) Feature matrices.

0 2 5 5 6
0 2 0 2 3 1

row ptr
col idx

N = 5 – 2 = 3

IDX
2 4 1 2 3 3value

FACTOR

2 0 4 0
1 0 2 3
0 0 0 0
0 3 0 0

2 0 4 0
1 0 2 3
0 0 0 0
0 3 0 0

CSRregular

(b) Adjacency matrix.

Figure 9: Descriptor �elds of an example aggregation.

Figure 9b shows the adjacency matrix A in both regular (left)
and CSR (right) formats. It also highlights the data used in the
aggregation for the second vertex. In this case, the number of data
blocks is # = 3, which is the number of non-zeros in the second
row. # is easily derived from the CSR row pointers. �⇡- is set to
the starting index of the second row in the CSR column indices. If
the elements in � are the edge weights used as factors, as will be
discussed in Section 5.2, FACTOR points to the starting index of the
second row in the CSR value array. Finally, as shown in Figure 9a,
IN points to the starting address of the input feature matrix and
OUT points to the second row of the aggregation matrix, where
the results will be written to.

In this example, the aggregation for the second vertex will read
rows ⌘0, ⌘2, and ⌘3 from the input feature matrix, and update row
01 from the aggregation feature matrix.

5.2 The Aggregation Operation
Algorithm 4 describes the DMA-aggregation algorithm. In the al-
gorithm, B is the output bu�er and 3 is the aggregation descriptor.
Arrays 3 .IN, 3 .OUT, 3 .FACTOR, and B are indexed in 3 .E0;_C units.
For each of the # inputs, the algorithm calculates the index of each
of its ⇢ elements (Line 4). Note that, for simplicity, the algorithm as-
sumes that 3 .(is a multiple of sizeof (3 .E0;_C). The actual hardware
does not have this constraint.

If a feature processing functionk is present, the algorithm applies
the binary operator to the input element and the corresponding

Algorithm 4: DMA-aggregation algorithm.
input :aggregation descriptor 3
output :output feature vector OUT
variable :output bu�er B

1 B8 = 0 | 8 2 [0..3 .⇢ � 1]
2 for 8 = 0 to 3 .# � 1 do
3 for 9 = 0 to 3 .⇢ � 1 do
4 D = 3 .(/sizeof (3 .E0;_C) · 3 .IDX8 + 9
5 : = 3 .bin_op(3 .IND ,3 .FACTOR8)
6 B9 = 3 .red_op(B9 ,:)
7 3 .STATUS8 = GET_STATUS()
8 for 8 = 0 to 3 .⇢ � 1 do
9 3 .OUT8 = B8

factor element (Line 5). This covers a wide range ofk such as nor-
malization. The host software is responsible for generating the
factors. For example, ifk is normalization, the host should compute
the normalization factors and place them in the factor array, while
the binary operator is set to “multiply”. Finally, we apply the reduc-
tion operator to the processed input element and the corresponding
bu�er element (Line 6). After an input data block is processed, it
writes the completion status to the completion record (Line 7). If
the status indicates a failure, the remaining operations are aborted.
The algorithm omits this case for simplicity. After all input data
blocks are processed in the loop (Lines 2-7), the algorithm �ushes
the bu�er to the output in Lines 8-9. Note that, when red_op is
“sum” while bin_op is “multiply”, the algorithm essentially performs
a dense-matrix sparse-vector multiplication.

The DMA engine fetches the indices, inputs, and optionally the
factors from memory. For each address, it sends a request to the
home directory of the address. That directory �nds the data and
replies to the engine. These fetches are parallelized. The number of
entries in the index bu�er, input bu�er, factor bu�er, and memory
request tracking table determine the maximum number of fetch
requests in �ight. Besides structural limits, requests also obey de-
pendences. Speci�cally, we need the indices �rst, to calculate the
addresses of the inputs.

Figure 10 is an example that illustrates how the DMA hard-
ware performs concurrent fetches, interleaves index and input data
fetches, and gives priority to indices to make progress. The �gure
shows a timeline of the occupancy of a 2-entry index bu�er (top)
and a 4-entry tracking table (bottom). The entries in the index bu�er
contain fetched indices (idx[8]). They are in Reserved state when
they are waiting for the indices to come from memory; they are in
Occupied state when the indices have arrived but have not all been
used to issue the corresponding input data fetches. Each entry in
the tracking table is an outstanding request: when an address is
�rst placed in an entry, the engine issues a request to memory, and
when the data returns, the entry is freed. Of course, to calculate the
address of an input 8 , one needs to �rst fetch idx[8]. The �gure as-
sumes that each requested line contains either two index elements
or half of a data block.

At time t0, the DMA engine allocates tracking table entries 0 and
1 to fetch indices idx[0:1] and idx[2:3], and reserves index bu�er
entries 0 and 1 for when they are received.When idx[0:1] is received

Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative So�ware-Hardware Techniques ISCA ’22, June 18–22, 2022, New York, NY, USA

idx [4:5]
idx [2:3]

idx [0:1]

idx [0:1]idx [0:1]
idx [2:3]idx [2:3]

input 0 line 1input 0 line 1

input 0 line 0input 0 line 0
input 1 line 1input 1 line 1 input 2 line 0input 2 line 0

idx [4:5]idx [4:5]

input 2 line 1input 2 line 1

input 3 line 0input 3 line 0

input 3 line 1input 3 line 1entry 0
entry 1
entry 2
entry 3

time

input 4 line 0

...

...

...

...

In
de

x

entry 0
entry 1

input 4 line 1input 4 line 1

idx [2:3]
idx [0:1] idx [4:5]

...

...

t1 t2

reserved occupied

input 1 line 0input 1 line 0input 1 line 0

t0 t3

bu
ff

er
Tr

ac
ki

ng
ta

bl
e

Figure 10: Example timeline of DMA requests.

at t1, the tracking table allocates entries for and fetches line 0 and
1 of input 0, and line 0 of input 1. There is no space for line 1 of
input 1 until idx[2:3] arrives at t2. At that time, the tracking table
allocates an entry for and fetches line 1 of input 1, and the index
bu�er frees-up idx[0:1] and reserves an entry for idx[4:5]. As soon
as a tracking table entry is freed-up at t3, the table gives priority to
allocate an entry for and fetch idx[4:5] over input data. The rest of
the timeline proceeds as described.

It is possible that, because of dependences, some tracking table
entries are temporarily unused. Rather than underutilizing the
memory bandwidth, the DMA engine simultaneously processes a
second descriptor.

The output bu�er that holds the intermediate results has a limited
size. If the size of a feature vector is higher than this limit, the
software can break down the aggregation to �t. For example, if
the output bu�er can �t 256 elements while each feature vector
is 400 elements, the software �rst issues a DMA-aggregation to
produce the �rst 256 elements and then a second one to compute
the remaining 144 elements.

The aggregation feature vectors produced by this DMAoperation
are the input to the next phase: update. To facilitate the pipelining
of the two phases, we opt to write the results of the aggregation to
L2. When an aggregation begins, the DMA engine prefetches the
output lines to L2 in Exclusive mode. After the aggregation results
are produced, the engine writes to these lines. If they have not been
evicted from L2, we save the latency of the writes missing in L2.

Traditional DMA does not maintain coherence with caches. It is
up to the programmer to guarantee data coherence. In our DMA-
aggregation, it is not a problem that the DMA engine never stores
the fetched inputs in the caches and, therefore, the inputs are unable
to observe external invalidations. The reason is that the inputs are
read-only by design. Therefore, there are no coherence hazards.

5.3 Software Algorithm Running on the
Processor Core

DMA-aggregation is incompatible with feature compression. How-
ever, it is synergistic with layer fusion and orthogonal to the locality
optimization. Importantly, during a DMA-aggregation, the proces-
sor core can work on the update phase, creating a perfect overlap.

Algorithm 5 shows the fused DMA-aggregation and update al-
gorithm that runs on the processor core. The core o�oads the
aggregation to the DMA engine and performs the update itself. The
structure of the algorithm is like the software fusion in Algorithm 2.

Each thread dynamically takes a task a time, which processes)
blocks of ⌫ vertices per block.

Algorithm 5: Pipelined fused DMA-aggregation and up-
date algorithm running on the processor core.
input :graph G = (V, E) , input feature matrix h:�1
output :output feature matrix h:
constant :block size ⌫, blocks per task) , number of threads %
variable :descriptors D, ping-pong states Q and Q0, vertex block

o�sets R
1 QC = 0,Q0

C = �1 | C 2 [0..% � 1]
2 for 8 = 0 to |V | � 1 step) · ⌫ in parallel do
3 C = �readID()
4 for 9 = 0 to) · ⌫ � 1 step ⌫ do
5 for< = 0 to ⌫ � 1 do
6 E = V8+9+<
7 BUILD_AND_ISSUE(DC [&C ·⌫+<] , E)
8 if &0

C < �1 then
9 for< = 0 to ⌫ � 1 do
10 WAIT(DC [&0

C ·⌫+<])
11 for< = 0 to ⌫ � 1 do
12 E = VRC +<
13 h:E = UPDATE(a:E)

14 RC = 8 + 9 ,&0
C = &C ,&C = (&C + 1) mod 2

15 for C = 0 to % � 1 in parallel do
16 for< = 0 to ⌫ � 1 do
17 WAIT(DC [&0

C ·⌫+<])
18 for< = 0 to ⌫ � 1 do
19 E = VRC +<
20 h:E = UPDATE(a:E)

In a given task, the thread alternates between sending the de-
scriptors for the aggregation of ⌫ vertices to the DMA engine,
and updating ⌫ vertices. This is done in a pipeline with ping-pong
bu�ers of descriptors. The ping-pong bu�ers in thread C ,DC , consist
of two batches of ⌫ descriptors per batch. In one 9-loop iteration
(Lines 4-14), the core �rst builds one batch of ⌫ descriptors and
issues them to the DMA engine for aggregation (Lines 5-7). The
core then waits for the DMA engine to �nish the aggregations from
a previous 9-loop iteration with the other batch of ⌫ descriptors
(Lines 9-10), and subsequently executes the update with the outputs

ISCA ’22, June 18–22, 2022, New York, NY, USA Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas

from those aggregations (Lines 11-13). In the next 9-loop iteration,
the roles of the two descriptor batches switch.

To pipeline the operation, each thread keeps track of two ping-
pong states: QC andQ0

C . The descriptors indexed byQC are used
by the DMA-aggregation, and the ones indexed byQ0

C are used by
the core update. The states of QC and Q0

C can be either 0 or 1, but
Q0

C is initialized to an invalid value (-1). This is to let the algorithm
identify the �rst 9-loop iteration in the �rst task assigned to the
thread. If this is the case (Line 8), the algorithm skips the update
phase since there is no aggregation prior to it on this thread. In
addition, after all tasks �nish, each thread performs the trailing
update (Lines 15-20).

To perform the update, a thread needs to know the indices of
the vertices processed in the previous batch of DMA-aggregations
issued by the same thread. However, such indices cannot always be
statically inferred since tasks are dynamically assigned to threads.
Therefore, each thread bookkeeps in RC the o�set of the vertex
block (8 + 9) processed in the aggregation in the current step, to be
used as the o�set of the vertex block to update in the next step.

6 EXPERIMENTAL SETUP
To evaluate Graphite, we implement the aggregation kernels that
incorporates our optimizations with the xbyak JIT assembler [43].
For the update phase, we use GEMM libraries. Speci�cally, we use
Intel MKL for the implementation without layer fusion. With layer
fusion, we use libxsmm [22], which is optimized for small matrix
multiplications.

Our baseline uses the state-of-the-art DistGNN [36] for the ag-
gregation and MKL’s GEMM for the update. DistGNN has recently
been incorporated into DGL. We refer to this baseline as DistGNN.
Because the aggregation can be computed with sparse-dense matrix
multiplication (SpMM), we also compare with an approach that
uses MKL’s SpMM for the aggregation and MKL’s GEMM for the
update. We call this approach MKL.

The software evaluation platform is a 28-core Intel Cascade Lake
CPU with AVX-512 vector extensions. Each core has a 32KB L1
data cache, a 1MB L2 cache, and a 1.375MB slice of a non-inclusive
shared L3 cache. The core frequency is �xed at 2.7GHz. The DRAM
bandwidth is 140.8GB/s. We disable simultaneous multithreading
(SMT) and run 28 threads.

We simulate the baseline hardware and the enhanced DMA en-
gine with the Sniper multi-core simulator [8]. The con�guration
of the simulated machine matches the one used in the software
evaluation. On average, the simulated execution time deviates from
the native execution time by less than 10%.

We con�gure the DMA engine per core to have a 2KB output
bu�er, a 2KB input bu�er, a 128B factor bu�er, a 128B index bu�er, a
32-entry memory request tracking table, and a 32-entry descriptor
queue. The DMA engine’s storage is 4.5KB. According to Cacti [3] at
22nm, this storage uses 0.051<<2 and consumes 2.8<, of leakage
power. The dynamic energy of a read/write access to the 2KB input
or output bu�ers is 0.011=� .

We evaluate Graphite with the full-batch, non-sampled training
and inference of the GNN layers from GCN and GraphSAGE. The
software evaluation includes 4 medium to large input graphs. Ta-
ble 3 lists the details of the graphs, including the number of vertices,

number of edges, input feature size (�8=?DC), as well as the average
(⇡E), max (<0G (⇡E)), and variance (f2 (⇡E)) of the vertex degrees.
The hardware evaluation is limited to products and wikipedia due
to very long simulation times.

Table 3: List of dataset con�gurations.

Graph |V | |E | ⇡E <0G (⇡E) f2 (⇡E) �8=?DC

products [23] 2.45M 124M 50.5 17.5K 9.20K 100
wikipedia [9] 3.57M 45.0M 12.6 7.06K 1.09K 128
papers [23] 111M 1.62B 14.5 26.7K 927 256
twitter [4] 61.6M 1.47B 23.8 3.00M 3.96M 256

All graphs except products are directed. For products, the number
of edges in the table is twice of its undirected edges. products and
papers have a prede�ned�8=?DC . wikipedia and twitter only provide
their graph structures but not features, so we synthetically set
their �8=?DC to 256. For all datasets, we use a hidden feature size of
256. We populate the input features with synthetic values. When
evaluating the feature compression technique, we randomly set the
features to zeros with prede�ned rates.

7 EVALUATION
7.1 Overall Performance
7.1.1 So�ware Techniques. We �rst present the performance of
our software optimizations. Figure 11 shows the speedup of our
implementations andMKL over the DistGNN baseline for inference
and training. The variations of our implementations are: (i) our al-
gorithm from Section 4.1 for aggregation and the MKL’s GEMM for
update (basic), (ii) the layer-fused implementation from Section 4.2
(fusion), (iii) basic plus feature compression from Section 4.3 (com-
pression), and (iv) the combination of both fusion and compression
(combined). For training only, we use combined plus the locality
optimization from Section 4.4 (combined+locality or c-locality).

compression, combined, and c-locality incorporate feature com-
pression. Figure 11 shows their performance when operating on
50% sparse features. This is conservative since, as discussed in
Section 2.2, realistic sparsity is often over 80%. Therefore, feature
compression may improve the performance more than reported.

Our implementations outperform the baseline signi�cantly. Fig-
ure 11a shows the speedup in inference. Performance is determined
primarily by memory behavior, which is the same for the two GNNs,
so we see similar performance on them.MKL is slightly slower than
the baseline. basic already outperforms the baseline on all datasets.
The other variations of our implementation are faster than basic on
all datasets. wikipedia bene�ts more from layer fusion than from
feature compression, while the other datasets bene�t more from
feature compression than from layer fusion.Wewill explain reasons
behind the di�erence in Section 7.2.2. combined always performs
the best. Compared with the baseline of GCN and GraphSAGE,
combined is 1.72-1.90x and 1.74-1.94x faster, respectively.

Figure 11b presents the speedup in training. The execution time
of each implementation includes both forward and backward prop-
agation. Forward propagation is similar to inference, except that
when layer fusion is applied, we do not reduce the footprint of a:

Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative So�ware-Hardware Techniques ISCA ’22, June 18–22, 2022, New York, NY, USA

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
98

0.
95

0.
98

0.
89 0.
98

0.
95

0.
99

0.
881.
02 1.
11

1.
07

1.
03

1.
05 1.
13

1.
08

1.
061.
18 1.

56

1.
38

1.
25

1.
20 1.

61

1.
41

1.
271.
48

1.
37 1.
45

1.
43 1.
52

1.
40 1.
49

1.
461.
72 1.
85

1.
90

1.
72

1.
74 1.
88

1.
94

1.
75

0.0x

1.0x

2.0x

3.0x

4.0x

products wikipedia papers twitter products wikipedia papers twitter

GCN GraphSAGE

Sp
ee

du
p

* @ 50% feature sparsityDistGNN MKL basic fusion compression* combined*

(a) Inference.

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
98

0.
96

0.
98

0.
89 0.
98

0.
95

0.
99

0.
891.
02 1.
10

1.
06

1.
03

1.
03 1.
11

1.
09

1.
04

1.
11 1.
25

1.
19

1.
12

1.
13 1.
27

1.
22

1.
151.

46

1.
31 1.
40

1.
39 1.
48

1.
34 1.
44

1.
421.
58

1.
50

1.
56

1.
50 1.
62

1.
54

1.
60

1.
53

2.
57

1.
80

1.
83

1.
60

2.
64

1.
83

1.
87

1.
63

0.0x

1.0x

2.0x

3.0x

4.0x

products wikipedia papers twitter products wikipedia papers twitter

GCN GraphSAGE

Sp
ee

du
p

* @ 50% feature sparsityDistGNN MKL basic fusion compression* combined* combined+locality*

(b) Training.

Figure 11: Speedup of MKL and our implementations with di�erent software techniques over DistGNN.

1.
00

1.
00

1.
00

1.
001.
25 1.
36

1.
26 1.
361.
63 1.
97

1.
63 1.
98

0.0x
1.0x
2.0x
3.0x
4.0x

products wikipedia products wikipedia

GCN GraphSAGE

Sp
ee

du
p

DistDNN fusion fusion+DMA

(a) Inference.

1.
00

1.
00

1.
00

1.
001.
22

1.
25

1.
23

1.
241.
55 1.
70

1.
55 1.
692.

38

1.
40 2.

39

1.
39

3.
11

1.
89

3.
14

1.
90

0.0x
1.0x
2.0x
3.0x
4.0x

products wikipedia products wikipedia

GCN GraphSAGE

Sp
ee

du
p

DistGNN fusion fusion+DMA fusion+locality fusion+DMA+locality

(b) Training.

Figure 12: Simulated speedup of di�erent software techniques and the DMA support over DistGNN.

as discussed in Section 4.2. Backward propagation computes the
gradients of h:�1, a: , W: , and b: . It has one more GEMM than
the forward propagation. In training, MKL is again slightly slower
than the baseline. basic outperforms the baseline on all datasets.
Layer fusion is less e�ective in training than in inference because
in training, it does not shrink the memory footprint of the aggre-
gation feature vectors, and therefore is less e�ective at reducing
memory tra�c. Nevertheless, both fusion and compression perform
better than basic in all cases. By combining layer fusion and fea-
ture compression, combined outperforms the baseline in GCN and
GraphSAGE training by 1.50x-1.58x and 1.53x-1.62x, respectively.
Finally, with the locality optimization, c-locality outperforms the
baseline by a substantial 1.60x-2.57x and 1.63x-2.64x.

7.1.2 DMAEngine. Nowwe present the additional impact of adding
the DMA engine. Figure 12a shows the simulated speedups of fu-
sion and fusion+DMA over DistGNN for inference. fusion+DMA
(which we call DMA) is the DMA-assisted fusion from Section 5.3.

For training, Figure 12b also shows fusion+locality (f-locality) and
fusion+DMA+locality (which we call DMA-locality), which include
the locality optimization.

Figure 12a shows that, in inference, DMA outperforms the base-
line by 1.63-1.97x and 1.63-1.98x on GCN and GraphSAGE, respec-
tively. In addition, DMA is 1.31-1.45x faster than the software-only
fusion. Figure 12b shows that, in training, DMA outperforms the
baseline by 1.55-1.70x and 1.55-1.69x on GCN and GraphSAGE,
respectively. With the locality optimization, DMA-locality outper-
forms the baseline by a substantial 1.89-3.11x and 1.90-3.14x. Further,
it is 1.31-1.36x faster than f-locality.

Since the performance of GCN and GraphSAGE are similar, we
focus on GCN in the rest of the evaluation for simplicity.

7.2 Evaluation of the Software Techniques
7.2.1 Memory Performance Characterization. GNN workloads are
often memory bound. We achieve speedup mainly by improving

ISCA ’22, June 18–22, 2022, New York, NY, USA Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas

Table 4: Performance characterization of GCN training. combined and c-locality are pro�led with 50% feature sparsity.

Input Graph Implementation Pipeline Slots On Cycles Bound By Cycles When
Retiring Memory Bound L2 L3 DRAM Bandwidth DRAM Latency L1 Fill Bu�er Full

products
DistGNN 9.8% 75.2% 1.5% 2.4% 78.8% 5.3% 100%
MKL 11.2% 71.8% 0.0% 0.5% 74.4% 5.2% 100%

combined 18.8% 58.1% 0.8% 1.9% 62.8% 13.4% 100%
c-locality 28.7% 39.3% 2.7% 4.7% 40.8% 19.1% 31.3%

wikipedia
DistGNN 23.2% 49.0% 2.4% 3.5% 47.9% 8.5% 100%
MKL 23.1% 47.7% 0.1% 1.2% 45.4% 10.0% 100%

combined 33.9% 30.6% 1.5% 2.9% 29.8% 12.6% 42.7%
c-locality 34.1% 30.3% 1.5% 1.9% 28.3% 9.6% 39.1%

papers
DistGNN 13.5% 75.7% 1.5% 3.5% 77.1% 7.2% 100%
MKL 13.4% 76.7% 0.0% 0.8% 77.1% 7.0% 100%

combined 24.5% 58.9% 1.0% 1.8% 60.6% 13.1% 100%
c-locality 28.9% 52.0% 1.3% 3.2% 53.4% 15.3% 93.6%

twitter
DistGNN 12.4% 77.2% 2.4% 3.9% 79.1% 7.5% 100%
MKL 12.3% 78.8% 0.0% 0.9% 79.2% 8.5% 100%

combined 19.2% 64.3% 1.1% 2.7% 67.3% 16.7% 100%
c-locality 22.6% 60.1% 1.4% 3.4% 62.4% 14.9% 100%

memory performance. Table 4 quantitatively demonstrates the
memory performance enhancement from our techniques. The table
lists key metrics collected with the Intel VTune Pro�ler that con-
tribute to the performance di�erence among the DistGNN baseline,
MKL, combined, and c-locality, in GCN training. The characteristics
in inference are similar.

The table shows Retiring andMemory Bound pipeline slots. Retir-
ing is the fraction of pipeline slots utilized by useful work. Increas-
ing it results in higher instructions-per-cycle (IPC). Memory Bound
is the fraction of pipeline slots stalled due to incomplete memory
requests. For our workloads, this is primarily from stalls on loads
that miss in cache. In the table, L2, L3, DRAM Bandwidth, and DRAM
Latency are the fraction of cycles where execution is impacted by
L1 miss/L2 hit, L2 miss/L3 hit, DRAM bandwidth limit, and DRAM
latency, respectively. L1 Fill Bu�er Full is an estimate of how often
the L1D �ll bu�ers (i.e., the miss status holding registers or MSHR)
are fully occupied. This scenario prevents additional L1D-missing
requests from being issued. A high value is a symptom that the
core is starved for data from memory.

DistGNN and MKL exhibit similar traits. They are heavily mem-
ory bound on products, papers, and twitter, spending only 9.8-13.5%
of the pipeline slots doing useful work, and over 70% of the pipeline
slots memory bound. They su�er mainly from the DRAM band-
width limit. The executions are DRAM bandwidth bound in over
75% of the cycles. Onwikipedia, the stress on thememory subsystem
is lessened. Still, L1 �ll bu�ers are always full on all datasets.

combined incorporates both layer-fusion and feature compres-
sion. It is much less memory bound than DistGNN and MKL on all
datasets. The fraction of memory bound pipeline slots is reduced
to 30.6-64.3%, and the fraction of useful pipeline slots increases to
18.8-33.9%. Overall, combined is less DRAM bandwidth bound than
DistGNN and MKL but more DRAM latency bound than them.

c-locality further optimizes the memory performance. It lowers
the fraction of memory bound pipeline slots to 30.3-60.1% and raises
the fraction of retiring pipeline slots to 22.6-34.1%. Compared with
combined, generally more data reuse is captured in the cache, and
fewer cycles are stalled by DRAM bandwidth.

As discussed in Sections 4.1 and 4.2, we use software prefetches
to exploit the spare L1D �ll bu�er entries. In general, this approach
can leverage all the �ll bu�ers on the large scale graphs (papers
and twitter). However, the �ll bu�ers are still underutilized on the
medium scale graphs (products and wikipedia), where the mem-
ory access characteristics are signi�cantly improved such that our
software prefetches do not saturate DRAM bandwidth. Although c-
locality has already achieved impressive performance, free �ll bu�er
entries suggest that adding more aggressive software prefetches
may yield additional speedup.

In summary, our techniques are e�ective and signi�cantly im-
prove the memory performance of GNN workloads.

7.2.2 Layer Fusion. We now investigate the e�ectiveness of layer
fusion. Figure 13 compares basic, fusion in inference, and fusion in
forward training on GCN’s hidden layers. Hidden layers have the
same input and output feature vector length, which is important
for this evaluation. The execution time in the �gure is normalized
to basic. The execution time of basic is separated into aggregation
and update times.

0.93 0.69 0.81 0.84

0.07 0.31 0.19 0.16

0.87

0.92

0.71

0.86
0.78

0.88

0.83

0.91

0.0

0.5

1.0

 products wikipedia papers twitter

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

aggregation time update time fused time

Figure 13: Execution time breakdown of basic and fusion in
inference and forward training on GCN’s hidden layers.

Layer fusion provides more bene�t when a larger fraction of
basic’s execution time is spent on update because there is more
time to overlap with the aggregation. Since update is 31% of basic’s

Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative So�ware-Hardware Techniques ISCA ’22, June 18–22, 2022, New York, NY, USA

execution time on wikipedia, fusion is able to reduce the execution
time by 29% in inference. In contrast, basic on products only spends
7% of the time on update, so fusion merely reduces the execution
time by 13% in inference.

The amount of DRAM tra�c for fusion in inference and basic’s
aggregation is similar — they have the same input and output sizes
in our evaluation, and although fusion accesses additional data for
update, those data are expected to be cache-resident. This gives us
the opportunity to assess the e�ectiveness of the compute-memory
overlap by comparing the execution time of fusion in inference with
basic’s aggregation. We see that on all datasets, fusion in inference
takes similar time as basic’s aggregation. This implies that for fusion,
the compute in update is practically fully hidden.

The di�erence between fusion in inference and fusion in forward
training is that the latter keeps a: . The performance di�erence
between the two is from the tra�c of writing to a: .

7.2.3 Feature Compression. We perform a sensitivity study on the
performance of feature compression with di�erent levels of feature
sparsity. Figure 14 shows the speedup from compression over basic
in GCN at feature sparsities ranging from 10% to 90%.

0.
88

0.
91

0.
93

0.
871.
16

1.
06 1.
16

1.
141.
45

1.
19 1.
38

1.
381.

78

1.
27 1.

61

1.
61

2.
95

1.
63 2.

29 2.
40

0.0x
1.0x
2.0x
3.0x
4.0x

products wikipedia papers twitter

Sp
ee

du
p

10% sparse 30% 50% 70% 90%

(a) Inference.

0.
90

0.
94

0.
95

0.
901.
16

1.
08

1.
14

1.
141.
43

1.
20 1.
31

1.
341.

74

1.
31 1.
51

1.
56

2.
74

1.
58 2.

00 2.
16

0.0x
1.0x
2.0x
3.0x
4.0x

products wikipedia papers twitter

Sp
ee

du
p

10% sparse 30% 50% 70% 90%

(b) Training.

Figure 14: Speedup from compression over basic at di�erent
feature sparsity levels in GCN.

At 10% sparsity, compression is slower than basic, but at 30%
sparsity, it surpasses basic. At 90% sparsity, which does appear in
training, compression is 1.63x-2.95x and 1.58x-2.74x faster than basic
in inference and training, respectively. Thus, feature compression
can be a major source of speedup.

7.2.4 Locality Of Input Graphs. Our temporal locality optimiza-
tion speeds up the computation on products much more than on
other datasets (Figure 11b). This phenomenon has two possible
explanations. First, the average degree of products is 50.5, which is
much higher than the average degrees of the other datasets, which
range from 12.6 to 23.8. A higher average degree typically implies a
higher chance for the vertices to share common neighbors. Because

our locality optimization relies on reusing the features of shared
neighbors, it performs better on products.

Second, some of the input graphs may already embed locality op-
timization from their sources. We design an experiment to test the
hypothesis. First, for each graph, we generate 5 di�erent random-
ized vertex processing orders. Randomizing the processing order
breaks any locality optimization if it exists. Then, we run combined
with each processing order. Finally, we take the average execution
time of the 5 runs and denote it as randomized. Figure 15 presents
the speedup from combined and c-locality over randomized.

1.
00

1.
00

1.
00

1.
00

1.
01 1.
06

1.
00 1.
131.

64

1.
27

1.
17

1.
21

0.0x

1.0x

2.0x

products wikipedia papers twitter

Sp
ee

du
p

randomized combined locality

Figure 15: The speedup from compression and c-locality over
randomized on GCN training.

randomized performs on par with combined on products and
paper, suggesting that the two graphs have not been optimized
for locality. On the other hand, combined outperforms randomized
on wikipedia and twitter. This means that the two graphs possess
better-than-average locality already, possibly from pre-processing.

We can view randomized as the performance on the graphs with
average locality. This experiment shows that our locality optimiza-
tion improves the locality in all datasets.

7.3 Evaluation of the DMA Engine
7.3.1 Private Cache Access Reduction. One motivation for o�oad-
ing the aggregation phase to the DMA engine is to reduce the
number of low-locality accesses to the private caches — since the
input data of the DMA operations bypasses the private caches. In
this section, we measure the number of private cache accesses with
and without the DMA use. We consider two scenarios: performing
only the aggregation or performing the fused aggregation-update.
The baseline in the aggregation-only case is basic’s aggregation
phase. The baseline in the fused aggregation-update case is fusion.

Table 5 lists the fraction of private cache accesses eliminated by
utilizing the DMA in the two scenarios. In aggregation only, on
both datasets, the DMA-aggregation reduces the L1 accesses by
over 97%. The core only accesses L1 for building the descriptors
or checking for completion. DMA-aggregation also reduces the
L2 accesses signi�cantly. The remaining L2 accesses are mainly
from the DMA writing the aggregation results. Without DMA, the
core issues many L2 accesses to gather the input features, whose
proportion in the total L2 accesses correlates with the average
degree of the graph. Because wikipedia has a lower average degree
than products, the L2 access reduction on wikipedia is lower.

The fused aggregation-update has additional private cache ac-
cesses from the update, even with the DMA operation. Conse-
quently, the overall reduction in the number of accesses is lower.
Nevertheless, the DMA-assisted implementation still signi�cantly
reduces the L1-D/L2 accesses on products. The amount reduced on

ISCA ’22, June 18–22, 2022, New York, NY, USA Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas

Table 5: Reduction in private cache accesses thanks to using
the DMA engine.

Graph Aggregation only Fused aggregation-update
L1-D L2 L1-D L2

products 98% 97% 43% 36%
wikipedia 97% 89% 19% 12%

wikipedia is lower. This again is due to this graph’s low average
degree: the average number of memory accesses in the aggregation
of a vertex is lower in wikipedia than in products, while the number
of accesses in the update of a vertex is the same in both datasets.
Therefore, the ratio between the accesses in the aggregation and in
the update is lower in wikipedia than in products.

7.3.2 Overall Memory System Performance. The use of the DMA
engine improves the memory system performance. Speci�cally,
we measure that the L2 miss rate decreases from 20.5% to 2.8%
in products and from 45.5% to 2.8% in wikipedia. Moreover, the
processor stall time due to waiting for thememory system decreases
from 58.1% to 42.8% in products and from 30.6% to 25.7% inwikipedia.
Note that the memory stall time with the DMA engine includes
the time cores spend waiting for the DMA-aggregation to �nish.
(Algorithm 5 Lines 9-10). Overall, the DMA engine is very bene�cial.

7.3.3 Memory Request Parallelism. The maximum number of in-
�ight memory requests is mainly determined by the size of the
Memory Request Tracking Table. We empirically choose the size to
maximize the memory/network bandwidth utilization. Figure 16
shows the execution time of the DMA-aggregation on wikipedia
with di�erent numbers of table entries, normalized to the execution
time with 8 entries. The �gure shows that the execution time de-
creases signi�cantly from 8 to 32 entries. After that, we get marginal
improvements. Hence, we use 32 entries.

1.00
0.72

0.49 0.46

0.0

0.5

1.0

8 16 32 64

N
or

m
al

ize
d

tim
e

Number of memory request tracking table entries

Figure 16: DMA-aggregation time on wikipedia with di�er-
ent numbers of Memory Request Tracking Table entries.

8 RELATEDWORKS
The alternating update and aggregation phases in GNN process-
ing are challenging to both DNN libraries and graph processing
frameworks [19, 50]. DNN libraries target regular computations,
like the update phase, but perform poorly on the aggregation phase.
Graph processing frameworks, on the other hand, manage irregular
memory accesses well but lack support for optimized heavy com-
pute operations in updates. Consequently, GNN-speci�c software
frameworks are emerging. Deep Graph Library (DGL) [49] and
PyTorch Geometric (PyG) [11] are two of the prevailing libraries
used by researchers. Other frameworks include NeuGraph [35] and

AliGraph [57]. Our single socket software optimizations can be
incorporated into the compute kernels in these frameworks.

Software algorithms have been proposed to optimize GNN ex-
ecutions on CPUs. FusedMM [38] fuses the sampled dense-dense
matrix multiplication (SDDMM) for computing edge messages with
the SpMM for computing vertex messages. Their SpMM part per-
forms comparably to MKL. DistGNN [36] is the state-of-the-art in
full-batch GNN training on CPU clusters. It also provides single
socket optimizations, which we use as our baseline. Dorylus [47]
and FlexGraph [48] also focus on distributed training on CPUs, but
they do not include single-socket optimizations.

Huang et al. [24] studies the performance gaps in existing GNN
frameworks and proposes various software optimizations on GPUs.
Their locality-aware task scheduling tackles the same issue as our
locality optimization does, albeit for GPUs. Furthermore, ROC [26],
%3 [13], and DGCL [7] focus on distributed training on GPUs.

The community has also explored custom hardware for GNNs.
HyGCN [54] uses separate engines for the aggregation and update
due to their di�erent behaviors. EnGN [33] treats a GNN as a con-
catenated matrix multiplication of features, adjacency matrices, and
weights. AWB-GCN[15] alleviates the load imbalance due to vertex
degree variations. GRIP [28] leverages the abstraction of GReTA
[27] to develop a general accelerator for any GNN variant.

SparseTrain [17] and SAVE [18] exploit feature sparsity in soft-
ware and hardware, respectively, to reduce the compute intensity
of DNNs on CPUs. They do not alleviate memory stress nor apply
to GNNs. ZCOMP [1] (de)compresses sparse features on CPUs by
introducing dedicated instructions.

G-DMA [5] uses scatter-gather DMAs to fetch data in traditional
graph workloads, which have di�erent characteristics than GNNs.
It uses the descriptor chain model. Our new descriptor design is
more e�cient for GNNs. In addition, our DMA engine is enhanced
with compute capability.

9 CONCLUSION
CPUs are viable platforms for GNNs because of their high availabil-
ity and high memory capacity. With potentially terabytes of mem-
ory, one can perform full-batch GNN computation on real-world
large graphs on CPUs, which is impractical on memory-limited
devices such as GPUs. However, GNN workloads on CPUs are often
highly memory bound, which limits their performance. We propose
Graphite: a software-hardware cooperative approach that optimizes
full-batch GNN training and inference on CPUs by tackling the
memory problem. In software, we fuse layers, compress features,
and improve temporal locality. In hardware, we augment the DMA
engine to support the aggregation operation. We evaluate Graphite
with GCN and GraphSAGE on large graphs. Graphite is e�ective.
Its software outperforms a state-of-the-art GNN implementation by
1.7-1.9x in inference and by 1.6-2.6x in training. Its combined soft-
ware and hardware speeds up the baseline by 1.6-2.0x in inference
and by 1.9-3.1x in training.

ACKNOWLEDGMENTS
This work was supported in part by a gift from Intel Corporation
and by NSF grants CCF 1725734, CNS 1909999, CNS 1942888, and
CCF 2028861.

Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative So�ware-Hardware Techniques ISCA ’22, June 18–22, 2022, New York, NY, USA

REFERENCES
[1] Berkin Akin, Zeshan A Chishti, and Alaa R Alameldeen. 2019. ZCOMP: Reducing

DNN Cross-Layer Memory Footprint Using Vector Extensions. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM,
126–138.

[2] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan
Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich
Elsen, Jesse Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni Hannun,
Billy Jun, Patrick LeGresley, Libby Lin, Sharan Narang, Andrew Ng, Sherjil Ozair,
Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho
Sengupta, Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun
Zhan, and Zhenyao Zhu. 2015. Deep Speech 2: End-to-End Speech Recognition
in English and Mandarin. arXiv:1512.02595 [cs.CL]

[3] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Sha�ee,
and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration
in Innovative O�-Chip Memories. ACM Trans. Archit. Code Optim. 14, 2, Article
14 (June 2017), 25 pages. https://doi.org/10.1145/3085572

[4] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619 (2015).

[5] Andrew Bean, Nachiket Kapre, and Peter Cheung. 2015. G-DMA: improving
memory access performance for hardware accelerated sparse graph computa-
tion. In 2015 International Conference on ReConFigurable Computing and FPGAs
(ReConFig). 1–6. https://doi.org/10.1109/ReConFig.2015.7393317

[6] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
Label Propagation: AMultiResolution Coordinate-Free Ordering for Compressing
Social Networks. In Proceedings of the 20th international conference on World Wide
Web, Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra,
Elisa Bertino, and Ravi Kumar (Eds.). ACM Press, 587–596.

[7] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. 2021.
DGCL: An E�cient Communication Library for Distributed GNN Training. In
Proceedings of the Sixteenth European Conference on Computer Systems (Online
Event, United Kingdom) (EuroSys ’21). Association for Computing Machinery,
New York, NY, USA, 130–144. https://doi.org/10.1145/3447786.3456233

[8] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the Level of Abstraction for Scalable andAccurate ParallelMulti-Core Simulations.
In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). 52:1–52:12.

[9] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1–25.

[10] Jialin Dong, Da Zheng, Lin F Yang, and Geroge Karypis. 2021. Global Neigh-
bor Sampling for Mixed CPU-GPU Training on Giant Graphs. arXiv preprint
arXiv:2106.06150 (2021).

[11] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[12] Alex M Fout. 2017. Protein interface prediction using graph convolutional networks.
Ph. D. Dissertation. Colorado State University.

[13] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed Deep Graph
Learning at Scale. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). USENIX Association, 551–568. https://www.usenix.
org/conference/osdi21/presentation/gandhi

[14] Victor Garcia and Joan Bruna. 2017. Few-shot learning with graph neural net-
works. arXiv preprint arXiv:1711.04043 (2017).

[15] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei Li, Pouya
Haghi, Antonino Tumeo, Shuai Che, Steve Reinhardt, et al. 2020. AWB-GCN: A
graph convolutional network accelerator with runtime workload rebalancing.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 922–936.

[16] Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj Kalamkar,
Greg Henry, Hans Pabst, and Alexander Heinecke. 2018. Anatomy of High-
Performance Deep Learning Convolutions on SIMD Architectures. In SC18: In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 830–841.

[17] Zhangxiaowen Gong, Houxiang Ji, Christopher Fletcher, Christopher Hughes,
and Josep Torrellas. 2020. SparseTrain: Leveraging Dynamic Sparsity in Software
for Training DNNs on General-Purpose SIMD Processors. In Proceedings of the
29th International Conference on Parallel Architectures and Compilation Techniques
(PACT).

[18] Zhangxiaowen Gong, Houxiang Ji, Christopher W. Fletcher, Christopher J.
Hughes, Sara Baghsorkhi, and Josep Torrellas. 2020. SAVE: Sparsity-Aware
Vector Engine for Accelerating DNN Training and Inference on CPUs. In Proceed-
ings of the 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO).

[19] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. 2016. Graphicionado: A high-performance and energy-e�cient accel-
erator for graph analytics. In 2016 49th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO). IEEE, 1–13.
[20] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. 2017.

Knowledge transfer for out-of-knowledge-base entities: A graph neural network
approach. arXiv preprint arXiv:1706.05674 (2017).

[21] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025–1035.

[22] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. 2016.
LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Genera-
tion. In SC ’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 981–991. https://doi.org/10.1109/
SC.2016.83

[23] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020).

[24] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng Shen. 2021.
Understanding and Bridging the Gaps in Current GNN Performance Optimiza-
tions. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 119–132.

[25] Intel. 2019. Intel Data Streaming Accelerator Architecture Speci�cation.
[26] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving

the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc.
Proceedings of Machine Learning and Systems 2 (2020), 187–198.

[27] Kevin Kiningham, Philip Levis, and Christopher Ré. 2020. GReTA: Hardware Op-
timized Graph Processing for GNNs. In Proceedings of the Workshop on Resource-
Constrained Machine Learning (ReCoML 2020).

[28] Kevin Kiningham, Christopher Re, and Philip Levis. 2020. GRIP: A Graph Neural
Network Accelerator Architecture. arXiv preprint arXiv:2007.13828 (2020).

[29] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classi�cation with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[30] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. 2012. Imagenet Clas-
si�cation with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems (NIPS).

[31] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. DeepGCNs:
Can GCNs Go as Deep as CNNs?. In Proceedings of the IEEE/CVF international
conference on computer vision. 9267–9276.

[32] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. 2020. DeeperGCN:
All You Need to Train Deeper GCNs. arXiv preprint arXiv:2006.07739 (2020).

[33] Shengwen Liang, Ying Wang, Cheng Liu, Lei He, LI Huawei, Dawen Xu, and
Xiaowei Li. 2020. EnGN: A High-Throughput and Energy-E�cient Accelerator
for Large Graph Neural Networks. IEEE Trans. Comput. (2020).

[34] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards Deeper Graph Neural
Networks. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining. 338–348.

[35] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and
Yafei Dai. 2019. NeuGraph: Parallel Deep Neural Network Computation on Large
Graphs. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 443–458.

[36] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evange-
los Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nesreen K Ahmed, and
Sasikanth Avancha. 2021. DistGNN: Scalable Distributed Training for Large-Scale
Graph Neural Networks. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–14.

[37] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. arXiv
preprint arXiv:1511.06434 (2015).

[38] Md Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad. 2021. FusedMM:
A Uni�ed SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Net-
works. In 2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 256–266.

[39] Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Anand Sivasubramaniam,
and Mahmut Kandemir. 2020. GCN Meets GPU: Decoupling “When to Sample”
from “How to Sample”. Advances in Neural Information Processing Systems 33
(2020), 18482–18492.

[40] Andres Rodriguez, Wei Li, Jason Dai, Frank Zhang, Jiong Gong,
and Chong Yu. 2017. Intel Processors for Deep Learning Training.
https://software.intel.com/content/www/us/en/develop/articles/intel-
processors-for-deep-learning-training.html

[41] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel,
Martin Riedmiller, Raia Hadsell, and Peter Battaglia. 2018. Graph Networks as
Learnable Physics Engines for Inference and Control. In International Conference
on Machine Learning. PMLR, 4470–4479.

[42] Lattice Semiconductor. 2015. Scatter-Gather Direct Memory Access Controller
IP Core User Guide.

[43] Mitsunari Shigeo. 2021. Xbyak: JIT assembler for x86(IA32), x64(AMD64, x86-64)
by C++. https://github.com/herumi/xbyak.

https://arxiv.org/abs/1512.02595
https://doi.org/10.1145/3085572
https://doi.org/10.1109/ReConFig.2015.7393317
https://doi.org/10.1145/3447786.3456233
https://www.usenix.org/conference/osdi21/presentation/gandhi
https://www.usenix.org/conference/osdi21/presentation/gandhi
https://doi.org/10.1109/SC.2016.83
https://doi.org/10.1109/SC.2016.83
https://software.intel.com/content/www/us/en/develop/articles/intel-processors-for-deep-learning-training.html
https://software.intel.com/content/www/us/en/develop/articles/intel-processors-for-deep-learning-training.html
https://github.com/herumi/xbyak

ISCA ’22, June 18–22, 2022, New York, NY, USA Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas

[44] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the Game of Go with
Deep Neural Networks and Tree Search. Nature 529, 7587 (Jan 2016), 484–489.
https://doi.org/10.1038/nature16961

[45] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Over�tting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[46] Dean Takahashi. 2018. Gadi Singer interview - How Intel designs processors
in the AI era. https://venturebeat.com/2018/09/09/gadi-singer-interview-how-
intel-designs-processors-in-the-ai-era/

[47] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, JinliangWei, Keval Vora, Ravi Netravali, Miryung Kim, and GuoqingHarry Xu.
2021. Dorylus: A�ordable, Scalable, and Accurate GNN Training with Distributed
CPU Servers and Serverless Threads. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association, 495–514.
https://www.usenix.org/conference/osdi21/presentation/thorpe

[48] LeiWang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen,Wenyuan Yu, Zihang
Yao, and Jingren Zhou. 2021. FlexGraph: A Flexible and E�cient Distributed
Framework for GNN Training. In Proceedings of the Sixteenth European Conference
on Computer Systems (Online Event, United Kingdom) (EuroSys ’21). Association
for Computing Machinery, New York, NY, USA, 67–82. https://doi.org/10.1145/
3447786.3456229

[49] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315

(2019).
[50] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Ri�el, and

John D Owens. 2016. Gunrock: A high-performance graph processing library on
the GPU. In Proceedings of the 21st ACM SIGPLAN symposium on principles and
practice of parallel programming. 1–12.

[51] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[52] Xilinx. 2019. AXI DMA v7.1 LogiCORE IP Product Guide.
[53] Koichi Yamada, Wei Li, and Pradeep Dubey. 2020. Intel’s MLPerf Re-

sults Show Robust CPU-Based Training Performance For a Range of Work-
loads. https://www.intel.com/content/www/us/en/arti�cial-intelligence/posts/
intels-mlperf-results.html

[54] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin
Zhang, Dongrui Fan, and Yuan Xie. 2020. HyGCN: A GCN Accelerator with
Hybrid Architecture. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 15–29. https://doi.org/10.1109/HPCA47549.2020.
00012

[55] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[56] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81.

[57] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,
and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network
Platform. arXiv preprint arXiv:1902.08730 (2019).

https://doi.org/10.1038/nature16961
https://venturebeat.com/2018/09/09/gadi-singer-interview-how-intel-designs-processors-in-the-ai-era/
https://venturebeat.com/2018/09/09/gadi-singer-interview-how-intel-designs-processors-in-the-ai-era/
https://www.usenix.org/conference/osdi21/presentation/thorpe
https://doi.org/10.1145/3447786.3456229
https://doi.org/10.1145/3447786.3456229
https://www.intel.com/content/www/us/en/artificial-intelligence/posts/intels-mlperf-results.html
https://www.intel.com/content/www/us/en/artificial-intelligence/posts/intels-mlperf-results.html
https://doi.org/10.1109/HPCA47549.2020.00012
https://doi.org/10.1109/HPCA47549.2020.00012

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Neural Networks (GNNs)
	2.2 Sparsity in GNNs
	2.3 Scatter-Gather DMA

	3 Motivation: GNNs on CPUs
	4 Software Optimization Techniques
	4.1 Parallel Vectorized Aggregation
	4.2 Layer Fusion
	4.3 Feature Compression
	4.4 Temporal Locality Improvement

	5 Hardware Assisted Aggregation
	5.1 The Aggregation Descriptor
	5.2 The Aggregation Operation
	5.3 Software Algorithm Running on the Processor Core

	6 Experimental Setup
	7 Evaluation
	7.1 Overall Performance
	7.2 Evaluation of the Software Techniques
	7.3 Evaluation of the DMA Engine

	8 Related Works
	9 Conclusion
	Acknowledgments
	References

