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ABSTRACT
Recent processors have been augmented with matrix-multiply units
that operate on small matrices, creating a functional unit-rich envi-
ronment. These units have been successfully employed on dense
matrix operations such as those found in the Basic Linear Algebra
Subprograms (BLAS). In this work, we exploit these new matrix-
multiply facilities to speed up Sparse Matrix Dense Matrix Multi-
plications (SpMM) for highly sparse matrices.

SpMM is hard to optimize. The sparsity patterns lead to a highly
irregular memory access behavior. Additionally, each sparse matrix
has unique characteristics, making it hard to �nd a single SpMM
strategy that works well for all sparse matrices. The addition of
matrix-multiply units makes this even more challenging.

In this paper, we address these challenges. First, we design Dense
Dynamic Blocks (DDB), a method to utilize the new matrix units.
DDB has two specialized versions: DDB-MM and DDB-HYB. DDB-
MM is a strategy that only utilizes the matrix-multiply facilities.
DDB-HYB is a hybrid approach that maximizes the �oating-point
throughput by utilizing both vector and matrix units. Further-
more, we design a prediction mechanism for identifying the best
SpMM strategy for a given sparse matrix and dense matrix pair:
SpMM-OPT. SpMM-OPT selects among vector unit oriented, matrix
unit oriented, and hybrid strategies for the highest �oating-point
throughput while taking cache optimizations into account.

We experiment with 440 matrices from the well-known SuiteS-
parse matrix collection on a POWER10 system with vector and
matrix units. We show that DDB-MM and DDB-HYB can achieve
a �oating-point throughput of up to 1.1 and 2.5 TFLOPs/s on a
POWER10 single-chip module for double- and single-precision
SpMM, respectively. Our analysis also shows that SpMM-OPT e�ec-
tively chooses the best SpMM strategy and can achieve an average
speedup of up to 2⇥ compared to an optimized CSR baseline.
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1 INTRODUCTION
Sparse Matrix Dense Matrix Multiplication (SpMM) is a fundamen-
tal building block for many complex applications such as linear
solvers [9, 10], graph analytics [40], recommender systems, and ma-
chine learning [21, 45]. Most of these applications are also iterative
in nature, executing SpMM many times with the same sparse input
matrix. As a result, SpMM often consumes most of an application’s
execution time, making it an important target to optimize.

Various state-of-the-art CPU and GPU systems are now featuring
matrix-multiply hardware facilities tailored for dense matrix opera-
tions. These specialized units can execute dense matrix-multiply
operations on small matrices (e.g., blocks of size 4⇥ 4). Examples of
these are NVIDIA’s Tensor Cores [2, 5], IBM’s POWER10 Matrix-
Multiply Assist (MMA) facilities [12, 41], and Intel’s AMX [6]. These
units are successfully utilized to maximize performance for dense
matrix operations [2, 5, 32].

However, many real-world matrices have sparsity. For example,
in the domain of neural network training and inference, up to 90%
of matrix entries can be zero due to activation function outputting
zero or weights becoming zero [34, 37]. Current work represents
these matrices as dense matrices and tries to skip unnecessary com-
putations involving elements that are zero or become zero during
the training phase [2, 18]. In contrast, in the domains of graph ana-
lytics and scienti�c computing, matrices are often extremely sparse.
As a result, they are represented in sparse formats and result in
very irregular computations. In this work, we focus on SpMM with
these extremely sparse matrices.

Previous work on speeding up SpMM for extremely sparse ma-
trices using matrix-multiply hardware facilities includes Blocked
CSR (BCSR) or its variations, used with GPU Tensor Cores [48, 54].
BCSR can create A ⇥ 2 dense blocks from consecutive rows and
columns of the sparse input matrix. However, such blocks are hard
to �nd in sparse matrices, and dense blocks that contain many zeros
cause under-utilization of the matrix-multiply units’ throughput.

Previous approaches were designed to improve the irregular
accesses in Sparse Matrix-Vector Multiplication (SpMV) [24, 26, 27,
43, 44] and, more recently, to utilize Tensor Units for SpMM on
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GPUs [48]. These techniques rely on �nding consecutive rows that
show a similar nonzero structure within a consecutive range of
columns. Finding such rows typically requires expensive mech-
anisms. Fortunately, SpMM is a more computationally-intensive
operation than SpMV. In SpMM, a single nonzero causes an access
to a whole row of the input dense matrix, instead of just a single
element from the dense vector in SpMV. Therefore, it is less cru-
cial to form dense blocks from consecutive columns. Furthermore,
although matrix-units have signi�cantly higher �oating-point oper-
ation throughput compared to vector units, the matrix-units can be
underutilized due to zero padding introduced by blocking, leading
to lower e�ective FLOPs/s. For this reason, we focus on e�cient
utilization of matrix-multiply units rather than improving locality.

We propose to use a more relaxed dynamic approach for block-
ing: Dense Dynamic Blocks (DDB). We extract ' ⇥ 1 blocks from
consecutive ' rows of the sparse matrix. These '⇥1 blocks are used
to create a dynamically sized dense block to execute on matrix units.
This approach, called DDB-MM, can still su�er from zero padding
and underutilize the �oating-point throughput of the processor. To
address this issue, we propose a novel approach in which computa-
tions in SpMM are synergistically executed on matrix units or on
traditional vector units to maximize the �oating-point throughput.
We call our scheme DDB Hybrid (DDB-HYB). DDB-HYB extracts
variable-sized dense blocks from the sparse input matrix. In DDB-
HYB, the matrix-multiply units process the blocks with a large
fraction of nonzero elements; the remaining, sparser blocks use
traditional vector units to maximize performance.

For many sparse matrices, the number of dense blocks extracted
will be minimal or the dense ' ⇥ 1 blocks will have many zeros in
them. Therefore, they will not bene�t from DDB-MM or DDB-HYB
signi�cantly. For this reason, we also propose a simple metric, Av-
erage Flop Throughput (AFT), to assess the e�cacy of DDB-HYB for
a given matrix before its application. AFT can classify the matri-
ces coarsely based on their potential to get bene�ts from matrix-
multiply units. This coarse-grain classi�cation can limit the search
space, but it does not always choose the best SpMM strategy.

For this reason, we develop SpMM-OPT. SpMM-OPT is a machine
learning approach with a carefully crafted feature set to select the
best SpMM strategy in a functional unit-rich environment. It can
choose between a vector unit oriented approach (CSR), a matrix
unit oriented approach (DDB-MM), and a hybrid approach (DDB-
HYB). It can also decide on cache optimizations by selecting an
appropriate slicing factor for the dense matrix of SpMM.

We validate the performance of DDB-MM and DDB-HYB on
a large selection of matrices from the SuiteSparse matrix collec-
tion. First, we establish an e�cient baseline with a CSR imple-
mentation. Then, we assess the speedup of DDB-MM and DDB-
HYB over this baseline. We observe that DDB-MM and DDB-HYB
can achieve a �oating-point throughput of up to 1.1 TFLOPs/s
for double-precision SpMM (corresponding to 40% of LINPACK’s
throughput) and 2.5 TFLOPs/s for single-precision SpMM, on a
single-chip POWER10 processor. Finally, we analyze the e�ective-
ness of SpMM-OPT to select e�cient SpMM strategies. Our analysis
shows that SpMM-OPT e�ectively chooses the best SpMM strategy
and can achieve an average speedup of up to 2⇥ compared to an
optimized CSR baseline.

2 BACKGROUND
In this paper, we use upper case letters for matrices (e.g., A and B).
A[8, 9] is the element in row 8 , column 9 of matrix A. To represent
a slice of a matrix, we use the A[0 : 1, G : ~] notation, which gives
elements of A in rows 0 to1 and columns G to~. A slice without any
boundaries gives all the elements in that dimension. For example,
A[:, :] represents all the elements in row : of matrix A.

An SpMM kernel multiplies a sparse"⇥) matrixAwith a dense
)⇥# matrixB, generating a dense"⇥# matrixC. A row 8 ofmatrix
C is updated with the computation C[8, :] =

Õ
9 A[8, 9] ⇥ B[ 9, :].

Since matrix A is sparse, a row of A (A[8, :]) has few nonzeros.
These sparse matrices require a compact representation.

This section describes the Compressed Sparse Row (CSR) rep-
resentation of sparse matrices and its SpMM implementation, and
discusses the Matrix-Multiply Assist (MMA) instructions of the
IBM POWER10, used for validating our ideas.

2.1 CSR Format and SpMM Implementation
Large sparse matrices require compact in-memory representation.
The compressed sparse row format (CSR) (or variants) is the most
popular choice for basic linear algebra, graph processing, and ma-
chine learning frameworks [1, 33, 40].

As shown in Figure 1, CSR uses three arrays to represent a sparse
matrix: vals, col_id, and row_ptr. The vals array stores all of
the nonzero elements in the matrix. The col_id array stores the
column index of each nonzero in the vals array. The row_ptr array
stores the starting position in the vals and col_id arrays of the
�rst nonzero element in each row of the sparse matrix. In this paper,
we use CSR as our baseline.

a b c d e f g j k

0 3 6 9 10

0 2 3 1 2 3 0 1 2

row_ptr
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g j k
l

l
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Figure 1: CSR format.

CSR is popular due to its ability to express sparse matrix com-
putations e�ectively. Algorithm 1 shows the implementation of
SpMM with CSR format.

Algorithm 1 Implementation of CSR SpMM (CSR-A).
1: for (i=0; i<M; i++) in parallel do
2: for (e=row_ptr[i]; e<row_ptr[i+1]; e++) unroll ( ) do
3: for (j=0; j<N; j++) unroll (% ) do
4: C[i][j] = C[i][j] + (vals[e] ⇥ B[col_id[e]][j])
5: end for
6: end for
7: end for

Algorithm 1 iterates over the rows of matrixA in parallel (Line 1).
For each row, it iterates over its nonzeros in Line 2. Finally, Line 3
iterates over the columns of the dense B matrix and updates the
values of the C matrix.

Although even a straightforward implementation can use the
vectorization facilities of current hardware, we can improve SpMM
performance by utilizing vector registers and vector units more
e�ectively through code transformations. Algorithm 1 shows two
loop unrolling opportunities: (1) unrolling the loop in Line 2 by a
factor of  , and (2) unrolling the loop in Line 3 by a factor of % .
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By unrolling the loop in Line 2, we can process multiple nonzeros
of matrix A at the same time. It allows us to keep values of C in
vector registers, decreasing the number of store operations for C.
On the other hand, by unrolling the loop in Line 3, we improve
the throughput of vector instructions by creating more parallelism
across columns of the B and C matrices. Algorithm 1, which we
name as CSR-A version, focuses on reusing the values of A. Another
approach would be to maximize the reuse forC. Algorithm 2, which
we name CSR-C, shows how register blocking can be achieved for
values of C. In CSR-C, % values of row 8 of C are kept in registers
while processing all nonzeros of row 8 of A. In the CSR-C version,
C is kept in vector registers by sacri�cing the reuse for A.

Algorithm 2 Implementation of CSR SpMMwith reuse forC (CSR-
C).
1: for (i=0; i<M; i++) in parallel do
2: for (p=0; p<N; p+=% ) do
3: for (e=row_ptr[i]; e<row_ptr[i+1]; e++) unroll ( ) do
4: for (j=p; j<p+% ; j++) unroll (% ) do
5: C[i][j] = C[i][j] + (vals[e] ⇥ B[col_id[e]][j])
6: end for
7: end for
8: end for
9: end for

2.2 POWER10 Matrix-Multiply Unit: MMA
Without loss of generality, we target hardware that is capable of
executing A[0 : ' � 1, 0 :  � 1] ⇥ B[0 :  � 1, 0 : % � 1] dense
matrix multiplication (or ' ⇥  ⇥ % , for short), either directly or
through primitives that can be combined to do so. Such hardware
provides two sets of primitives: (1) instructions tomove data to/from
accumulators used during the matrix multiply operation, and (2)
instructions that perform a matrix-multiply or a matrix-multiply
and accumulate operation.

Our testbed is a POWER10 system, where an ' ⇥  ⇥ % matrix-
multiplication can be implemented with MMA capabilities [32].
MMA provides 8 accumulators, each holding either a 4⇥4 or a 4⇥2
matrix of single- or double-precision elements, respectively. Among
other operations, MMA can perform outer-products of single- and
double-precision vectors, with the results added to an accumulator.
Table 1 shows a summary of the MMA instructions.

Table 1: Summary of relevant MMA instructions.
Instruction Description

xxmtacc(acc[k]) Moves values from vector registers to accumulator k
xxmfacc(acc[k]) Moves values from accumulator k to vector registers
xxsetaccz(acc[k]) Set values of accumulator k to zero

xvf32gerpp(x, y, acc[k]) Performs a 4x4 single-precision outer-product with
x[0:3] (vector register) and y[0:3] (vector register),
and accumulates the result on accumulator k

xvf64gerpp(x, y, acc[k]) Performs a 4x2 double-precision outer-product with
x[0:3] (vector register pair) and y[0:1] (vector regis-
ter), accumulating the result on accumulator k

The xxmtacc instruction moves data from four vector registers
to an accumulator, while xxmfacc does the opposite, and xxse-
taccz clears an accumulator. The single-precision xvf32gerpp in-
struction performs a 4 ⇥ 4 outer-product of two 4-element vectors
in registers G and ~ and adds the result to the current value in
an accumulator. The corresponding double-precision xvf64gerpp
instruction performs the outer-product of a 4-element vector in

register-pair G and a 2-element vector in register~, adding the result
to an accumulator.

A (double-precision) matrix multiply is performed as follows.
First, we initialize an accumulator by either transferring values
from vector registers to the accumulator (xxmtacc) or setting all
accumulator values to zero (xxsetaccz). Then, we perform outer
products and accumulate the values of a 4⇥2 dense matrix by using
xvf64gerpp instructions. Finally, we use xxmfacc to transfer the
values from the accumulator to vector registers, which will contain
the result of the matrix multiplication [12].

Thanks to their �ne-grained design,MMA instructions can imple-
ment small dense matrix multiplications with various sizes. As an
example, Figure 2 shows an implementation for a double-precision
4 ⇥ 4 ⇥ 4 matrix-multiplication. Note that we are using two accu-
mulators: acc[0] and acc[1].

acc0

+ ...

MM_4x4x4(A, B, C):
  xxsetaccz(acc[0]) 
  xxsetaccz(acc[1]) 
  xvf64gerpp(A[0:3,0],B[0,0:1], acc[0]) 
  xvf64gerpp(A[0:3,0],B[0,2:3], acc[1]) 
  xvf64gerpp(A[0:3,1],B[1,0:1], acc[0]) 
  xvf64gerpp(A[0:3,1],B[1,2:3], acc[1]) 
  xvf64gerpp(A[0:3,2],B[2,0:1], acc[0]) 
  xvf64gerpp(A[0:3,2],B[2,2:3], acc[1]) 
  xvf64gerpp(A[0:3,3],B[3,0:1], acc[0]) 
  xvf64gerpp(A[0:3,3],B[3,2:3], acc[1]) 

A

B

acc1

acc0 acc1

...+

Figure 2: A 4 ⇥ 4 ⇥ 4 matrix-multiplication of A ⇥ B, and its
double-precision code using two 4x2 accumulators. Matrix
A is stored in column-major order, matrix B in row-major
order, and the output in row-major order.

3 OPTIMIZING SPMM
In this section, we describe howwe can reformulate SpMM to utilize
both matrix and vector units and how our Dense Dynamic Blocks
approach can leverage the discrepancy in e�ective �oating-point
throughput of matrix and vector units to maximize performance.

Sparse matrices vary signi�cantly in terms of nonzero struc-
ture. While some matrices can greatly bene�t from utilizing matrix
units with dense ' ⇥ 1 blocks, for others performance can degrade.
Therefore, choosing a good SpMM strategy is crucial. In section 3.3,
we describe the optimization search space for SpMM in a func-
tional unit-rich processor. Furthermore, we develop SpMM-OPT, a
machine learning approach with a carefully crafted feature set to
select the best SpMM strategy in a functional unit-rich environment.
We describe SpMM-OPT in Section 3.4.

3.1 Reformulating SpMM for Matrix-Multiply
Units

A matrix-multiply unit is capable of executing an ' ⇥ ⇥ % matrix-
multiply operation, where typical dimensions of ',  , and % are
2–16. Furthermore, we expect that a unit can handle variable-sized
matrix-multiply operations. In the rest of this section, we use a unit
that provides 4 ⇥ 4 ⇥ 2 matrix-multiply operations and can also
handle 4 ⇥ 2 ⇥ 2, and 4 ⇥ 1 ⇥ 2.

We present two dynamic blocking approaches that we call DDB-
MM and DDB-HYB. As an example, consider Figure 3a. It shows an
8⇥8 sparse matrix (A) and two 8⇥2 dense matrices (B andC). Note
that B is shown transposed to emphasize the access patterns for B.
The rows of B and columns of A that will be accessed together are
shown with the same color.
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Figure 3: Performing an 8 ⇥ 8 ⇥ 2 SpMM with 4 ⇥ 1 blocks.

First, we consider the need for �nding blocks with consecutive
columns. DDB-MM relaxes this requirement by identifying ' ⇥ 1
blocks from ' consecutive rows of the sparse matrix. These ' ⇥ 1
blocks are then used to create a larger dense block (an ' ⇥ = dense
matrix from = ' ⇥ 1 blocks). Figure 3b shows this approach for
the �rst ' = 4 rows of the sparse matrix A. Such an approach can
utilize the high �oating-point throughput of matrix units. However,
DDB-MM can still have drawbacks. If not all ' ⇥ 1 blocks are dense
we will introduce zero padding, which results in underutilization
of the �oating-point throughput of the processor.

As an example, consider IBM POWER10. A POWER10 core has
two pipelined MMA units, each capable of executing 4 ⇥ 2 double-
precision outer-product instructions. Let us consider only the case
of double-precision. If all the column elements are nonzero, the
MMA units of a POWER10 core deliver an aggregate throughput of
32 e�ective FLOPs/cycle. For the POWER10 MMA, if the columns
have 1, 2, or 3 zero elements, the e�ective throughput falls to 24, 16,
and 8 FLOPs, respectively. However, a POWER10 core also has four
pipelined vector units, each capable of computing a 1 ⇥ 2 (double-
precision) outer-product for an aggregate throughput of 16 e�ective
FLOPs per cycle. Note that, in the vector units, there is no need to
process zeros introduced due to padding. Therefore, it only makes
sense to process columns with 2 or more nonzero elements in the
MMA, where we would obtain 16 or more e�ective FLOPs per cycle.
This suggests that we should process some columns of the sparse
matrix in the MMA units and some columns in the vector units. Our
hybrid approach (DDB-HYB) takes advantage of this throughput
discrepancy.

The aforementioned observations also hold for single precision
operations, where MMA units can execute 4 ⇥ 4 outer product
instructions and vector units can execute 1 ⇥ 4 outer product in-
structions.

Figure 3c shows how we can change the matrix-multiply se-
quence to improve throughput and reduce padding for the �rst
four rows of input matrix A. We separate the processing of high
and low-density columns. The columns with high density (yellow
and blue) use matrix-multiply units, while the remaining columns
use vector units. This approach reduces the number of super�uous
FLOPs, due to zero padding, signi�cantly. For example, the 4 ⇥ 1
blocking shown in Figure 3b would perform 80 FLOPs, while the
DDB-HYB approach would perform 44 FLOPs for the given 4-row
block. Note that the block only needs 40 FLOPs. Although DDB-
HYB separates a given row-block into a dense and sparse portion,
our method doesn’t execute distinct SpMM operations. Instead, for

a given row-block, the sparse portion is executed right after the
dense portion.

Note that DDB-HYB is an intermediate design point between
DDB-MM and CSR. If the column-blocks of a given row-block in a
sparse matrix are represented in compressed form, then DDB-HYB
turns into CSR format.

3.2 Dense Dynamic Blocks: DDB-MM and
DDB-HYB

OurDense Dynamic Blocks (DDB) technique is built on the previous
observations. DDB examines the structure of a sparse matrix and
�nds '⇥1 dense blocks, which we call dense column blocks. In DDB-
MM, each group of ' consecutive rows is represented solely as '⇥1
dense blocks, independent of the amount of padding necessary. In
DDB-HYB, we categorize these dense column blocks in terms of
their �oating-point throughput potential into high throughput (htp)
and low throughput (ltp). For the POWER10 MMA unit, column
blocks with 2 or more nonzeros are categorized as htp, while column
blocks with a single nonzero are ltp. DDB-HYB then splits the sparse
matrix into a blocked submatrix and a compressed submatrix. The
former is composed of htp dense column blocks, which can leverage
the MMA units; the latter is composed of the ltp dense column
blocks and is represented in a CSR-based format to utilize vector
units and maximize �oating-point throughput. Finally, DDB-HYB
forms large, multi-column dense blocks in the blocked submatrix
during execution, based on the capabilities of the matrix-multiply
units. Note that CSR is the base case for DDB in the absence of
a dense portion. In the rest of this section, we explain the matrix
format and SpMM implementation for only DDB-HYB. DDB-MM
can be obtained by ignoring the data structures and operations
required for the sparse portion of DDB-HYB.

3.2.1 DDB-HYB’s Matrix Format. Given an" ⇥) sparse matrix,
DDB-HYB creates ' ⇥ ) submatrices that contain ' consecutive
rows each. In each submatrix, it �nds the htp and ltp column blocks.
An htp column block is represented with a dense ' ⇥ 1 array. In
an htp column block, an element not present in the original sparse
matrix is represented as a zero (or the annihilator of SpMM). The
htp column blocks are then placed one next to the other. Since the
column numbers of these htp column blocks are non-contiguous, we
need to record the ids of the column blocks. Therefore, like in CSR,
we use an offset array of size d"/'e to point to the beginning of
the htp column blocks and column ids from each ' ⇥) submatrix.
This is the representation of the blocked submatrix obtained from
the original sparse matrix. As an example, the left-most part of
Figure 4 shows the corresponding representation obtained from
matrix A given in Figure 3a.

The ltp column blocks constitute the compressed submatrix ob-
tained from the original sparse matrix and are represented using
the CSR format. The rightmost part of Figure 4 shows the corre-
sponding representation obtained from matrix A.

3.2.2 SpMM with DDB-HYB. By using our technique, we can cast
an SpMM into a set of '⇥ ⇥% matrix multiplications. We propose
two algorithms with di�erent objectives: MMA-A (Algorithm 3)
and MMA-C (Algorithm 4). The former improves the reuse for
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Figure 4: Representing the matrix in Figure 3a with DDB-
HYB.

blocks of A; the latter minimizes stores to C and transfers between
accumulators and vector registers.

Algorithm 3MMA-A: DDB SpMM Improving Block Reuse.
1: procedure S�MM(�,⌫,⇠)
2: // A:" ⇥) sparse matrix
3: // B:) ⇥ # dense matrix, C:" ⇥ # dense matrix
4: for (r=0; r<M; r+=R) in parallel do
5: // Processing blocked portion for rows r to r+R
6: for (k=offset[r]; k<offset[r+1]; k+=K) do
7: cols = ids[k:k+K] // Array of column ids
8: aRxK = vals[k*R:(k+K)*R]
9: for (p=0; p<N; p+=P) do
10: cRxP = C[r:r+R, p:p+P]
11: // B matrix is sliced with column ids
12: bKxP = B[cols, p:p+P]
13: moveToAcc(cRxP) // Transfer to accumulator
14: MM_RxKxP(aRxK, bKxP, cRxP)
15: moveFromAcc(cRxP) // Transfer from accumulator
16: C[r:r+R, p:p+P] = cRxP
17: end for // remainder loop omitted
18: end for // remainder loop omitted
19: // Processing compressed portion for rows r to r+R with CSR
20: end for
21: end procedure

In both algorithms, we parallelize over row blocks (' ⇥) subma-
trices) of sparse matrix A. We �rst process the dense blocks of the
corresponding rows (Lines 6-18 for Algorithm 3 and Lines 6-18 for
Algorithm 4). Then, in both algorithms, we process the compressed
portion of the same set of rows using the CSR representation. Note
that both CSR-A (Algorithm 1) and CSR-C (Algorithm 2) can be
used for the compressed portion. This part is omitted for brevity.

Algorithm 4MMA-C: DDB SpMM Minimizing Transfers.
1: procedure S�MM(�,⌫,⇠)
2: // A:" ⇥) sparse matrix
3: // B:) ⇥ # dense matrix, C:" ⇥ # dense matrix
4: for (r=0; r<M; i+=R) in parallel do
5: // Processing blocked portion for rows r to r+R
6: for (p=0; p<N; p+=P) do
7: cRxP = C[r:r+R, p:p+P]
8: moveToAcc(cRxP) // Transfer to accumulator
9: for (k=offset[r]; k<offset[r+1]; k+=K) do
10: cols = ids[k:k+K] // Array of column ids
11: aRxK = vals[k*R:(k+K)*R]
12: // B matrix is sliced with column ids
13: bKxP = B[cols, p:p+P]
14: MM_RxKxP(aRxK, bKxP, cRxP)
15: end for // remainder loop omitted
16: moveFromAcc(cRxP) // Transfer from accumulator
17: C[r:r+R, p:p+P] = cRxP
18: end for // remainder loop omitted
19: // Processing compressed portion for rows r to r+R with CSR
20: end for
21: end procedure

In Algorithm 3, for each row block, we retrieve  dense column
blocks of ' rows of matrixA, forming an '⇥ dense block (Line 8).

We iterate over the columns of the dense matrices, loading the
corresponding dense block of C (Line 10) and dense dynamic block
of B (line 12). Since the column ids in matrix A are not consecutive,
loading the dense block from B is a specialized slicing operation.
The block of B is loaded using the column ids (cols). Next, we
move the values of C’s block to the accumulator and perform an
' ⇥  ⇥ % matrix-multiply. Finally, the values are transferred back
from the accumulator, and C is updated in memory.

Algorithm 4 is similar to Algorithm 3, except that it �rst iterates
over the columns of B and C. Therefore, it �rst loads the block of
C and transfers it to the accumulator (Lines 7- 8). Note that this
approach increases the number of loads for blocks of A (Line 11)
while minimizing the number of transfers to and from accumulators.

3.2.3 Choosing the Dimensions R, K, and P. The dimensions of the
matrix-multiply operation are determined by both the hardware
and the structure of the sparse matrix. ' is determined by the �rst
dimension of matrix-multiply operation. For instance, a POWER10
core has 4⇥2 (4⇥4) double-precision (single-precision) accumulators.
Therefore, we choose ' = 4 for our matrix-multiply kernel and for
the number of consecutive rows that we can use to extract dense
column blocks. We observe that ' = 4 matches both the hardware
parameters and is a good size to �nd dense column blocks in sparse
matrices, as also noted by previous work [44].
% is mainly driven by the hardware. A POWER10 core has 8

accumulators capable of holding 4 ⇥ 2 (4 ⇥ 4) matrices for double
(single) precision �oating-point numbers. Therefore, we can process
up to 16 (32) columns of C. That is, % = 16 for double- and % = 32
for single-precision.

Finally,  is similar to an unrolling factor. It is driven by two
considerations: (1) the capacity of the vector registers and (2) the
number of dense column blocks in the blocked portion of the R-row
sparse submatrix. Thanks to its dynamic nature, DDB-HYB can
handle matrices that have any number of dense column blocks in
individual R-row sparse submatrices.

3.3 SpMM Optimization Problem
CSR, DDB-HYB, and DDB-MM lie on a spectrum of optimizations.
For example, DDB-MM addresses the needs of matrices with highly
regular structures where consecutive rows have similar nonzero
structures. In contrast, CSR is neededwhenwe have highly irregular
nonzero distributions for consecutive rows of the matrix. And DDB-
HYB strikes a balance between CSR and DDB-MM, maximizing
�oating-point throughput while minimizing zero padding.

In addition to the e�ective utilization of functional units available
in the processor, we need to consider the reuse approach: CSR-A
vs. CSR-C for the compressed portion and MMA-A vs. MMA-C
for the blocked portion of the sparse matrices. With these reuse
approaches, the SpMM execution search space becomes even more
complex.

The SpMM performance is also a�ected by the cache behavior.
The nonzero structure of the sparse matrix and the scheduling of
rows and row-blocks to threads a�ect the cache behavior. For ex-
ample, if there are many common column ids among the rows or
row-blocks, we can observe temporal locality for the dense input
matrix. This locality is limited by the number of columns in the
dense input and output matrices due to L1 and L2 cache sizes. For
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Figure 5: SpMM optimization space.

instance, a sparse matrix may deliver high �oating-point through-
put when multiplied by a dense matrix with 32 columns. However,
throughput can signi�cantly decrease if the number of columns in
the dense matrix is increased to 64 due to limited cache capacity.
This is where cache slicing becomes e�ective. By slicing the input
(B) and output (C) dense matrices into blocks of columns, we can
reduce the memory footprint of the two dense matrices during
a single iteration and utilize caches more e�ectively. As a result,
we can do multiple passes over the sparse matrix with a higher
�oating-point throughput, maximizing the overall performance.

Figure 5 shows a summary of the optimization space for SpMM.
Next, we discuss the details of SpMM-OPT, which can navigate
this complex space to identify the best SpMM strategy for a given
hsparse matrix, dense matrixi pair.

3.4 SpMM-OPT: An ML Approach for Method
Selection

SpMM-OPT �nds an SpMM execution strategy for a given pair
hsparse matrix, dense matrixi. The strategy is de�ned by a tuple
hFU_St, Blocked_St, Compressed_St, SFi. FU_St is the strategy for
utilizing the functional units (either CSR, DDB-MM, or DDB-HYB).
Blocked_St is the reuse approach to process the blocked portion of
the sparse input matrix. It is only applicable for the DDB-MM and
DDB-HYB approaches, and it can have values in {MMA-A, MMA-C}.
Compressed_St is the reuse strategy for the compressed portion
and is used for the CSR and DDB-HYB approaches. The possible
values of Compressed_St are in {CSR-A, CSR-C}. SF is the slicing
factor, which is the number of columns in the blocks of the dense
matrices.

SpMM-OPTworks as follows. We detect the potential of matrices
by using the Average Floating Point Throughput (AFT) metric. AFT
categorizes each matrix into high AFT (HAFT) and low AFT (LAFT)
categories. HAFT matrices have a higher potential to bene�t from
the hybrid or matrix unit-oriented techniques DDB-HYB and DDB-
MM. In contrast, LAFT matrices prefer the CSR method.

SpMM-OPT trains separate machine learning models for HAFT
and LAFT matrices with di�erent numbers of columns in the dense
matrix. In this paper, we consider the number of columns in the
dense matrix to be equal to ⇡ 2 {16, 32, 64, 128, 256}, each cor-
responding to a power of two cache lines for double and single-
precision values. In total, SpMM-OPT trains 20 di�erent ML models
for double-precision (DP) and single-precision (SP) SpMM oper-
ations: {SP, DP} ⇥ {HAFT, LAFT} ⇥ {16, 32, 64, 128, 256}. Since SF 
⇡ , each model has a di�erent number of classes. For example, if
⇡ = 64 we can only have slice sizes SF 2 {16, 32, 64}. The given

hsparse matrix, dense matrixi pair is run through the correspond-
ing ML model, obtaining a hFU_St, Blocked_St, Compressed_St,
SFi tuple for an e�cient SpMM strategy. Each of these ML models
is a Support Vector Machine (SVM) for which we optimized the
parameters with a grid search.

3.4.1 Categorizing Sparse Matrices with AFT. Sparse matrices show
widely di�erent characteristics in terms of the distribution of nonze-
ros. The AFT metric estimates the potential FLOPs throughput of
the sparse matrix by considering the distribution of the number of
nonzeros in the dense column blocks.

To compute AFT, we �rst create a density histogram H with '
elements. H has ' elements because a single column block can have
from 1 to ' nonzeros. A single entry (�8 ) in the density histogram
gives the percentage of nonzeros that reside in column blocks with
density level 8 (i.e., with a number of nonzeros is equal to 8), where
1  8  '. Using the density histogram, we calculate the AFT as
��) =

Õ'
8=1 �8 ⇤ C8 , where C8 is the e�ective FLOP throughput that

we can achieve when a column block has 8 nonzeros. For example,
with POWER10 MMA units, we can have up to 4 elements in a
single column block (' = 4).

For double-precision �oating-point values, we use the MMA
units’ outer-product instructions for column blocks with 2-4 nonze-
ros in them, which can achieve an e�ective FLOP throughput of
C2 = 16, C3 = 24, and C4 = 32 FLOPs/cycle, respectively. On the
other hand, we use vector instructions for the column blocks with a
single element, with a throughput C1 = 16 FLOPs/cycle. For single-
precision, the throughput is doubled.

If the ��) is above a certain threshold, we classify matrices as
HAFT. Otherwise, we classify them as LAFT. We chose this thresh-
old experimentally to be 20 by performing a sensitivity analysis.

In addition to the � distribution, we also calculate the distri-
bution ) of dense column blocks with varying densities. In this
case, )8 gives us the fraction of dense column blocks with 8 nonze-
ros among all dense column blocks. )8 is calculated as follows:

)8 =
# dense column blocks with i nnzs

# of all dense column blocks
.

3.4.2 System Features. We categorize the features of theML system
into three categories: (1) size, (2) blocking, and (3) locality features.

(1) Size Features. These features model the size characteristics of
a given sparse matrix. We use the number of rows and the number
of nonzeros in the matrix.

(2) Blocking Features. These featuresmodel the blocking behavior.
As described in the AFT calculations (Section 3.4.1), we �rst �nd the
density of each 4⇥1 block of the matrix by considering 4-row blocks.
Each element of the � and ) distributions becomes a parameter in
the SpMM-OPT.

(3) Locality Features. We consider two sets of locality features:
uniq4- and uniq256- . To calculate uniq4- , we logically divide
the sparse matrix A into submatrices of 4 rows and - columns.
Then, we count the number of such submatrices of A that have
at least one nonzero, and divide the count by the total number of
nonzeros in A. This metric gives us a measure the locality of the
nonzeros: if uniq4- is close to 1, the memory accesses to the input
dense matrix B potentially have low locality. On the other hand, if
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uniq4- is close to 0, the memory accesses potentially have high
locality. uniq256- is computed similarly for submatrices of 256
rows and - columns. The uniq256- metric is used to estimate the
potential locality that comes from scheduling a chunk of rows to
a single thread. We experimentally choose 256 as our scheduling
parameter—i.e., 256 rows of the sparse matrix are scheduled to
the same thread together. In both uniq4- and uniq256- , we use
- = {1, 4, 8, 16, 32, 64} values to capture di�erent characteristics.

In addition to the uniq4- and uniq256- features, we also use,
as indicators of cache capacity utilization: the average number of
nonzeros per row in CSR, the average number of nonzeros per row
for the compressed portion of DDB-HYB, the average number of
column-blocks per row-block in DDB-MM, and the average number
of column-blocks per row-block in the dense portion of DDB-HYB.
Table 2 summarizes the features we use and their names.

Table 2: Summary of Features.
Feature Description
nrows, nvals Encode the size characteristics of the matrix
�8 The distribution of the nonzeros to dense column blocks
)8 Density distribution of dense column blocks
aveBlkedDDB-HYB Average number of column-blocks per row-block in the

dense portion of DDB-HYB
aveCompedDDB-HYB Average number of nonzeros per row in the compressed

portion of DDB-HYB
aveCSR Average number of nonzeros per row in CSR
aveDDB-MM Average number of column-blocks per row-block in DDB-

MM
uniq4- Unique access ratio due to blocking
uniq256- Unique access ratio due to scheduling

3.4.3 Normalization of features. Since we use SVMs as our ML
mechanism, we need to normalize the features to the [0, 1] range.
Four of our features are already ratios normalized to this range:
uniq4- , uniq256- , �8 , and )8 .

The aveBlkedDDB-HYB, aveCompedDDB-HYB, aveCSR, and aveDDB-MM
features can have signi�cantly di�erent values depending on the
structure of the matrix. For these variables, we apply one-hot en-
coding with small changes. First, we create a 9-bit one hot encoded
representation of these variables by considering the ranges: [0, 2),
[2, 4), [4, 8), [8, 16), [16, 32), [32, 64), [64, 128), [128, 256), [256, ). If
the value of the feature falls under one of these ranges, the corre-
sponding bit is set to 1. Additionally, for each of these nine ranges,
we create amagnitude variable whose value is the normalized value
of the metric in that particular range. For example, if the average
number of nonzeros in the CSR format is 6, then the 3A3 bit of the
9-bit variable will be set. Moreover, the magnitude variable of the
[4 � 8) range will have a value of 0.5. The number of rows and
number of nonzeros are normalized by considering the minimum
and maximum values observed in the training and test sets.

4 ESTABLISHING CSR BASELINE
We compare the performance of our DDB technique against a CSR
baseline on IBM’s POWER10 processor. We establish the quality of
that CSR baseline by comparing it against SpMM routines in the
well-known production library MKL [4] on an Intel Xeon Platinum
8268 platform [3]. We use the Intel Compiler v2020 for compilation
and MKL v2020. The corresponding math library for POWER10
(ESSL) does not have SpMM routines. That is why we use this
indirect approach to establish the quality of our baseline.

We emphasize that MKL and the Xeon 8268 are used solely to
establish the quality of our CSR implementation. That implemen-
tation is then tuned for POWER10 and used as the baseline in
experimental results for POWER10. Our results always compare
our method on POWER10 to that tuned CSR baseline on POWER10.

We test our CSR implementation with di�erent unrolling param-
eters —as described in Algorithms 1 and 2—and various numbers
of columns in the dense matrices. Details of datasets and unrolling
parameters are found in Section 5. Both MKL and CSR are tested
with 24 threads (a single socket). Each thread is bound to a physical
core using numactl, and memory is allocated in the local node. For
these experiments, we use 50 matrices including matrices used in
previous work [30].

Table 3 reports, for each precision and method, the average
execution time normalized to the fastest version for each matrix.
The best possible value is 1. For both double-precision (DP) and
single-precision (SP) SpMM, it can be shown that there is at least
one tuned implementation of CSR-A and CSR-C that is signi�cantly
faster than MKL.
Table 3: Average of normalized execution times for MKL
and CSR implementations for double- (DP), and single-
precision (SP) SpMM on an Intel processor. The values are
normalized to the fastest execution time observed for each
matrix. Lower is better.

Columns 16 32 64 128 256

DP
CSR-A 1.11 1.10 1.08 1.06 1.04
CSR-C 1.05 1.05 1.06 1.08 1.09
MKL 1.21 1.19 1.23 1.25 1.30

SP
CSR-A 1.17 1.13 1.11 1.08 1.08
CSR-C 1.07 1.06 1.07 1.07 1.11
MKL 1.24 1.21 1.18 1.24 1.27

5 EXPERIMENTAL SETUP
System Setup. Our POWER10 system has one single-chip module

(SCM) with 15 SMT8 cores, equivalent to 30 SMT4 cores [41]. Each
SMT4 core has 32 KB private L1 and 1MB private L2 caches. Also
associated with each SMT4 core there is a 4 MB local component
of the L3 cache (LLC). POWER10 supports PowerISA 3.1, which
includes Vector-Scalar Extensions (VSX) andMatrix-Multiply Assist
(MMA) facilities. The system memory is 485 GB. We used IBM
Advance Toolchain for Linux on Power Systems version 15.0.0-
alpha (GCC 11.0.0), which provides compiler built-ins for MMA and
VSX instructions. Details of our system are summarized in Table 4.

Table 4: POWER10 system setup.
System Component Properties

POWER10

CPU 30 SMT4 cores; 32 KB private L1, 1 MB private
L2, 4 MB local L3 per core

Memory 485 GB
ISA PowerISA 3.1, MMA, VSX
So�ware Advance Toolchain 15.0.0-alpha (GCC 11.0.0),

OS Kernel: 4.18.0-277.el8.ppc64le

Input Matrices. We test 440 matrices from the Sparse Suite [17]
matrix collection. We select the matrices used in previous work [30].
Additionally, we test matrices with 100 thousand to 10 million rows,
to make sure that matrices are large enough to give consistent
performance results and small enough to �t into memory when we
have a large number of columns in the dense matrices.
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Figure 6: Floating-point throughput distribution of HAFT and LAFT matrices.

Experiments. We always use the best performing version of CSR
as our baseline implementation (CSR-A and CSR-C without slicing).
For DDB-MM, we use both MMA-A and MMA-C versions. For
DDB-HYB, we use MMA-A and MMA-C for the blocked (i.e., dense)
portion, and CSR-A and CSR-C for the compressed portion, hence
obtaining four di�erent implementations of DDB-HYB.

All our versions are implemented in C++ using OpenMP. We
have manually vectorized all implementations by using compiler
built-ins for POWER10. Similarly, for MMA-A and MMA-C, we
have used the built-ins provided for MMA instructions and enabled
-O3 optimizations.

We test both double-precision (64-bit) and single-precision (32-
bit) �oating-point arithmetic. We repeat each experiment for 110
iterations. We ignore the �rst 10 iterations as warm-up and report
the average execution time of the last 100 iterations.

Choosing SVM parameters and Testing SpMM-OPT. We use Scikit-
Learn to train and test our ML models in our experiments [35]. We
use a Support Vector Machine (SVM) classi�er with linear kernel
for our individual ML models (LinearSVC in Scikit-Learn). A linear
SVM kernel has a regularization parameter (2) that needs to be
tuned. In order to tune 2 , we use a grid search approach. We test
{0, 1, 10, 100, 1000, 10000} values for the 2 parameter. To select the
best 2 parameter, we have considered the average speedup observed
with respect to the baseline CSR implementation (best of CSR-A
and CSR-C without slicing). In the end, we choose a single 2 = 1
parameter to use in all ML models. The speedups from using SVMs
generated with 2 = 1 are always in the 10% neighborhood of the
maximum average speedup observed for any values in the grid
search. While testing SpMM-OPT, we use the 10-fold approach and
report the aggregate results. The 10-fold approach is commonly
used to create training and test sets from a single data set. It creates
10 disjoint training and test set pairs that include 90% and 10% of
all samples in training and test sets, respectively.

6 EXPERIMENTAL RESULTS
In this section, we analyze the e�ectiveness of various DDB tech-
niques and the e�ectiveness of SpMM-OPT.

6.1 Performance of Blocking with MMA
Facilities

First, we analyze the performance potential of DDB-MM and DDB-
HYB.We test all hmethod, slicingi pairs against each sparsematrix
and number of columns in the dense matrices. We measure the
FLOPs/s (single- and double-precision) for each case.

Figure 6 shows the distribution of the highest FLOPs/s that can
be obtained for each matrix with our SpMM implementations for
double- and single-precision operations. In each of the �gures,
each column is a performance bin and the ~-axis is the number of
matrices for which the best observed FLOPs/s falls on that bin. The
performance bins also show the breakdown of the SpMM methods
achieving the highest �oating-point throughput for each matrix.

We observe that the maximum FLOPs/s for our matrices are
1.15 TFLOPs/s for double-precision and 2.5 TFLOPs/s for single-
precision computations. These maximums are achieved by utilizing
the MMA units with the DDB-MM method. The maximum perfor-
mance achieved by the DDB-MM method (with double-precision)
is approximately 40% of the 2.9 TFLOPs/s observed in the LINPACK
benchmark on a POWER10 single-chip module.

Furthermore, it can be shown that MMA units are needed to
achieve more than 608 GFLOPs/s with double-precision values and
more than 1023 GFLOPs/s with single precision values. The highest
performance achieved by utilizing MMA units is approximately 2⇥
higher than the highest performance that can be obtained by only
using the vector units.

As expected, for HAFT matrices, we observe the highest �oating-
point throughput with the DDB-MM and DDB-HYB methods. For
double-precision, we see that DDB-HYB is the fastest method for
the majority of the matrices. For single-precision, we see that DDB-
MM is more commonly the fastest, because single-precision SpMM
has a higher FLOPs/byte ratio. MMA techniques are also useful for
LAFT matrices. In DDB-HYB, a portion of the matrix is represented
in CSR. However, even a slight improvement in the dense portion
has a signi�cant overall impact on performance. DDB-HYB is the
fastest method for 247 of the matrices with double-precision SpMM.
DDB-MM is the fastest method for 211 matrices for single-precision
SpMM.
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(f) 256 columns-SpMM-OPT

Figure 7: Speedup for HAFT matrices (double-precision).
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(d) 16 columns-SpMM-OPT
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(f) 256 columns-SpMM-OPT

Figure 8: Speedup for HAFT matrices (single-precision).

Finally, we observe that slicing has a positive performance po-
tential. For example, 147, 68, 19, and 19 of the 440 matrices achieve
the highest FLOPs/s with 16-, 32-, 64-, and 128-column dense matri-
ces, respectively, for double-precision SpMM. For single-precision
SpMM, we observed that 116, 106, 82, and 18 of the 440 matrices ob-
tain the highest throughput with 16-, 32-, 64-, and 128-column dense
matrices, respectively. 256-column dense matrices achieve the top
throughput in the remaining cases (187 cases for double-precision
and 118 cases for single-precision).

6.2 Performance of SpMM-OPT
To analyze the e�ectiveness of SpMM-OPT, we compare its perfor-
mance to an oracle method that selects the best SpMM strategy by
exhaustively searching all possibilities. Figures 7-10 show the distri-
bution of the speedups with oracle and SpMM-OPT. The speedups
are calculated by normalizing the �oating-point throughput of the
selected SpMM strategy with oracle or SpMM-OPT to the �oating-
point throughput of the CSR implementation without slicing. In
these �gures, each bar represents a 0.25 range. The �gures show
the speedups for dense matrices B and C of di�erent numbers of
columns (16, 64, and 256 columns).

6.2.1 Prediction for HAFT matrices. Figure 7 shows the speedup
distribution for HAFT matrices with double-precision SpMM with
oracle (top row) and SpMM-OPT (bottom row). We observe that
oracle achieves an average speedup of 1.31, 1.76, and 2.02⇥ for
dense matrices of 16, 64, and 256 columns, respectively. SpMM-OPT
attains 1.25, 1.55, and 1.70⇥ for dense matrices of 16, 64, and 256
columns, respectively. For single-precision SpMM (Figure 8), the
average speedups that we observe are higher. The average speedups
of oracle for the same set of columns in the dense matrices are
1.85, 1.66, and 2.34⇥ while SpMM-OPT attains 1.79, 1.41, and 1.99⇥,
respectively. As observed in the previous section, the reason behind
this is the higher FLOP density per byte in single-precision cases.

We observe that SpMM-OPT is successful at predicting the SpMM
method and slicing factor—therefore attaining speedups close to
those of oracle. Although there are matrices in the speedup range of
0.75 � 1.0 (i.e., showing no speedup over CSR), generally, these are
matrices with a speedup � 0.9⇥. One reason behind the di�erences
between oracle and SpMM-OPT is that SpMM-OPT cannot identify
all extremes, such as cases with very high speedup values found by
oracle.
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(f) 256 columns-SpMM-OPT

Figure 9: Speedup for LAFT matrices (double-precision).
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Figure 10: Speedup for LAFT matrices (single-precision).

With HAFT matrices, we observe that DDB-HYB and DDB-MM
methods are frequently selected. For example, one of DDB-HYB
and DDB-MM is selected for more than 80% of the matrices. The
remaining cases with speedups over 1 are attained by CSR with
slicing.

6.2.2 Prediction for LAFT matrices. Figures 9 and 10 show the
speedup distributions for the LAFT matrices for double and single-
precision SpMM, respectively. For LAFT matrices, we expected to
see that optimized CSR would be the best method for most matrices.
However, we see that DDB-HYB and DDB-MM are selected for a
signi�cant number of LAFT matrices as well.

With SpMM-OPT, many matrices fall under the 0.75 � 1.00⇥
speedup range. Similar to HAFT matrices, these generally show
� 0.9⇥ speedups. Thus, the average performance is not signi�cantly
a�ected. In the worst case, with dense matrices of 16 columns where
slicing is not applicable, we see an SpMM-OPT average speedup of
0.98⇥ for double-precision SpMM (with a harmonic mean of 0.97⇥).
DDB-HYB generally behaves as the optimized CSR since matrices
do not have many dense blocks.

For the single-precision case, the average speedup of SpMM-
OPT for dense matrices of 16 columns is 1.14⇥ (with a harmonic
mean of 1.10⇥). For single-precision matrices, we also observe that
DDB-MM gives a performance boost in many cases.

6.2.3 E�ect of Slicing. For both HAFT and LAFT matrices, cache
slicing improves the performance signi�cantly. Table 5 shows the
percentage of matrices that select di�erent slicing parameters (i.e.,
slice size equal to 16, 32, 64, 128, or 256 columns) for a given number
of columns in the dense matrix (16, 32, 64, 128, or 256 columns). The
slice size has to be equal or smaller than the number of columns.
Each row of the table is for a given number of columns in the dense
matrix, while each column is for a slice size.

From the table, we see that oracle very often chooses to use
multiple slices. Therefore, slicing is needed. For example, in HAFT
matrices, for double-precision SpMM under oracle, 85.2%, 64.4%,
and 53.3% of the matrices bene�t from slicing for 64, 128, and 256
columns, respectively. Furthermore, SpMM-OPT often captures
these best slicing parameters. The same behavior is seen for single-
precision SpMM and for LAFT matrices.
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Table 5: Slicing parameters selected by oracle and SpMM-OPT for HAFT and LAFT matrices. Entries show the percentage of
cases with a given slice size (shown in table columns) for a given number of columns in the densematrix (shown in table rows).
Entries in a row add to 100%.

HAFT LAFT
Slice Size for oracle Slice Size for SpMM-OPT Slice Size for oracle Slice Size for SpMM-OPT

DP 16 32 64 128 256 16 32 64 128 256 16 32 64 128 256 16 32 64 128 256
16 Cols 100 - - - - 100 - - - - 100 - - - - 100 - - - -
32 Cols 29.6 70.4 - - - 23.0 77.0 - - - 45.6 54.4 - - - 37.6 62.4 - - -
64 Cols 29.6 55.6 14.8 - - 31.1 64.4 4.4 - - 44.0 17.9 38.1 - - 51.3 8.8 39.9 - -

128 Cols 27.4 34.1 3.0 35.6 - 19.3 29.6 0.7 50.4 - 38.4 13.7 7.2 40.7 - 51.0 7.2 1.6 40.2 -
256 Cols 24.4 22.2 2.2 4.4 46.7 15.6 21.5 0.0 3.0 60.0 36.8 12.4 5.2 4.2 41.4 43.5 5.9 1.6 2.9 46.1
SP 16 32 64 128 256 16 32 64 128 256 16 32 64 128 256 16 32 64 128 256
16 Cols 100 - - - - 100 - - - - 100 - - - - 100 - - - -
32 Cols 24.4 75.6 - - - 8.1 91.9 - - - 32.2 67.8 - - - 17.0 83.0 - - -
64 Cols 21.5 34.8 43.7 - - 14.1 51.9 34.1 - - 30.3 25.4 44.3 - - 32.4 24.8 42.8 - -

128 Cols 21.5 32.6 36.3 9.6 - 17.0 48.1 29.6 5.2 - 29.0 23.1 16.6 31.3 0.0 34.3 20.9 10.1 34.6 -
256 Cols 20.7 28.9 27.4 2.2 20.7 17.8 43.0 25.9 0.0 13.3 28.7 21.5 14.7 4.9 30.3 40.8 23.5 8.2 1.0 26.5

6.2.4 DDB-MM vs. Rectangular Blocks. We compare the DDB-MM
approach to using rectangular 4 ⇥ 4 blocks. Figure 11 shows the
distribution of the speedups obtained by using DDB-MM for dense
matrices of 16 and 64 columns with double-precision values with
respect to using rectangular blocks. We observe that DDB-MM
achieves an average speedup of 2.21⇥ and 2.35⇥ with MMA-A and
MMA-C methods with dense matrices of 16 columns. The average
speedups with dense matrices of 64 columns are 1.45⇥ and 1.48⇥
for MMA-A and MMA-C methods, respectively. In the vast majority
of cases, it is best not to use 4 ⇥ 4 blocks.

The histograms in Figure 11 cover all the 440 matrices in our
suite. It can be shown that rectangular 4 ⇥ 4 blocks perform rela-
tively better for HAFT matrices than for LAFT matrices. For a few
matrices that naturally have 4⇥4 blocks, DDB-MM and rectangular
blocks obtain similar performance. However, on average, DDB-MM
outperforms 4⇥ 4 blocks by 1.49⇥ and 1.08⇥ for 16 and 64 columns,
respectively, for HAFT matrices.
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Figure 11: Speedup of DDB-MMwith respect to using rectan-
gular 4 ⇥ 4 blocks with MMA-A and MMA-C techniques.

The main reason why using rectangular blocks is not e�ective is
because it introduces super�uous FLOPs. Figure 12 shows the ratio
of e�ective FLOPs for HAFT matrices when DDB-MM and 4 ⇥ 4
rectangular blocks are used. The �gure shows how many matrices
have a given e�ective FLOPs ratio.

Using DDB-MM signi�cantly increases the e�ective FLOPs ratio
compared to 4 ⇥ 4 blocks. With 4 ⇥ 4 blocks, almost half of the
matrices have less than 50% e�ective FLOPs ratio—i.e., 50% or more

of FLOPs executed do not contribute to the �nal result. In these
cases, MMA matrix units operate ine�ciently.

On the other hand, with DDB-MM, only 30% of matrices have
less than 50% e�ective FLOPs ratio. Moreover, only 10% of all the
matrices have an e�ective FLOPs ratio of 40% or less. Such matrices
with low e�ective FLOPs ratio can be executed e�ciently by DDB-
HYB or CSR, and SpMM-OPT can select a suitable strategy to use.
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Figure 12: Distribution of the e�ective FLOPs ratio for (a)
DDB-MMand (b) 4⇥4 rectangular blocks for HAFTmatrices.

7 RELATEDWORK
SpMM is optimized for both CPU and GPU systems. In the CPU
domain, the main concern is to improve the locality of memory
references. For example, Compressed Sparse Blocks [9, 14] improves
performance by tiling for caches, while ApST [20] augments the
CSR representation to improve locality. Additionally, [30] proposes
a formulation to �nd the best tiling parameters for registers and
caches.

SpMM optimizations for GPUs generally target load balancing
issues and e�cient use of cache capacity in GPUs [22, 49]. These
techniques include methods to manage warp level parallelism and
to improve memory coalescing. Moreover, since SpMM operations
are important in training and inference of Graph Neural Networks
(GNNs), several other optimizations have been proposed for GPUs
in the GNN domain [21, 23], including slicing and locality-aware
scheduling.

Blocking for matrix-multiply units for SpMM and for multiplica-
tion of two sparse matrices has been explored in the GPU domain
with the BCSR approach for Tensor Cores [48, 54]. Our work is
di�erent in that we have a dynamic structure and we target MMA
units with �ner-granularity outer-product operations.

Blocking techniques have been heavily explored for SpMV [26,
27, 36, 38, 43, 44]. While BCSR is limited by having static block
sizes, Unaligned BCSR [44] and VBR [38] improve performance by
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introducing dynamically-sized blocks. Blocking for SpMV improves
performance by eliminating irregular accesses, while potentially
su�ering from zero-padding. Our di�erence from these methods
is that our goal is to utilize matrix and vector units synergistically
to improve FLOP throughput, rather than to optimize padding or
improve irregular access patterns. Instead of �nding rectangular
blocks, we �nd column blocks that are dynamically grouped to
create a block for MMA units.

Previous vectorization techniques for SpMV, such as ELLPACK
and Sell-c-f also create a compact representation by grouping con-
secutive rows of a matrix [16, 19, 29, 50]. However, these techniques
do not identify the common columns across the consecutive rows
and only focus on minimizing padding. For example, the dense
column blocks identi�ed by Sell-c-f would have multiple column
ids appearing in the same dense-column block.

Previous work has evaluated auto-tuning approaches [15, 24, 43].
Recently, some work [21, 30] has proposed to use slicing to im-
prove SpMM performance. It uses a model-based mechanism to
tune the slicing parameter. Our work, on the other hand, also tar-
gets the e�ective utilization of functional units. Previous works
have also utilized ML for performance prediction of sparse matrix
computations [7, 31, 39, 51]. Their aim is to select an optimal matrix
format to execute SpMV e�ciently. SpMM-OPT di�ers from previ-
ous work in multiple aspects. For example, instead of only choosing
a format, SpMM-OPT makes many decisions simultaneously in a
comprehensive optimization framework.

Other examples also exist to leverage ML to predict performance
for other primitives, such as sparse matrix sparse matrix multipli-
cation [47]. Furthermore, [42, 53] leverage ML techniques in an
algorithm selection setting. In [42], the authors design ML tech-
niques to choose e�cient execution strategies for several primitive
operations such as dense matrix-multiply operations and sorting.
On the other hand, [53] proposes an ML framework to choose
a parallel reduction technique among the mechanisms described
in [52]. [53] can be e�ective for the SpMV primitive, which has
parallel irregular reduction operations.

Although we do not explore reordering the sparse matrix in this
paper, we can use sparse matrix reordering [8, 11, 13, 19, 25, 28,
36, 46] to improve the performance of our mechanisms. DDB uses
consecutive rows while relaxing the order of columns. If we can
inexpensively �nd similar rows and group them together, we can
further improve the performance of our techniques.

8 CONCLUSIONS
In this paper, we introduced Dense Dynamic Blocks (DDB), a new
technique that executes SpMM on matrix-multiply units and vector
units to improve performance. DDB enables a matrix unit-oriented
strategy via DDB-MM or a hybrid strategy via DDB-HYB. How-
ever, we observed that not all sparse matrices can utilize matrix
units e�ciently, and thus, bene�t equally from DDB. Moreover, the
cache behavior of SpMM for a given sparse matrix also a�ects the
performance signi�cantly. As a result, we have designed a machine
learning method called SpMM-OPT that can navigate this com-
plex search space. SpMM-OPT identi�es the best SpMM strategy
for a given sparse matrix and dense matrix pair. SpMM-OPT se-
lects among vector unit-oriented, matrix unit-oriented, and hybrid

strategies to attain the highest �oating-point throughput while also
taking into account cache optimizations.

We tested DDB and SpMM-OPT with matrices from the well-
known SuiteSparse matrix collection on a POWER10 system with
vector and matrix-multiply units. We observed that DDB-MM and
DDB-HYB can achieve a �oating-point throughput of up to 1.1 and
2.5 TFLOPs/s for double- and single-precision SpMM, respectively.
SpMM-OPTwas able to e�ectively choose high-performance SpMM
methods, achieving an average speedup of up to 2⇥ compared to
an optimized CSR baseline.
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