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ABSTRACT Axon bundles cross-linked by microtubule (MT) associate proteins and bounded by a shell skeleton are critical for
normal function of neurons. Understanding effects of the complexly geometrical parameters on their mechanical properties can
help gain a biomechanical perspective on the neurological functions of axons and thus brain disorders caused by the structural
failure of axons. Here, the tensile mechanical properties of MT bundles cross-linked by tau proteins are investigated by system-
atically tuning MT length, axonal cross-section radius, and tau protein spacing in a bead-spring coarse-grained model. Our re-
sults indicate that the stress-strain curves of axons can be divided into two regimes, a nonlinear elastic regime dominated by
rigid-body like inter-MT sliding, and a linear elastic regime dominated by affine deformation of both tau proteins and MTs.
From the energetic analyses, first, the tau proteins dominate the mechanical performance of axons under tension. In the
nonlinear regime, tau proteins undergo a rigid-body like rotating motion rather than elongating, whereas in the nonlinear elastic
regime, tau proteins undergo a flexible elongating deformation along the MT axis. Second, as the average spacing between
adjacent tau proteins along the MT axial direction increases from 25 to 125 nm, the Young’s modulus of axon experiences a
linear decrease whereas with the average space varying from 125 to 175 nm, and later reaches a plateau value with a stable
fluctuation. Third, the increment of the cross-section radius of the MT bundle leads to a decrease in Young’s modulus of
axon, which is possibly attributed to the decrease in MT numbers per cross section. Overall, our research findings offer a
new perspective into understanding the effects of geometrical parameters on the mechanics of MT bundles as well as serving
as a theoretical basis for the development of artificial MT complexes potentially toward medical applications.
SIGNIFICANCE Physical forces acting on axon fibers play an important role in brain neurological functions, especially in
brain disorders caused by the structural failure of axons. The question is, how the geometrical parameters of axon, such as
averageMT length, cross-sectional radius, and tau protein spacing, influence its mechanical performance of axons, remain
to be solved. Its answer will help gain an enhanced mechanistic perspective on how natural selection resulted in biological
axon geometrical parameters and serve as a theoretical basis for developing artificial MT complexes which can be used for
future medical applications.
INTRODUCTION

Recent studies have shown that physical forces are
constantly acting on the axon and play an important role
in axon physiology (1–3). For instance, moderate axonal
forces during development activate axonal elongation and
growth (4–6), whereas extreme axonal forces during impact
may lead to direct axonal damage and diffuse axonal injury
(7,8). In humans, the axon can be up to a meter in length,
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and consists of a shell skeleton and a microtubule (MT)
bundle cross-linked by MT-associated protein (MAP) tau,
referred to as ‘‘tau proteins’’ for the remainder of this
work (9). Axonal destruction is a characteristic feature of
focal and diffuse traumatic brain injury, and can be charac-
terized by local disorientation of the axonal MT bundle,
axonal beading, impaired axonal transport, retraction of
the synapse, and axonal degeneration (7,10–12). Traumatic
axonal injury has been studied through a number of in vitro
studies in which axons are subjected to traumatic stretch
injury. A recent study shows evidence of MT rupture in
the vicinity of axonal beads formed because of a traumatic
stretch injury (13). MTs have been shown to rupture at
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strains of �50% (14). It is possible that the cross-links be-
tween MTs, formed by tau proteins, fail under traumatic
loading, leading to the characteristic loss of the bundled ar-
chitecture. The lateral reinforcement of MTs by cross-link-
ing to the cytoskeleton has been shown to enhance their
ability to bear compressive loads (15). Though MTs are
conventionally regarded as sustaining compressive loads,
in certain circumstances, such as in traumatic stretch injury,
they are placed in tension. Experimental techniques have yet
to characterize the immediate mechanical behavior of
axonal MT bundles in tension. Computational modeling
techniques have been employed to investigate the mechani-
cal behavior of the filaments comprising the cytoskeleton
(16,17) and have been used to investigate cross-linked net-
works (18–20). These studies have emphasized the impor-
tance of the cross-link properties and network/bundle
geometry in the overall mechanical behavior. Nonaffine
behavior of cytoskeletal networks has been characterized
previously, whereby realignment of network fibers leads to
overall network stiffening at high stress (21,22). A few
studies have investigated the bending mechanics of cross-
linked MT bundles. Tolomeo et al. (23) used theoretical
and computational modeling to show that the shear resis-
tance provided by cross-links greatly increases MT bundle
bending stiffness. Furthermore, a theoretical investigation
by Bathe et al. (24) has characterized distinct bundle
bending stiffness regimes resulting from the competition be-
tween filament stretching and cross-link shearing.

Despite the advances in understanding these underlying
mechanisms of the biophysical behavior of axons, it is still
an open question as to how these geometrical parameters in-
fluence the mechanical performance of axons, which would
help to gain a biomechanical perspective on the neurological
functions of axons and thus brain disorders caused by the
structural failure of axons, such as traumatic brain injury
(25) and Alzheimer’s disease (26). The first geometrical
parameter we consider is the average MT length, or in other
words, the MT overlap distance within the axon ðLOLÞ
(27,28). For biological composites and their artificial coun-
terparts, overlap distance is among the most important pa-
rameters controlling overall mechanical performance,
measured by metrics such as Young’s modulus, fracture
strain, ultimate strength, and toughness, and this parameter
can be well explained by the shear-lag model or its deriva-
tion (29–34). However, unlike other biocomposites, the
stresses between adjacent MTs are transferred through cova-
lent-bond-like tau protein interactions, bringing about non-
affine deformation nature under external force (27). In
turn, this nonaffine deformation would bring nonlinearity
to stress-strain responses (27,35–37). In addition, the tau
protein orientation distribution is a novel metric that can
indicate the mechanical performance of MT bundles, indic-
ative of both the overall Young’s modulus and enabling a
visualization of the transition between linearity and nonlin-
earity (37). Therefore, the mechanical performance of axons
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cannot be well described by shear-lag model only. The sec-
ond geometrical parameter we consider is the tau protein
spacing ðdÞ, or in other words, the tau protein density
(27,37,38). It has been reported that for large tau protein
spacing (small tau protein density) both stiffness and viscos-
ity of the axon quickly decrease to zero under tension, and
follow a nonlinear regime (36,39). At higher tau protein
density, both effective stiffness and viscosity increase line-
arly with tau protein density, termed as linear regime (36).
However, the tau protein density values which display
such a linear regime are not consistent across different
studies (36,38). The third geometrical parameter we
consider is the axon cross-sectional radius ðRÞ. In the adult
nervous system, the radii of axons belonging to different
tracts can vary by up to two orders of magnitude (50 nm
to 5 mm), a result of minimizing energy costs and adaptation
to different parts of the body (40). However, it is important
to consider how the structural integrity of axons with
different radii is maintained during their lifetime. Overall,
a comprehensive understanding of the interplay between
mechanical properties and geometrical parameters of the
axon can provide a better mechanistic understanding of
brain disorders, and possibly pave a new perspective for un-
derstanding various brain pathologies.

This study seeks to characterize the mechanical behavior
of axonal MT bundles in tension. The model emphasizes
relevance to biological samples by including the hexagonal
bundle architecture, discontinuous MTs, and material
parameter predictions, which are based on experimental
data. It is proposed that axonal MT bundles exhibit
nonlinear mechanical behavior in tension because of nonaf-
fine network deformations. The objective of this study is to
explore the interplay of axonal mechanics and structure. To-
ward this objective, we adopt a bead-spring based coarse
grain molecular dynamics model that consists of a network
of MTs connected by cross-linking proteins. We systemati-
cally varied the average MT length, cross-sectional radius,
and tau protein spacing, and characterized the overall me-
chanical responses as emergent properties of the hierarchi-
cal structure.
MATERIALS AND METHODS

Discrete bead-spring models have previously been implemented to

describe the mechanical properties of filaments and filamentous networks

(19,41–43). A bead-spring coarse-grained model of the axonal MT bundle

allows for sufficient system size and complexity but requiring relatively

modest computational resources. This type of model also allows for the

investigation of irregular, physiologically accurate geometries, providing

an essential supplement to theoretical and experimental mechanics studies.

Previous studies have focused on bundles with continuous filaments span-

ning the entire bundle length, despite the fact that biological specimens

are not composed in this manner, and thus overlooking the impact of dis-

continuities on the mechanical properties of the axonal MT bundles. Dis-

continuities in the MTs can easily be incorporated into the current model,

and the role of a variety of geometric and mechanical parameters can

thus be investigated. As a result of these considerations, a model of axonal
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MT bundles can be developed that closely replicates real cross-linked MT

bundles with incorporated spatial and temporal details.

Bead-spring models adequately capture the various types of deformation

of filamentous fibers by implementing interaction potentials among beads;

these are then calibrated to display certain aspects of mechanical perfor-

mance under different loading conditions. Fig. 1 a shows a schematic rep-

resentation of an MT bundle using a network of beads connected by springs.

The current model is calibrated toward the tension of the bundle under an

applied moderate force. This force will quickly elongate the MT bundle

across the entropic-dominated regime and into a linear mechanical stretch-

ing regime, a transition reported previously (44). Therefore, a linear elastic

mechanical bond potential, Eb, is implemented between adjacent MT beads,

as expressed using the expression:

Eb ¼ kb
ðr � r0Þ2

2
; (1)
where kb is the bond stiffness constant, r is the bond distance, and r0 is the

equilibrium bond length. The bond stiffness constant kb can be calibrated by
the material properties of the filament in the equation:

kb ¼ EA

r0
; (2)
where E is the Young’s modulus of the MTand A is the cross-sectional area

of the filament. The tau protein cross-links were modeled as two-node

linear spring elements, a representation common to a number of cross-

linked network models (24).

The bending potential is depicted by a harmonic angle potential as a

function of the bending angle q. The bending potential Ea can be expressed

in the form:

Ea ¼ ka
ðq� q0Þ2

2
; (3)
a b

FIGURE 1 (a) Schematic view of the structure of axon and its coarse-grained

pological parameters (tau protein spacing d is calculated through averaging the s

figure in color, go online.
where ka is the angle spring stiffness constant, q is the angle between sub-

sequent elements, and q0 is the equilibrium angle. The angle spring stiffness

constant can be calculated based on the material properties of the filament

in the equation:

kb ¼ EI

r0
; (4)

where EI is the bending moment of the filament and r0 is the unstretched

bond length. The bending moment EI of an MT can be determined by its

persistence length in the equation:

EI ¼ lpkBT; (5)

where lpis the persistence length, kB is the Boltzmann constant, and T is the

temperature. Steric repulsion of the beads in the system is necessary to pre-

vent penetration of the beads within the MTs. The potential associated with

the steric repulsion in such a coarse-grained model is only meant to prevent

penetration and the form is somewhat arbitrary. A Lennard-Jones potential,

Enb, is used:

Enb ¼ 4ε0

��s0

r

�12

�
�s0

r

�6
�
; (6)

where ε0 is the energy-scaling parameter, r is the distance between sterically
interacting beads, and s0 is the steric radius. The steric radius s0 is set to the

outer MT diameter, 25 nm, and the potential well ε0 of 1� 10�18N�m is

iteratively selected to prevent penetration with minimal long-range effects.

As this potential is merely to prevent penetration and should not cause any

long-range effects, a cutoff radius of 1.12 s is used to truncate the steric

repulsion interaction for computational efficiency while preventing filament

penetration, which is also widely used in molecular dynamics simulations

(29,31–33). We note that exponential potential is also very commonly used

in the literature. Additional simulations have been performed using exponen-

tial potential. Results can be found in Fig. S1, in which results using Lennard-

Jones potential is also presented for comparison. The marginal differences
representation. (b) Coarse-grained model of an axon and the associated to-

pacing between tau proteins over the whole model using Eq. 7). To see this
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between stress-strain curves using Lennard-Jones potential and exponential

potential justify our choice about the steric repulsion potential.

Using in-house code, a hexagonal bundle of 7–127 MTs with an interlayer

spacing of 45 nm (27) is created with the cross-section radius ranging from 45

to 270 nm, which corresponds with an MT area density ranging from 665 to

335MTs/mm2. Note that the above density is close to the upper limit reported

experimentally, and thus the mechanical performance in this article may be

also among the top levels of axon. Each row consists of a set of MTs with a

single end-to-end discontinuity along the axial direction. A set of models

with various number of MTs, ranging from 14 to 254, are created and the

average length of MTs corresponds to half of the length of the model. Also,

the end-to-end discontinuities are not placed close to the edges of the bundle

by confining them within the length interval from 10 to 90% of the row along

the axial direction. The end-to-end discontinuity is set to be 20 nm in length.

After the aforementionedmodel setup, Fig. 1 b shows a representative compu-

tational model of a MT bundle. The MT bead spacing is set to 10 nm to allow

bending between cross-links. Cross-links are pseudorandomly distributed be-

tween neighboring MTs throughout the bundle based on the desired average

cross-link spacing. The tau cross-link bead mass is added to the mass of the

MT bead at the beads where the cross-linking elements were added. The

cross-link spacing d in the bundle is calculated as:

d ¼ NMTL

NCL

; (7)

where NMT is the number of MTs, NCL is the number of tau protein cross-

links, and L is the average continuous MT length.

In this article, the Langevin equation is used to update the trajectories of

particles of axon models,

m d2~r
dt2

¼ Fc þ Ff þ Fr; (8)

Ff ¼ � g d~r; (9)

dt

ffiffiffiffiffiffiffiffiffiffi
k Tg

r

TABLE 1 Material parameters of the axon used in the

simulations

Parameters Value

MT Young’s modulus, EMT 1.5 GPaa

MT persistence length, lMT
p 420 mma

MT flexural rigidity, ðEIÞMT 1.8 � 10�24 N.m2a

Tau protein Young’s modulus, Etau 5.0 MPab

MT element length, lMT
0 10 nmb

Tau protein element length, ltau0 45 nmb

MT cross-section area, AMT 314 nm2b

Tau protein cross-section area, Atau 1 nm2c

Axon cytosol viscosity, h 5.0 � 10�3 Pa.sd

MT axial spring constant, kMT
s 47.1 N/me

MT bending spring constant, kMT
b 1.8 � 10�16 N.mf

Tau protein axial spring constant,ktaus 3.925 � 10�2 N/mg

aCan be found in (46).
bCan be found in (27).
cCan be found in (36).
dCan be found in (35).
ekMT

s ¼ EMTAMT

lMT
0

.

fkMT
b ¼ ðEIÞMT

lMT
0

.

gkTaus ¼ ETauATau

lTau
0

.

Fr ¼ B

dt
~RðtÞ; (10)

where Fc is the conservative force computed via the usual interactions

among beads fromMT, Ff is the is a frictional force proportional to the par-

ticle’s velocity, and Fr is the Brownian forces from solvent at a temperature

T. Assume the beads from MTare spherical, the damping coefficient tensor

is isotropic and equal to g ¼ 6phr according to the Stokes-Einstein equa-

tion. In the current model, the dynamic viscosity h is 5.0 � 10�3 Pa.s

whereas the radius of the beads r is 10 nm. Therefore, the damping coeffi-

cient g is equal to 9.42 � 10�10 N/(m/s). To accelerate the simulation pro-

cess and focus on the statics of axon, the damping coefficient in the

simulations is shrunk by three orders of magnitude. Relevant simulations

are shown here in Fig. S2 to justify our choice about the damping coeffi-

cient. In the actual physiological environment, the axon is immersed in

the axon cytosol, which could be modeled using anisotropic, hydrody-

namics-related friction coefficients. However, because the major focus of

this article is on the statics of axon under pure stretch, it should be sufficient

to simplify the friction coefficient tensor to be isotropic.

The velocity Verlet algorithm was used to calculate bead trajectories over

the duration of each simulation. An axial tensile stress was applied by distrib-

uting forces to the ends of the MTs at either end of the bundle. This tensile

stress is meant to represent the stress on the MT bundle itself and not neces-

sarily that of the entire axon. These two quantities may not be equal based

on the load sharing distribution between all structural components of the

axon. The resultant tensile forcewasfirst calculated bymultiplying the desired

tensile stress by the cross-sectional area. This force was then divided evenly

among the end beads of the MTs. The total applied force was added in a step-

wise fashion to prevent excessive oscillations, whereas the entire model was
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equilibrated after each force step for 20,000 steps. This stress-controlled

loading method can help gain the steady-state responses of axon under

external loads,minimizing the loading rate effect onmechanical performance.

The open-source software Large-scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS) was used to integrate the equations of motion and

calculate bead trajectories. A time step of 0.1 ps was used for stability and

computational efficiency.The steady-state strainvalues at a given tensile stress

were calculated by allowing the bundle to relax toward a temporarily steady

status in a dynamic simulation (i.e., the 10-ns equilibration). Failure strain

criteriawere enforced for bothMTs and tau proteins, based uponwhich bonds

were deleted from the simulation. For MT bonds, the critical strain was set at

0.5 based onexperimentalmeasurements of the rupture strain (14).The critical

strain of the tau proteins was set to 1.0, corresponding approximately to the

jump-out length from a study on tau dimerization by Rosenberg et al. (45)

This criterion represents the length at which the tau protein dimers can no

longer maintain a bridge between neighboring MTs.

Experimental data from a number of studies were used to assign values to

the spring constants in the harmonic potential functions represented in Eqs.

1, 2, 3, 4, 5, and 6. The values of the parameters used in the study are shown

in Table 1 and their derivation are detailed in this section. Moreover, Table 2

is also included, which summarizes the scales bridging the physical quan-

tities and associated simulation quantities. Values were chosen to fall within

the observed physiological range of axonal MT bundles. Measured values

of the elastic modulus of MTs are in the range of several hundred MPa to

a few GPa. A thorough study of the anisotropic mechanics of MTs that

agreed well with experimental data was performed by Pampaloni et al.

(46) A value of 1.5 GPa was used for the MT Young’s modulus EMT , which

falls within the typical range of reported values and agrees with the Pampa-

loni study (46). This study also predicted a length-dependent persistence

length lp of MTs. Based on a MT in length 4 mm, a persistence length

was predicted to be 420 mm. Using Eq. 5 and this persistence length, an

MT flexural rigidity ðEIÞMT of 1:8� 10�24 N�m2 was obtained.

Another important indication from the Pampaloni study (46) is that MTs

are intrinsically curved across different scales. MTs are composed of MT

protofilaments, linear polymers of tubulin dimers, in which the curving

are controlled by the hydrolysis of GTPs (47). MTs can also form closed

loops through kinesin cross-linking proteins, transforming into circular

shape structures by equilibrating tension (48). Moreover, under external

forces, MTs can be converted into metastable circular states, explaining

the recurrent observations of gliding rings in experiments (49). Besides,



TABLE 2 Conversion scales between physical values and

simulation values

Parameters Physical value Simulation value

Timescale, ta 1.0 � 10�11 s 1

Distance scale, sa 1.0 � 10�9 m 1

Mass scale, ma 1.0 � 10�22 kg 1

Boltzmann constant, kB
a 1.380649 � 10�23 J/K 1

Energy scale, εb 1.0 � 10�18 N.m 1

Stiffness scale, k0
b 1.0 N/m 1

Viscosity scale, h0
b 1.0 � 10�2 Pa.s 1

Temperature scale, T0
b 72,411 K 1

MT axial spring constant, kMT
s 47.1 N/m 47.1

MT bending spring constant, kMT
b 1.8 � 10�16 N.m 180

Tau protein axial spring constant,kTaus 3.925 � 10�2 N/m 0.03925

Axon cytosol viscosity, h 5.0 � 10�3 Pa.s 0.5

Physiological temperature, T 310 K 0.0043

aThe first four scales converting physical values to simulation values are

basic scales. Note that, instead of temperature scale, Boltzmann constant

is used here as one basic unit, which is widely used in molecular dynamics

simulations.
bThose scales are derived scales based on the first four basic scales.
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the effective binding rate of kinesin proteins affect the formation of MT

rings, in which the MT density is also a key factor (50). Both in vivo and

in vitro MTs are buckled whereas the buckling modes are different (51).

Despite this, MT curving is not discussed in this article because of its mar-

ginal influence on the mechanical responses of axon under pure stretch.

However, further exploration of MT curving would be necessary for future

studies focusing on mechanics of axon beyond pure stretch.

Studies of the mechanical properties of single-dimerized tau protein

cross-links are unavailable, so an estimate of the Young’s modulus is

needed. By estimating a persistence length of tau dimers on the order of

a micron and using Eq. 5, a Young’s modulus of tau protein cross-links

Etau of 5.0 MPa was used. The estimation of this parameter is further

complicated because the stretching mode of the cross-link is unclear; the

stretching of the tau filaments, the tau-tau bond, or the tau-MT bond are

all possible contributors. As such, this value is approximate, but the quali-

tative bundle behavior should not be significantly altered unless the true

modulus is incorrect by multiple orders of magnitude (27).

Using LAMMPS, the stress-strain and failure behavior of axonal MT bun-

dles was investigated. The parameters under investigation, the average cross-

link spacing d, the overlap distance LOL, and the cross-section radius R, were

investigated ranging from 25 to 175 nm, 0.5–16 mm, and 45–270 nm, respec-

tively. This range of d corresponds to values typical of the estimated physi-

ological range. However, no explicit data are available regarding the average

cross-link spacing in vivo. As such, the estimated range was based on images

of axonal MT bundles cross-linked by MAP tau. This parameter study al-

lowed for the investigation of the effects of increasing the degree of bundling

in response to the density of cross-link bridges on a given length of MT. For

each instance of a combination of chosen d, LOL, and R, five MT bundles

were generated by randomizing the locations of cross-links and end-to-end

discontinuities in each row. These five configurations allowed for statistical

significance and prevented skewing the results toward a particular configura-

tion’s response. These bundles were then subjected to uniaxial stress parallel

with the bundle axis at stress levels ranging from 1 kPa to 7 MPa, and the

bundle strain was calculated in each case.
RESULTS AND DISCUSSION

Response of the axon to uniaxial stretching

In this section, a general case of axon stretching is dis-
cussed, to describe common mechanical behaviors shared
across all models. Before discussions about mechanical re-
sponses of axon, the overall axon strain and stress is clearly
defined first. The overall axon strain is defined following the
similar idea from engineering strain. As shown in Fig. S3 a,
the initial length and the length after deformation of the
axon is l0 and l, respectively, so the overall axon strain ε

can be defined as ε ¼ ðl � l0Þ=l0. As shown in Fig. S3 b,
the force applied on the two ends of axon is F, and the initial
cross-section area is A0. As such, the overall axon stress s
can be defined as s ¼ F=A0.

Here, the tau protein spacing d is fixed at 25 nm, overlap
distance LOL is set to 4 mm, whereas the fiber radius R is
fixed at 45 nm. To measure the mechanical properties of
the axon, a step wise force-controlled tensile loading
method is adopted as described in the previous section;
and the results are illustrated in Fig. 2 a. In Fig. 2 b, the
stress-strain response and tau protein orientation of the
axon is presented. The stress increases very slowly until
the strain approaches 0.5%. As follows, the increase of
stress accelerates until the stress shows a constant linear in-
crease with strain. Note that both MTs and tau proteins are
linearly elastic; this is reflected in the linear stress-strain re-
lationships evidenced in Fig. 2 c. The nonlinear elasticity of
the axon originates from its unique topology, wherein the
arrangement of the tau proteins, which transfer stress be-
tween adjacent MTs, causes nonaffine deformation of the
system under external loading. Originally, the tau proteins
are relaxed and are aligned perpendicularly to the MTs. Un-
der external loading, the tau proteins then start to rotate as
shown in Fig. 2 b, with the average orientation of tau pro-
teins qtau quickly decreasing from 90� to around 60� until
the strain reaches to around 0.5%. Adjacent MTs slide along
with the rotation of the tau proteins. In this stage, both MTs
and tau proteins experience a very small strain. The majority
of strain in the axon structure arises from sliding between
adjacent MTs. Subsequently, the variance of qtau is marginal
in Fig. 2 b, whereas the average strain of tau proteins εtau in-
creases significantly in Fig. 2 d, indicating that the tau pro-
teins are stretched rather than merely being rotated. The
averaged strain of tau proteins εtau have been further divided
into axial and lateral components in Fig. S4. Results indicate
that axial and lateral components exhibit a linear increase
versus overall axon strain as the overall strain is bigger
than 1.24%. Despite the nonaffine deformation of tau pro-
teins, the gradual stability of orientation qtau distribution en-
ables a linear relation between tau protein strain and overall
axon strain. Similarly, the MTs themselves also undergo a
notable strain in this region. Consequently, the gradual sta-
bility of orientation qtau distribution results in the character-
istic linear stress-strain relationship in this stage. Fig. 3
shows the evolution of individual tau protein orientations
during the loading process, painting a more distinct picture
than the one with the average tau orientation shown in
Fig. 2. At the beginning, almost all the tau proteins are
perpendicular to the loading direction, measured at 90�.
Biophysical Journal 120, 3697–3708, September 7, 2021 3701
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FIGURE 2 (a) Axon stress due to the stepwise force-based loading strategy in our uniaxial stretching simulation (L¼ 8 mm, LOL ¼ 4 mm, d ¼ 25 nm, R ¼
45 nm). (b) Axonal stress s and averaged tau protein orientation qtau versus axonal strain ε. (c) AveragedMT strain (εMT) and averaged tau protein strain (εtau)

versus s. (d) εMT and εtau versus ε. To see this figure in color, go online.
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Then, more and more tau proteins rotate under external
loading, leading to a widespread spectrum in orientation dis-
tribution. After strain ε is greater than 1.24%, the evolving
orientation distribution becomes stable with minor changes,
coincident with the onset of the linear stress-strain regime of
the axon. This finding confirms our conclusion that the
gradual stability of orientation qtau distribution is the origin
of transition of the stress-strain relationship in the axon as a
whole from nonlinear to linear.
Effect of MT overlap distance

The topology of an axon can be considered as similar to
other hierarchical biological materials such as nacre (52),
silk (53), and bone (54). In those biological composites,
stress transfer is very important for the structural robustness
whereas the material overlap distance is one of the most
important structural parameters which influence the me-
chanical properties (55). Although the shear-lag model
can be well suited to describe linear elastic properties of
many composite materials, the stress transfer mechanism
in the axon is different because of the existence of explicit
bonds, namely tau proteins (56). Therefore, in this section,
the average MT overlap distance LOL is varied to study the
effect on tensile mechanical properties of the axon. To
further explore the overlap distance effect, uniaxial stretch-
ing tests of axon models with different LOL, ranging from
0.5 to 16 mm, have been done, and the corresponding results
are shown in Fig. 4. Free strain, defined as strain whereas
stress remains below 0.1 MPa, decreases with the increase
of LOL. As discussed before, free strain is mainly controlled
by nonaffine deformation of geometry, mediated by tau pro-
tein rotation. As shown in Fig. 4 b, when LOL decreases, the
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averaged tau protein orientation qtau reaches a plateau more
quickly than the overall strain does, leading to a decreased
free strain. Moreover, both the averaged orientation qtau
and averaged strain εtau of tau proteins experience a narrow
strain band with the increase of LOL as shown in Fig. 4, b and
c. In contrast, the average strain of MT bundles with
different LOL-values are close to each other as shown in
Fig. S5. This evolution trend results from the variance of
the average number of tau proteins per MT. In this section,
the average tau protein spacing d is fixed at 25 nm, so the
average number of tau proteins, which are responsible for
transferring stress between each pair of adjacent MTs, in-
creases as LOLincreases (LOL is half of the overall length
of MT L in Eq. 7, whereas the number of MTs NMT is fixed
as 7), leading to a decrease in the average load on each tau
protein. Therefore, the decrease in force exertion on tau pro-
teins results in a decrease in both the average and variance
of qtau and εtau. To gain a deeper understanding of overlap
distance effect, the shear-lag model is used to describe the
relationship between Young’s modulus of axon ðEaxonÞ and
LOL (30,32–34,55). The dependence of Eaxon on LOL can
be expressed as follows:

Eaxon ¼ Emax�
1þ 2le

n

LOL
coth

�
LOL
2le

n

��; (11)
where Emax is the theoretical upper limit for the Young’s
modulus of an axon with a certain radius ðRÞ, LOL is the
overlap distance, and le

nis the nominal effective interaction
length. In this section, R is set as 45 nm and the cross-section
area of axon Aaxon 5261 nm2. Therefore, Emax can be calcu-
lated through the expression below:



FIGURE 3 Evolution of tau protein orientation distribution under

different load steps (L ¼ 8 mm, LOL ¼ 4 mm, d ¼ 25 nm, R ¼ 45 nm.

The small spread of the tau protein orientation for the initial model is

smaller than the interval 4.5�). To see this figure in color, go online.
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Emax ¼ nkbl0
Aaxon

; (12)

where n is the number of MT bond sites, kb is the stiffness of
each MT bond, l0 is the equilibrium bond length within a
MT. Based on Eq. 12, Emax is estimated to be 626 MPa.

The shear-lag model has been widely used in bio-
composites usually composed of two distinct phases (29–
34), namely hard fiber phase and soft matrix phase. The
hard fibers are usually placed in a regular staggered manner,
whereas the soft matrix are usually filled in the gaps be-
tween hard fibers, which is also called ‘‘Brick-Mortar’’
structure. In the original model, the effective interaction
length le is defined as a characteristic distance in which
the axial stress of the hard fiber phase increases dramatically
and then saturates at a constant value. To explain the shear-
lag model, additional simulations were performed on an
idealized axon model with a ‘‘Brick-Mortar’’ structure. Re-
sults can be found in Fig. S6 in which relevant discussions
are also included. In the idealized shear-lag model, the
effective interaction length le is uniform given that the
hard fibers are identically sized, regularly staggered, and
uniformly distributed. However, in the current model, the
length of the MTs ranges from 10 to 90% of the overall
length of the axon, and thus the observed effective interac-
tion length le

ob in the axon cannot be uniform accordingly.
Then, the nominal effective interaction length le

n defined
in Eq. 8 can represent the average effect of the observed
effective interaction length le

ob.
The only parameter in Eq. 11 to be determined would be

le
n, the effective interaction length. From Fig. 4 d, it can be

estimated to be 0.565 mm through data fitting. Accordingly,
if LOL is set to be 4 mm, the average MT length reported in
the literature (28), Eaxon reaches to 80% of Emax. Further
increasing LOL can only bring limited improvement in the
stiffness of axon, which may partially explain the natural se-
lection of LOL to be around 4 mm anatomically. To illustrate
the interplay between LOL and Eaxon, the axial MT strain,
εMT , for two individual MTs is presented for axon models
with varying LOL in Fig. 5. There are two gaps for both
the central MT (red curve) and an edge MT (blue curve)
because MTs do not extend all the way across the axon
(there is a gap for all MTs in the model). More importantly,
there is no evident plateau for the strain distribution of both
edge and central MTs in Fig. 5, a and b. This is in accor-
dance with the interaction length le

n being 0.565 mm.
Without a sufficiently large LOL, it is impossible for an
MT to achieve the theoretical maximal stress status. With
LOL increasing, MTs likely experience a prolonged strain
plateau as depicted in Fig. 5, c and d. Therefore, the strain
variance in MTs becomes less significant as LOL increases.
Ultimately, the overall Young’s modulus of axon can
approach the theoretical limit as predicted in Eq. 9 because
of nearly homogeneous strain distribution along each indi-
vidual MT.
Effect of tau protein spacing

In the axon, themost commonMAPpresent isMAP tau, a key
component for the load transfer among adjacent MTs. There-
fore, the density of tau proteins, being the average spacing be-
tween tau proteins d, should be a critical factor for the
structural integrity of the axon. Therefore, this section focuses
on studying the effect d on axonal stiffness and tensile
behavior by varying d from 25 to 175 nm. Note that LOL is
fixed at 4 mm, R being 45 nm. For the sake of simplicity and
discussion, results for only two extreme cases d ¼ 25 and
d ¼ 175 nm are presented in Fig. 6, a–c. It can be found that
with d increasing, free strain increases, whereas the stiffness
decreases. Despite significant changes in the averaged
stress-strain curves, the averaged MT strain εMT is quite
similar for d ¼ 25 and 175 nm. In contrast, both the average
tau protein orientation qtau and average tau protein strain
εtau experience significant changes as d increases. The differ-
ences in geometrical changes for tau proteins and MTs indi-
cate that tau proteins are a major component controlling the
mechanical responses of the axon. Moreover, the increasing
free strain and decreasing Young’s modulus associated with
an increase in d result from the increase of average load-trans-
ferring burden for each individual tau protein. In this section,
LOL is fixed whereas the averaged spacing of tau proteins d in-
creases, resulting in decreased number of tau proteins for each
pair of adjacent MTs and thus increased force exertion on per
tau protein. InFig. 6d, theYoung’smodulusEaxon decreases as
d increases from 25 to 125 nm. Subsequently, Eaxon fluctuates
around 400 MPa, namely reaching a plateau, as d increases
from 125 to 175 nm. The reason why Eaxon fluctuates is that
the stress per tau protein reaches a plateau, leading to a plateau
for strain of tau proteins and thus a plateau in Eaxon. Overall,
Young’s modulus Eaxon decreases as the tau protein spacing
d increases because the increasing load exertion on tau
Biophysical Journal 120, 3697–3708, September 7, 2021 3703



FIGURE 4 (a) Stress-strain responses for axon with different LOL (b) Tau protein orientation qtau versus axon strain ε. (c) Averaged tau protein strain εtau

versus axon strain ε. (d) Young’s Modulus Eaxon versus LOL. To see this figure in color, go online.
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proteins leads to greater deformation of tau proteins, thereby
softening the model axon.
Effect of axonal fiber diameter

In human axons across different areas of the nervous system,
the cross-sectional radius R can differ by up to two orders of
magnitude (�0.05–5 mm) (40), resulting from selective
pressure to lower biological cost through optimizing infor-
mation rates. From a mechanistic perspective, it is a critical
issue how the axons with different cross-section radii main-
tain structural integrity. Therefore, this section focuses on
investigating the effect of the cross-sectional radius R of
the axon model, ranging from 45 to 360 nm, i on the tensile
properties of the axon. Note that LOL is fixed at 4 mm, and d

being 25 nm. Fig. 7 a shows the stress-strain curves for axon
models with different R. It can be seen that there are very
clearly two stages of stress response, a nonlinear strain-
hardening stage, and a linear stage, the same as the stress-
strain curves discussed in the previous sections. In the
nonlinear stage, the stress responses are similar to each other
even as R increases; this similarity is because of the majority
of the stress arising from tau protein rotation independent of
R. In contrast, the axonal stress in the linear regime is mark-
edly lower for models with large R, indicating a decreasing
trend in the linear-stage Young’s modulus. Note that the
theoretical limit of Eaxon, Emax, for R ¼ 45 nm, is 626
MPa as mentioned in section 3.1, whereas for R ¼
270 nm it is 316 MPa. The above difference in theoretical
limits of Eaxon for different R is the consequence of
decreasing MT number density per cross section. The
decreasing MT number density results from the discrete na-
ture of MT distribution on the cross section. The cross-
sectional radius R can be considered as a variable based
3704 Biophysical Journal 120, 3697–3708, September 7, 2021
on the previously used R0, equal to 45 nm (a central MT
and 1 set of surrounding MTs). For R¼ nR0, the MT number

density rMT ¼ n
Aaxon

¼

��
R
R0

�
�
��

R
R0

�
þ1

�
�3þ1

�

R2�3� ffiffi
3

p . Therefore,

rMT decreases similar to the form R�1, whereas the theoret-
ical limit for Young’s modulus decreases in the same
manner. Similarly, Emax, the theoretical upper limit for
axon with radius R, also follows a similar pattern. As we
can see in Fig. 7 b, Eaxon is inversely proportional to R. How-
ever, the ratio of Eaxon over the theoretical limit Eaxon de-
creases as R increases, which is caused by density
decrease of tau proteins as shown in Figs. S7 and S8. As
shown in Fig. S8, MTs can be classified into central and
edge MTs, in which the central MTs have been colored
blue. The edge MTs with different color have different near-
est neighbors. Note that two discontinuous MTs at the same
MT site share the same MT index. It can be seen that for
model axon with R 45 nm, mean of the tau protein number
for central MT is 960 and that for edge MT is 587, in which
the ratio is around 1.63. As R increases, number of central
MTs, those with six nearest neighbors, also increases while
the difference among tau protein number also decreases,
1.40 for axon with R 270 nm. Therefore, the decreasing dif-
ference of tau protein number leads to the decrease ofEaxon

over the theoretical limit Emax decreases as R increases.
Overall, the decrease of Eaxon versus increase of R results
from both the decreasing density of MTs per cross section
and the decreasing difference of tau protein number.
Effect of tau protein orientation

In this section, the initial orientation angle of tau proteins
qtau

0 is varied to study its effect on mechanical performance



a
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b

d

FIGURE 5 Strain distribution along the long axis of twoMTs in the axon (the blue curve is for the central MTof the axon while the red curve is for the edge

MT of the axon) for LOL equal to (a) 0.5 mm, (b) 1 mm, (c) 2 mm, and (d) 4 mm. R ¼ 45 nm and d ¼ 25 nm. To see this figure in color, go online.
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of axon. As shown in Fig. 8 a, red lines represent those tau
proteins with initial orientation angles qtau

0 smaller than
90�. As qtau0 decreases, the tau proteins have an increasing
tendency to align along the axial direction of the axon. First,
the overlapped distance LOL is fixed at 4 mm. In Fig. 8 b, the
stress-strain curves of axon with different qtau

0 are shown,
showing an evolving pattern in mechanics of axon. As
qtau

0 decreases, axons experience a transition from J-shape
nonlinear elasticity to linear elasticity. As discussed in the
previous section, when qtau

0 is equal to 90�, the tau proteins
should first rotate and then elongate under axial tension of
axon, ultimately leading to the J-shape nonlinear elasticity.
As qtau

0 decreases, the initiation of elongation of tau pro-
a

c

b

d

FIGURE 6 (a) Stress-strain responses for axon with different tau protein spac

tein orientation qtau and tau protein strain εtau versus overall strain ε. (d) Young’

45 nm. To see this figure in color, go online.
teins becomes quicker, leading to a decreasing free-strain
stage. Therefore, when the cotangential of qtau

0 is bigger
than 40/45, the free-strain stage disappears and thus the
axons become linear elastic. Moreover, the stress-strain
curves are nearly identical for cotðqtau0Þ ¼ 60/45 and 80/
45. The Young’s modulus of axons Eaxonwith different
qtau

0 were obtained and shown in Fig. 8 b. Note that Eaxon

of J-shape stress-strain curves are calculated based on the
final linear stage. It can be seen that Eaxon decreases first,
then increases, and finally approaches a plateau as qtau

0

decreases. To investigate the effect of overlapped distance
LOL, the overlapped distance LOL was varied, whereas
qtau

0 was fixed. As the overlapped distance LOL decreases,
ing d. (b) Average MT strain εMT versus axon strain ε. (c) Averaged tau pro-

s modulus Eaxon versus tau protein spacing d. L ¼ 8 mm, LOL ¼ 4 mm, R ¼
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FIGURE 7 (a) Stress-strain curves for axon models with different cross-

section radius R. (b) Young’s modulus of the axon versus cross-section

radius R, and comparison with the theoretical limit Emax for a given R.

L ¼ 8 mm, LOL ¼ 4 mm, d ¼ 25 nm. To see this figure in color, go online.
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the free-strain stage keeps lengthening and the slope of the
final linear stage keeps decreasing, indicating softening
axons. As discussed in the previous section, when the over-
lapped distance is not sufficiently long, the stress-distribu-
tion inside axon is far from uniform and the stiffness of
MTs cannot be fully utilized. Overall, the initial orientation
a

c

FIGURE 8 Mechanical responses of axon models with different initial orienta

Stress-strain curves for axon models (c) Young’s modulus Eaxon of axon models (d

and identical q0tau. (The axon models are all 4 mm in overlap distance LOL except

see this figure in color, go online.
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angle of tau proteins qtau
0 is an important factor controlling

the mechanical performance of axons.
CONCLUSIONS

In summary, the mechanical properties of the axon,
composed of bundles of MT cross-linked by tau proteins,
were investigated through coarse grain molecular dynamics
simulations. Geometrical parameters such as overlap dis-
tance LOL, cross-sectional radius R, and tau protein spacing
d, were systematically varied to explore their effect on the
tensile mechanical properties of the axon. First, the mechan-
ical response of the axon under tension can be divided into
two stages, a nonlinear strain-hardening stage, and a linear
elastic stage. In the nonlinear strain-hardening stage, the
stress increases very slowly because of the nonaffine defor-
mation of tau proteins, mostly through rotation and MT
sliding. The average orientation of tau proteins decreases
from 90� (perpendicular to the loading direction) to some-
where around 50�, whereas both MTs and tau proteins expe-
rience a minor strain, indicating that the deformation in this
stage is mainly contributed by rigid-body like motion and
structural deformation rather than component strain. In the
linear elastic stage, the stress on the axon and the individual
components increases linearly with strain. Moreover, the
average orientation of tau proteins undergoes relatively small
change during this stage, whereas the strain of the MTs and
tau proteins increases dramatically, indicating that the me-
chanical behavior of the axon in this stage is dominated by
the material stretch of the individual components. As MT
b

d

tions of tau proteins q0tau under pure stretch (a) Overview of axon models (b)

) Stress-strain curves of axon models with different overlapped distance LOL
(d), 45 nm in cross-section radius R, and 25 nm in tau protein spacing d). To
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overlap distance LOL increases, the axonal Young’s modulus
Eaxon increases and gradually reaches the theoretical limit,
which is also in good agreement with the shear-lag model.
In addition, for LOL¼ 4 mm, the average value as reported
in the literature, Eaxon is �80% of the theoretical limit,
ensuring the structural integrity of axon. This could be a par-
tial explanation for the natural selection and development of
this MT length, which corresponds directly to LOL. Secondly,
as the tau protein spacing d is increased from 25 to 125 nm,
Eaxon decreases almost linearly. Subsequently, as the tau pro-
tein spacing d is increased further from 125 to 175 nm,
Young’s modulus of axon Eaxon only fluctuates around the
plateau value. The decreasing trend of Eaxon versus the in-
crease of d results from the increase of the average load
per tau protein, and thus leads to an increased deformation
of the tau proteins. Thirdly, as the cross-section radius R in-
creases, Eaxon decreases because of the decreased density of
MT number over the cross section. Overall, these research
findings provide an enhanced mechanistic perspective on
how natural selection resulted in biological axon geometrical
parameters. In addition, these findings can serve as a theoret-
ical basis for developing artificial MT complexes that can be
used for future medical applications. In the future, the
geometrical parameters of axons can be measured in real
axons of animal or human brains via biological experiments,
and those measurements in different brain regions, such as
cortical gyri and sulci, could be potentially used for explora-
tion of related neuroscience questions, e.g., interplay of
axonal wiring and neural growth in cortical folding
mechanisms.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2021.07.019.
AUTHOR CONTRIBUTIONS

X.W. and R.P. designed and guided the presented idea. N.L. performed sim-

ulations and analyzed data. P.C. helped analyze data. S.L. helped run sim-

ulations. T.L. and M.J.R. contributed to the interpretation of results. All

authors discussed the results and contributed to the final manuscript.
ACKNOWLEDGMENTS

N.L., R.P., and X.W. acknowledge the support from the National Science

Foundation, United States (Grant No. CMMI-1610812). T.L. and X.W. ac-

knowledges supports from National Science Foundation, United States

(Grant No. 2011369). Computational simulations are performed at the Uni-

versity of Georgia Advanced Computing Resource Center.
REFERENCES

1. Koser, D. E., A. J. Thompson,., K. Franze. 2016. Mechanosensing is
critical for axon growth in the developing brain. Nat. Neurosci.
19:1592–1598.
2. Franze, K., P. A. Janmey, and J. Guck. 2013. Mechanics in neuronal
development and repair. Annu. Rev. Biomed. Eng. 15:227–251.

3. Suter, D. M., and K. E. Miller. 2011. The emerging role of forces in
axonal elongation. Prog. Neurobiol. 94:91–101.

4. Betz, T., D. Koch, ., J. A. K€as. 2011. Growth cones as soft and weak
force generators. Proc. Natl. Acad. Sci. USA. 108:13420–13425.

5. Holland, M. A., K. E. Miller, and E. Kuhl. 2015. Emerging brain mor-
phologies from axonal elongation. Ann. Biomed. Eng. 43:1640–1653.

6. Lamoureux, P., R. E. Buxbaum, and S. R. Heidemann. 1989. Direct ev-
idence that growth cones pull. Nature. 340:159–162.

7. van den Bedem, H., and E. Kuhl. 2015. Tau-ism: the Yin and Yang of
microtubule sliding, detachment, and rupture. Biophys. J. 109:2215–
2217.

8. Spires-Jones, T. L., W. H. Stoothoff, ., B. T. Hyman. 2009. Tau path-
ophysiology in neurodegeneration: a tangled issue. Trends Neurosci.
32:150–159.

9. Pannese, E. 2015. Neurocytology: Fine Structure of Neurons, Nerve
Processes, and Neuroglial Cells. Springer, Cham.

10. Park, E., J. D. Bell, and A. J. Baker. 2008. Traumatic brain injury: can
the consequences be stopped? CMAJ. 178:1163–1170.

11. Lu, W., P. Fox, ., V. I. Gelfand. 2013. Initial neurite outgrowth in
Drosophila neurons is driven by kinesin-powered microtubule sliding.
Curr. Biol. 23:1018–1023.

12. Baas, P. W., and F. J. Ahmad. 2001. Force generation by cytoskeletal
motor proteins as a regulator of axonal elongation and retraction.
Trends Cell Biol. 11:244–249.

13. Tang-Schomer, M. D., A. R. Patel, ., D. H. Smith. 2010. Mechanical
breaking of microtubules in axons during dynamic stretch injury under-
lies delayed elasticity, microtubule disassembly, and axon degenera-
tion. FASEB J. 24:1401–1410.

14. Janmey, P. A., U. Euteneuer, ., M. Schliwa. 1991. Viscoelastic prop-
erties of vimentin compared with other filamentous biopolymer net-
works. J. Cell Biol. 113:155–160.

15. Brangwynne, C. P., F. C. MacKintosh,., D. A. Weitz. 2006. Microtu-
bules can bear enhanced compressive loads in living cells because of
lateral reinforcement. J. Cell Biol. 173:733–741.

16. Chandran, P. L., and M. R. K. Mofrad. 2009. Rods-on-string idealiza-
tion captures semiflexible filament dynamics. Phys. Rev. E Stat. Nonlin.
Soft Matter Phys. 79:011906.

17. Mofrad, M. R. K. 2008. Rheology of the cytoskeleton. Annu. Rev. Fluid
Mech. 41:433–453.

18. Silber, J., J. Cotton,., W. Grant. 2004. Computational models of hair
cell bundle mechanics: III. 3-D utricular bundles. Hear. Res. 197:112–
130.

19. Kim, T., W. Hwang, and R. D. Kamm. 2009. Computational analysis of
a cross-linked actin-like network. Exp. Mech. 49:91–104.

20. Claessens, M. M. A. E., M. Bathe,., A. R. Bausch. 2006. Actin-bind-
ing proteins sensitively mediate F-actin bundle stiffness. Nat. Mater.
5:748–753.

21. Head, D. A., A. J. Levine, and F. C. MacKintosh. 2003. Deformation of
cross-linked semiflexible polymer networks. Phys. Rev. Lett.
91:108102.

22. Onck, P. R., T. Koeman, ., E. van der Giessen. 2005. Alternative
explanation of stiffening in cross-linked semiflexible networks. Phys.
Rev. Lett. 95:178102.

23. Tolomeo, J. A., and M. C. Holley. 1997. Mechanics of microtubule
bundles in pillar cells from the inner ear. Biophys. J. 73:2241–2247.

24. Bathe, M., C. Heussinger, ., E. Frey. 2008. Cytoskeletal bundle me-
chanics. Biophys. J. 94:2955–2964.

25. Ghajar, J. 2000. Traumatic brain injury. Lancet. 356:923–929.

26. Kanaan, N. M., G. F. Pigino,., G. A. Morfini. 2013. Axonal degener-
ation in Alzheimer’s disease: when signaling abnormalities meet the
axonal transport system. Exp. Neurol. 246:44–53.
Biophysical Journal 120, 3697–3708, September 7, 2021 3707

https://doi.org/10.1016/j.bpj.2021.07.019
https://doi.org/10.1016/j.bpj.2021.07.019
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref1
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref1
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref1
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref2
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref2
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref3
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref3
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref4
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref4
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref4
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref5
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref5
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref6
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref6
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref7
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref7
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref7
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref8
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref8
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref8
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref9
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref9
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref10
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref10
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref11
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref11
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref11
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref12
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref12
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref12
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref13
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref13
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref13
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref13
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref14
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref14
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref14
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref15
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref15
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref15
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref16
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref16
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref16
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref17
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref17
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref18
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref18
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref18
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref19
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref19
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref20
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref20
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref20
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref21
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref21
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref21
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref22
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref22
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref22
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref23
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref23
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref24
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref24
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref25
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref26
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref26
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref26


Liu et al.
27. Peter, S. J., and M. R. K. Mofrad. 2012. Computational modeling of
axonal microtubule bundles under tension. Biophys. J. 102:749–757.

28. Yu, W., and P. W. Baas. 1994. Changes in microtubule number and
length during axon differentiation. J. Neurosci. 14:2818–2829.

29. Liu, N., X. Zeng, ., X. Wang. 2016. Tough and strong bioinspired
nanocomposites with interfacial cross-links. Nanoscale. 8:18531–
18540.

30. Wei, X., M. Naraghi, and H. D. Espinosa. 2012. Optimal length scales
emerging from shear load transfer in natural materials: application to
carbon-based nanocomposite design. ACS Nano. 6:2333–2344.

31. Liu, N., R. Pidaparti, and X. Wang. 2017. Mechanical performance of
graphene-based artificial nacres under impact loads: a coarse-grained
molecular dynamic study. Polymers (Basel). 9:134.

32. Liu, N., J. Hong, ., X. Wang. 2017. Fracture mechanisms in multi-
layer phosphorene assemblies: from brittle to ductile. Phys. Chem.
Chem. Phys. 19:13083–13092.

33. Xia, W., L. Ruiz, ., S. Keten. 2016. Critical length scales and strain
localization govern the mechanical performance of multi-layer gra-
phene assemblies. Nanoscale. 8:6456–6462.

34. Chen, B., P. D. Wu, and H. Gao. 2009. A characteristic length for stress
transfer in the nanostructure of biological composites. Compos. Sci.
Technol. 69:1160–1164.

35. de Rooij, R., and E. Kuhl. 2018. Physical biology of axonal damage.
Front. Cell. Neurosci. 12:144.

36. de Rooij, R., K. E. Miller, and E. Kuhl. 2017. Modeling molecular
mechanisms in the axon. Comput. Mech. 59:523–537.

37. de Rooij, R., and E. Kuhl. 2018. Microtubule polymerization and cross-
link dynamics explain axonal stiffness and damage. Biophys. J.
114:201–212.

38. Lazarus, C., M. Soheilypour, and M. R. K. Mofrad. 2015. Torsional
behavior of axonal microtubule bundles. Biophys. J. 109:231–239.

39. Jakobs, M., K. Franze, and A. Zemel. 2015. Force generation by molec-
ular-motor-powered microtubule bundles; implications for neuronal
polarization and growth. Front. Cell. Neurosci. 9:441.

40. Perge, J. A., J. E. Niven, ., P. Sterling. 2012. Why do axons differ in
caliber? J. Neurosci. 32:626–638.

41. Rodney, D., M. Fivel, and R. Dendievel. 2005. Discrete modeling of the
mechanics of entangled materials. Phys. Rev. Lett. 95:108004.

42. Bertaud, J., Z. Qin, andM. J. Buehler. 2010. Intermediate filament-defi-
cient cells are mechanically softer at large deformation: a multi-scale
simulation study. Acta Biomater. 6:2457–2466.
3708 Biophysical Journal 120, 3697–3708, September 7, 2021
43. Sandersius, S. A., and T. J. Newman. 2008. Modeling cell rheology
with the subcellular element model. Phys. Biol. 5:015002.

44. Blundell, J. R., and E. M. Terentjev. 2009. Stretching semiflexible fil-
aments and their networks. Macromolecules. 42:5388–5394.

45. Rosenberg, K. J., J. L. Ross,., J. Israelachvili. 2008. Complementary
dimerization of microtubule-associated tau protein: implications for
microtubule bundling and tau-mediated pathogenesis. Proc. Natl.
Acad. Sci. USA. 105:7445–7450.

46. Pampaloni, F., G. Lattanzi,., E.-L. Florin. 2006. Thermal fluctuations
of grafted microtubules provide evidence of a length-dependent persis-
tence length. Proc. Natl. Acad. Sci. USA. 103:10248–10253.

47. Elie-Caille, C., F. Severin, ., A. A. Hyman. 2007. Straight GDP-
tubulin protofilaments form in the presence of taxol. Curr. Biol.
17:1765–1770.

48. Hess, H., J. Clemmens,., V. Vogel. 2005. Molecular self-assembly of
‘‘nanowires’’and ‘‘nanospools’’ using active transport. Nano Lett.
5:629–633.

49. Ziebert, F., H. Mohrbach, and I. M. Kuli�c. 2015. Why microtubules run
in circles: mechanical hysteresis of the tubulin lattice. Phys. Rev. Lett.
114:148101.

50. Pearce, S. P., M. Heil,., A. Prokop. 2018. Curvature-sensitive kinesin
binding can explain microtubule ring formation and reveals chaotic dy-
namics in a mathematical model. Bull. Math. Biol. 80:3002–3022.

51. Mehrbod, M., and M. R. K. Mofrad. 2011. On the significance of
microtubule flexural behavior in cytoskeletal mechanics. PLoS One.
6:e25627.

52. Tang, Z., N. A. Kotov, ., B. Ozturk. 2003. Nanostructured artificial
nacre. Nat. Mater. 2:413–418.

53. Shao, Z., and F. Vollrath. 2002. Surprising strength of silkworm silk.
Nature. 418:741.

54. Rho, J. Y., R. B. Ashman, and C. H. Turner. 1993. Young’s modulus of
trabecular and cortical bone material: ultrasonic and microtensile mea-
surements. J. Biomech. 26:111–119.

55. Cox, H. L. 1952. The elasticity and strength of paper and other fibrous
materials. Br. J. Appl. Phys. 3:72–79.

56. Bu�ee, L., T. Bussière, ., P. R. Hof. 2000. Tau protein isoforms, phos-
phorylation and role in neurodegenerative disorders. Brain Res. Brain
Res. Rev. 33:95–130.

http://refhub.elsevier.com/S0006-3495(21)00605-6/sref27
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref27
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref28
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref28
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref29
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref29
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref29
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref30
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref30
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref30
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref31
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref31
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref31
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref32
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref32
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref32
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref33
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref33
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref33
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref34
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref34
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref34
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref35
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref35
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref36
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref36
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref37
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref37
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref37
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref38
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref38
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref39
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref39
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref39
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref40
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref40
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref41
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref41
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref42
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref42
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref42
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref43
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref43
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref44
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref44
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref45
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref45
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref45
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref45
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref46
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref46
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref46
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref47
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref47
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref47
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref48
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref48
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref48
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref48
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref48
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref48
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref48
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref49
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref49
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref49
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref49
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref50
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref50
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref50
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref51
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref51
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref51
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref52
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref52
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref53
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref53
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref54
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref54
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref54
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref55
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref55
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref56
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref56
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref56
http://refhub.elsevier.com/S0006-3495(21)00605-6/sref56

	Geometrical nonlinear elasticity of axon under tension: A coarse-grained computational study
	Introduction
	Materials and methods
	Results and discussion
	Response of the axon to uniaxial stretching
	Effect of MT overlap distance
	Effect of tau protein spacing
	Effect of axonal fiber diameter
	Effect of tau protein orientation

	Conclusions
	Supporting material
	Author contributions
	Acknowledgments
	References


