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Abstract—District cooling energy plants (DCEPs) consisting
of chillers, cooling towers, and thermal energy storage
(TES) systems consume a considerable amount of electricity.
Optimizing the scheduling of the TES and chillers to take
advantage of time-varying electricity price is a challenging
optimal control problem. The classical method, model predictive
control (MPC), requires solving a high dimensional mixed-
integer nonlinear program (MINLP) because of the on/off
actuation of the chillers and charge/discharge of TES, which are
computationally challenging. RL is an attractive alternative: the
real time control computation is a low-dimensional optimization
problem that can be easily solved. However, the performance
of an RL controller depends on many design choices.

In this paper, we propose a Q-learning based reinforcement
learning (RL) controller for this problem. Numerical simulation
results show that the proposed RL controller is able to
reduce energy cost over a rule-based baseline controller by
approximately 8%, comparable to savings reported in the
literature with MPC for similar DCEPs. We describe the
design choices in the RL controller, including basis functions,
reward function shaping, and learning algorithm parameters.
Compared to existing work on RL for DCEPs, the proposed
controller is designed for continuous state and actions spaces.

I. INTRODUCTION

In the U.S., 75% of the electricity is consumed by
buildings, and a large portion of that is due to heating,
ventilation, and air conditioning (HVAC) systems [1]. In
cities and campuses, a large part of the HVAC’s share of
electricity is consumed in District Cooling Energy Plants
(DCEPs). A DCEP produces and supplies chilled water to
a group of buildings it serves, and the air handling units in
those buildings use the chilled water to cool and dehumidify
air before supplying it to building interiors. Figure 1 shows a
schematic of such a plant, which consists of multiple chillers
that produce chilled water, a cooling tower that rejects the
heat to the environment, and a thermal energy storage system
(TES) for storing chilled water to take the advantage of time-
varying electricity price.

At present, DCEPs are typically operated by rule based
control algorithms. But making the best use of the chillers
and the TES to keep electricity cost at the minimum requires
non-trivial decision making. Because of time coupling,
especially due to the TES, the problem is best cast as an
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optimal control problem, of which the objective is the total
electricity cost while meeting the thermal load from the
buildings and equipment limitations are the constraints.

A growing body of work has proposed algorithms for
optimal real-time control of DCEPs. This includes Model
Predictive Control (MPC), such as [2]–[6]. MPC requires
solving a high-dimensional nonlinear mixed integer program
(MINLP) at every instant, since certain decision variables,
such as chiller on/off and TES charge/discharge commands,
are discrete and dynamics of the equipment in DCEPs
are nonlinear. Solving a large MINLIP is computationally
intractable. An MILP approximation is sometimes used,
though solving a large MILP is also challenging.

An alternative to MPC is Reinforcement Learning (RL)
which approximates an optimal policy from data collected
from a physical system, or more frequently, its simulation.
Despite a computationally burdensome learning phase, real-
time control is simpler since control computation is an
evaluation of a state-feedback policy. This advantage is
particularly strong for problems involving discrete decision
variables. RL is thus an attractive candidate for optimal
control of DCEPs.

In this paper we propose an RL controller for a DCEP with
multiple chillers, a cooling tower and a TES, with a goal of
reducing energy cost while meeting the load from buildings.
The proposed controller uses a batch RL algorithm similar
to the “convex Q-learning” proposed in recent work [7]
and the least squares policy iteration (LSPI) algorithm [8].
Closed loop simulations with a model calibrated using data
from a Singapore campus shows a cost saving around 8%
comparing to the baseline. This value is comparable to that
of MPC controllers with MILP formulation reported in [2],
[6]. Compared to MPC, the real time computation burden of
the RL controller is trivial.

Designing RL controllers for practical applications with
non-trivial dynamics is challenging. Firstly, its performance
depends on myriad design choices: the choice of the state
space, cost and reward, function approximation architecture
and bases, learning algorithm and exploration method,
etc. Secondly, training a RL controller is computationally
intensive. Thirdly, if a particular set of design choices lead
to a policy that does not perform well, there is no principled
method to look for improvement. Although RL is being
extensively studied in the control community, most works
demonstrate their algorithms on plants with simple dynamics



with a small number of states and inputs [9], [10]. The model
for a DCEP used in this paper, arguably still simple compared
to available simulation models (e.g. [11]), is quite complex:
it has 8 states, 5 control inputs, 4 disturbance inputs, and
requires solving an optimization problem to compute the next
state given the current state, control, and disturbance.

A number of papers have investigated the use of RL
for control of HVAC systems; see [12]–[14] and references
therein. The refs. [12], [13] are on control of air handling
units (AHUs), which are considerably simpler than DCEPs.
The refs. [15]–[17] are more relevant to the topic of this
paper: control of a DCEP. In [15], [16] RL controllers to
operate chillers are proposed using Watkins’ Q-learning. The
problem formulation is narrower; there is no TES, and the
controller in [15] computes only one setpoint, the chilled
water supply water temperature setpoint, while [16] computes
two setpoints, operating frequencies of cooling tower fans
and cooling water pumps. Another relevant work [17] also
uses Q learning to train an controller that determines zone
temperature setpoints and TES charge/discharge flow rates.
However, trajectories of external inputs, e.g., outside air
temperature and electricity price, are the same for all training
days in [17]. Therefore, the RL controller needs to be
retrained for every distinct external input trajectory.

The contributions of this work over the related literature
on “RL for DCEPs” cited above are as follows. One, the
proposed RL controller does not require discretizing the state
space like the prior works [15], [16]. Two, it computes all
five setpoints required to operate a DCEP (described in detail
in Section II), compared to one or two as done in the prior
works. Three, in contrast to works such as [17], we treat
external inputs as time-varying disturbances and include them
as RL states, making the proposed RL controller applicable
to any time-varying disturbances, not just the trajectories
considered during training.

The rest of the manuscript is organized as follows.
Section II describes the DCEP, the control problem, and
the simulation model. Section III describes the proposed
controller, and Section IV provides its simulation-based
evaluation. Section V concludes the paper.

II. SYSTEM DESCRIPTION AND CONTROL PROBLEM

The DCEP under consideration is shown in Figure 1. The
heat load from the buildings is absorbed by the chilled water
supplied by the DCEP, and thus the return chilled water is
warmer. The related variables in this process are denoted by
superscript lw for “load water”. The chiller loop (subscript
ch) removes this heat and transmits it to the cooling water
loop (subscript cw). The cooling water loop then sends the
heat to the cooling tower, where the heat is rejected to the
ambient. Connected to the chilled water loop is a TES tank
that stores water (subscript tw). The total volume of the water
in the TES tank is constant, but a thermocline separates two
volumes: cold water that is supplied by the chiller (subscript
twc for “tank water, cold”) and warm water returned from
the load (subscript tww for “tank water, warm”).

A. DCEP dynamics

By discretizing time with a sampling period ts, the control
command for the DCEP at time step k is:

uk = [nch
k , ṁlw

k , ṁtw
k , ṁcw

k , ṁoa
k ]

T 2 U, (1)

where nch is the number of active chillers, and ṁ is mass
flow rate of water, with superscripts describing the name of
a water loop, except ṁoa, which is the mass flow rate of air
passing through the cooling tower. Each of these variables
can be independently chosen as setpoints since lower level
PI-control loops maintain them. There are limits to these
setpoints, which determine the admissible input set U:

U
�
= {0, . . . , nch

max}⇥ [ṁlw
min, ṁ

lw
max]⇥ [ṁtw

min, ṁ
tw
max] . . .

⇥[ṁcw
min, ṁ

cw
max]⇥ [ṁoa

min, ṁ
oa
max] ⇢ R5. (2)

The state of the DCEP is xp (superscript p is for plant):

xp
k

�
= [T lw,r

k , stww
k , stwc

k , T twc
k , T tww

k , T chw,s
k , T cw,r

k , T cw,s
k ]T , (3)

where stww, stwc are the volumes of the warm water and
cold water in the TES tank. The other state variables are
temperatures at various locations; see Figure 1 (subscript
“, s” for supply and “, r” for return) . The plant state xp is
affected by exogenous disturbances wp

k := [T oawb
k , qL,ref

k ]T 2
R2, where qL,ref

k is the cooling load needs to be removed from
buildings, and T oawb

k is the ambient wet bulb temperatures.
There is a large literature on estimating and/or forecasting
loads for buildings; see [18], [19] and references therein. We
therefore assume qL,ref

k is known to the controller at k.
The control command and disturbances affect the state

through a highly nonlinear dynamic model:
xp
k+1 = f(xp

k, uk, w
p
k), (4)

that is described in the Appendix in [20].

B. Electrical demand and energy cost

The electricity cost at time k is:

cE
k = ts⇢kP

tot
k , (5)

where ⇢k (USD
kWh ) is the electricity price and the total power

consumption of the DCEP (P tot) is the sum of that from
chillers (P ch), the cooling tower (P ct), the chilled water pump
(P cw,pump), and the cooling water pump (P cw,pump):

P tot
k = P ch

k + P ct
k + P chw,pump

k + P cw,pump
k , (6)

Details of the terms P (·) can be found in [20].
C. The control problem

The control goal is to operate the DCEP in a way so that
the cost is minimized while the cooling load qL,ref

k is met.
The control problem for a scheduling horizon T is then:

min
{uk}T�1

k=0

T�1X

k=0

cE
k (7)

s.t. xp
k+1 = f(xp

k, uk, w
p
k), xp

0 = x,

qLk (x
p
k, uk) = qL,ref

k and uk 2 U(xp
k, wk).



Fig. 1. Detailed description of District Cooling Energy Plant.

where qLk (x
p
k, uk) is the actual cooling load met by the DCEP,

which is a complicated function of the states and inputs, and

U(xp
k, wk)

�
=
�
uk 2 U : ṁlw

k � ṁlw
min, q̇ct,rej

k � q̇evap
k ,

ṁlw
k + ṁtw

k  ṁchw
k ,

T cw,s,�
k+1  T cw,s

k+1  T cw,s,+
k+1 ,

Stw
min  Stwc

k + tsṁ
tw
k  Stw

max

 
,

(8)

where T cw,s,�
k+1 = max

�
25, T oawb

k+1 + 0.5
�

and T cw,s,+
k+1 =

min
�
T cw,r
k , 40

�
.

The solution of (7) provides the best achievable
control performance over the horizon T . The optimization
problem (7) is a high-dimensional MINLP due to nch

k being
an integer (with the number of integer variables equal to the
planning horizon T ) and the nonlinear dynamics (4). Solving
large MINLPs is intractable at present. In the following we
propose a RL controller whose real-time computation burden
is extremely small.

We omit the details of the dynamic model xk+1 =
f(xp

k, uk, w
p
k) here due to lack of space; the interested

reader is referred to [20]. We note that the simulation model
is highly nonlinear and complex: it requires solving an
optimization problem to compute the function f(·, ·, ·).

III. RL BASICS AND PROPOSED CONTROLLER

A. RL basics

For the following construction, let x represent the state
with state space X and u the input with input space U(x).
Now consider the following infinite horizon discounted
optimal control problem

J⇤(x̄) =min
U

1X

k=0

�kc(xk, uk), x0 = x̄, (9)

s.t. xk+1 = F (xk, uk), uk 2 U(xk),

where U
�
= {u0, . . . , }, c : X ⇥ U ! R�0 is the stage cost,

� 2 (0, 1) is the discount factor, F (·, ·) defines the dynamics,
and J⇤ : X ! R+ is the optimal value function. The goal of

the RL framework is to learn an approximate optimal policy
� : X ! U for the problem (9) without requiring explicit
knowledge of the model F (·, ·). The learning process is based
on the Q function. Given a policy � for the problem (9), the
Q function associated with this policy is defined as:

Q�(x, u) =
1X

k=0

�kc(xk, uk), x0 = x, u0 = u, (10)

where for k � 0 we have xk+1 = F (xk, uk) and for k � 1
we have uk = �(xk). A well known fact is that the optimal
policy satisfies [21]:

�⇤(x) = arg min
u2U(x)

Q⇤(x, u), for all x 2 X, (11)

where Q⇤ �
= Q�⇤ is the Q function for the optimal

policy. Further, for any policy � the Q function satisfies the
following fixed point relation:

Q�(x, u) = c(x, u) + �Q�

�
x+,�(x+)

�
, (12)

for all u 2 U(x) and x 2 X and x+ = F (x, u). The above
relation is termed here as the fixed-policy Bellman equation.

B. RL algorithm: data driven policy iteration

The learning algorithm has two parts: policy evaluation
and policy improvement. First, in policy evaluation, a
parametric approximation to the fixed policy Q function is
learned by minimizing the residual error from (12). Second,
in policy improvement, the learned approximation is used to
define a new policy based on (11). For policy evaluation,
suppose for a policy � the Q function is approximated as:

Q✓
�(x, u) ⇡ q̂✓(x, u), (13)

where q̂✓(·, ·) is the function approximator and ✓ 2 Rd is the
parameter vector. To fit the approximator, suppose that the
system is simulated for Tsim time step, then we can obtain
the temporal difference error for the approximator:

dk(✓) = c(xk, uk) + �q̂✓(xk+1,�(xk+1))� q̂✓(xk, uk),
(14)



for k = [0, Tsim-1]. We can then obtain ✓⇤ by solving the
following optimization problem:

✓⇤
�
= argmin

✓
kD(✓)k2 + ↵k✓ � ✓̄k2, (15)

where D(✓)
�
= [d0(✓), . . . , dTsim�1(✓)]. The term k✓ � ✓̄k2

is a regularizer and ↵ is a gain. The values of ✓̄ and
↵ are specified in step 3) of Algorithm 1. The solution
to (15) results in Q✓⇤

� , which is an approximation to Q�.
The quantity Q✓⇤

� can be used to obtain an improved policy,
denoted �+, through:

�+(x) = arg min
u2U(x)

Q✓⇤

� (x, u), for all x 2 X. (16)

This process of policy evaluation (15) and policy
improvement (16) can be repeated, which is described
formally in Algorithm 1.

Algorithm 1: Data Driven Policy Iteration: Batch
mode and off-policy
Result: An approximate optimal policy �Npol(x).
Input: Tsim, ✓0, Npol, � > 1
for j = 0, . . . ,Npol � 1 do

1) Obtain input sequence {uj
k}

Tsim�1
k=0 , initial state

xj
0, and state sequence {xj

k}
Tsim
k=1.

2) For k = 1, . . . ,Tsim, obtain:
�j(xk) = argminu2U(xj

k)
q̂✓j (xj

k, u).

3) Set ✓̄ = ✓j and ↵ = j
� appearing in (15).

4) Use the samples {uj
k}

Tsim�1
k=0 , {xj

k}
Tsim
k=0, and

{�j(xk)}Tsim
k=1 to construct and solve (15) for ✓⇤.

5) Set ✓j+1 = ✓⇤.
end

This algorithm is inspired by: (i) the Batch Convex-Q
learning algorithm found in [7, Section III] and (ii) the
least squares policy evaluation (LSPI) algorithm [8]. The
approach here is simpler than the batch optimization problem
that underlies the algorithm in [7, section III], which has
an objective function that itself contains an optimization
problem. In contrast to [8], our formulation ensures non-
negativity of the Q-function.
C. Proposed RL controller for DCEP

We now specify the ingredients required to apply
Algorithm 1 to obtain an RL controller for the DCEP from
simulation data.

1) State space description: To define the state space for
RL, we first denote wk as the vector of exogenous variables:

wk = [(wp
k)

T , ⇢k, ⇢̄k] 2 R4. (17)

where ⇢̄k = 1
⌧

Pk
t=k�⌧ ⇢t is a backwards moving average of

the electricity price with ⌧ chosen to represent 4 hours. The
expanded state for RL is:

xk
�
= [xp

k, wk]
T 2 X

�
=⇢ R12. (18)

Note that all entries of xk can be measured with
commercially available sensors (e.g., Toawb), or estimated
from measurements (e.g., qL,ref), or known via real-time
communication (e.g., ⇢k and ⇢̄k).

2) Design of stage cost: We wish to obtain a policy that
tracks the load qL,ref

k whilst spending minimal amount of
money, so we choose:

c(xk, uk)
�
= cE

k + 
⇣
qLk � qL,ref

k

⌘2
, (19)

where � 1 to prefer load tracking over energy cost.
3) Approximation architecture: We choose the following

linear-in-the-parameter approximation of the Q function:

Q✓
�(x, u) ⇡ q̂✓(x, u) =

dX

`=1

 `(x, u)✓`, (20)

where  `(x, u) are basis functions and ✓ 2 Rd is the
parameter vector. We elect a quadratic basis and thus the
approximation (20) can be equivalently expressed as:

Q✓
�(x, u) = [x, u]P✓[x, u]

T , (21)

where P✓ is an appropriately chosen positive semidefinite
matrix. The positive semidefiniteness is imposed since the
Q-function is a discounted sum of non-negative terms (10).

4) Exploration strategy: We utilize a modified ✏�greedy
exploration scheme. At time step k of iteration j, we obtain
the input uj

k from one of three methods: (i) the policy in step
2) of Algorithm 1, (ii) uniformly random feasible inputs, and
(iii) the baseline controller described in Section IV-A. The
choice to use either of the three controllers is determined by
the probability mass function ⌫jexp 2 R3, which depends on
the iteration index of the policy iteration loop:

⌫jexp =

(
[0, 0.1, 0.9] for j  5.

[0.5, 0.25, 0.25] for j > 5.
(22)

The entries correspond to the probability of using the
corresponding control strategy appeared in the (i)-(iii) order.
The rational for this choice is that the BL controller provides
“reasonable” state input examples for the RL algorithm in the
early learning iterations so to steer the parameter values in
the correct direction. After this early learning phase, weight
is shifted towards the current working policy so to force the
learning algorithm to update the parameter vector in response
to its actions.
D. Real time implementation

Once the RL controller is trained, it computes the control
command in real-time as:

uk := �⇤(xk) = arg min
u2U(xk)

Q✓̂(xk, u), (23)

where ✓̂ is the parameter vector learned after Npol policy
improvements. Due to non-convexity of the set U(xk) and
integer nature of nch

k , the problem (23) is non-convex.
To solve it, for each possible value of nch

k , we solve
the corresponding continuous variable nonlinear program—
a simple problem with a dimension of only four—using
CasADi/IPOPT and then choose the minimum out of (nch

max+
1) solutions.



TABLE I
SIMULATION PARAMETERS

Parameter Unit value Parameter Unit value
� N/A 100 � N/A 0.97
Tsim N/A 432 Npol N/A 50
ts minutes 10 d N/A 35
 N/A 500 ✓0 N/A random

⌧ hours 4 Stwc
max
⇢w

/
Stwc

min
⇢w

m3 45/900
nch

max N/A 7 ṁtw
max/ṁ

tw
min

kg
sec 30/-30

ṁlw
max/ṁ

lw
min

kg
sec 350/20 ṁcw

max/ṁ
cw
min

kg
sec 300/20

*⇢w is the density of water (kg/m3).

IV. PERFORMANCE EVALUATION

A. Rule-based Baseline Controller

The RL controller’s performance is compared to that of
a rule-based baseline controller (BL) that determines uk =
[nch

k , ṁlw
k , ṁtw

k , ṁcw
k , ṁoa

k ]
T as follows. The quantity ṁlw

is determined based on the nominal temperatures of chilled
water in the cooling coil (7 and 12 Celsius for T chw,s and
T chw,r, respectively). The TES water flow rate ṁtwis chosen
based on a comparison between ⇢ and ⇢̄. If ⇢  ⇢̄, the TES
is charged at maximum flow rate until reaching its bound.
Similarly, if ⇢ � ⇢̄, the TES is discharged at maximum flow
rate until reaching its bound. The number of chillers nch is
determined based on the required ṁlw and ṁtw. The cooling
water flow rate ṁcwis determined based on nch and qL,ref. The
air flow rate ṁoa is determined based on the inlet conditions
of the cooling tower to ensure proper operation.
B. Simulation setup

The parameters of the simulation model in Section II-A
and electrical demand model in Section II-B are identified
using data from the United World College of South East Asia
Tampines Campus in Singapore [22], [23]. The cooling load
and weather data are incorporated in the data set, see [20]
for details. The real-time electricity price used in off-line
learning and in real-time control is a scaled version of PJM’s
locational margin price during Sept. 6-12, 2021 [24]. Other
relevant simulation parameters are located in Table I. The
policy evaluation problem (15) is solved using CVX [25].
The optimization problems to update the policy and the
DCEP dynamics are solved using CasADi/IPOPT [26], [27].
C. Numerical Results and Discussion

While both the RL controller and the baseline controller
meet the cooling load requirement, the RL controller
outperforms the baseline controller. The total electricity cost
of the RL controller - $2,051/week - compared to that of the
baseline controller - $2,214/week, reaches a saving of 8%.
For comparison, savings by MPC controllers with mixed-
integer formulation reported in the literature are 9.7% in [2]
and 10.8% in [6].

Simulations are done for a week; the plots below show
only two days to avoid clutter. The results presented are

“out-of-sample” results, meaning the external disturbance

wk used in the closed loop simulations are different from

those used in training.

The cost savings by the RL controller comes from its
ability to use the TES to shift the peak electric demand
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Fig. 2. Power consumption and real-time electricity price.

to periods of low price better than the baseline controller;
see Figure 2. The cause for this difference is that the RL
controller profits through the variation in the electricity price
well, or at least better than the BL controller. This can be seen
in Figure 3. The RL controller always discharges the TES
during the peak electricity price while the baseline controller
sometimes cannot do so because the volume of cold water is
already at its minimum bound. The BL controller discharges
the TES as soon as the electricity price rises, which may
result in insufficient cold water stored in the TES when
the electricity price reaches its maximum. While both the
controllers use the same price information, the baseline
controller cannot use that information as effectively as the
RL controller.

48 60 72 84 96
Time (hours)

0

25%

50%

75%

100%

S
tw

c
 (%

)

0

0.05

0.1

0.15

0.2

El
ec

 P
ric

e 
($

/k
W

h)BL RL k

Fig. 3. TES cold water volume along with electricity price.

An alternate view of this behavior can be obtained by
looking at the times when the chillers are turned on and off
and the resultant supplied cooling, since using chillers cost
much more than using the TES. We can see from Figure 4
that both BL and RL controllers shift the cooling they provide
to the times when electricity is cheap. But the BL controller
is not able to line up the supplied cooling with low price as
well as the RL controller.
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Fig. 4. Cooling load, cooling provided, and electricity price.

Another benefit of the RL controller is that it cycles the
chillers less than the BL controller even the cost of switching
between on-off status of chillers is not incorporated in the



cost function; see Figure 5. Fast cycling decreases the life
expectancy of a chiller greatly.
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Fig. 5. Number of active chillers with respect to real-time electricity price
for rule-based controller and RL controller

D. Lessons learned

Training of the RL controller is an iterative task that
required trying many various configurations of the parameters
appearing in Table I. In particular,

1) If the value of  is too small, the controller will not
learn to track the load qL,ref

k . On the other hand, if 
is too large the controller will not save energy cost.

2) The choice of basis is critical. Redundant basis
functions can lead to overfitting, which causes poor
out-of sample performance of the policy. We avoid this
effect by carefully selecting a reduced quadratic basis;
see [20] for details. These choices were made based
on physical and empirical intuition.

3) The condition number of (15) significantly affects the
performance of Algorithm 1. The relative magnitudes
of state and input values fundamentally determines the
condition number. With scaling of the states/inputs, the
condition number was reduced from 1020 to 103.

V. CONCLUSION

We proposed a RL controller for a district cooling energy
plant that shows promise. The energy cost savings obtained
by the proposed controller - 8% over baseline - is comparable
to that obtained with MPC reported in other works, while
requiring only a fraction of real-time computation.

In future work, we will test the robustness of the RL
controller under different disturbance trajectories. We would
also like to explore non-linear bases, such as neural networks,
and examine convergence of the learning algorithm.

REFERENCES

[1] “Commercial buildings energy consumption survey (CBECS):
Overview of commercial buildings, 2012,” Energy information
administration, Department of Energy, U.S. Govt., Tech. Rep.,
December 2012.

[2] M. J. Risbeck, C. T. Maravelias, J. B. Rawlings, and R. D.
Turney, “A mixed-integer linear programming model for real-time
cost optimization of building heating, ventilation, and air conditioning
equipment,” Energy and Buildings, vol. 142, pp. 220 – 235, 2017.

[3] J. B. Rawlings, N. R. Patel, M. J. Risbeck, C. T. Maravelias, M. J.
Wenzel, and R. D. Turney, “Economic MPC and real-time decision
making with application to large-scale HVAC energy systems,”
Computers & Chemical Engineering, vol. 114, pp. 89–98, 2018.

[4] W. J. Cole, T. F. Edgar, and A. Novoselac, “Use of model predictive
control to enhance the flexibility of thermal energy storage cooling
systems,” in American Control Conference, 2012, pp. 2788–2793.

[5] C. R. Touretzky and M. Baldea, “Integrating scheduling and control for
economic MPC of buildings with energy storage,” Journal of Process

Control, vol. 24, no. 8, pp. 1292–1300, 2014.

[6] K. Deng, Y. Sun, S. Li, Y. Lu, J. Brouwer, P. G. Mehta, M. Zhou, and
A. Chakraborty, “Model predictive control of central chiller plant with
thermal energy storage via dynamic programming and mixed-integer
linear programming,” IEEE Transactions on Automation Science and

Engineering, vol. 12, no. 2, pp. 565–579, 2015.
[7] F. Lu, P. G. Mehta, S. P. Meyn, and G. Neu, “Convex Q-Learning,” in

2021 American Control Conference (ACC). , 2021, pp. 4749–4756.
[8] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” The

Journal of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.
[9] G. Banjac and J. Lygeros, “A data-driven policy iteration scheme based

on linear programming,” in 2019 IEEE 58th Conference on Decision

and Control (CDC). IEEE, 2019, pp. 816–821.
[10] B. Luo, D. Liu, H.-N. Wu, D. Wang, and F. L. Lewis, “Policy gradient

adaptive dynamic programming for data-based optimal control,” IEEE

Transactions on Cybernetics, vol. 47, no. 10, pp. 3341–3354, 2017.
[11] C. Fan, K. Hinkelman, Y. Fu, W. Zuo, S. Huang, C. Shi,

N. Mamaghani, C. Faulkner, and X. Zhou, “Open-source modelica
models for the control performance simulation of chiller plants with
water-side economizer,” Applied Energy, vol. 299, p. 117337, 2021.

[12] C. Zhang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna,
“Building HVAC scheduling using reinforcement learning via neural
network based model approximation,” in Proceedings of the 6th ACM

International Conference on Systems for Energy-Efficient Buildings,

Cities, and Transportation, ser. BuildSys ’19. Association for
Computing Machinery, 2019, p. 287–296.

[13] N. S. Raman, A. M. Devraj, P. Barooah, and S. P. Meyn,
“Reinforcement learning for control of building HVAC systems,” in
American Control Conference, July 2020, pp. 2326–2332.

[14] K. Mason and S. Grijalva, “A review of reinforcement learning for
autonomous building energy management,” Computers & Electrical

Engineering, vol. 78, pp. 300–312, 2019.
[15] S. Qiu, Z. Li, Z. Li, and X. Zhang, “Model-free optimal chiller loading

method based on q-learning,” Science and Technology for the Built

Environment, vol. 26, no. 8, pp. 1100–1116, 2020.
[16] S. Qiu, Z. Li, Z. Li, J. Li, S. Long, and X. Li, “Model-free control

method based on reinforcement learning for building cooling water
systems: Validation by measured data-based simulation,” Energy and

Buildings, vol. 218, p. 110055, 2020.
[17] S. Liu and G. P. Henze, “Evaluation of reinforcement learning

for optimal control of building active and passive thermal storage
inventory,” ASME Journal of Solar Energy Engineering, vol. 129, p.
215–225, May 2007.

[18] J. E. Braun and N. Chaturvedia, “An inverse gray-box model for
transient building load prediction,” HVAC&R Research, vol. 8, pp.
73–99, 2002.

[19] Z. Guo, A. R. Coffman, J. Munk, P. Im, T. Kuruganti, and P. Barooah,
“Aggregation and data driven identification of building thermal
dynamic model and unmeasured disturbance,” Energy and Buildings,
vol. 231, p. 110500: 9 pages, January 2021.

[20] Z. Guo, A. R. Coffman, and P. Barooah, “Reinforcement learning for
optimal control of a District Cooling Energy Plant,” arXiv preprint

2203.07500, 2021.
[21] R. Sutton and A. Barto, Reinforcement Learning: An Introduction,

2nd ed. Cambridge, MA: MIT Press, 2018.
[22] C. Miller, “united-world-colledge-open-data,” https://github.com/

buds-lab/united-world-college-open-data, 2014, [Online].
[23] C. Miller, Z. Nagy, and A. Schlueter, “A seed dataset for a

public, temporal data repository for energy informatics research on
commercial building performance,” 06 2014.

[24] “PJM Interconnection Real-Time Hourly LMPs,” https://dataminer2.
pjm.com/feed/rt hrl lmps, 2021, [Online, accessed 2021-10-02].

[25] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 1.21,” http://cvxr.com/cvx, Feb. 2011.

[26] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: a software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, Mar 2019.
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