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Abstract— This paper investigates the usefulness of reasoning
about the uncertain presence of obstacles during path planning,
which typically stems from the usage of probabilistic occupancy
grid maps for representing the environment when mapping via
a noisy sensor like a stereo camera. The traditional planning
paradigm prescribes using a hard threshold on the occupancy
probability to declare that a cell is an obstacle, and to plan
a single path accordingly while treating unknown space as
free. We compare this approach against a new uncertainty-
aware planner, which plans two different path hypotheses and
then merges their initial trajectory segments into a single one
ending in a “next-best view” pose. After this informative view
is taken, the planner commits to one of the hypotheses, or to a
completely new one if a collision is imminent. Simulations were
conducted comparing the proposed and traditional planner.
Results show the existence of planning scenarios —like when
the environment contains a dead-end, or when the goal is placed
close to an obstacle— in which reasoning about uncertainty can
significantly decrease the robot’s traveled distance and increase
the chances of reaching the goal. The new planner was also
validated on a real Clearpath Jackal robot equipped with a
ZED 2 stereo camera.

I. INTRODUCTION

Navigation in unstructured environments is challenging
for an autonomous mobile robot due to the requirement
of jointly mapping, localization and planning —all in real
time. This is especially true when the environment is very
cluttered (e.g. a disaster recovery scenario) and the robot can
only rely on noisy sensors (e.g. cameras detecting obstacles
with potential occlusions). For example, stereo cameras
provide several advantages over lidar (lighter, cheaper, and
less power-hungry), but these come at the expense of a
rapid degradation in the quality of depth information [1].
Probabilistic occupancy grids, like those produced by the
Octomap mapping framework [2], provide a principled way
of integrating noisy measurements into a 3D map that can be
used for navigation. However, as of today, the mainstream
approach to online path planning over grid maps still neglects
the presence of uncertainty in the cells’ occupancy, treating
them as either free, occupied, or unknown, and plans a single
low-cost path to the goal assuming that unknown cells are
free [3], [4]. The presence of unexpected obstacles is simply
dealt with by replanning a new path. While using a hard
threshold on occupancy probability provides an easy way to
label a cell as “obstacle” (e.g. as used by the Octomap ROS
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Fig. 1. The NBV planner in action in a simulated environment. (a):
Example Octomap map. White cells: ground and obstacles cells with oc-
cupancy probability � 0.75; colored cells: uncertain occupancy probability,
but potentially safe. (b): NBV planner first stage. Candidate NBV poses are
in purple, the best one is in red (along with the first common trajectory
segment) and the two path hypotheses are in blue.

package1), this only works well if depth measurements are
reliable, which might only be true for short ranges.

This work presents a novel approach to directly reason
about the presence of uncertain obstacles in occupancy grid
maps during the global path planning phase. Instead of
planning a single path on a deterministic, optimistic map, our
planner computes different path hypotheses and then merges
their initial trajectory segments into a single one ending in
a “next-best view” (NBV) pose. This is obtained from a
set of candidate poses by maximizing an objective function
combining entropy reduction, probability of occlusion, and
proximity to the cells lying along the planned paths; see
Fig. 1. After this informative view is taken, the planner
commits to one of the hypotheses, or to a completely new
one if a collision is imminent.

We study the performance of the proposed next-best view
planner against the traditional approach in extensive sim-
ulations. Our results show the existence of scenarios —like
when the environment contains a dead end, or when the goal
is placed close to an obstacle— in which reasoning about
uncertainty can significantly decrease the robot’s traveled
distance and increase the chances of reaching the goal,
especially when high noise is present. A validation of the
planner on a real Clearpath Jackal robot equipped with a
ZED 2 stereo camera complements the simulation results.2

II. RELATED WORK
When one thinks about cost-optimal global path planning

for a mobile robot, some version of A* coupled with the
usage of a binary occupancy grid is the pair which im-
mediately comes to mind. Perhaps surprisingly, not much

1http://wiki.ros.org/octomap_ros
2The accompanying video shows example runs of simulations and real

world experiments.

2022 IEEE International Conference on Robotics and Automation (ICRA)
May 23-27, 2022. Philadelphia, PA, USA

978-1-7281-9680-0/22/$31.00 ©2022 IEEE 11102

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n 
(IC

RA
) |

 9
78

-1
-7

28
1-

96
81

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

RA
46

63
9.

20
22

.9
81

24
31

Authorized licensed use limited to: Cornell University Library. Downloaded on August 08,2022 at 17:39:29 UTC from IEEE Xplore.  Restrictions apply. 



has changed since the introduction of A* in the late six-
ties [5]. The main innovations were essentially three: a more
efficient way of handling the replanning phase under the
optimistic assumption of treating unknown space as free
(with D* [6] and its variants [7], [8]), the possibility of
incorporating kinematic and dynamic constraint during the
global planning phase (with sampling-based algorithms like
Rapidly Exploring Random Trees (RRTs) [9] and probabilis-
tic roadmaps [10], or with hybrid versions of A* [11]), and
other improvements focused on runtime (e.g. JPS [12]) and
path smoothness (e.g. Theta* [13]). As of today, even when
considering 3-D grid maps, an approach based on A* coupled
with a binary occupancy grid is still the go-to choice for
what concerns global path planning even when the robot is
equipped with a depth camera; see, for example, [3], [4]. We
deem that the reasons are essentially two. First, A* is simple
to understand and easy to implement. Second, replanning is a
simple way of dealing with discrepancies between expected
and actual obstacles. However, as our experiments show
(see Section V), it might be very easy to run into planning
instances where this approach is suboptimal, and reasoning
about map uncertainty can be beneficial.

Map uncertainty stems not only from cells having received
noisy measurements, but also from unknown regions of the
environment which have not been mapped due to occlusions
or limited sensing range. Spurred by the successes of deep
learning, some recent works started challenging the idea
of optimistically treating unknown space as free [14], [15].
Unfortunately, these methods are designed to work well only
when coupled with a precise depth sensor, i.e. a lidar. The
multi-hypothesis planning framework of Han et al. [16],
instead, is able to reason about uncertain terrain semantics on
a previously mapped environment using only a depth camera,
by using a Bayesian Neural Network to obtain a probabilistic
measure of path safety. This paper is complementary to this
latter work, as it offers a solution to the global planning
problem in previously unmapped environments containing
several physical obstacles to avoid, but borrows from it (and
other works such as [17], [4]) the idea of planning more than
a single path to cope with uncertainty in the environment.

III. PROBLEM SETTING
Consider a mobile ground robot3 equipped with a noisy

mapping sensor. We assume that the robot can localize itself
in the environment with reasonable accuracy, and to build a
probabilistic occupancy grid (2-D or 3-D) as it moves around
by fusing the measurements from its mapping sensor. The set
of map cells is denoted by M, which is partitioned into four
sets:

• U , the set of cells belonging to unknown space;
• O, the set of cells denoting the presence of an obstacle;
• F , the set of cells associated with free space;
• N , the set of cells associated with uncertain occupancy.
In the above categorization, U denotes cells not yet associ-

ated with at least one measurement. The remaining sets can

3This approach could also be generalized to an aerial vehicle.

be obtained by defining two probability thresholds, pl and ph,
with pl < ph. Given a generic cell c 2 M\U , p(c) denotes
the corresponding occupancy probability. If p(c) � ph, then
c 2 O; if p(c)  pl, then c 2 F ; otherwise, c 2 N .

In this paper, we consider an online path planning problem
in which the robot drives from an initial start pose ps to
a given goal region Xgoal while avoiding collisions with
obstacles and traveling as little distance as possible. We
assume that the goal region lies either within the robot’s
mapping range, or at least in its proximity. Thus, the goal
region could be thought as a “local subgoal” provided by a
higher-level path planning module.

A path is represented as a sequence of (x, y, ✓) tuples in
which the orientation might be left unspecified. In that case,
we assume that a local planner would still be able to track the
planned path with reasonable accuracy. We use ⇡ to denote
a generic path, which has the form

⇡ = [p1 = ps,p2, . . . ,pg],

where pg denotes the goal pose which must fall inside Xgoal.
Given a path ⇡, each pose pi is associated with a set of cells
lying within the corresponding neighborhood. We use c(pi)
to denote such cells. The neighborhood shape and size are
chosen in order to fully contain the robot’s footprint.

Due to the fact that the map may, in general, change as
the robot moves, the robot might discover over time that
the current path will result in a collision, or is longer than
it could be. Therefore, the path can be replanned as new
information is acquired (e.g. at a fixed frequency).

A traditional approach to the path planning problem de-
scribed above is place all the cells with uncertain occupancy
N inside either the free set F or the occupied set O, and
plan a single path under the optimistic assumption that all the
unknown cells in U belong to F . The next section describes
an alternative method based on a technique borrowed from
the literature on 3-D object reconstruction [18]: entropy
reduction via “next-best views.”

IV. NEXT-BEST VIEW PATH PLANNING

The proposed NBV planner works in three stages. During
the first stage, up to two path hypotheses can be computed.
If two hypotheses are obtained, these will have a short initial
trajectory segment in common ending in an uncertainty-
reducing NBV pose. In the second stage, which is only
executed if two hypotheses and associated NBV pose are
available, the robot follows the initial trajectory segment,
reaches the NBV pose, and selects a specific plan hypotheses
(from the original two, and an additional hypothesis com-
puted directly at the NBV pose). In the third and final stage,
the robot follows the best hypothesis, replanning as needed.
These three stages are shown in Figs. 1-2 and described in
more detail below.

A. Stage 1: Hypotheses and NBV Generation

In this initial stage, up to two path hypotheses H =
{⇡1,⇡2} are first generated between the start pose ps and the
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Fig. 2. Example NBV planner run. (a): NBV pose is reached; (b): The right hypothesis is discarded as it leads to a collision, while the left hypothesis
is replaced with one travelling through less unknown space; (c): The robot reaches the goal after a replan in proximity of an obstacle.

goal region Xgoal.4 For each of the hypotheses, all poses pi

should not have a cell in the corresponding neighborhood
c(pi) lying in O. However, they can represent attempts
to traversing cells lying in U , N , or both. In our current
approach, orientations are not considered at this stage, and
classical A* is used for planning the hypotheses. The process
works as follows. The first hypothesis is planned assuming
that cells lying in U denote free space. For what concerns
cells in N , a pose is considered not colliding if it contains
at most a given number CN of this type of cells in its
neighborhood c(pi). If the first hypothesis is not traversing
any cells in U or N , there is no need to compute a second one
and the planner directly proceeds to Stage 3. Otherwise, we
make a copy of the original probabilistic map, and mark cells
lying within a given (Manhattan) distance DHYP to cells in
U and N lying along the computed path as obstacles, unless
they are close to the start and goal pose. This map is used
to compute the second hypothesis. If no second hypothesis
is found, the planner proceeds directly to Stage 3.

In case two hypotheses are obtained, we build a set of
candidate NBV poses P by growing an RRT within a given
radius RRRT from the current robot’s pose by using a pre-
defined set of kinematically constrained motion primitives.
Fig. 1 shows the RRT (in green) along with candidate NBV
poses (in purple). The RRT should be grown by making
sure that all poses along each path can be safely reached.
The quality of a generic NBV pose pNBV is evaluated via
an objective function J : P ! [0, 1] combining an entropy
reduction term and a distance-related term:

J(pNBV) =
↵

⌘H
JH(pNBV) +

(1� ↵)

⌘d
Jd(pNBV), (1)

where ↵ 2 [0, 1] is a parameter that can be used to
tune the importance of the two terms, and ⌘H and ⌘d are
normalization terms computed for each term independently.

With a slight abuse of notation, let C(pNBV) represent the
cells belonging to either U or N such that:

• they are associated with at least one potential traversal
along a path hypothesis, i.e. they belong to the set c(pi)
for some pose pi of at least one path ⇡1,2, and

• the projection of their centroid falls within the camera
plane assuming that the robot is located at pNBV.

4This approach can be generalized to more than two hypotheses, which
may be useful for other scenarios such as larger environments.

The entropy H(c) of a cell c 2 M is given by

H(c) = �p(c) ln p(c)� (1� p(c)) ln(1� p(c)), (2)

with p(c) = 0.5 if c 2 U . The probability V (c,pNBV) that
a cell c 2 C(pNBV) can actually be seen from pose pNBV is
computed as

V (c,pNBV) =
nY

l=1

(1� p(cl)), (3)

where cl, l = 1, . . . , n are the n cells traversed by the ray
casted from the candidate viewpoint to cell c. The entropy
term JH(pNBV) is computed as

JH(pNBV) =
X

c2C(pNBV)

V (c,pNBV)H(c)

k(c)�
, (4)

where k(c) denotes the rank (considering path length as
metric) of the shortest path hypotheses traversing cell c and
� is a parameter that can be used to give more weight to
cells lying along the shortest path hypothesis.

The distance term is computed as

Jd(pNBV) =
X

c2C0(pNBV)

max(0, d(c)� d(c,pNBV))

k(c)�
, (5)

where C0(pNBV) denotes the cells having V (c,pNBV) > �,
i.e. at least some probability of being visible from pNBV,
d(c) is the Euclidean distance between the robot’s current
pose and the centroid of c, and d(c,pNBV) is the Euclidean
distance between the candidate NBV pose and cell c.

After having computed the objective function value for all
the candidate NBV poses in P , we sort them by decreasing
value and try to relink them to the original path hypotheses
via short trajectory segments obtained by growing a new
RRT from the candidate NBV pose. We attempt to relink at
most NREL NBV poses to the original hypotheses by growing
RRTs from them. If this process is not successful, the planner
again proceeds to Stage 3 and tries to follow the shortest
hypothesis. In case of success, the planner can move to Stage
2. Fig. 1 shows the result of the procedure just described
during one of our simulations. The NBV pose is shown in red
(with the corresponding common trajectory segment) and the
two path hypotheses in blue. Current cells in N are shown
in blue, while pink cells denote unknown ground cells in U .
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Fig. 3. Simulation environments (1m⇥1m cells). Left: Open; Right: Room.
Jackal and blue dots denote start positions, while the goal position is in
yellow. Best viewed when zoomed in.

B. Stage 2: Navigation to NBV, Hypothesis Commitment

During this stage, the robot uses its local controller to
move to the candidate NBV pose, while simultaneously
updating the map. Fig. 2(a) shows the map status at this point
(continuing the example of Fig. 1). Note that measurements
received during this stage are not explicitly accounted for in
the choice of the NBV pose; this makes planning at the previ-
ous stage much faster, enabling a real-time implementation,
but might still contribute to the overall uncertainty reduction.
If there exists a path ⇡ 2 H such that |c(pi) \F| = |c(pi)|
for all poses pi belonging to ⇡ (namely, all corresponding
cells are safe to traverse) then ⇡ is safe and the robot can
commit to following it until the goal is reached. Otherwise,
the hypotheses in H containing at least one pose pi such
that |c(pi) \O| 6= ; are removed from H. If no hypotheses
are left in H, an additional check is made to ensure that the
goal region Xgoal is actually reachable. If it is not, planning is
aborted. Otherwise, the planner computes a single new path
and proceeds to Stage 3. If at least one hypothesis is left in
H, the planner computes one or two new hypotheses to try to
improve the previous ones; different heuristics could be used
to quantify improvement. In our current implementation, old
hypotheses are replaced only if the new ones traverse less
unknown and uncertain cells. After this, if a single hypothesis
is left, the planner commits to it; otherwise, the planner
commits to the shortest one. Fig. 2(b) shows the commitment
to a new hypothesis at the end of Stage 2.

C. Stage 3: Hypothesis Following and Replanning

During this stage, the planner behaves as a typical online
planner. At each replanning cycle, a new shortest path is
computed with A* under the traditional assumption that
unknown cells are actually free. This is done until the goal
is reached, as in Fig. 2(c), or proven unreachable.

V. SIMULATIONS

A. Noise Simulation

In order to study the impact of noise on planning without
focusing on a particular depth camera sensor, we conduct an
extensive set of simulations in Gazebo [19] in two representa-
tive environments shown in Fig. 3. The “Open” environment
contains several small obstacles scattered onto the floor, and

Fig. 4. Simulated noise obtained from the robot’s positions in Fig. 3. Top:
Open environment; Bottom: Room environment. Left: low noise; Right: high
noise. The “wall of points” in the background lies beyond the mapping range
and helps Octomap clearing free cells lying inside the robot’s FOV.

resulting on a dead-end on the right when facing upwards;
the “Room” environment contains a symmetric rectangular
structure with two entrances placed at the top and bottom. We
simulate a Jackal Robot equipped with a camera providing
depth measurements (672x376, 107 degree FOV). In order
to study the impact of different noise levels on the planners’
performance, the following procedure is used to corrupt the
ground truth depth provided by Gazebo with the typical
noise experienced by depth cameras, which is concentrated
around the objects’ edges and increases with the square of
the distance [1]. First, we use the Canny edge detector to
detect edge pixels in the current depth image, corresponding
to abrupt changes in depth. To mitigate imperfections in the
detections, pixels on the horizon are ignored, and pixels that
fall onto the background due to aliasing are adjusted to be
relocated onto their adjacent obstacles. Then, for each edge
pixel pe lying beyond a “perfect sensing” distance s = 3
meters from the camera, we consider a square window of
fixed size w = 10 pixels, and update the current depth i(pw)
(measured in meters) of each pixel pw in that window with
Euclidean distance d(pe, pw)  w as:

i(pw) = max


i(pw), ⇢·i(pw)·

✓
w�d(pe, pw)

◆
·d(s, i(pw))2+�

�
,

where � ⇠ N (a·d(s, i(pw)), b·d(s, i(pw))2). The simulation
parameters are hence ⇢, a, and b. Also note that we take
the maximum between the current and new value since the
same pixel might appear in multiple edge pixel windows.
Fig. 4 shows the effect of two different choices of parameter
combinations on a point cloud obtained in the two environ-
ments: ⇢ = 0.01, a = 0.05, b = 0.002 (low), and ⇢ = 0.05,
a = 0.125, b = 0.005 (high).

B. Mapping

We use the Octomap mapping framework [2] for map
building. The original implementation uses a beam-based
inverse sensor model for processing the measurements. Al-
though this is not specifically designed for depth cameras
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Low Noise (⇢ = 0.01, a = 0.05, b = 0.002)
Start Planner S / U / F Dist. ± 95% C.I. Diff.

Left
NBV 119 / 0 / 1 9.47 ± 1.30 N.A.
B3.5 120 / 0 / 0 8.06 ± 0.17 -15%
B7 120 / 0 / 0 8.14 ± 0.21 -14%

Center
NBV 109 / 2 / 9 12.28 ± 1.82 N.A.
B3.5 109 / 0 / 11 10.38 ± 1.81 -15%
B7 117 / 0 / 3 8.41 ± 0.87 -32%

Right
NBV 116 / 0 / 4 12.30 ± 0.70 N.A.
B3.5 112 / 0 / 8 15.35 ± 0.83 +25%
B7 118 / 0 / 2 9.42 ± 0.74 -23%

High Noise (⇢ = 0.05, a = 0.125, b = 0.005)

Left
NBV 118 / 0 / 2 8.92 ± 1.10 N.A.
B3.5 120 / 0 / 0 8.10 ± 0.19 -9%
B7 120 / 0 / 0 8.25 ± 0.48 -8%

Center
NBV 116 / 1 / 4 10.02 ± 1.36 N.A.
B3.5 116 / 0 / 4 10.10 ± 1.77 < +1%
B7 112 / 0 / 8 8.78 ± 1.25 -12%

Right
NBV 118 / 1 / 1 12.42 ± 0.97 N.A.
B3.5 107 / 0 / 13 15.47 ± 0.50 +25%
B7 44 / 74 / 0 9.73 ± 2.15 -22%

(a) Open Environment

Low Noise (⇢ = 0.01, a = 0.05, b = 0.002)
Start Planner S / U / F Dist. ± 95% C.I. Diff.

Left
NBV 80 / 0 / 0 8.29 ± 0.67 N.A.
B3.5 80 / 0 / 0 7.98 ± 0.16 -4%
B7 80 / 0 / 0 7.99 ± 0.13 -4%

Center
NBV 115 / 0 / 5 8.38 ± 0.63 N.A.
B3.5 120 / 0 / 0 8.54 ± 0.71 +2%
B7 120 / 0 / 0 7.04 ± 0.14 -16%

Right
NBV 76 / 0 / 4 11.66 ± 1.25 N.A.
B3.5 79 / 0 / 1 11.97 ± 1.05 +3%
B7 79 / 0 / 1 10.21 ± 0.44 -12%

High Noise (⇢ = 0.05, a = 0.125, b = 0.005)

Left
NBV 80 / 0 / 0 8.29 ± 0.46 N.A.
B3.5 80 / 0 / 0 7.96 ± 0.16 -4%
B7 1 / 79 / 0 7.51 -9%

Center
NBV 114 / 0 / 6 8.30 ± 0.39 N.A.
B3.5 120 / 0 / 0 8.52 ± 0.66 +3%
B7 62 / 58 / 0 7.16 ± 0.22 -14%

Right
NBV 79 / 0 / 1 11.23 ± 0.94 N.A.
B3.5 80 / 0 / 0 11.39 ± 0.81 +1%
B7 39 / 40 / 1 10.12 ± 0.70 -10%

(b) Room Environment

TABLE I
SIMULATIONS RESULTS. A HIGH NUMBER OF RUNS WITH GOAL DECLARED UNREACHABLE IS HIGHLIGHTED IN RED. IN GREEN, A LARGE POSITIVE

DIFFERENCE (> 20%) IN AVG. TRAVELED DISTANCE BETWEEN NBV PLANNER AND SHORT-RANGE BASELINE.

(for which more sophisticated techniques could be used,
see [20]), it can still provide a good approximation. The
mapping range is set to 7 meters, and we assume that
measurements within 3.5 meters can be considered reliable.
As a heuristic to cope with less accurate measurements
after 3.5 meters, we introduce a smaller upper clamping
threshold for the occupancy probability of the Octomap
leaves receiving measurements lying above the ground and
between 3.5 and 7 meters from the camera (specifically, 0.7)
compared to the one used between 0 and 3.5m (0.85). The
reader is referred to the Octomap paper [2] for more details
on the role of clamping thresholds. The octomap resolution is
set to 0.25m, and measurements are integrated into the map
at 2Hz after a downsampling of the pointcloud with a 0.25m
resolution. Probability of hit and miss for the beam-based
model are set to 0.7 and 0.2, respectively.

C. NBV Planner Implementation

The NBV planner is implemented in C++ as a global
planner plugin of the ROS move base5 package, with
replanning happening at 1 Hz. In all simulations, hypotheses
planning and replanning with A* is instantaneous, while
the NBV computation is ⇡130 ms on average6 on a com-
puter equipped with an Intel i7-7740X CPU. The default
move base local planner is used to track the computed
trajectories. After some tuning, the following parameters
are selected for the NBV function J(): ↵ = 0.5, � = 2,
� = 0.05. The remaining planner parameters are set as
follows: |P| = 200, CN = 2, DHYP = 4, RRRT = 4 meters,
NREL = 7. The pl and ph uncertainty thresholds are set to
0.18 and 0.75, respectively.

5http://wiki.ros.org/move_base
6Our current implementation is sequential, but this operation could be

easily parallelized.

D. Baselines
The traditional planning approach described at the end of

Section III is used as a baseline, where a single threshold
probability equal to 0.3 is used to determine if a cell with
unclear occupancy is free or occupied. We consider two
versions of this planner: one where the mapping range is
limited to 3.5 meters, and one where the mapping range is
equal to the one used for the NBV planner (7 meters). In the
former case, measurements are almost always accurate, but
the short mapping range might result in myopic behaviors.
In the latter case, cells are often treated as obstacles even
when they are actually free.

E. Performance Metrics
We consider the traveled distance as main performance

metric. We also examine how many times the goal is reached
or declared unreachable, and how many times the robot fails
to reach the goal within 2 minutes. The latter case is typically
caused by the local planner getting stuck in proximity of
an obstacle —an event not directly caused by the global
planners due to the absence of noise at close range.

F. Open Environment - Results
We place the goal at (1, 1) and consider start

positions resulting from combining x coordinates in
{0,±1,±2,±3,±4} and y in {�6,�5.5}. Start positions are
divided into three groups depending on their x coordinate:
center (0,±1), left (�2,�3,�4), and right (2, 3, 4). The
initial orientation is kept fixed to 90 degrees. We execute
20 runs for each start position. Results are reported in Table
1. Here, the “S / U / F” column denotes the number of
successes, failures due to goal unreachable, and local planner
failures. The average distance is reported with 95% confi-
dence intervals, and the “Diff.” column reports the difference
in percentage between the average distance traveled by the
NBV planner and the baselines.
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The simulation results show a number of interesting char-
acteristics. First, the long-range baseline (B7) outperforms
the short-range baseline (B3.5) and the NBV planner in all
groups of instances in terms of traveled distance. However,
it is not able to reach the goal in a significant number
of cases when starting from the right, which makes it not
very competitive against the other two planners. For the
NBV and short-range baselines, we observe slightly better
performance of the latter when starting from the center-
left, regardless of the noise level. This happens for two
reasons. First, from those regions, there is almost always
a straight path to the goal (except for x = 1). Second,
the NBV planner might often make slight detours to the
reach the chosen NBV due to the local planner trying to
closely follow the first trajectory segment (an RRT branch).
We believe that a smarter implementation of the relinking
phase, in which the traveled distance is optimized (e.g. with
RRT⇤) could easily mitigate this second small issue. When
starting from the right, however, the NBV planner is the
clear winner, with average improvements of 25% for both
high and low noise: the myopic behavior of the short-range
baseline always causes the robot to travel almost all the way
up to the dead-end before realizing that the goal cannot be
reached from the right.

G. Room Environment - Results

We place the goal at (2.2, 0) and consider start positions
resulting from combining x coordinates in {0,±1,±2,±3}
and y in {�6,�5.5} (20 total). Start positions are divided
into three groups depending on their x coordinate: center
(0,±1), left (�2,�3), and right (2, 3). The initial orientation
is again kept fixed to 90 degrees. We execute 20 runs for
each start position. The results are reported in Table 2.
Again, the long-range baseline often declares the goal to
be unreachable in presence of high noise. This makes it a
not very compelling choice regardless of the environment.
Comparing the NBV planner with the short-range baseline,
we now observe a more uniform performance between the
two compared to the Open environment. Even when starting
from the center-right, the NBV is only able to offer a very
small improvement (1-3%). This mainly happens because the
shape of the “room” is such that, when the baseline starts
taking the longer path to the right, it immediately perceives
the wall to the left and, depending on the number of obstacle
cells that are perceived, it may still quickly realize that
turning back would make the robot travel less distance.

VI. REAL WORLD VALIDATION

We validate the proposed NBV planner with a Jackal robot
equipped with a ZED 2 stereo camera.7 The environment
used for the experiment is shown in Fig. 5 (a). The ZED 2
software is used to provide the Jackal with a pose estimate.
The goal of this experiment is to study whether the NBV and
baseline planners show a behavior similar to that observed in
simulation in the Open environment, as both environments

7https://www.stereolabs.com/zed/

Fig. 5. Real world experiment. (a): Environment; (b): Initial Octomap map,
with path hypotheses and NBV.

contain a dead-end on the right and a path to the goal on
the left. The noise experienced in the real world resulted in
grid maps visually similar to the simulated ones. However,
we had to slightly reduce the mapping range to 6.5 meters
in order to make the goal eventually reachable due to the
presence of more depth noise than expected when observing
the goal from the right.

Across 10 runs, the NBV planner reaches the goal 7 times,
traveling an average distance of 11.35m (std. dev. 0.94m).
The goal is decleared unreachable 2 times, and we register
one failure due the robot getting stuck in proximity of an
obstacle. The typical behavior for the 7 successes is shown
in Fig. 5(b) and is consistent to what observed in simulation:
an informative view is taken on the right, and allows the
robot to realize the presence of the dead-end. Consistently
with the simulations, the long-range baseline declares the
long unreachable more often (5 times), but travels an average
distance of 8.65m when the goal is reached (std. dev. 0.28m).
When planning with the short-range baseline the goal is
reached 8 times (1 goal unreachable, 1 failure). However, the
robot is often tricked into driving into the dead-end before
realizing that the path is blocked. This makes the robot
travel more distance on average (13.52m, std. dev. 3.69m)
compared to the NBV planner.

VII. DISCUSSION

In this paper, we studied the impact of occupancy map
uncertainty on global path planning, and proposed a novel
planning approach to directly take into account map un-
certainty. Overall, the inclusion of probabilistic reasoning
about the map and next best view in the planner, along with
more than one plan hypotheses, led to more reliable plans
with strong performance compared to short- and long-range
baseline implementations whenever one or more obstacles
would preclude the existence of a straight path to the
goal. At the same time, our results showed that, in those
cases where the path planning problem is inherently simple,
“overthinking” the path to take might be counterproductive,
and a more myopic baseline planner could work just as well.
Data-driven techniques, and especially deep learning, might
hold the key to discriminate between these different types
of instances. Other interesting research directions are related
to the study of this problem with more sophisticated sensor
models and/or environment representations based on point
clouds.
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