
����������
�������

Citation: Arzo, S.T.; Akhavan, Z.;

Esmaeili, M.; Devetsikiotis, M.;

Granelli, F. Multi-Agent Based Traffic

Prediction and Traffic Classification

for Autonomic Network

Management Systems for Future

Networks. Future Internet 2022, 14,

230. https://doi.org/10.3390/

fi14080230

Academic Editor: Ali Tizghadam

Received: 23 June 2022

Accepted: 25 July 2022

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Multi-Agent-Based Traffic Prediction and Traffic Classification
for Autonomic Network Management Systems for
Future Networks
Sisay Tadesse Arzo 1,*,† , Zeinab Akhavan 1,† , Mona Esmaeili 1,†, Michael Devetsikiotis 1,†

and Fabrizio Granelli 2,†

1 Department of Electrical and Computer Engineering, University of New Mexico,
Albuquerque, NM 87106, USA; zakhavan@unm.edu (Z.A.); mesmaeili@unm.edu (M.E.);
mdevets@unm.edu (M.D.)

2 Department of Information Engineering and Computer Science (DISI), University of Trento,
38123 Trento, Italy; fabrizio.granelli@unitn.it

* Correspondence: sarzo@unm.edu
† These authors contributed equally to this work.

Abstract: Recently, a multi-agent based network automation architecture has been proposed. The
architecture is named multi-agent based network automation of the network management system
(MANA-NMS). The architectural framework introduced atomized network functions (ANFs). ANFs
should be autonomous, atomic, and intelligent agents. Such agents should be implemented as an
independent decision element, using machine/deep learning (ML/DL) as an internal cognitive
and reasoning part. Using these atomic and intelligent agents as a building block, a MANA-NMS
can be composed using the appropriate functions. As a continuation toward implementation of
the architecture MANA-NMS, this paper presents a network traffic prediction agent (NTPA) and
a network traffic classification agent (NTCA) for a network traffic management system. First, an
NTPA is designed and implemented using DL algorithms, i.e., long short-term memory (LSTM),
gated recurrent unit (GRU), multilayer perceptrons (MLPs), and convolutional neural network (CNN)
algorithms as a reasoning and cognitive part of the agent. Similarly, an NTCA is designed using
decision tree (DT), K-nearest neighbors (K-NN), support vector machine (SVM), and naive Bayes
(NB) as a cognitive component in the agent design. We then measure the NTPA prediction accuracy,
training latency, prediction latency, and computational resource consumption. The results indicate
that the LSTM-based NTPA outperforms compared to GRU, MLP, and CNN-based NTPA in terms of
prediction accuracy, and prediction latency. We also evaluate the accuracy of the classifier, training
latency, classification latency, and computational resource consumption of NTCA using the ML
models. The performance evaluation shows that the DT-based NTCA performs the best.

Keywords: network management automation; multi-agent system; network traffic classifier; network
traffic predictor; machine learning; deep learning; 5G/6G; future network architecture; service-
oriented architecture

1. Introduction

Traditional networks consist of several devices, including switches, routers, servers,
deep packet inspection, firewalls, and hosts. These devices are traditionally implemented
using hardware. A human administrator manages such small networks [1,2], through
configuration and management interfaces. Typically, an administrator is necessary to
configure and make the required changes. This is feasible only for relatively small size
networks, albeit with limited performance and flexibility in terms of resource utilization,
energy efficiency, service admission, latency, reliability, etc.

Nevertheless, within the last two decades, communication networks have tremen-
dously evolved. It is now possible to interconnect a massive number of devices and

Future Internet 2022, 14, 230. https://doi.org/10.3390/fi14080230 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14080230
https://doi.org/10.3390/fi14080230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-9062-8499
https://orcid.org/0000-0002-1491-2081
https://orcid.org/0000-0002-2439-277X
https://doi.org/10.3390/fi14080230
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14080230?type=check_update&version=1


Future Internet 2022, 14, 230 2 of 23

applications including traditional users, IoT devices, and machines. For instance, in the
wireless domain, 4G and 5G have shown a multi-fold increase in the network size. The ad-
vent of IoT and other machine-to-machine communication paradigms also hugely increases
the network size. The legacy network implementation has an enormous capital expen-
diture (CAPEX) since such networks are hardware-based and manually operated, which
is inefficient and inflexible. As the network grows larger, it is increasingly difficult and
expensive to manually administer its complexity, implying an increase in operational ex-
penditure (OPEX). This is mainly because a massive number of technical personnel and
experts is needed and sometimes humanly challenging and inefficient to perform, resulting
in degrading network performance.

Moreover, it is expected that Beyond 5G (B5G) and 6G will increase in size and
become more complex. Furthermore, as indicated in 6G deliverable [3,4], intelligence and
autonomy are expected to be the core principles that drive the future networks, B5G and
6G. In this direction, an approach for in-network intelligence and automation is required to
address the expected network growth as well as stringent requirements of various services.
Currently, software-defined networking (SDN) and network function virtualization (NFV)
are enabling network softwarization, subsequently increasing network flexibility and
opening the door to autonomic networking. SDN provides a programmable network, while
NFV softwarizes network functions, decoupling the hardware-based implementation to
general-purpose and cloud-based deployment [5].

Autonomic networking is the process of enabling the network system to have a self-X
property; X can be managing, configuring, healing, and protecting the network [6]. This
was originally aimed at creating autonomic computing by IBM [1,7]. One of the reasons for
having automated network management systems is the idea of dynamic network resource
allocation [8,9] based on the service traffic arrival statistics. A self-managing network
should be able to autonomously predict, diagnose, reconfigure, monitor, and circumvent
failures while providing service processing as per the user traffic demands. This means,
an autonomous network management system (ANMS) can collect, analyze, act, while
adapting to the network and user dynamic and their evolving behavior [10]. Using ANMS,
networks are capable of self-management and autonomous decisions both in unsuper-
vised and supervised manner [11]. This guarantees a simplified control, management,
and operation of complex and vast networks. These research works are a classic approach
for network automation that we developed before the introduction of the softwarized
networking, which transformed the network management, design and configurations.

Recently, the MANA-NMS architectural framework was proposed in [12,13], using a
multi-agent system (MAS). Defining atomic decision-making units, the authors discussed
the concept of network function atomization. Such atomic units could replace the virtual
network functions (VNFS) with atomized intelligent agents. The approach is a service-
oriented architectural (SOA) design for a flexible, loosely coupled, and intelligent system
development for future generation networks. Moreover, it is a competing approach for
microservice-based design with proactive and reactive intelligence. MANA-NMS used
a MAS due to its advantage over microservices in terms of autonomy and intelligence.
In the proposed ANF, the agents are autonomous with adaptive functionality in performing
a given task. An ANMS can be built composing these service agents. Alternatively, the
MANA-NMS framework can be taken as a splitting of a monolithic system into agents
and recomposing them to obtain an autonomous system: e.g., SDN controller evolved
packet core (EPC), and network management system (NMS). Currently, network function
such as EPC, SDN, and NMS are monolithic systems that can be split into the smallest
possible functions [14,15]. The decomposed units can be implemented as microservices [14]
or agents [12]. This is an appealing paradigm in the current trend of softwarization,
service function virtualization or containerization, cloudification, and orchestration. This
helps deploy network functions (possibly autonomous agents) as loosely coupled, elegant,
and lightweight applications in a virtualized/containerized, distributed, and cloud/edge
environment with maximum re-composition freedom. Both refs. [12,13] only discussed



Future Internet 2022, 14, 230 3 of 23

a theoretical model, and the performance evaluation is performed using mathematical
evaluation.

A similar approach with a focus on an agent-based algorithm was proposed in [16].
The authors presented a software agent to execute a set of computation loads in parallel,
which enables a bottom-up systematic organization of the overall system. The paper
discussed IoT objects to be an agent that is autonomous and able to collaborate with other
peer agents. However, the approach is focused on high-level objects and does not consider
protocol level and function level functionalities. Moreover, it is needed to consider service
design approaches in comparison with microservices showing how to incorporate ML/DL
algorithms in the agent design.

In this paper, using the design guideline from [12], we implement the internal compo-
sition of an NTPA and NTCA. We briefly introduce the ML and DL algorithms that are used
as the cognitive component of NTCA and NTPA. We also propose and implement possible
communication interface technologies. In addition to the legacy agent communication
language (ACL), we suggest Restful-API, gRPC, and Websocket. This paper could be
considered a continuation toward the implementation of MANA-NMS, the automation
architecture proposed in [12] and an extended version of the work in [17]. The authors
in [17] only considered classification agent design with limited evaluation that does not
consider the resource consumption of agents. This is crucial in that agents are mostly de-
ployed in a containerized environment with a resource-constraint environment, especially
as the complete system may need a number of agents to be instantiated.

In [12], the authors used mathematical models and evaluation and left the imple-
mentation as future work. Therefore, this article tries to implement and simulate the
ML/DL-based NTPA and NTCA and evaluate critical measures, such as accuracy and
latency. The benefit and advantage of designing NTPA and NTCA agents are to use these
agents as a service unit in the multi-agent system. In the simulation section, an example
of the complete MANA-NMS system architectures is provided, incorporating the traffic
classifier agent and traffic predictor as well as their role in the overall system as an example.
The contributions of this work are as follows:

• Design the internal architecture of NTPA and NTCA.
• Implement and simulate both agents.
• Evaluate the performance of NTPA and NTCA using accuracy prediction and classifica-

tion, training latency, prediction and classification latency, and resource consumption,
respectively.

The rest of the paper is organized as follows. Section 2 presents an overview of the
network automation and enabling technologies. The prediction and classification agents’
design architecture along with the agent communication technologies are discussed in
Section 3.1. The implementation scenario for the proposed conceptual framework and
dataset description is presented in Section 4. Section 5 presents the performance evaluation
of the proposed NTPA and NTCA. Lastly, Section 6 concludes this work.

2. Overview of Network Automation and Enabling Technologies

This section provides a review of important concepts for network automation, includ-
ing the applied ML/DL algorithms and multi-agent systems.

2.1. Overview of Network Management Automation

Autonomic network management is proposed as one of the solutions for the man-
agement of large and complex networks. As indicated above, it comes from autonomic
computing, a manifesto started with IBM in 2001 [1,6,13]. IBM introduced the concept of
self-management and self-adaptation of networks. Self-management implies that a network
can make decisions on its own, while self-adaptation means that the network is aware of its
environment and can adapt the performance according to the changes in the environment.
The autonomic systems described by IBM are equipped with four self-management prop-



Future Internet 2022, 14, 230 4 of 23

erties [13], such as self-configuration, self-optimization, self-protection, and self-healing.
These properties are discussed in detail below.

• Self-configuration offers the opportunity to discover new or evolving devices on a
network, and to automatically establish routes and other configurations required to
seamlessly connect the device.

• Self-optimization is the ability of the network to change its settings to match its actions
better with the system’s user-defined purpose.

• Self-protection requires a network to protect itself from a possible attack, such as
denial-of-service (DoS) attacks or the modification of firewall rules based on alleged
malicious traffic.

• Self-healing is the capacity to correct, by itself, any issues that may occur, whether or
not from the attempted behavior of the device.

2.2. Overview of the Multi-Agent System

Problem solving in complex environments requires distributed approaches. As a
solution, distributed artificial intelligence (DAI) is proposed, where the system consists of
many intelligent agents interacting with each other to achieve the goal [18,19]. DAI,
traditionally, suggests two types of solutions. The first one is to break a problem into
sub-problems. Then, micro solutions are provided to solve each sub-problem individually.
The second solution is MAS, where autonomous agents cooperate with each other to
provide a service.

Figure 1 illustrates the general architecture of the MAS. Similar to distributed problem
solving using microservice solutions, the agent works with other agents or individually
to perform a given task. The agent also measures the environment continuously to obtain
updated information about the environment [20]. The core characteristics of the MAS are
discussed in Section 3.1 in the context of our agent definition.

Figure 1. A simple MAS architecture.

Agent as a Decision-Making Element in Autonomic Networking

Agents have different definitions based on their applications in different environ-
ments [20]. Before defining network agents, we present a general definition incorporating
all characteristics of the agents. An agent is an object that observes an environment and



Future Internet 2022, 14, 230 5 of 23

uses various parameters to execute an appropriate action at each step and achieve the goal.
This definition is made of four keywords that are further explained below.

1. Object: This refers to the kind of agent in different contexts, for example, a software
agent, a hardware agent, etc.

2. Environment: The environment receives the agent’s actions and updates itself accord-
ingly. As a result, the agent observes the changes and adjusts its actions.

3. Parameters: These are the information that agents need to know to take the appropriate
action.

4. Action: The agent executes actions that result in changes in the environment. The ac-
tion space can be continuous or discrete.

Each agent decides to perform its action with regard to time and resource con-
straints [20]. In order to perform a good action, the agent needs to interact with the
environment as well as communicate with other agents through ACL, REST-API, gRPC,
Websocket, as illustrated in Figure 1 to learn about the information. This information
contains the previous agent’s experience from interacting with the environment. This helps
the agent with its decision-making process [21].

In this work, we present the MAS as an automated network management system,
where the agents are known as the network decision elements (DEs).

2.3. Application of Traditional Machine Learning and Deep Learning as a Cognitive Component
of Agents

As indicated in the Introduction section, and will be further discussed in the next
section, one of the internal elements of an agent is the cognitive or reasoning component
which enables the agent to perceive, reason, and decide. This would enable designing
agents to be the smallest atomic element with autonomous and intelligent capability in
performing a given task. Using such elements, we build the complete system. This is in line
with the future service-based network design in a softwarized, containerized, and intelligent
network environment. Incorporating in-network intelligence in the network functions is
the prime target in 6G [3,4,22,23]. Hence, we require to incorporate ML/DL to create an
intelligent agent, such as NTPA and NTCA.

In the next paragraph, we discuss the DL definition and its advantages and disadvan-
tages over ML methods.

DL is a sub-field of ML that enables learning and decision capability in the agent,
training the agent to learn like a human brain. DL statistics and predictive modeling enable
agents to process massive datasets. It uses a layered structure and applies a nonlinear
transformation to its input iteratively to learn the features and create a statistical model
as output. There are several DL techniques that help with creating accurate predictive
models from a large amount of unlabeled and unstructured data. We describe some of the
techniques as follows:

• Learning rate decay: a hyperparameter in DL settings controlling the learning process
of the model every time the weights are updated to avoid unstable training and a long
training process.

• Transfer learning: this method uses an existing network trained previously. It feeds
the new data along with previously unknown samples to the existing network, and
once the adjustments are made, it feeds the new samples to be classified. This method
requires much less data, thus reducing the computation time.

• Training from scratch: This method requires a large amount of labeled data to train
the network. However, this technique may be impractical for some applications, as it
needs a tremendous amount of data to be collected and makes the training process
last too long.

• Dropout: Training a neural network on supervised learning tasks may cause overfit-
ting. To avoid this problem, the dropout method drops units and their connection
randomly from the neural network.



Future Internet 2022, 14, 230 6 of 23

Although various neural network architectures have been proposed, such as RNN,
CNN, and feedforward neural networks, they all function in similar ways. They benefit
from a layered architecture, where input is given and the model figures out itself whether
it has made the right decision about the data element by a trial-and-error process. Next,
we list some advantages and disadvantages of the DL methods and compare them with
ML algorithms.

Unlike the general ML, DL does not need to be given the feature set to make decisions.
It learns the features by interacting with the environment and builds the feature set incre-
mentally. Therefore, DL methods do not require the programmer to specify the features
that the computer should be looking for. In other words, DL is able to learn without human
intervention. While this makes the DL methods take much time to train, they are much
quicker in testing than the ML algorithms. The ML test time increases as the data size
grows. However, there are some issues with DL models, making data scientists choose
traditional ML over DL. Its neural networks rely on the trial-and-error process. In any
case, we used different ML and DL models for the NTCA and NTPA design and tested
their performance.

2.3.1. LSTM-Based Network Traffic Predictor Agent

LSTM is an improved form of the traditional recurrent neural networks (RNNs)
addressing the vanishing and exploding gradients problems using connected memory
blocks in the layers. Each block consists of multiple cells containing three units: the input,
output, and forget gates. Unlike the standard RNNs, this block design enables LSTM to
capture long-term temporal dependencies in sequence learning problems. The network
interacts with the cells through their gates. The role of the input and output gates is
to achieve a constant error flow and avoid the irrelevant memory contact, respectively.
However, an unstable error flow is observed through the backpropagation in existing
RNNs [24,25].

2.3.2. GRU-Based Network Traffic Predictor Agent

GRU is a variant of LSTM and the improved version of standard RNN [24]. A GRU cell
consists of two gates: update gate and reset gate to solve the vanishing gradient problem in
recurrent neural networks. First, the reset gate is used to filter out the irrelevant information
from the past time steps and create the memory content at the current time step. Next,
the update gate is used to create the final content of the memory by deciding how much
information still needs to be kept and passed to the output layer [24,25]. We describe the
usage of the reset and update gates with mathematical notation below: first, the reset gate
(similar to the forget gate in the LSTM setup) filters out the irrelevant past information as
shown in Equation (1).

m′(t) = tanh(Wxt + rt �W ′mt−1) (1)

where m′(t) represents the current memory content. The element-wise product between
the reset gate and weighted previous memory content (rt �W ′mt−1) determines what
information needs to be removed from the past time steps.

Next, the update gate determines what information from the current memory con-
tent and the previous time steps need to be passed through the network for computing
the final result as shown in Equation (2), where ut is the update gate and controls the
memory content.

mt = ut �mt−1 + (1− ut)�m′t (2)

2.3.3. MLP-Based Network Traffic Predictor Agent

MLP is a fully connected feedforward artificial neural network composed of many
perceptrons (neurons) that are organized into at least three layers: an input layer, a hidden
layer, and an output layer [26,27]. Each neuron in the layer except the input layer utilizes a
non-linear activation function to learn the non-linear data. The learning process in an MLP
is described as, when the data are given to the MLP, they go through their layers. Each node



Future Internet 2022, 14, 230 7 of 23

in the layer computes its error by comparing its output and the expected result. The goal is
to minimize the error and then adjust the node weights [26]. The error is calculated by the
following equation:

ej(n) = dj(n)− sj(n) (3)

where dj is the target value and sj is the value generated by the node j. The error for
processing data point n by the nodes is obtained by the equation below:

E(n) =
1
2 ∑

j
e2

j (n) (4)

Next, the weight adjustment is calculated using the gradient descent:

∆wji(n) = −α
∂E(n)
∂aj(n)

si(n) (5)

where si is the output of the previous node, α is the learning rate to ensure that the weight
corrections converge quickly, and aj is the induced local field or activation potential.

2.3.4. CNN-Based Network Traffic Predictor Agent

CNN is a kind of feed-forward neural network that has major application in image
classification [27]. It has also applications in time series, where we can utilize it for network
traffic prediction. It consists of an input layer, convolution layer, pooling layer, fully
connected layer (as hidden layers), and an output layer. The convolution layer is a good
substitute for a fully connected layer, as it is scalable to massive datasets. The role of the
convolution layer is to reduce the dimension of the input images without losing critical
features, allowing the network to be deeper and learn more easily.

A part of a convolution layer is the kernel/filter that has smaller dimensions than
the input image and moves over the image and performs matrix multiplication until the
entire image is traversed. This process produces a convoluted feature output, extracting
high-level features of the image, such as edges. The next layer is called the pooling layer.
The pooling layer is in charge of reducing the spatial size of the convoluted feature output
even more, using two operations: max pooling and average pooling. Max pooling returns
the maximum value of the calculated convoluted features corresponding to a portion of
the image. Average pooling returns the average of all values generated by the kernel/filter.
Finally, a fully connected layer (multilayer perceptrons) is added to classify the images
using the softmax classification technique.

2.3.5. Decision-Tree-Based Network Traffic Classifier Agent

We presented four possible ML solutions for the NTCA design in [14] in more detail.
For the readers’ convenience, we briefly discuss these traffic classifier ML algorithms.

A non-parametric-based supervised learning approach utilized for classification is a
DT. DTs learn from knowledge to approximate a sine curve using a sequence of if-then-else
decisions. The longer the tree, the more complex the rule of decision in fitting a given
model [28,29]. Figure 2 illustrates the DT diagram.

2.3.6. Naive Bayes Based Network Traffic Classifier Agent

NB is a classification technique that, given a finite set of class labels, assigns the labels
to the data samples using a probability distribution [30]. It assumes each feature value
independently builds the probability specifying the data sample’s class regardless of the
correlations between the features.



Future Internet 2022, 14, 230 8 of 23

Figure 2. An example of a DT.

2.3.7. Support Vector Machine Based Network Traffic Classifier Agent

SVM attempts to find a hyperplane (decision area), having the maximum distance
between the two categories of data points in high or infinite dimensional space [29–31].
Figure 3 illustrates the SVM diagram.

Figure 3. An Illustration of a hyperplane and support vectors.

2.3.8. K-Nearest Neighbors Based Network Traffic Classifier Agent

K-NN classifies the data point based on the most common class among its k-nearest
neighbors [29]. Figure 4 shows how K-NN can help one to identify the class of a new
data point.



Future Internet 2022, 14, 230 9 of 23

Figure 4. An illustration of the K-NN classifier algorithm in action.

3. Proposed Network Traffic Predictor and Traffic Classification Agents

In this section, we discuss the proposed NTPA and NTCA frameworks. First, let us re-
define and contextualize the agents. The agent has input, output, and communication tools
to observe the environment, provide the output or execute the action, and communicate
with other existing agents in the MAS. Once an agent is employed in a given environment
and it observes the environmental variables, it can make decisions. The decision is based
on the agent’s final goals, which could be to predict the incoming traffic and classify them
accordingly. By measuring the incoming traffic over a given link, it could analyze and use
it for load balancing, resource slicing, or resource allocation. The important characteristics
of an agent are as follows:

• Situatedness: that means agents use sensors or perception capabilities as an interaction
with the environment, and it uses actuators to perform actions on the environment.
In the NTPA and NTCA contexts, it means taking incoming data as input and provid-
ing prediction and classification results as output, respectively.

• Autonomy: the agents’ internal state is protected from any external disturbance from
other agents in the MAS. NTPA and NTCA are capable of performing their respective
function autonomously without any external support.

• Inferential capability: this enables agents to work on an exact goal until it is achieved.
Agents can analyze the available data for decision making, such as network traffic
prediction and traffic class determination.

• Responsiveness: defined as the ability of an agent to perceive the environment and
perform on it with minimal latency, which is important in real-time processes. Agents
should be designed such that the task execution (prediction and classification in case
of NTPA and NTCA) must be performed with a strict time delay.

• Pro-activeness: means agents should take advantage of particular opportunities that
aim to improve their action performance to dynamically adapt to the changes in the
surrounding environment of the network. By analyzing the historical data, it could
predict the amount of traffic that comes in a given link. Using this knowledge, it
pro-actively allocates the required resources, such as bandwidth.

• Social behavior: the agent’s decision should not be affected by any external inter-
ference, either from human interactions or other agents in the system. NTPA and
NTCA should be capable of performing independently but also could communicate
and collaborate to perform a sequence of tasks, such as classification followed by
prediction or vice versa. For instance, NTCA could classify traffic into various classes
and provide the output to the predictor. Based on the classes, the predictor could
predict the amount of incoming traffic of a given time in the coming hours or days.



Future Internet 2022, 14, 230 10 of 23

3.1. Proposed Network Traffic Predictor Agent Architectural Framework

A given NTPA is equipped with an “input unit" that enables it to receive a network
traffic processing request and network state sampling/measuring points. Furthermore,
NTPA is equipped with several facts that are model features that could be the amount of
incoming network traffic, the available bandwidth in a given link, IP addresses, source
and destination ports, and labels (protocols) [20]. The main target to focus on is the
“cognitive/reasoning unit”. It is the brain of NTPA that enables it to have reasoning
capability, which is typically a DL model. The “planning strategy” component of NTPA is
the steps for the action to be performed in accomplishing the required processing. Another
component of NTPA is a validation unit. It is composed of validation rules for the final
decision, for example, knowing the amount of arriving network traffic of given traffic
classes that helps make decisions. Finally, we have an “output or action” unit. This is
the final outcome that could be a prediction result to be sent to the other agents. Figure 5
(bottom) shows the building blocks of an NTPA.

Figure 5. Network traffic classifier agent (top) and network traffic predictor (bottom) agent architecture.



Future Internet 2022, 14, 230 11 of 23

3.2. Proposed Network Traffic Classifier Agent Architectural Framework

The general architecture of NTCA is similar to NTPA. However, the actual values,
parameters, and algorithms used are different. That means the input parameter, knowledge
base, cognition algorithms, validation technique and the output for NTCA are different
from NTPA. In general, taking the network traffic as input, NTCA classifies them into
the classes to which the traffic belongs. NTCA helps other network agents in making
network decisions, including QoS provisioning and monitoring based on SLA, resource
provisioning, and network slicing. The NTCA design and implementation framework is
depicted in Figure 5 (top).

In particular, simpler than NTPA, NTCA has an “input-unit” that can be used in
receiving a service request and network state sampling/measuring points. In addition,
NTCA has facts, i.e., incoming traffic features, which could be the size of a packet, source
and destination IP addresses, protocols, etc. The “cognition/reasoning unit” is the com-
ponent that gives the central intelligence for NTCA. It uses it to identify and classify
traffic. The “planning strategy unit” is the steps/procedures in providing the class of the
traffic. Another component of NTCA is the validation unit. It is composed of validation
rules for the final classification decision, i.e., knowing the amount and type of arriving
network traffic of given traffic classes that helps make decisions. Finally, the remaining
NTCA component is an “output unit”, which could be a classification result to be sent to
other agents.

3.3. Communication Interface between Agents

The communication interface enables the creation of an agent chain for collabora-
tion and cooperation to create a complete MANA-NMS. Agents could be deployed in
a containerized and distributed environment that communicate based on open-source
communication interfaces. The standard communication interface for agents is ACL [32].
ACL enables a complex knowledge and information exchange mechanism which includes
facts and a knowledge base, the agent’s goal, strategy, plans, and outputs. We used ACL as
a communication interface in our simulation. However, other generic communication inter-
faces were tested in our work in [14]. These are REST, WebSocket, and gRPC. Each of them
has its pros and cons in terms of latency for web-based communicating intelligent agents.

4. Implementation Scenario and Conceptual Framework

We used the osBrain [33] library for the design and implementation of NTPA and
NTCA. osBrain is an agent simulation environment implemented using Python.

We provide the hardware configuration information shown in Table 1, as it affects the
prediction results. Therefore, the same hardware was used to run the LSTM, GRU, CNN,
and MLP models.

Agents within the MAS are running independently as system processes (uses multi-
processing). Since osBrain uses ZeroMQ [34], agents communicate using zeroMQ. zeroMQ
is a messaging library for flexible and efficient communication between agents. It is an
open-source universal messaging library that uses asynchronous communication between
agents in the MAS. The basic communication patterns used by osBrain are Push–Pull,
Request–Reply and Publish–Subscribe.

Table 1. Hardware configuration.

Hardware Capacity

Memory 16 GB 2133 MHz LPDDR3

Processor 2.7 GHz Intel Core i7

Storage 2 Terabytes



Future Internet 2022, 14, 230 12 of 23

4.1. Implementation Conceptual Framework for MANA-NMS Using NTPA

NTPA was implemented in a MANA-NMS framework as a proof of concept. The MANA-
NMS architecture is depicted in Figure 6, showing the integration of NTPA along with
the dispatcher, the audit log agents, and other service processing agents. NTPA mainly
uses LSTM. However, we also used GRU, CNN, and MLP algorithms to compare the
performance against LSTM-based NTPA. MANA-NMS is assumed to be deployed in an
edge/cloud data center, where the incoming traffic is collected at the gateway. We assumed
a Poisson arrival process for the service arrival into the system. The Poisson arrival process
is considered with a 1st degree approximation of the traffic arrival. However, other models
could be used, such as fractal process arrival.

We collected the amount of incoming traffic to observe the service request distribution
in time. The data were collected for 1-year period. To store and manage the history of traffic
data for future retraining of agents, a centralized database can be used. Alternatively, it
could be possible to provide the agent with database management capability. In the agent
interaction dynamics, agents are responsible for pulling results from other agents and log-
ging their actions. NTPA uses the collected dataset to train or retrain its’ internal cognitive
reasoning algorithms. The training of the DL component of NTPA could be performed
centrally (remotely) or locally (at the agent). The training process is performed periodically.

Figure 6. Simple architecture for the MANA-NMS.

After training is complete, NTPA predicts the incoming traffic for the next hours/days.
The predicted data indicate the real incoming traffic demands at a given time.

By using the NTPA prediction traffic values, the resources/agents are dynamically
allocated, creating an agent chain for that particular period. In other words, the predicted
value is used to instantiate the number of service agents by the orchestration agent through a
request communication protocol channel. Then the orchestration agent creates the required
agent chain that is considered the network resources to perform the required service execution.
This can save a lot of unused resources at some time of the day. By doing so, we optimize the
performance of the network, reduce the running cost, and increase the network efficiency.

Moreover, we have a dispatcher agent (event handler agent), whose goals are to
add the incoming daily traffic data/services in a FIFO queue, divide the traffic into three
different queues consulting the NTCA and based on the task/service priority, whether
high, medium, or low, and communicate through three different communication channels
to the service agents (A, B, C).

The scheduling agent schedules the incoming tasks using the first-in-first-out (FIFO)
queuing algorithm while using the classifying agent to classify the tasks into high, medium,
or low priority classes. This represents three main application areas in 5G network ultra-
reliable machine-type communication (uMTC), massive machine-type communication
(mMTC) or extreme mobile broadband (xMBB), respectively. The service agents execute
tasks scheduled in three different queues depending on the task priority. They represent
the complementary service agents in the MANA-NMS. Three types of service agents are



Future Internet 2022, 14, 230 13 of 23

assumed to serve 5G/B5G/6G traffic, which are (a) service agent type A serving the
high priority queue (uMTC), (b) service agent type B serving the medium priority queue
(mMTC), and (c) service agent type C serving the low priority queue (xMBB). Finally, once
the service agents finish their processes, the audit-log agent will pull the results through
three separate communication channels and save them.

4.2. Implementation Conceptual Framework for MANA-NMS Using NTCA

Similar to the NTPA, we used the NTCA design guideline presented above, as depicted
in Figure 5, for the agent implementation. Using the input traffic, NTCA classifies the
incoming network traffic into the appropriate classes. NTCA helps with important deci-
sions in network management, for instance, for QoS provisioning, resource provisioning,
dynamic network slicing, etc. In performing autonomous service management and provi-
sioning, such as resources provisioning and task scheduling, it is necessary to classify all
incoming network traffic as per the protocol to which it belongs to. The protocols indicate
the application or category that the traffic/user or service belongs to. The NTCA uses an
ML algorithm as an internal cognitive part to perform the required traffic classification.

Supervised ML algorithms are employed for the NTCA implementation. The super-
vised ML uses a labeled (protocols or port numbers) network traffic dataset. The supervised
learning models used are K-NN, DT, SVM, and NB, and their performance is compared.
We also assume that the NTCA can collect incoming network traffic and store it as a his-
toric dataset. This dataset will be used by the agent to label and utilize it in training and
re-training the internal cognitive component. The assumption is that the dataset will be
stored in a centralized/distributed database: it could be internal or through the use of other
database management agents. In our case, NTCA can handle the dataset and enable the
dataset to retrieve it when needed.

In the NTCA operation, the traffic dataset is collected using Wireshark in real time.
About 100,000 entries are collected while surfing the internet for about an hour.

The data are saved in CSV format and used in the feature extraction and feature
selection stages. The extracted features are the source and destination IP address, packet
size, and protocol. The main goal is to demonstrate the implementation of an NTCA before
using it to recompose a MANA-NMS system.

NTCA is a building block in the MANA-NMS framework as depicted in Figure 7.
The NTCA collects the incoming network traffic and classifies them into three different
classes. Similar to the NTPA implementation, we assumed high priority (HP), for uMTC
service types, medium priority (MP) for mMTC service types, and low priority (LP) for
xMBB service types. After the network traffic is classified, it is sent to an event handler (task
manager/dispatcher). The event handler then decides where to schedule the traffic relaying
based on the scheduling policy. A FIFO policy is used in the case of traffic belonging to the
same classes. Then a task is scheduled onto the appropriate service agent to be executed.

Figure 7. Implemented MANA-NMS scenario.



Future Internet 2022, 14, 230 14 of 23

4.2.1. Job/Task/Event Handler and Queuing Scheduling

A task (event) manager agent is another type of agent in a given MANA-NMS archi-
tecture. It receives the classified network traffic from NTCA. We assumed every class of
the network traffic as a task requiring execution in the service processing agent. The task
manager decides which service processing agent should handle the service. This decision
is performed using a scheduling policy or intelligent scheduling agent.

4.2.2. Scheduling Policy

“Join Class-Related Queue” is used for scheduling. Scheduling is a policy that sends
tasks to the queues of the appropriate service processing agent. The agent should be
subscribed to that particular task execution. For instance, when an HP class job is sent
by the event manager, it will be placed in the queue of a particular service agent that is
allocated to process an HP task.

4.2.3. Queuing Model Employed

We assumed an M/M/1 Markovian model for the queue. The queuing policy is
assumed to be FIFO similar to the NTPA scheduling policy. In general, M/M/1 means that
the system has a Poisson arrival process with an arrival rate of λ, an exponential service
time distribution with service time µ, and one server. Jobs arrive at the server’s queue at
independent exponentially distributed time intervals with mean 1/λ, they join the queue,
and once in the head of the queue, they get served by the server whose service time per job
is independent and exponentially distributed with parameter 1/µ. A task is scheduled into
the appropriate queue when the task manager/event handler releases it. We assumed three
different queues that are associated with a particular service agent chain, which indicates
the three classes of services to be scheduled in the appropriate agent chain.

5. Performance Evaluation

This section presents the performance evaluation results of NTPA and NTCA equipped
with different DL and ML models, respectively. We used metrics such as prediction and
classification accuracy, training and predicting latency, and memory and CPU utilization
to evaluate the performance. Therefore, at the end of this section, we will able to identify
appropriate DL/ML-based NTPA and NTCA for different prediction/classification network
applications with respect to their time and resource constraints.

Table 2 shows the DL models parameters used in the experiments.

Table 2. Configuration parameters.

Parameter Name
Deep Learning Models

LSTM GRU CNN MLP

Learning Rate 0.1 0.3 0.2 0.01

Validation-split 0.1 0.1 0.1 0.1

Epochs 20 20 20 20

Dropout 0.2 0.1 0.2 0.2

Momentum 0.9 0.8 0.7 0.9

Hidden-layer 1 1 1 1

5.1. Accuracy of NTPA Using Different DL Models

We used the sliding window technique to train our DL models and cross validation
to avoid overfitting with a validation split of 0.1 as mentioned in Table 2 along with other
training parameters. The validation split determines the fraction of training data used for
validation. The validation data are not used for training but evaluate the loss at each epoch.



Future Internet 2022, 14, 230 15 of 23

Figure 8 illustrates the performance of the different Deep learning models, where the
x-axis is day and the y-axis is traffic (terabit per second (Tbps)). In our experiment, we
predicted traffic over different days with different DL models (GRU, CNN, MLP and LSTM)
and took the average of the traffic and compared it with real traffic. Figure 8 shows the
LSTM, GRU, MLP, and CNN based NTPA prediction results against the actual network
traffic. As shown in the figure, there is no significant difference between their prediction
results, while MLP predicts the network traffic differently. Overall, LSTM outperforms
other models.

To measure the accuracy for different models, we used two methods: root mean
square error (RMSE) and mean absolute percentage error (MAPE). RMSE is a measure that
evaluates how good or bad the prediction is, using the Euclidean distance by calculating
the difference between the true value and prediction. Additionally, MAPE is a different
method that measures the prediction accuracy as a ratio. RMSE and MAPE are expressed
as follows:

RMSE =

√
∑N

i=1 ‖ p(i)− p̂(i) ‖2

N
(6)

MAPE =
1
n

n

∑
i=1

∣∣∣∣
Vi − Pi

Vi

∣∣∣∣ (7)

where in Equation (6), N is the number of data points, p(i) is the measured true value,
and p̂(i) is the predicted value. In Equation (7), n is the number of fitted points, Vi is the
actual value, and Pi is the predicted value.

Figures 9 and 10 demonstrate the accuracy for DL models with respect to a different
dataset size. We calculated the averages for one week, one month, three months, six months,
and one year for the MSE and MAPE errors and compared different models. As shown in
the figures, LSTM is the most accurate model to predict the network traffic. Additionally,
as the training dataset size grows, the error value decreases. In other words, training the
NTPA with larger datasets provides higher prediction accuracy. The RMSE error values for
1 year long dataset as shown in Figure 9, for LSTM, GRU, CNN, and MLP are 0.03, 0.06, 0.2,
and 5.7, respectively. Moreover, the MAPE error values for 1 year long dataset as shown in
Figure 10, for LSTM, GRU, CNN, and MLP are 0.24, 0.44, 0.77, and 7.17, respectively. Both
figures indicate that LSTM has the most accurate prediction performance.

Figure 8. Different DL models performance comparison.



Future Internet 2022, 14, 230 16 of 23

Figure 9. RMSE for different dataset size.

Figure 10. MAPE for different dataset size.

5.2. Training Latency and Predicting Latency of NTPA Using Different DL Models

Figure 11 shows the comparison of training latency for the LSTM, GRU, CNN, MLP
models. Training latency is represented as the amount of time taken in training an NTPA.
The training latency was measured over different dataset size. According to the figure,
we see that CNN has the lowest training latency compared to other models. However,
GRU has the highest training latency. The average training latency values for 1 year long
dataset over 20 training trials for the CNN, MLP, LSTM, and GRU models are 74.036 s,
120.873 s, 269.647 s, and 291.274 s, respectively. In addition to the training latency measure,
we assessed the predicting latency. Predicting latency is defined as the amount of time
taken to predict the traffic at a previously unknown time slot. As shown in Figure 12,
the predicting latency was evaluated over a simulation period of one hour. On average,
the LSTM, MLP, CNN, and GRU NTPA designs have predicting latency values of 0.769 µs,
0.834 µs, 1.025 µs, and 1.523 µs, respectively.

The result shows that NTPA takes longer to be trained; however, it takes a shorter
amount of time to predict, compared to NTCA. This confirms the advantage of the DL
methods over ML methods, where a DL model is much quicker in testing, while the ML
model’s testing time will increase as the dataset size grows as mentioned in Section 2.3.



Future Internet 2022, 14, 230 17 of 23

Figure 11. Comparison of NTPA training latency.

Figure 12. Comparison of NTPA predicting latency.

5.3. Computing Resource Utilization of NTPA Using Different DL Models
5.3.1. Memory Usage

We examined the memory usage (in MB) of DL models. As shown in Figure 13, we
observe that the GRU-based NTPA has the highest and the CNN-based NTPA has the
lowest memory usage compared to other models.

5.3.2. CPU Usage

We also examined the CPU usage of DL models. The result is shown in Figure 14. We
observe that LSTM has the lowest CPU usage compared to other models. Additionally,
as seen in the figure, the CPU usage of GRU is the highest.



Future Internet 2022, 14, 230 18 of 23

Figure 13. Comparison of NTPA memory usage.

Figure 14. Comparison of NTPA CPU usage.

5.4. Accuracy of NTCA Using Different ML Models

We evaluated our ML algorithm for the NTCA designs. We split the collected data
into training (80%) and test (20%) sets. The classification accuracy is considered by various
factors, such as the dataset size and the number of features.

For the sake of generating a generic result that is consistent across time and multiple
trials in a given environment for a given model, we ran the NTCA algorithms several times,
running our models 10 times. We calculated the percentage of error made by the classifier
agent for a number of classification trials. We evaluated the mean and variance in terms of
accuracy for different NTCA using various ML models. The result is presented in Table 3.



Future Internet 2022, 14, 230 19 of 23

According to the table, we can understand that the DT-based NTCA is the most robust and
accurate of all the classifier agents. This is because it has the smallest variance while the
algorithm is run multiple times.

Table 3. NTCA classification accuracy.

kth Run of Algorithm
Classifier Agent Designs

K-NN Decision SVM Naive
(%) Tree (%) (%) Bayes (%)

1 98.95 99.6 94.77 88.01

2 98.87 99.44 94.45 88.01

3 98.79 99.52 94.53 89.14

4 98.79 99.6 94.53 87.61

5 98.63 99.44 95.17 88.42

6 98.63 99.52 95.09 88.09

7 98.63 99.36 94.21 87.77

8 98.87 99.68 94.85 88.9

9 98.87 99.44 94.93 87.93

10 98.95 99.44 94.93 88.74

Mean 98.798 99.504 94.746 88.262

Variance 0.01628 0.00967 0.09394 0.26282

5.5. Classification and Training Latency of NTCA Using Different ML Models

Training latency refers to the delay incurred in training a given ML model.
The mean training latencies of 154.3, 154.9, 155.1, and 162.2 ms were measured for

the DT-, K-NN-, NB-, and SVM-based NTCAs, respectively. It is worth mentioning that
the DT-based NTCA design exhibits the lowest average training latency with 154.3 ms,
as shown in Figure 15. We observe that NB, DT, and K-NN models train faster than the
SVM-based NTCA model.

Figure 15. Comparison of NTCA training latency



Future Internet 2022, 14, 230 20 of 23

Classification latency is how long it takes to classify new data. In Figure 16, we
compare the NTCA classification accuracy, simulating over a one-hour simulation period.

Figure 16. Comparison of NTCA classification latency.

The average latencies of K-NN-, SVM-, NB-, and DT-based NTCAs are 28.01 µs,
3.668 µs, 2.773 µs, and 1.593 µs, respectively. Relatively, SVM, NB, and DT NTCAs impose
the least mean latency, which is less than 4 µs. Additionally, the DT-based NTCA has the
least average latency, which is 1.593 µs.

5.6. Computing Resource Utilization of NTCA Using Different ML Models
5.6.1. Memory Usage

Figure 17 shows that the NB traffic classifier agent design uses the least average
memory of 141.1 megabytes (MB) to train the model and classify new data instances.
Despite the fact that the DT-based NTCA design offers the best classification accuracy of
99.504%, it uses the most memory resources amounting to 150 MB. This gives the system
designer a chance to make a trade-off between the classification accuracy and memory
usage while trying to choose a traffic classifier agent design.

Figure 17. Comparison of NTCA memory usage.



Future Internet 2022, 14, 230 21 of 23

5.6.2. CPU Usage

Figure 18 shows the statistical differences of each traffic classifier performance, includ-
ing the minimum, mean, and maximum CPU usage. The SVM traffic classifier has the least
maximum CPU utilization of 31.2%, while the DT-based NTCA has the largest maximum
CPU utilization of 79.2%.

Figure 18. Comparison of NTCA CPU usage.

6. Conclusions and Future Work

Traffic classification and prediction are essential for network resource management,
QoS provisioning and monitoring, security, and network failure detection. For example,
proactive-based network management, resource allocation, and traffic scheduling can
be performed using the prediction result. An organized introduction of intelligence in
the network is required to have automated network control and management. Using
multi-agent-based service-orientation, a MANA-NMS architecture was presented in our
previous work.

In this work, we designed and implemented traffic classifier and predictor agents.
Both NTCA and NTPA leverage ML/DL as an internal cognitive component of the agents
to use in their decision process. The agents are autonomous in performing their respective
decision. Using different cognition elements in the design and implementation, the per-
formance of both agents is evaluated in terms of classification and prediction accuracy,
classification and prediction latency, training latency, and computation resource utilization.
The result suggests that LSTM-based NTPA and DT-based NTCA perform better than the
rest in terms of prediction and classification accuracy and latency, respectively.

As a future work, a realistic testbed implementation is required. Moreover, a complete
system using the autonomous and atomic agents as a building block is necessary. However,
we implemented only NTPA and NTCA in this work. Therefore, it is necessary to have
other services, such as routing, QoS monitoring, 5G core access and mobility management
function (AMF), session management function (SMF), firewall, deep packet inspection,
and other novel functions to have a complete MANA-NMS model for network systems,
such as 5G wireless network, autonomic network management, etc. Thus, it is an open
challenge to implement such functions as intelligent agents. Furthermore, the agent is
expected to be deployed in a container or virtual environment. The experimental evaluation
of such deployment is also another open challenge that we will be working on.



Future Internet 2022, 14, 230 22 of 23

Author Contributions: Conceptualization, methodology, formal analysis, investigation, supervi-
sion, original draft preparation, writing—review and editing, S.T.A.; methodology, formal analysis,
writing—review and editing, original draft preparation, Z.A. and M.E.; resources, supervision, project
administration, writing—review and editing, and funding acquisition, M.D.; writing—review and
editing, supervision and funding acquisition, F.G.; All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been partially funded by NATO Science for Peace and Security (SPS) Program
in the framework of the project SPS G5428 “Dynamic Architecture based on UAVs Monitoring for
Border Security and Safety”, and partially by the US National Science Foundation under the New
Mexico SMART Grid Center-EPSCoR cooperative agreement Grant OIA-1757207.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Samaan, N.; Karmouch, A. Towards autonomic network management: An analysis of current and future research directions.

IEEE Commun. Surv. Tutor. 2009, 11, 22–36. [CrossRef]
2. Long, X.; Gong, X.; Que, X.; Wang, W.; Liu, B.; Jiang, S.; Kong, N. Autonomic networking: Architecture design and standardization.

IEEE Internet Comput. 2017, 21, 48–53. [CrossRef]
3. Hexa-X. D5.1—A Flagship for B5G/6G Vision and Intelligent Fabric of Technology Enablers Connecting Human, Physical, and

Digital Worlds. 2021. Available online: https://hexa-x.eu/wp-content/uploads/2022/01/Hexa-X_D5.1_full_version_v1.0.pdf
(accessed on 22 June 2022).

4. D5.1—AI-dRiven Communication Computation Co-Design: Gap Analysis and Blueprint. 2021. Available online: https://hexa-x.
eu/wp-content/uploads/2021/09/Hexa-X_D4.1_slideset.pdf (accessed on 22 June 2022).

5. ETSI, Network Functions Virtualisation (nfv); Terminology for Main Concepts in nfv., ETSI Industry Specification Group (ISG),
Gs Nfv 003-V1.4.1, Volume 1. 2018. Available online: http://www.etsi.org/standards-search (accessed on 22 June 2022)

6. Movahedi, Z.; Ayari, M.; Langar, R.; Pujolle, G. A survey of autonomic network architectures and evaluation criteria. IEEE
Commun. Surv. Tutor. 2012, 14, 464–490. [CrossRef]

7. Behringer, M.; Dutta, A.; Hertoghs, Y.; Bjarnason, S. Autonomic networking-from theory to practice. In Proceedings of the IEEE
Network Operations and Management Symposium (NOMS), Krakow, Poland, 5–9 May 2014; pp. 1–17.

8. Herrera, J.G.; Botero, J.F. Resource allocation in nfv: A comprehensive survey. IEEE Trans. Netw. Serv. Manag. 2016, 13, 518–532.
[CrossRef]

9. Fossati, F.; Moretti, S.; Perny, P.; Secci, S. Multi-resource allocation for network slicing. IEEE/ACM Trans. Netw. 2020, 28, 1311–1324
[CrossRef]

10. Berrayana, W.; Youssef, H.; Pujolle, G. A generic cross-layer architecture for autonomic network management with network wide
knowledge. In Proceedings of the 8th International Wireless Communications and Mobile Computing Conference (IWCMC),
Limassol, Cyprus, 27–31 August 2012; pp. 82–87.

11. Tsagkaris, K.; Logothetis, M.; Foteinos, V.; Poulios, G.; Michaloliakos, M.; Demestichas, P. Customizable autonomic network
management: Integrating autonomic network management and software-defined networking. IEEE Veh. Technol. Mag. 2015, 10,
61–68. [CrossRef]

12. Arzo, S.T.; Bassoli, R.; Granelli, F.; Fitzek, F.H.P. Multi-agent based autonomic network management architecture. IEEE Trans.
Netw. Serv. Manag. 2021, 18, 3595–3618. [CrossRef]

13. Arzo, S.T.; Naiga, C.; Granelli, F.; Bassoli, R.; Devetsikiotis, M.; Fitzek, F.H.P. A theoretical discussion and survey of network
automation for iot: Challenges and opportunity. IEEE Internet Things J. 2021, 8, 12 021–12 045. [CrossRef]

14. Arzo, S.T.; Scotece, D.; Bassoli, R.; Barattini, D.; Granelli, F.; Foschini, L.; Fitzek, F.H. Msn: A playground framework for design
and evaluation of microservices-based sdn controller. J. Netw. Syst. Manag. 2021, 30, 1573–7705. [CrossRef]

15. Foundation, O.N. Open Network Operating System (onos). Available online: https://docs.onosproject.org/ (accessed on 22 June
2022).

16. Forestiero, A.; Papuzzo, G. Agents-Based Algorithm for a Distributed Information System in Internet of Things. IEEE Internet
Things J. 2021, 8, 16548–16558. [CrossRef]

17. Serugunda, C.N.; Arzo, S.T.; Granelli, F.; Bassoli, R.; Devetsikiotis, M.; Fitzek, F.H. Autonomous network traffic classifier agent
for autonomic network management system. In Proceedings of the IEEE Global Communications Conference (GLOBECOM),
Madrid, Spain, 7–11 December 2021; pp. 1–6.

18. Dowell, M.L.; Bonnell, R.D. Learning for distributed artificial intelligence systems. In Proceedings of the The Twenty-Third
Southeastern Symposium on System Theory, Columbia, SC, USA, 10–12 March 1991; pp. 218–221.

http://doi.org/10.1109/SURV.2009.090303
http://dx.doi.org/10.1109/MIC.2017.3481338
https://hexa-x.eu/wp-content/uploads/2022/01/Hexa-X_D5.1_full_version_v1.0.pdf
https://hexa-x.eu/wp-content/uploads/2021/09/Hexa-X_D4.1_slideset.pdf
https://hexa-x.eu/wp-content/uploads/2021/09/Hexa-X_D4.1_slideset.pdf
http://www.etsi.org/standards-search
http://dx.doi.org/10.1109/SURV.2011.042711.00078
http://dx.doi.org/10.1109/TNSM.2016.2598420
http://dx.doi.org/10.1109/TNET.2020.2979667
http://dx.doi.org/10.1109/MVT.2014.2380633
http://dx.doi.org/10.1109/TNSM.2021.3059752
http://dx.doi.org/10.1109/JIOT.2021.3075901
http://dx.doi.org/10.1007/s10922-021-09631-7
https://docs.onosproject.org/
http://dx.doi.org/10.1109/JIOT.2021.3074830


Future Internet 2022, 14, 230 23 of 23

19. Shaw, M.J.; Harrow, B.; Herman, S. Distributed artificial intelligence for multiagent problem solving and group learning. In
Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences, Kauai, HI, USA, 8–11 January
1991; Volume iv, pp. 13–26.

20. Dorri, A.; Kanhere, S.S.; Jurdak, R. Multi-agent systems: A survey. IEEE Access 2018, 6, 28573–28593. [CrossRef]
21. Rizk, Y.; Awad, M.; Tunstel, E.W. Decision making in multi agent systems: A survey. IEEE Trans. Cogn. Dev. Syst. 2018, 10,

514–529 [CrossRef]
22. Hexa-X. D1.2—Expanded 6G Vision, Use Cases and Societal Values—Including Aspects of Sustainability, Security and Spectrum.

2021. Available online: https://hexa-x.eu/wp-content/uploads/2021/05/Hexa-X_D1.2.pdf (accessed on 22 June 2022).
23. Kim, H.; Lee, D.; Jeong, S.; Choi, H.; Yoo, J.; Hong, J.W. Machine learning-based method for prediction of virtual network function

resource demands. In Proceedings of the IEEE Conference on Network Softwarization (NetSoft), Paris, France, 24–28 June 2019;
pp. 405–413.

24. Yang, S.; Yu, X.; Zhou, Y. Lstm and gru neural network performance comparison study: Taking yelp review dataset as an example.
In Proceedings of the International Workshop on Electronic Communication and Artificial Intelligence (IWECAI), Shanghai,
China, 12–14 June 2020; pp. 98–101.

25. Ramakrishnan, N.; Soni, T. Network traffic prediction using recurrent neural networks. In Proceedings of the IEEE International
Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 187–193.

26. Wang, W.; Bai, Y.; Yu, C.; Gu, Y.; Feng, P.; Wang, X.; Wang, R. A network traffic flow prediction with deep learning approach for
large-scale metropolitan area network. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium,
Taipei, Taiwan, 23–27 April 2018; pp. 1–9.

27. Neagoe, V.-E.; Ciotec, A.-D.; Cucu, G.-S. Deep convolutional neural networks versus multilayer perceptron for financial prediction.
In Proceedings of the International Conference on Communications (COMM), Bucharest, Romania, 14–16 June 2018; pp. 201–206.

28. Navada, A.; Ansari, A.N.; Patil, S.; Sonkamble, B.A. Overview of Use of Decision Tree Algorithms in Machine Learning. In
Proceedings of the 2011 IEEE Control and System Graduate Research Colloquium, Shah Alam, Malaysia, 27–28 June 2011;
pp. 37–42. [CrossRef]

29. Ray, S. A Quick Review of Machine Learning Algorithms. Int. Conf. Mach. Learn. 2019, 35–39. [CrossRef]
30. Huang, J.; Lu, J.; Ling, C.X. Comparing naive Bayes, decision trees, and SVM with AUC and accuracy. In Proceedings of the Third

IEEE International Conference on Data Mining, Melbourne, FL, USA, 22–22 November 2003; pp. 553–556. [CrossRef]
31. Support Vector Machine-Mitosis Technologies. 2021. Available online: https://www.mitosistech.com/support-vector-machine/

(accessed on 5 January 2021).
32. Soon, G.K.; On, C.K.; Anthony, P.; Hamdan, A.R. A review on agent communication language. In Computational Science and

Technology; Alfred, R., Lim, Y., Ibrahim, A.A.A., Anthony, P., Eds.; Springer: Singapore, 2019; pp. 481–491.
33. O. S. de Informacíon Internet S.L. Revision d0b241de., “osbrain-0.6.5”. Available online: https://osbrain.readthedocs.io/en/

stable/ (accessed on 23 June 2022).
34. ZeroMQ. An Open-Source Universal Messaging Library. Available online: https://zeromq.org (accessed on 22 June 2022).

http://dx.doi.org/10.1109/ACCESS.2018.2831228
http://dx.doi.org/10.1109/TCDS.2018.2840971
https://hexa-x.eu/wp-content/uploads/2021/05/Hexa-X_D1.2.pdf
http://dx.doi.org/10.1109/ICSGRC.2011.5991826,
http://dx.doi.org/10.1109/COMITCon.2019.8862451
http://dx.doi.org/10.1109/ICDM.2003.1250975
https://www. mitosistech.com/support-vector-machine/
https://osbrain.readthedocs.io/en/stable/
https://osbrain.readthedocs.io/en/stable/
https://zeromq.org

	Introduction
	Overview of Network Automation and Enabling Technologies
	Overview of Network Management Automation
	Overview of the Multi-Agent System
	Application of Traditional Machine Learning and Deep Learning as a Cognitive Component of Agents
	LSTM-Based Network Traffic Predictor Agent
	GRU-Based Network Traffic Predictor Agent
	MLP-Based Network Traffic Predictor Agent
	CNN-Based Network Traffic Predictor Agent
	Decision-Tree-Based Network Traffic Classifier Agent
	Naive Bayes Based Network Traffic Classifier Agent
	Support Vector Machine Based Network Traffic Classifier Agent
	K-Nearest Neighbors Based Network Traffic Classifier Agent


	Proposed Network Traffic Predictor and Traffic Classification Agents
	Proposed Network Traffic Predictor Agent Architectural Framework
	Proposed Network Traffic Classifier Agent Architectural Framework
	Communication Interface between Agents

	Implementation Scenario and Conceptual Framework
	Implementation Conceptual Framework for MANA-NMS Using NTPA
	Implementation Conceptual Framework for MANA-NMS Using NTCA
	Job/Task/Event Handler and Queuing Scheduling
	Scheduling Policy
	Queuing Model Employed


	Performance Evaluation
	Accuracy of NTPA Using Different DL Models
	Training Latency and Predicting Latency of NTPA Using Different DL Models
	Computing Resource Utilization of NTPA Using Different DL Models
	Memory Usage
	CPU Usage

	Accuracy of NTCA Using Different ML Models
	Classification and Training Latency of NTCA Using Different ML Models
	Computing Resource Utilization of NTCA Using Different ML Models
	Memory Usage
	CPU Usage


	Conclusions and Future Work
	References



