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Quantum membrane phases in synthetic lattices of cold molecules or Rydberg atoms
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We calculate properties of dipolar interacting ultracold molecules or Rydberg atoms in a semisynthetic
three-dimensional configuration—one synthetic dimension plus a two-dimensional real-space optical lattice or
periodic microtrap array—using the stochastic Green’s function quantum Monte Carlo method. Through a cal-
culation of thermodynamic quantities and appropriate correlation functions, along with their finite-size scalings,
we show that there is a second-order transition to a low-temperature phase in which two-dimensional “sheets”
form in the synthetic dimension of internal rotational or electronic states of the molecules or Rydberg atoms,
respectively. Simulations for different values of the interaction V , which acts between atoms or molecules that
are adjacent both in real and synthetic space, allow us to compute a phase diagram. We find a finite-temperature
transition at sufficiently large V as well as a quantum phase transition—a critical value Vc below which the
transition temperature vanishes.
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I. INTRODUCTION

Atomic and molecular platforms for quantum simulation
offer the versatility to realize an enormous range of physics,
which has recently been extended to physics with extra dimen-
sions by augmenting true spatial extent with internal [1–7] or
motional states [8–11] coupled to mimic motion through a lat-
tice in a synthetic dimension. Synthetic dimensions can lend
access to many-body Hamiltonians with high levels of con-
trol over parameters such as tunneling amplitude and phase
in the synthetic dimension, particularly useful for studying
gauge fields, disorder, and topological band structures, all of
which have been explored in recent experiments, reviewed in
Ref. [12].

Recent experiments in ultracold molecules and Rydberg
atoms demonstrate their potential as many-body systems with
synthetic dimensions. Ultracold molecules’ rotational-state-
exchanging dipolar interactions have been observed in optical
lattices [13–15], they have been trapped in arrays of optical
tweezers [16,17], and sophisticated coherent rotational state
control of many levels has been demonstrated [18], all the
ingredients required to create many-body strongly interacting
synthetic dimensions with rotational states of molecules [5,6].
Similarly, rapid advances in optical tweezer arrays of dozens
or hundreds of Rydberg atoms [19–23] can be combined with
the synthetic dimensions for single Rydberg atoms demon-
strated in Ref. [7] to create many-body synthetic dimensions.
Ref. [7] specifically used a ladder of alternating s and p
Rydberg states, but many alternative level schemes are pos-
sible.

Here, we consider an effectively three-dimensional (3D)
system constructed from a two-dimensional real-space lat-
tice with one ultracold polar molecule or Rydberg atom per

site, extended by a third, synthetic, dimension of molecular
rotational states, as illustrated in Fig. 1. We will mostly de-
scribe the system for the molecular case, but identical physics
will apply for configurations of Rydberg atoms, as discussed
below. We show that the system undergoes a quantum phase
transition as the dipolar interaction V , which causes angular-
momentum exchange between adjacent molecules, is varied
relative to the “tunneling” J within the synthetic dimension.

The transition represents the development of a “quantum
membrane,” or a low-temperature phase in which molecules
across the lattice are confined to occupy one of a few spon-
taneously chosen adjacent sites in the synthetic dimension, a
two-dimensional surface fluctuating in the three-dimensional
space. Previously, this phase transition was examined using
mean-field theories [5], and, in one dimension (1D), with
density-matrix renormalization group (DMRG) calculations
and analytical solutions in the limit V/J → ∞ [6]. Here, we
utilize the stochastic Green’s function (SGF) method [24]
to perform numerically exact Quantum Monte Carlo (QMC)
calculations determining the phase boundary at zero and fi-
nite temperature, as well as multiple observables across the
phase diagram. We evaluate the average distance between
molecules along the synthetic direction, which measures the
degree of rotational state confinement into a membrane, as
well as thermodynamic quantities such as energy, heat capac-
ity, and entropy, and correlation functions. Varying the lattice
size allows a characterization of the phase transition in the
thermodynamic limit.

II. MODEL AND METHODOLOGY

Experiments on two-dimensional periodic arrays of ultra-
cold polar molecules in an optical trap or microtrap array with
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FIG. 1. (a) A one-dimensional (1D) real and 1D synthetic-space
lattice of ultracold molecules form an effective two-dimensional (2D)
system. Microwaves couple adjacent rotational states with synthetic
tunneling rate J . (b) 2D lattices augmented with a synthetic dimen-
sion form an effective three-dimensional (3D) system, the focus of
this paper.

no real-space tunneling and with near-resonant microwaves
coupling a chain of rotational states are described by [5] the
many-body Hamiltonian

Ĥ = −
∑

i,n

Jn (c†
i,nci,n+1 + c†

i,n+1ci,n)

+
∑

〈i, j〉,n
V i, j

n c†
i,n+1ci,nc†

j,nc j,n+1, (1)

when the microwave transition rates, detuning, and interac-
tions are small compared with the energy differences between
rotational states. Here ci,n is either a bosonic or fermionic
annihilation operator for a molecule at real-space lattice site
i and rotational state (synthetic site) n, and the Hamiltonian
is the same for both cases, since particles are frozen on their
lattice sites and cannot exchange in real space. The first term
arises from the near-resonant microwaves, where Jn is pro-
portional to the microwave amplitude coupling states n and
n + 1. The second term arises from dipolar interactions, which
drive an exchange of angular momentum n between pairs
of molecules with adjacent angular momenta (n1, n2), i.e.,
(n, n + 1) → (n + 1, n). We have truncated the 1/r3 dipole
interaction to nearest neighbors. This captures the dominant
interactions, and in 2D the longer range interactions are
likely to give mostly quantitative corrections to the physics.
More significant qualitative effects are expected only in small

regions, for example at low temperatures where multiple
phases of matter with nearby energies compete.

Interpreting the rotational states as a synthetic dimension
indexed by n, the first term describes microwave-induced tun-
neling along the synthetic dimension for each spatial location
i in the array, while the second term describes the dipole
interactions, which causes molecules adjacent in the synthetic
dimension to undergo coordinated quantum fluctuations. The
precise functional forms for V i, j

n are nontrivial [5], but they
vary slowly and approach a constant for large n, so we assume
Vn = V for all n, an excellent approximation for many choices
of rotational states. The Jn are fully tunable in experiment by
controlling the microwave amplitudes, but here we restrict to
the simplest scenario, in which Jn = J and V i, j

n = V . Such a
model provides the simplest example of an interacting syn-
thetic dimension in this system, but as has been argued in
Refs. [5,6] and we will see here, the physics is already quite
rich, with interesting finite-temperature and quantum phase
transitions.

In this work, we fix J = 1 and kB = 1, while focusing on
V < 0, where the QMC sign problem is absent [25]. Both
signs can be realized in experiment by choosing the polariza-
tion of the microwaves. Microwaves that are linearly polarized
in the z direction yield a positive sign, while microwaves with
a left-circular polarization with respect to the z axis yield
the other [5]. We refer to R and L as the linear lattice sizes
in synthetic and real space, as illustrated in Fig. 1(b). For
a system of trapped ultracold molecules or Rydberg atoms,
R is tunable and controlled by the microwave configurations
applied. Initial experiments have demonstrated R = 6 for Ry-
dberg atoms [7] and demonstrated the individual couplings
required for R = 6 for molecules [26]. No issues are expected
to arise scaling to much larger R, and interesting physics
already occurs for R � 6. N = L × L denotes the total number
of real sites (molecules) on a square lattice. We use periodic
boundary conditions (PBCs) for both real space and the syn-
thetic dimension. Both open boundary conditions (OBCs) and
PBC in synthetic dimensions are realizable experimentally
and we do not expect the choice of boundary conditions to
alter the physics for large R or L.

The SGF method [24] that we use is closely related to
the canonical worm (CW) algorithms [27–30]. It has the
advantage of ease of implementation for general forms of
interparticle interaction, but is somewhat less efficient than
methods which have been optimized for particular models. Its
name derives from the central role of the many-body Green’s
functions and its ability to capture them in a simple and gen-
eral way. The SGF approach works in the canonical ensemble
and utilizes continuous imaginary time. Hence it avoids any
systematic errors introduced by Trotter discretization [31–33].

III. RESULTS

A. Thermal phase transition

We begin our determination of the phase diagram by
considering a fixed number of rotational states R = 10 and
V = −2 J . The temperature dependence of the energy per
spatial site E , as obtained by the SGF, is shown in Fig. 2(a)
for linear lattice sizes L = 4, 6, 8, 10. Figures 2(b) and 2(c)
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FIG. 2. (a) Energy E , (b) heat capacity C, and (c) entropy S per
spatial site as functions of temperature T for J = 1 and V = −2
for linear lattice sizes L = 4, 6, 8, 10 and R = 10 synthetic sites.
A signature of a phase transition is present at T ≈ 0.8J . The inset
to panel (c) highlights a more subtle feature: an entropy plateau
separating the phase transition from a final entropy drop when the
temperature is sufficiently small to resolve a nearly degenerate set of
states.

complete the picture of the thermodynamics by showing the
resulting heat capacity C, and entropy S. C(T ) = dE/dT
is obtained from a numerical differentiation of the energy.
The entropy is obtained by thermodynamic integration, where
Tmax ≈ 2|V | is the highest temperature we simulate. We have
checked convergence in Tmax and find that it causes only a
small shift of the curves and does not change any of the fea-
tures we identify. We approximate S(Tmax,V ) by S(Tmax,V =
0), the noninteracting entropy at Tmax, which captures the
zeroth-order term in the high-T expansion.

The most prominent feature of Fig. 2 is a sharp decrease in
both energy and entropy at T ≈ 0.8J , and the corresponding
peak in C(T ). These are signals of a thermal phase transition,
as we will verify more rigorously below. In concurrence with
this picture, the greater dependence of E (T ) on lattice size
L in the region 0.7 � T/J � 1.2 suggests a large correlation
length.

The inset of Fig. 2(c) focuses on the low-T behav-
ior of the entropy for L = 8, R = 10, which reveals a
plateau in S(T ) in a temperature range 0.05J � T � 0.3J
which can be understood as follows: In the limit J = 0, the
ground state is degenerate [6]. When J is turned on, this
ground state degeneracy is broken, so that the resulting
unique ground state yields an entropy S → 0 as T → 0. Our
value |J/V | = 1/2, is sufficiently small that the reduction in
entropy occurs in two stages: a phase transition to sheet forma-
tion (as we shall show) at T ≈ 0.8J , and then a final decrease
at much lower T when the temperature drops below the energy
scale distinguishing the nearly degenerate states, remnants

FIG. 3. Average distance �i j [Eq. (2)] between the rotational
states of molecules on sites i and j, as a function of temperature
T , for dimensions L = 8, R = 10 and energy scales J = 1, V = −2.
A drop, which becomes more abrupt as |i − j| increases, indicates
long-range binding of rotational states on different molecules.

of those exactly present at J = 0. There is a corresponding
second peak in the heat capacity Fig. 2(b) at T ≈ 0.03J .

To explore the nature of the ordered phase suggested by
the thermodynamics, we measure �i j , the average separation
in the synthetic dimension between two molecules on spatial
sites i and j. This is

�i j ≡ 1

R

∑

m,n

|m − n|〈c†
i,mci,mc†

j,nc j,n〉, (2)

where |m − n| denotes the distance between synthetic sites m
and n, accounting for periodic boundary conditions.

Measuring �i j and related observables discussed below is
challenging, but may be possible, in near-term experiments.
Experimentally, one can measure populations in specific syn-
thetic sites using standard techniques. In molecules, one can
measure populations by state-selective absorption imaging
[34] or by absorption imaging the atoms produced after a
stimulated Raman adiabatic passage (STIRAP) process ad-
dressing specific rotational states [35,36]. However, this can
be done only for a single rotational level per experimental shot
because the absorption imaging is destructive. Thus one can
obtain only the m = n terms in the integrand of Eq. (2). These
drawbacks may be overcome by novel imaging techniques,
such as dispersive imaging [37] or perhaps by taking advan-
tage of special molecules with quasicycling transitions [38].
In Rydberg atoms, one can measure populations by selective
field ionization [39] or level-specific transitions followed by
absorption imaging, but novel nondestructive high-resolution
real-space imaging will be required to directly measure corre-
lations.

Figure 3 shows �i j as a function of temperature for several
i, j for an R = 10, L = 8, V = −2J system. |i − j| denotes
the vector connecting real sites i and j. At high temper-
ature, molecules are randomly distributed and densities on
different real sites are independent. In this case, defining
Pm(i) ≡ c†

i,mci,m, we have 〈Pm(i)Pn( j)〉 = 〈Pm(i)〉〈Pn( j)〉 =
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FIG. 4. 〈Pm(i)Pn( j)〉 and 〈Pmn(i)Pnm( j〉) as functions of temper-
ature T for a L = 8, R = 10 system with J = 1, V = −2. As T is
reduced below T ≈ 0.8J the probabilities that the particles are in
nearby synthetic states, |m − n| = 0, 1 rapidly grow, consistent with
entry into a membrane phase.

1/R2 = 0.01 when i �= j. As a consequence, we find �i j ≈
0.25 in the high-temperature limit when the sum over m and
n is performed, in agreement with the high-T limit of Fig. 3.
The transition to the relatively low-value �i j ≈ 0.08 below
Tc ≈ 0.8J, is consistent with the peak position of C(T ) and
signals the formation of an ordered quantum membrane phase,
with greatly reduced separation in the synthetic dimension.

We can more fully characterize this phase by measuring
two additional correlation functions. The first, 〈Pm(i)Pn( j)〉,
breaks the average distance �i j into its components and bet-
ter resolves the rotational separation. When 〈Pm(i)Pn( j)〉 is
measured for the same molecule, i = j, it takes either of the
two temperature independent values 1/R = 0.1 for n = m,
or 1/R2 = 0.01 for n �= m. On the other hand, for distinct
molecules, i �= j, there is a strong temperature dependence.
At high T , 〈Pm(i)Pn( j)〉 → 1/R2 for all n, m, as discussed
above, consistent with a complete lack of correlation between
the rotational states. However, as T is lowered, there is a rapid
increase in the probability that the rotational states are iden-
tical, |m − n| = 0, or adjacent, |m − n| = 1. Simultaneously,
〈Pm(i)Pn( j)〉 becomes small for all |m − n| > 2. This is true
both for neighboring molecules |i − j| = (1, 0) and for those
at maximal separation |i − j| = (4, 4) for L = 8, indicating
the ordering of molecules to nearby synthetic locations is long
ranged in real space.

The results of Fig. 3 together with the top row of Fig. 4 give
considerable insight into the nature of the phase transition and
the ordered phase. At low-temperature, the string is mostly
confined to three adjacent states (spontaneously chosen) in
the synthetic dimension, and when the system is heated to
the phase transition, the width of the strings diverges until
it saturates the full width of the synthetic dimension. In an
infinite system, it is expected to diverge at the phase transi-
tion, as investigated below. Intriguingly, the low-temperature
width of the strings is reminiscent of the J = 0 limit of
the 2D = (1 real) + (1 synthetic) system at T = 0 that was
exactly solved in Ref. [6], which had a width of exactly

(a)

(b)

FIG. 5. (a) Structure factor N〈M2〉 as a function of temperature
T when J = 1, V = −2 for L = 4, 6, 8, 10, R = 10. (b) Binder ratio
B = 〈M4〉/〈M2〉2 as a function of T . Inset shows a zoom-in showing
a crossing at Tc ≈ 0.75, which coincides with Figs. 2–4.

three synthetic sites. Our results suggest the same phenomena
occurs in 3D = (2 real) + (1 synthetic dimension), and that
adding J broadens the strings by a finite amount until the
phase transition is reached and the string width diverges.

We also consider the correlation function, 〈Pmn(i)Pnm( j)〉
with Pmn ≡ c†

i,mci,n, which describes the probability of
molecules i, j being in states with superpositions of ex-
changed synthetic positions m, n. As with 〈Pm(i)Pn( j)〉, the
correlation 〈Pmn(i)Pnm( j)〉 takes a trivial value 1/R for |i −
j| = (0, 0). For |i − j| = (1, 0) and |m − n| = 1, this ro-
tational exchange is the expectation value of the second
(interaction) term of the Hamiltonian (with the coefficient V
removed). Figure 4 (bottom) shows this correlation rapidly
grows as temperature is lowered below T ≈ 0.8J. The in-
crease is even more abrupt for larger |i − j| = (4, 4). This
corroborates the preference for the occupation of nearby ro-
tational states across the entire 8 × 8 molecular array for
T � 0.8J .

We now quantify these transitions through a finite-size
scaling analysis and an appropriately defined order parameter.
We begin, in analogy to the common analysis of the Potts
model [40], by defining an order parameter

M ≡
R∑

m=1

e2π im/R

∑
j Pj (m)

N
, (3)

which gives a one-dimensional representation of the group of
translations in the synthetic dimension. Then N〈M2〉, shown
in Fig. 5(a), can be viewed as the corresponding structure
factor. Above Tc, the synthetic position is random, and thus
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(c)

FIG. 6. (a) Energy E , (b) heat capacity C, and (c) entropy S per
spatial site as a function of temperature T for J = 1, V = −2, and
R = 6, 8, 10, 12.

preserves synthetic translation invariance so 〈M2〉 ∼ 1
N → 0

in the thermodynamic limit. Below Tc, in the quantum mem-
brane phase, the structure factor N〈M2〉 becomes proportional
to the real-space lattice size N .

An associated Binder ratio [41] is B = 〈M4〉/〈M2〉2. Its
crossings can be used to determine precisely both thermal and
quantum critical points. In the molecular gas phase, above
Tc, 〈M4〉 ∼ 2/N2 and the Binder ratio B ∼ 2. In the quan-
tum membrane phase, below Tc, 〈M4〉 ∼ 〈M2〉2 and B ≈ 1.
Precisely this behavior is seen in Fig. 5(b). A Binder ratio
crossing of curves for different lattice sizes occurs, and is
emphasized in the inset. This allows an accurate determination
of Tc = 0.75 ± 0.02, refining the more crude Tc estimates
from Figs. 2–4.

We now expand our focus from the R = 10 results con-
sidered so far to study the dependence of the thermal phase
transition on R, shown in Fig. 6. When the temperature T is
lower than Tc (which can depend on R), molecules collapse to
a quantum membrane with thickness of roughly two or three
sites and the total energy is independent of the number of
unoccupied synthetic sites, as is seen in Fig. 6(a). For T > Tc,
the energy E depends on R, increasing with R as the molecules
escape the bound states. The heat-capacity peaks increase with
R, reflecting the greater loss in entropy as the membrane forms
and the occupied rotational states decline from ≈R to ≈2–3.
The positions of the peaks, i.e., the locations of Tc, decrease as
R increases, but the shift is relatively small. An analogy is the
R-state Potts model, which is a natural generalization of the
Ising model (2-state Potts model). The Hamiltonian is given
by H = −J

∑
〈i, j〉 δ(si, s j ), where J is a coupling constant,

(a)

(b)

(c)

FIG. 7. (a) Energy, (b) heat capacity C, and (c) entropy S per
spatial site as functions of temperature T for J = 1, R = 10, L = 8,
for interaction strengths V = −5, −3.5, −2, −1, −0.8, 0, and for
R = 14, V = −5.

〈i, j〉 denotes the nearest neighbors and each spin si has R
possible integer states to choose. The critical temperature of
the square lattice Potts model, a rough classical analog of the
quantum model considered here, is known to decline as Tc ∼
1/ln(1 + √

R), which similarly has a very slow dependence
on R.1

We similarly expand our calculations from the previous
V = −2 to general V . Analogous to Fig. 2, the energy E , heat
capacity C, and entropy S are shown in Fig. 7. All the curves
are for a 8 × 8 square lattice with R = 10. The black curve is
obtained from analytical solution for the noninteracting limit
V = 0. As V increases, the transition temperature Tc rises and
for |V | � 5, Tc is roughly proportional to V , an expected result
since J is negligible and V is the only energy scale at these
temperatures. In the noninteracting limit, the ground-state de-
generacy is completely removed and entropy drops to S = 0
directly without any plateaus. As the interaction strength V
grows, wider low-temperature entropy plateaus are evident.

B. Quantum phase transition

The results of Fig. 7 show that Tc is becoming small as V
decreases. This suggests the possibility that there is a quantum
critical point (QCP) below which there is no ordered phase (no
membrane formation) even at zero temperature. To explore

1Comparing R = 6 and R = 12, 1/ln(1 + √
6) = 0.808, and

1/ln(1 + √
12) = 0.669.
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(a)

(b)

FIG. 8. (a) 〈Pm(i)Pn( j)〉 as a function of V for a L = 8 and
R = 10 system at low temperatures T = 0.05, 0.01. (b) The Binder
ratio B = 〈M4〉/〈M2〉2 crossing shows a quantum critical point at
Vc = 0.40 ± 0.025.

this possibility, we fix T at a low value and vary the interaction
strength V . The correlation function 〈Pm(i)Pn( j)〉 is plotted
in Fig. 8(a). Both T = 0.05 (solid line) and T = 0.01 (dots)
curves are presented. The fact that they coincide indicates
we have accessed the ground state for the given finite lat-
tice. The data support the existence of a QCP at Vc ≈ −0.4.
Below this value, even in the ground state, 〈Pm(i)Pn( j)〉 =
1/R2 for all |m − n|, its uncorrelated, gas-phase value. How-
ever, for |V | > 0.4, the quantum membrane phase occurs at
low T . 〈Pm(i)Pn( j)〉 is then large for |m − n| � 2, whereas
〈Pm(i)Pn( j)〉 ≈ 0 for |m − n| > 2 away from Vc. The values
of 〈Pm(i)Pn( j)〉 for |m − n| > 2 grow as Vc is approached: the
membrane becomes increasingly thick.

Similar to the thermal phase transition, a more accurate
way to locate Vc is by plotting the Binder ratio B as a function
of V for different lattice sizes. The clear crossing of Fig. 8(b)
determines the position of the QCP, Vc = 0.40 ± 0.025.

C. Phase diagram

Putting together the results for the thermal and quantum
phase transitions leads to the phase diagram shown in Fig. 9.
The blue dots are obtained from the peaks in the heat-capacity
curves C(T ) and the red open circles are extracted from the
temperature of largest slope in the average distance d�i j/dT .
Both data sets were analyzed at fixed spatial lattice size, an
8 × 8 square with R = 10 rotational states. They are in close
quantitative agreement. As is suggested in Fig. 6, the depen-
dence of transition temperature Tc on number of rotational
states R near this value R = 10 is weak.

FIG. 9. Phase diagram of the Hamiltonian (1) describing ultra-
cold polar molecules in two spatial dimensions and one synthetic
dimension. Transition temperature Tc (obtained from the peak posi-
tion in heat-capacity curves, the largest slope position in �i j versus
T plots and the location of the Binder crossing) as a function of V
for R = 10 system.

As noted earlier, the most reliable Tc are obtained from a
Binder crossing, as in Fig. 5 for V = −2. These are shown by
red stars at V = −2 and V = −5 in Fig. 9. The Binder value
lies somewhat below the values inferred from a single lattice
size, an expected result. Finally, the red star at Tc = 0 reveals
the quantum critical point implied by the Binder crossing
in Fig. 8. The two phases are labeled in the figure: When
T > Tc, the system is in a molecular gas phase where spatially
separated molecules are uncorrelated. When T < Tc there is
a quantum membrane phase where molecules separated far
in real space remain close along the synthetic direction, with
|m − n| a finite value, approaching �2 as V → −∞.

IV. DISCUSSION AND CONCLUSIONS

In this work we calculated properties of 3D systems formed
by two-dimensional (2D) real-space arrays of either ultracold
polar molecules or Rydberg atoms augmented by a syn-
thetic dimension employing the stochastic Green’s function
(SGF) quantum Monte Carlo (QMC) method. Thermody-
namic quantities—the energy E , heat capacity C, entropy
S—were measured as functions of temperature T and in-
teraction strength V and suggested the occurrence of both
finite temperature and quantum phase transitions. The high-
temperature 3D gas transitions to a low-temperature quantum
membrane, a spontaneously formed fluctuating 2D surface, as
evinced by correlation functions that capture the average sep-
aration in the synthetic dimension, [�i j], probabilities for two
molecules to occupy given synthetic sites [〈Pm(i)Pn( j)〉], and
a measure of correlated hopping in the synthetic dimension
for particles separated in real space [〈Pmn(i)Pnm( j)〉]. Finite-
size studies of these observables, including an analysis of the
Binder ratio, suggest a genuine phase transition and capture Tc

accurately. Together with the extraction of a quantum critical
coupling strength Vc, these data produced a phase diagram
in the plane of temperature T and the energy scale V of
coordinated quantum tunneling of adjacent molecules.

063320-6



QUANTUM MEMBRANE PHASES IN SYNTHETIC LATTICES … PHYSICAL REVIEW A 105, 063320 (2022)

We show that the quantum membrane phase suggested in
prior work [5,6] zero-temperature mean-field or in 2D (1 real
+ 1 synthetic) DMRG calculations also exists in 3D (2 real
+ 1 synthetic), and that it survives to finite temperature. We
also show this with significantly larger systems and finite-size
scaling, and with a variety of conceptually important and
experimentally accessible observables. These elucidate the
nature of the thermal and phase transitions as a continuous
transition occurring by the divergence of the string width.
These results will be invaluable for experiments that are be-
ginning to probe synthetic dimensions in arrays of trapped
molecules and Rydberg atoms.

A question opened by these results is the precise nature
of the classical and quantum phase transitions, in particular
their universality class. It is unclear whether this corresponds
to a known universality class, or something previously un-
explored. Additionally, while the results should capture the
main physics, the long-ranged 1/r3 interactions will lead to
quantitative, and perhaps some qualitative, modifications of
the behavior, and will need to be incorporated for detailed
comparison with future experiments. Other than practicali-
ties (e.g., molecules have a larger number of stable states,
Rydberg atoms have more developed techniques for mea-
suring simultaneous internal state populations), the main
difference between cold molecules and Rydberg atoms is po-
tentially the interaction structure. Molecules give the nearly
uniform nearest-neighbor interactions in the synthetic direc-
tion for natural choices of rotational states. Rydberg atoms
naturally give patterned interaction structures if one uses
dipole-allowed transitions between states with different prin-

cipal quantum numbers to realize the synthetic dimension,
discussed in Ref. [7]. Interactions are still nearest-neighbor in
the synthetic dimension, but alternate in magnitude from bond
to bond. In general, both systems have much more compli-
cated interaction structures if one either uses alternate choices
of rotational or Rydberg states to build the synthetic dimen-
sion. Finally, the results and methods also serve as a jumping
off point for calculations in the infinite variety of synthetic
landscapes that can be experimentally engineered, including
topological band structures, such as the Su-Schrieffer-Heeger
model realized in Ref. [7], models with disorder, ladders,
gauge fields, or even exotic geometries such as Möbius strips.
The interplay of the interaction-driven tendency towards a
quantum membrane with the single-particle band structures
is expected to lead to a rich variety of physics.
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