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ABSTRACT

The 3SUM hypothesis, the All-Pairs Shortest Paths (APSP) hypothe-
sis and the Strong Exponential Time Hypothesis are the three main
hypotheses in the area of fine-grained complexity. So far, within
the area, the first two hypotheses have mainly been about integer
inputs in the Word RAM model of computation. The “Real APSP”
and “Real 3SUM” hypotheses, which assert that the APSP and 3SUM
hypotheses hold for real-valued inputs in a reasonable version of
the Real RAM model, are even more believable than their integer
counterparts.

Under the very believable hypothesis that at least one of the
Integer 3SUM hypothesis, Integer APSP hypothesis or SETH is
true, Abboud, Vassilevska W. and Yu [STOC 2015] showed that
a problem called Triangle Collection requires n37°W time on an
n-node graph.

The main result of this paper is a nontrivial lower bound for a
slight generalization of Triangle Collection, called All-Color-Pairs
Triangle Collection, under the even more believable hypothesis
that at least one of the Real 3SUM, the Real APSP, and the Or-
thogonal Vector (OV) hypotheses is true. Combined with slight
modifications of prior reductions from Triangle Collection, we ob-
tain polynomial conditional lower bounds for problems such as
the (static) ST-Max Flow problem and dynamic versions of Max
Flow, Single-Source Reachability Count, and Counting Strongly
Connected Components, now under the new weaker hypothesis.

Our main result is built on the following two lines of reductions.
In the first line of reductions, we show Real APSP and Real 3SUM
hardness for the All-Edges Sparse Triangle problem. Prior reduc-
tions only worked from the integer variants of these problems. In
the second line of reductions, we show Real APSP and OV hardness
for a variant of the Boolean Matrix Multiplication problem.
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Along the way we show that Triangle Collection is equivalent to
a simpler restricted version of the problem, simplifying prior work.
Our techniques also have other interesting implications, such as
a super-linear lower bound of Integer All-Numbers 3SUM based
on the Real 3SUM hypothesis, and a tight lower bound for a string
matching problem based on the OV hypothesis.
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1 INTRODUCTION

Fine-grained complexity is an active area of study that gives a
problem-centric approach to complexity. Its major goal is to prove
relationships and equivalences between problems whose best known
running times have not been improved in decades. Through a va-
riety of techniques and sophisticated reductions many problems
from a huge variety of domains and with potentially vastly differ-
ent running time complexities are now known to be related via
fine-grained reductions (see e.g. the survey [54]).

As a consequence of the known reductions, the hardness of most
of the studied problems in fine-grained complexity can be based on
the presumed hardness of three key problems: the 3SUM problem,
the All-Pairs Shortest Paths (APSP) problem and CNF-SAT. Their
associated hardness hypotheses below are all defined for the Word
RAM model of computation with O(log n)-bit words:

e The (Integer) 3SUM hypothesis. There is no algorithm
that can check whether a list of n integers from +[n€] for
some constant ¢ contains three integers that sum up to zero
in O(n?®~¢) time for ¢ > 0.!

e The (Integer) APSP hypothesis. There is no algorithm
that can solve the APSP problem in an n-node graph whose

! Throughout this paper, [N'] denotes {0,1,...,N — 1} and +[N] denotes {—(N —
1),....,N—-1}
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edge weights are from +[n°] for some constant ¢ in O(n>~¢)
time for ¢ > 0.

e The Strong Exponential Time Hypothesis (SETH). For
every ¢ > 0, there exists an integer k such that k-SAT on n
variables cannot be solved in 0(2(1_5)”) time. An equivalent
formulation states that there is no O(2(1=9)") time algorithm
for CNF-SAT with n variables and O(n) clauses for any ¢ > 0.

All three hardness hypotheses were studied before Fine-Grained
Complexity even got its name. The complexity of 3SUM was first
used as a basis for hardness in the computational geometry commu-
nity by Gajentaan and Overmars [39]. The complexity of APSP has
been used as a basis of hardness in the graph algorithms community
at least since the early 2000s (e.g. [50]). SETH was first studied in
1999 by Impagliazzo and Paturi [44], though the name “SETH” was
first given later in [19]. Together, the three hypotheses have been
very influential, giving very strong lower bounds for a wide range
of problems.

The 3SUM hypothesis is now known to imply tight hardness
results for many geometric problems (e.g. [6, 12, 13, 16, 23, 30, 32, 33,
52]), and also for some non-algebraic problems (e.g. 2, 3, 46, 47, 49]);
some convolution problems [47, 49] are known to be equivalent
to 3SUM. The APSP hypothesis is known to imply tight hardness
results for many problems (e.g. [2, 17, 49]), and many problems are
also known to be fine-grained equivalent to APSP ([1, 56]). SETH
is now known to imply an enormous number of lower bounds
both for problems in exponential time (e.g. [18, 26, 28, 48]), and
in polynomial time (e.g. [9, 14, 58] and many more); the hardness
of a small number of problems is also known to be equivalent to
SETH [25]. See [54] for more known implications.

There are no known direct relationships between the three hy-
potheses, and there is some evidence (e.g. [20]) that reducing be-
tween them might be difficult. As we do not really know which, if
any, of these hypotheses actually hold, it is important to consider
weaker hypotheses that still give meaningful hardness results.

A natural hardness hypothesis considered by Abboud, Vassilevska
W. and Yu [4] is the following:

Hypothesis 1. At least one of SETH, the (Integer) 3SUM or the
(Integer) APSP hypothesis is true.

Under Hypothesis 1, Abboud, Vassilevska W. and Yu proved
polynomial lower bounds for a variant of maximum flow and several
problems in dynamic graph algorithms: dynamically maintaining
the maximum flow in a graph, the number of nodes reachable from
a fixed source in a graph (#SSR), the number of strongly connected
components in a directed graph (#SCC), and more.

Dahlgaard [27] showed that computing the diameter of an un-
weighted graph with n nodes and m edges requires n1=0() \/m time
under Hypothesis 1. The reductions of both [4] and [27] utilized
a problem called Triangle-Collection, which we will abbreviate as
Tri-Co.

In the Tri-Co problem, given a node-colored graph with n nodes,
one is asked whether it is true that for all triples of distinct colors
(a, b, c), there exists a triangle whose nodes have these colors. A
key step in the above reductions proved in [4] is the following tight
hardness result for Tri-Co.
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THEOREM 1.1 ([4]). Assuming Hypothesis 1, Tri-Co requires n3o(1)

time.

The main question that inspires this work is the following:

Is there a natural hypothesis that is weaker than Hypothesis 1 and
implies similar hardness results?

As mentioned, recent conditional lower bound results based on
APSP and 3SUM (especially since Pitragcu’s seminal paper [49])
typically assumed the integer variants of these hypotheses. How-
ever, algorithms for APSP and 3SUM are more often designed for
the real-valued versions of the problems (this includes not only the
traditional cubic or quadratic time algorithms, but the celebrated,
slightly subcubic or subquadratic algorithms of Williams [59] or
Grenlund and Pettie [43], as we will review shortly). This discrep-
ancy between the literature on lower bounds and upper bounds
raises another intriguing question:

Do known conditional lower bounds derived from the
integer versions of the APSP and 3SUM hypotheses
hold for the real versions of these hypotheses?

Our work will give a positive answer to this second question
for a plethora of known conditional lower bound results, and will
hence provide an answer to the first question as well, since the real
versions of the hypotheses are weaker/more believable.

Remarks on models of computation. Within fine-grained complex-
ity it is standard to work in the Word RAM model of computation
with O(log n)-bit words. As we will consider variants of APSP and
3SUM with real-valued inputs, we will need to work in the Real
RAM, a standard model in computational geometry.

The Real RAM (see e.g. Section 6 in the full version of [34]) sup-
ports unit cost comparisons and arithmetic operations (addition,
subtraction, multiplication, division) on real numbers, unit cost
casting integers into reals, in addition to the standard unit cost op-
erations supported by an O(log n)-bit Word RAM. No conversions
from real numbers to integers are allowed, and randomization only
happens by taking random O(log n)-bit integers, not random reals.

Without further restrictions, the Real RAM can be unrealistically
powerful. However, it is not difficult to define a “reasonable” re-
stricted Real RAM model for which our reductions still work, such
that any algorithm for real-valued inputs in such a model can be
converted into an algorithm in the word RAM for integer-valued
inputs, running in roughly the same time. See the full paper for a
detailed discussion, and several natural ways to define such a rea-
sonable Real RAM model. Thus, the real versions of the hardness
hypotheses under such a model are indeed even more believable
than the integer versions.

Real 3SUM hypothesis. Historically, the early papers on the 3SUM
hypothesis from computational geometry were concerned with the
real instead of the integer case.?

Let Real-3SUM refer to the version of 3SUM for real numbers
(in contrast to Int-3SUM, which refers to the integer version). In
its original form, the Real 3SUM hypothesis stated that there is
no o(n?) time algorithm that solves Real-3SUM in the Real RAM
model, and some evidence was provided by Erickson [32], who
2Technically, the original paper by Gajentaan and Overmars [39] stated the 3SUM

hypothesis for integer inputs, but they assumed a Real RAM model of computation, as
in most work in computational geometry.
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proved quadratic lower bounds for algorithms that are allowed to
use only restricted forms of real comparisons (testing the signs of
linear functions involving just 3 input reals). Grgnlund and Pettie
refuted this hypothesis by giving an O(n? (log log n)2/3/(log n)2/3)
time deterministic algorithm and an O(n?(log log n)?/log n) time
randomized algorithm for Real-3SUM [43]. This was subsequently
improved by Freund [38], Gold and Sharir [42], and Chan [21],
reaching an n?(loglog n)0M /log® n deterministic running time.
Grenlund and Pettie obtained their initial breakthrough by first
proving a truly subquadratic upper bound, near n3/2_ on the linear-
decision-tree complexity of Real-3SUM (using comparisons of two
sums of pairs of input reals). More recently, Kane, Lovett, and
Moran [45] in another breakthrough improved the linear-decision-
tree complexity upper bound to O(n),? although their approach
has not yet led to improved algorithms. A truly subquadratic time
algorithm remains open.

The modern Real 3SUM hypothesis states that no O(n?~¢) time
algorithm exists for Real-3SUM with real-valued inputs, in a rea-
sonable Real RAM model, for any ¢ > 0.

The integer version of 3SUM has gained more attention after
a groundbreaking result by Patrascu [49] which showed that the
Integer 3SUM hypothesis implies lower bounds for many dynamic
problems that may not even have numbers in their inputs. Notably,
his reduction uses a hashing technique which does not quite apply
to Real-3SUM. Thus, these hardness results and many subsequent
results [2, 46] following [49] were not known to be true under the
Real 3SUM hypothesis. Thus, an intriguing question is whether
these problems are also hard under the Real 3SUM hypothesis.

Real-3SUM could conceivably be harder than Int-3SUM. Baran,
Demaine and Patrascu gave an n?(loglog n)?" /log? n time algo-
rithm for Int-3SUM as early as 2005 [15]. However, Real-3SUM
did not have an algorithm with the same asymptotic running time
(up to (loglog n)o(1> factors) until more than ten years later [21].
Also, many techniques that are useful for Int-3SUM stop working
for Real-3SUM, for example, the hashing technique used by Baran,
Demaine and Patragcu. Therefore, the Real 3SUM hypothesis is
arguably weaker than the Integer 3SUM hypothesis.

Real APSP hypothesis. Similarly, one could naturally consider the
APSP problem where the edge weights of the input graph are real
numbers. In fact, historically, the APSP problem was first studied
when the edge weights are real numbers [36]. Fredman [37] gave
the first slightly subcubic time algorithm for Real-APSP, running in
n3(log log n)0M /(log n)'/3 time. Fredman obtained his result by
first proving a truly subcubic upper bound, near n%/2, on the linear-
decision-tree complexity of Real-APSP (using what is now known
as “Fredman’s trick” that later inspired Grenlund and Pettie’s work
on Real-3SUM). After a series of further improved poly-logarithmic
speedups, Williams [60] developed the current fastest algorithm
for Real-APSP, with running time n®/ 22(Vlogn) (which was subse-
quently derandomized by Chan and Williams [22]). A truly subcubic
algorithm remains open.

The Real APSP hypothesis states that no O(n3~¢) time algorithm
exists for Real-APSP in graphs with real-valued weights for any
& > 0 in a reasonable Real RAM model.

3In this work, we use O to suppress poly-logarithmic factors.
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Although the current upper bounds for Real-APSP and Int-APSP
are the same, Int-APSP could conceivably be easier than Real-APSP.
For example, in Williams” APSP paper [60], he described a “rela-

tively short argument” for an n3/ 29 (log” n) algorithm in the integer
case as a warm-up, which did not immediately generalize to the
real case (which required further ideas).

It is known [35] that Int-APSP (resp. Real-APSP) is equivalent
to Int-(min, +)-Product (resp. Real-(min, +)-Product), where one is
given two nXn integer (resp. real) matrices A, B, and is asked to com-
pute an n X n matrix C where C[i, j] = ming e[, (Al k] + B[k, j]).
Thus, (min, +)-Product has been the main focus of algorithms and
reductions for APSP.

The Orthogonal Vectors (OV) hypothesis. In the OV problem,
given a set of n Boolean vectors in d-dimension for some d =
w(logn), one needs to determine if there are two vectors u, v such
that \/gl:1 (uli] Ao[i]) is false. The OV hypothesis (OVH) states that
no O(n®~¢) time algorithm exists for OV for any & > 0. Williams [58]
showed that SETH implies OVH. In fact, a large fraction of the con-
ditional lower bounds based on SETH actually use the OV problem
as an intermediate problem (see the survey [54] for an overview of
problems that are hard under OVH and SETH).

In the k-OV problem we are given k sets of Boolean vectors of
small dimension and are asked if there exists a k-tuple of vectors,
one from each set, that is orthogonal, i.e. there is no coordinate in
which all k vectors have 1s. Williams’ argument [58] in fact implies
a fine-grained reduction from CNF-SAT with n variables and O(n)
clauses to k-OV for any integer k > 2, so that under SETH, k-OV
requires n=°() time.

It is easy to reduce k-OV for any k > 2 to OV, however a reduc-
tion in the reverse direction has been elusive. It is quite possible
that, say 1000-OV has an 0(n°%*%°) time algorithm, yet OV still
requires n~°(1) time. Thus basing hardness on OV is arguably bet-
ter than basing hardness on k-OV for k > 2, and basing hardness
on any fixed k-OV is better than basing hardness on SETH, as all
one needs to do to refute SETH is to refute the presumed hardness
of k-OV for some k.

1.1 Our Results

We first define our new hypothesis and then outline our reductions.
Combining OVH, the Real 3SUM hypothesis and the Real APSP
hypothesis, we consider the following very weak hypothesis.

Hypothesis 2. At least one of OVH, the Real 3SUM hypothesis or
the Real APSP hypothesis is true.

1.1.1  Main Result: Hardness for Triangle Collection. It is unclear
whether any of the Real 3SUM hypothesis, the Real APSP hypoth-
esis, and the OV hypothesis (let alone Hypothesis 2) implies non-
trivial lower bounds for the Tri-Co problem. Abboud, Vassilevska
W. and Yu’s prior reductions [4] from Int-3SUM and Int-APSP to
Tri-Co used hashing tricks that are not applicable to real inputs;
furthermore, their reduction from CNF-SAT to Tri-Co does not go
through OV, but was from the stronger 3-OV problem.

The proof of Theorem 1.1 in [4] uses an intermediate prob-
lem, Int-Exact-Tri, between Int-3SUM / Int-APSP and Tri-Co. In
Int-Exact-Tri, one is given an n-node graph with edge weights in
+[n€] for some constant ¢ and one needs to determine whether the
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graph contains a triangle whose edge weights sum up to zero. One
can define Real-Exact-Tri analogously by replacing edge weights
with real numbers. The Integer (resp. Real) Exact-Triangle hypoth-
esis states that no O(n37¢) time algorithm for ¢ > 0 exists for
Int-Exact-Tri (resp. Real-Exact-Tri) in the Word RAM model (resp.
a reasonable Real RAM model), and it is well-known that the Inte-
ger 3SUM hypothesis and the Integer APSP hypothesis imply the
Integer Exact-Triangle hypothesis [55].

If one tries to mimic the approach of going through Int-Exact-Tri
in the real case, one would first reduce Real-APSP and Real-3SUM
to Real-Exact-Tri, and then reduce Real-Exact-Tri to Tri-Co. How-
ever, it was unclear whether Real-APSP reduces to Real-Exact-Tri,
since the previous reduction for the integer case relies on fixing
the results bit by bit [55]. The tight reduction from Int-3SUM to
Int-Exact-Tri also doesn’t seem to apply since it relies on Patragcu’s
hashing technique [49]. (However, a previous non-tight reduction
from Int-3SUM to Int-Exact-Tri by Vassilevska W. and Williams [55]
does generalize to a reduction from Real-3SUM to Real-Exact-Tri;
see the full paper for more details.)

Secondly, even if one is able to successfully reduce Real-APSP
to Real-Exact-Tri, one still faces an obstacle in reducing further
to Tri-Co: the proof in [4] relies on transforming the integer edge
weights into vectors of tiny integers, which isn’t possible if the
edge weights are real numbers.

The reduction from SETH to Tri-Co in [4] implicitly goes through
the 3-OV problem. It is very natural to relate 3-OV to Tri-Co, since
3-OV asks whether all triples of vectors are not orthogonal, and
Tri-Co asks whether all triples of colors have a triangle. It is then
sufficient to embed 3-OV into Tri-Co so that a triple of vectors
are not orthogonal if and only if their corresponding colors have
a triangle. However, OV and Tri-Co are seemingly conceptually
different (OV is about pairs, whereas Tri-Co is about triples) and
thus it is not quite clear whether one can reduce OV to Tri-Co.

We consider the ACP-Tri-Co problem, a natural generalization of
the Tri-Co problem (“ACP” stands for “All-Color-Pairs”). The input
of ACP-Tri-Co is the same as the input of Tri-Co, while ACP-Tri-Co
requires the algorithm to output for every pair of distinct colors
(a, b), whether there exists a triangle with colors (a, b, ¢) for every
c different from a and b.

As our main result, we give a nontrivial fine-grained lower bound
for ACP-Tri-Co based on the very weak Hypothesis 2.

THEOREM 1.2. Assuming Hypothesis 2, ACP-Tri-Co requiresn
time for some § > 0, in a reasonable Real RAM model.

Our reductions prove the above theorem for § = 0.25. Combining
Theorem 1.2 with the reductions by Abboud, Vassilevska W. and
Yu [4], we obtain the following corollary. In the following, the #SS-
Sub-Conn problem asks to maintain the number of nodes reachable
from a fixed source in an undirected graph under node updates,
and the ST-Max-Flow problem asks to compute the maximum flow
in a graph for every pair of vertices (s,t) € S X T for two given
subsets of nodes S, T.

Corollary 1.3. Assuming Hypothesis 2, there exists a constant § > 0
such that any fully dynamic algorithm for #SSR, #SCC, #SS-Sub-
Conn, and Max-Flow requires either amortized nd=o(1) update or

query times, or n+d-o(1) preprocessing time.

2+6—-0(1)
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Also, assuming Hypothesis 2, ST-Max-Flow on a network with n

nodes and O(n) edges requires plté—o(1) time for some § > 0, even
when |S| = |T| = \/n.

We obtain Theorem 1.2 via two conceptually different webs of
reductions, together with equivalence results between variants of
Triangle Collection.

1.1.2 Real APSP and Real 3SUM Hardness via All-Edges Sparse Tri-
angle. In the All-Edges Sparse Triangle problem, which we will
abbreviate as AE-Sparse-Tri, one is given a graph with m edges, and
is asked whether each edge in the graph is in a triangle. This prob-
lem has an O(m2@/(@+1) time algorithm [11] where w is the square
matrix multiplication exponent. This running time is O(m!*1) with
the current bound @ < 2.373 [8, 40, 53], and O(m*/?) if w = 2.

Patrascu [49] showed that this problem requires m43-0() time
assuming the integer 3SUM hypothesis. Kopelowitz, Pettie, and
Porat [46] extended Patragcu’s result by showing conditional lower
bounds for Set-Disjointness and Set-Intersection, which general-
ize AE-Sparse-Tri. Recently, Vassilevska W. and Xu [57] showed a
reduction from Int-Exact-Tri to AE-Sparse-Tri. Combined with the
reductions from Int-APSP and Int-3SUM to Int-Exact-Tri [55, 56],
we obtain that AE-Sparse-Tri requires m#/370() time assuming ei-
ther the Integer 3SUM hypothesis or the Integer APSP hypothesis.

These reductions fail under the Real APSP hypothesis or the Real
3SUM hypothesis. Patragcu’s and Kopelowitz, Pettie, and Porat’s re-
ductions rely heavily on hashing, which does not seem to apply for
Real-3SUM. Vassilevska W. and Xu’s reduction uses Int-Exact-Tri
as an intermediate problem. As discussed earlier, it is unclear how to
reduce Real-APSP to Real-Exact-Tri. Even if such a reduction is pos-
sible, one still needs to replace a hashing trick used by Vassilevska
W. and Xu with some other technique that works for Real-Exact-Tri.

We overcome these difficulties by designing conceptually very
different reductions from before. On a very high level, instead of
hashing, we use techniques inspired by “Fredman’s trick” [37]. Us-
ing our new techniques, we obtain the following theorem. The
resulting reduction also appears simpler than previous reductions,
partly because we don’t need to design and analyze any hash
functions. For example, the entire proof of our reduction from
Real-APSP to AE-Sparse-Tri fits in under two pages, and is included
at the end of the introduction in Section 1.2. The reader is invited to
browse through Vassilevska W. and Xu’s longer, more complicated
proof [57] for a comparison.

THEOREM 1.4. AE-Sparse-Tri on a graph with m edges requires

o m*370() time assuming the Real APSP hypothesis;
o m3/40() time assuming the Real Exact-Triangle hypothesis;
o m0/570() time assuming the Real 3SUM hypothesis.

Theorem 1.4 immediately implies Real APSP and Real 3SUM
hardness for a large list of problems that were shown to be Integer
APSP and Integer 3SUM hard via AE-Sparse-Tri, such as dynamic
reachability, dynamic shortest paths and Pagh’s problem [2, 49].

We obtain higher conditional lower bounds if we consider the
counting version of AE-Sparse-Tri, #AE-Sparse-Tri, where one is
given a graph with m edges, and is asked to output the number of
triangles each edge is in. Note that the O(m?®/(@*1)) time algo-
rithm by Alon, Yuster, and Zwick [11] still works for #AE-Sparse-Tri.
Therefore, the following theorem is tight if w = 2.
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THEOREM 1.5. #AE-Sparse-Tri on a graph with m edges requires
m3=0() time if at least one of the Real APSP hypothesis, the Real
Exact-Triangle hypothesis or the Real 3SUM hypothesis is true.

We actually obtain slightly stronger results than Theorem 1.4:
we can reduce each of Real-APSP, Real-Exact-Tri and Real-3SUM
to some number of instances of AE-Sparse-Tri. Consequently, we
obtain Real APSP and Real 3SUM hardness for a problem called
the AE-Mono-Tri (i.e. All-Edges Monochromatic Triangles, defined
in Section 2), by combining a known reduction by Lincoln, Polak,
and Vassilevska W. [47] from multiple instances of AE-Sparse-Tri
to AE-Mono-Tri.

Finally, we will reduce AE-Mono-Tri to ACP-Tri-Co, thus proving
the Real APSP and Real 3SUM hardness in Theorem 1.2.

1.1.3  Real APSP and OV Hardness via Colorful Boolean Matrix Mul-
tiplication. As a key problem in our second line of reductions, we
define a natural generalization of the Boolean Matrix Multiplica-
tion problem, Colorful-BMM. In the Colorful-BMM problem, we
are given an n X n Boolean matrix A and an n X n Boolean matrix B
and a mapping color : [n] — T.For eachi € [n] and j € [n], we
want to decide whether {color(k) : A[i, k] A B[k, j], k € [n]} =T.
In other words, for every pair of i, j, we want to determine whether
the witnesses cover all the colors.

We show that Real-APSP can be reduced to the Colorful-BMM
problem. Our reduction uses an idea from Williams’ algorithm
for Real-APSP [60]: to compute the Min-Plus product of two real
matrices, it suffices to compute several logical ANDs of ORs. We
then show that these logical operations can be naturally reduced to
Colorful-BMM. Since OV also has a similar formulation of logical
ANDs of ORs [5], we similarly reduce OV to Colorful-BMM. We
obtain the following theorem using this idea.

THEOREM 1.6. Colorful-BMM between two nxXn matrices requires

o n225-0(1) time assuming the Real APSP hypothesis;
o 3700 fime assuming OVH.

We also obtain Real-APSP and OV hardness for several nat-
ural matrix product problems, such as (distinct, =)-Product and
(distinct, +)-Product (see the full paper for their definitions).

We will then reduce Colorful-BMM to ACP-Tri-Co, as detailed
in the following.

1.1.4  Equivalence between Variants of Triangle Collection. We also
show some equivalence results between variants of Tri-Co. These
equivalences will be useful when we further reduce the previous
two lines of reductions to ACP-Tri-Co to finish the proof of Theo-
rem 1.2.

Triangle-Collection™ (Tri-Co* for short) as defined by [4] is a
“restricted” version of Tri-Co whose definition has two parameters
t and p along with other details about the structure of the input
graphs. All previous reductions from Tri-Co [4, 27] are actually
from the Tri-Co* problem with small parameters ¢, p < n°M (or
t,p < nf for every ¢ > 0).

We consider a conceptually much simpler variant of Tri-Co,
which we call Tri-Cojjgp. The input and output of Tri-Coy;gp are
the same as those of Tri-Co; however, we use a parameter which
denotes an upper bound for the number of nodes that can share
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the same color (“light” means that the colors are light, i.e. have few
vertices each).

We then show the following equivalence between Tri-Co™ and
Tri-Coyight-

THEOREM 1.7. (ACP-) Tri-Coyjg with parameter n°D and (ACP-

) Tri-Co* with t, p < n°Y are equivalent up to n°Y factors.

Therefore, in order to reduce problems to Tri-Co* and thus to
other problems known to be reducible from Tri-Co”, it suffices to
reduce them to the much cleaner problem Tri-Coyjgpt.

We obtain our main result, Theorem 1.2, by combining our pre-
vious reductions with Theorem 1.7.

First, by reducing AE-Mono-Tri to ACP-Tri-Cojjgp,, We obtain
Real-APSP and Real-3SUM hardness of ACP-Tri-Co™.

Second, Colorful-BMM easily reduces to ACP-Tri-Co, establish-
ing the OV hardness of ACP-Tri-Co and yielding another route of
reduction from the Real-APSP problem. However, Colorful-BMM
doesn’t seem to reduce to the more restricted problem ACP-Tri-Co™.
By unrolling our reduction from OV to ACP-Tri-Co, we show that
OV actually reduces to the original Tri-Co* problem.

THEOREM 1.8. Tri-Coyjgnt withparameterno(l) (thus Tri-Co™ with

parameters n°D and Tri-Co) requires n370() time assuming OVH.

Using Theorem 1.7 we are also able to prove the following sur-
prising result:

THEOREM 1.9. IfTri-Co” with parameterst, p < n® for somee > 0
has a truly subcubic time algorithm, then so does Tri-Co.

Theorem 1.9 establishes a subcubic equivalence between Tri-Co
and Tri-Co* with parameters n®, and in fact implies that all the
known hardness results so far that were proven from Tri-Co* also
hold from Tri-Co itself.

1.1.5 Other Reductions. Using our reductions and techniques, we
also obtain the following list of interesting applications.

A hard colorful version of AE-Sparse-Triangle. We give a tight
conditional lower bound under Hypothesis 2 for the parameterized
time complexity of a natural variant of AE-Sparse-Tri. Specifically,
in the AE-Colorful-Sparse-Tri problem, we are given a graph G =
(V,E) with m edges and a mapping color : V — T. For each edge
uv, we want to decide whether {color(w) : uwo is a triangle} = T.
When the degeneracy of the graph is m*, we can clearly solve
the problem in O(m'*%) time by enumerating all triangles in the
graph [24]. We show that, under Hypothesis 2, for any constant
0 < a < 1/5, no algorithm can solve AE-Colorful-Sparse-Tri in a
graph with m edges and degeneracy O(m®) in O(m!*%~%) time for
e>0.

Real-to-integer reductions. It is an intriguing question whether
we can base the hardness of a problem with integer inputs on the
hardness of the same problem but with real inputs. For instance,
it would be extremely interesting if one could show that the Real
3SUM hypothesis implies the Integer 3SUM hypothesis. We partially
answer this question by showing two conditional lower bounds of
this nature.

First, if Int-All-Nums-3SUM (a variant of Integer 3SUM where
one needs to output whether each input number is in a 3SUM
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solution) can be solved in O~(n6/5_e) time for some ¢ > 0, then
Real-All-Nums-3SUM can be solved in truly subquadratic time,
falsifying the Real 3SUM hypothesis.

Second, if Int-AE-Exact-Tri, which is the “All-Edges” variant of
Int-Exact-Tri, can be solved in O(n7/3_£) time for ¢ > 0, then
Real-AE-Exact-Tri can be solved in truly subcubic time. We also
show variants of this result such as an analogous result for the
counting versions of these problems.

An application to string matching. In the pattern-to-text Ham-
ming distance problem, we are given a text string T = t; - - - tjy and
a pattern string P = p1---py in ¥ with M < N, and we want
to compute for every i = 0,..., N — M, the Hamming distance be-
tween P and tj41 - - - tiyp, which is defined as M — [{j : pj = tiyj}.
The current best algorithm in terms of N runs in O(N?/2) time
[7] while unfortunately there isn’t a matching conditional lower
bound under standard hypotheses (though there is an unpublished
non-matching N“/2-°(1) time conditional lower bound based on
the presumed hardness of Boolean Matrix Multiplication that has
been attributed to Indyk, see e.g. [41]).

We consider a similar string matching problem which we call
pattern-to-text distinct Hamming similarity. The input to pattern-to-
text distinct Hamming similarity is the same as the input to pattern-
to-text Hamming distance, but for each i = 0,..., N — M, we need
to output |[{p; : pj = t;1;}| instead. The O(N3/2) time algorithm
for pattern-to-text Hamming distance can be easily adapted to
an O(N?/2) time algorithm for pattern-to-text distinct Hamming
similarity. Using our reduction from OV to Colorful-BMM, we
show a matching N3/2-°(1) Jower bound for pattern-to-text distinct
Hamming similarity based on OVH.

Real APSP hardness of Set-Disjointness and Set-Intersection. The
Set-Disjointness problem and the Set-Intersection problem are two
generalized versions of AE-Sparse-Tri (see the full paper for their
formal definitions). Kopelowitz, Pettie, and Porat [46] showed In-
teger 3SUM hardness of these two problems, and used them as
intermediate steps for showing 3SUM hardness of many graph
problems, such as Triangle Enumeration and Maximum Cardinality
Matching. Later, Vassilevska W. and Xu [57] showed reductions
from Int-Exact-Tri to these two problems, and thus obtained Inte-
ger APSP hardness for Set-Disjointness and Set-Intersection. By
generalizing the techniques used in our reduction from Real-APSP
to AE-Sparse-Tri, we obtain Real APSP hardness for these two prob-
lems. Therefore, all the hardness results shown by Kopelowitz,
Pettie, and Porat [46] now also have Real APSP hardness.

1.2 An Illustration of Our Techniques:
Reduction from Real-APSP to AE-Sparse-Tri

In this subsection, we will include our complete reduction from
Real-APSP to AE-Sparse-Tri to exemplify how our techniques are
different from, and simpler than, the previous hashing techniques [57].
Our main new insight is simple: we observe that Fredman’s beau-
tiful method for Real-APSP [37], which yielded an é(ns/z)-depth
decision tree but not a truly subcubic time algorithm, can actu-
ally be converted to an efficient algorithm when given an oracle
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to AE-Sparse-Tri, if we combine the method with a standard ran-
domized search trick and an interesting use of “dyadic intervals”
(essentially corresponding to a one-dimensional “range tree” [29]).
We first recall the well-known fact [35] that Real-APSP is equiva-
lent to computing the (min, +)-product of two n X n real-valued ma-
trices A and B, defined as the matrix C with C[i, j| = ming (A[i, k] +
Blk, j]). This problem in turn reduces to O(n/d) instances of com-
puting the (min, +)-product of an n X d matrix and d X n matrix.
We define the following intermediate problem, which we show
is equivalent to the original problem by a random sampling trick:

Problem 1.10 (Real-(min, +)-Product-Variant). We are given an
n X d real matrix A and a d X n real matrix B, where d < n. For each
i, j € [n], we are also given an index kij € [d].

For each i, j € [n], we want to find an index k{j € [d] (if it exists)
satisfying

Ali, ki'j] +B[klfj,j] < Ali, kij] + Blkij, j]. (1)

Lemma 1.11. Real-(min, +)-Product of an n X d real matrix A
and a d X n real matrix B reduces to O(1) calls of an oracle for
Real-(min, +)-Product-Variant using Las Vegas randomization.

ProoF. We compute the (min, +)-product of A and B as follows:
take a random subset R C [d] of size d/2. For each i, j € [n], first
compute

ki(f) = arg min(A[i, k] + B[k, j]).
keR
This can be done recursively by (min, +)-multiplying an n X (d/2)
and a (d/2) X n matrix.

Next, we initialize k;; = ki(f). Then we invoke the oracle for
Real-(min, +)-Product-Variant to find some k{j satisfying (1) for
each i, j € [n].If kl.’j exists, reset k;jj = k{j. Now, repeat. When klfj
is nonexistent for all i, j € [n], we can stop, since we would have
kij = arg ming ¢4 (A[i, k] + B[k, j]) for all i, j € [n].

To bound the number of iterations, observe that for each i, j €
[n], the number of indices k’ € [d] satisfying A[i, k'] + B[K’, j] <
Ali, ki(jR>] + B[ki(f), j1is O(log n) w.h.p.* (since in a set of d values,
at most O(log n) values are smaller than the minimum of a random
subset of size d/2 w.h.p.). Thus, O(log n) iterations suffice w.h.p.

As the recursion has O(log d) depth, the total number of oracle
calls is O(log dlog n) w.h.p. O

With Lemma 1.11, we are ready to present our main reduction
from Real-(min, +)-Product-Variant to AE-Sparse-Tri, which is in-
spired by “Fredman’s trick” [37]—namely, the obvious but crucial
observation that a’ + b’ < a+b is equivalenttoa’ —a < b - b’.

Lemma 1.12. Real-(min, +)-Product-Variant reduces to O(d) in-
stances of AE-Sparse-Tri on graphs with O(n? /d + dn) edges.

Proor. To solve Real-(min, +)-Product-Variant, we first sort the
following list of O(d?n) elements in O(d?nlog n) time:
L ={A[i,k") - A[i,k] :i € [n], k, k" € [d]}
U {Blk, jl = BIK, j] : j € [n], k,k" € [d]}.

4“w.h.p. is short for “with high probability”, i.e., with probability 1 — O(1/n¢) for an
arbitrarily large constant c.
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Fix k € [d]. Let Py = {(i,j) € [n]? : kij = k}. Divide Py into

“1;’/(” subsets of size O(n®/d). Fix one such subset P C P. We

solve AE-Sparse-Tri on the following tripartite graph Gy p:

(0) The left nodes are {x[i] : i € [n]}, the middle nodes are
{y[k’,I] : k' € [d], Iisadyadic interval}, and the right
nodes are {z[j] : j € [n]}. Here, a dyadic interval refers
to an interval of the form [25t,25(¢ + 1)) c [0, 4d?n) for
nonnegative integers s and ¢ (here, 4d?n — 1 is an upper
bound for the smallest power of 2 that is larger than or equal
to 2d?n). We don’t explicitly enumerate all these nodes, but
generate a node when we need to add an edge to it.

(1) For each (i, j) € P, create an edge x[i] z[j].

(2) For eachi € [n], k’ € [d], and each dyadic interval I, create
an edge x[i] y[k’, I] if the rank of A[i, k"] — A[i, k] in L is in
the left half of I.

(3) For each j € [n], k” € [d], and each dyadic interval I, create
an edge y[k’,I] z[j] if the rank of B[k, j] — B[k’, j] in L is
in the right half of I.

Step 1 creates O(n?/d) edges. Steps 2-3 create O(dn log n) edges,
since any fixed value lies in O(log n) dyadic intervals. Thus, the
graph Gy p has O(n?/d + dn) edges. The total number of graphs is
Zkeld] [,%‘H =0(d).

For any given (i, j) € [n]?, take k = kij and P to be the sub-
set of P containing (i, j). Finding a k” with A[i, k"] + B[k’, j] <
Ali, kij] + Blkij, j] is equivalent to finding a k” with A[i, k"] -
Ali, k] < B[k, j] — B[k’, j], which is equivalent to finding a tri-
angle x[i] y[k’,I] z[ j] in the graph Gy p. Here, we are using the
following fact: for any two numbers a,b € [Zd2 n], we havea < b
iff there is a (unique) dyadic interval I such that a lies on the left
half of I and b lies on the right half of I. Thus, the answers to
Real-(min, +)-Product-Variant can be deduced from the answers to
the AE-Sparse-Tri instances. Note that we have assumed an equiv-
alent version of the AE-Sparse-Tri problem with “witnesses”, i.e.,
that outputs a triangle through each edge whenever such a triangle
exists [31]. O

A near m*/3 lower bound for AE-Sparse-Tri immediately follows,

under the Real-APSP hypothesis; this matches known upper bounds
for AE-Sparse-Tri if = 2. The new proof not only strengthens the
previous proof by Vassilevska W. and Xu [57], which reduces from
integer APSP, but it is also simpler (not requiring more complicated
hashing arguments).

THEOREM 1.13. If AE-Sparse-Tri could be solved in O(m?*/3-¢)
time, then Real-APSP could be solved in O(n3~3¢/2) time using Las
Vegas randomization.

Proor. By combining the above two lemmas, if AE-Sparse-Tri
could be solved in T'(m) time, then the (min, +)-product of an n x d
and a d X n real matrix could be computed in O(d - T(n?/d + dn))
time. The (min, +)-product of two n X n real matrices, and thus
Real-APSP, reduce to n/d instances of such rectangular products
and could then be computed in O(n-T(n?/d+dn)) time. By choosing
d = +/n, the time bound becomes O(n - T(n%/2)) = O(n373¢/2) if
T(m) = O(m*/3-¢). o
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Our reduction from Real-3SUM to AE-Sparse-Tri (see Section 3.2)
is based on a similar insight: we observe that Grenlund and Pet-
tie’s elegant method (based on Fredman’s work), which yielded an
6(n3/2)—depth decision tree for Real-3SUM, can also be converted
to an efficient algorithm when given an oracle to AE-Sparse-Tri.
Since Grenlund and Pettie’s method is a bit cleverer, this reduction
is technically more challenging (though it is still comparable in
simplicity with Patrascu’s original reduction from Int-3SUM [49]),
and because of these extra complications, the resulting conditional
bounds are not tight. Nevertheless, it is remarkable that nontrivial
conditional lower bounds can be obtained at all, and that we do get
tight bounds for a certain range of degeneracy values, and tight
bounds for reductions to the counting variant of AE-Sparse-Tri,
when o = 2. (For applications to some of the dynamic graph prob-
lems, the earlier polynomial lower bounds weren’t tight anyways.)

Our reduction from Real-APSP to Colorful-BMM (see Section 4)
is even simpler (under one page long), and is inspired by ideas from
Williams’ Real-APSP algorithm [59], also based on Fredman’s trick.
Our reduction from OV to Colorful-BMM is more straightforward,
but we view the main innovation here to be the introduction of
the Colorful-BMM problem itself, which we hope will find fur-
ther applications. Sometimes, the key to conditional lower bound
proofs lies in formulating the right intermediate subproblems. Our
combined reduction from OV to ACP-Tri-Co via Colorful-BMM is
essentially as simple as Abboud, Vassilevska W. and Yu’s original
reduction from 3-OV to Tri-Co [4], but adds more understanding
of the Tri-Co and related problems as it reveals that a weaker hy-
pothesis is sufficient to yield conditional lower bounds for all the
dynamic graph problems in Corollary 1.3.

1.3 Paper Organization

In Section 2, we define necessary notations. In Section 3, we show
hardness of AE-Sparse-Tri under the Real 3SUM and the Real APSP
hypotheses. In Section 4, we show hardness of Colorful-BMM based
on the Real APSP and the OV hypotheses. We prove our main the-
orem in Section 5, by reducing problems in Section 3 and Section 4
to variants of Tri-Co. We defer the following proofs to the full
paper: hardness of AE-Sparse-Tri under the Real Exact-Triangle
hypothesis, hardness of #AE-Sparse-Tri under the Real 3SUM and
the Real Exact-Triangle hypotheses, hardness of AE-Mono-Tri (and
its counting version) under the Real 3SUM, the Real APSP and the
Real Exact-Triangle hypotheses. We also defer further applications
of our techniques and results, including Real-to-integer reductions
and conditional hardness for pattern-to-text distinct Hamming sim-
ilarity, Set-Disjointness and Set-Intersection, to the full paper.
Table 1 summarizes our main lower bound results.

2 PRELIMINARIES

In this section, we give definitions and abbreviations of terminolo-
gies and problems we will consider throughout the paper. We group
related definitions together for easier navigation.

Some problems require to output whether each edge in a given
graph is in some triangle with certain property. We use the prefix
AE- (short for “All-Edges-") to denote that we need to output a
Boolean value for each edge indicating whether each edge is in
such a triangle. For these problems, we can instead use the prefix
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Table 1: Summary of some of our results and previous results. Ignoring n°() factors, entries marked ¥ match known upper
bounds assuming « = 2; entries marked + match known upper bounds without the assumption.

Problems Lower Bounds Hypotheses References
mi3-o 4 Int-35SUM [49]
m?3=oTW 5+ T Int-APSP, Int-Exact-Tri [57]
AE-Sparse-Tri mb/5-0) Real-3SUM Thm. 3.6
m3/4=o) Real-Exact-Tri Full paper
mi3=o ¢ Real-APSP Thm. 1.13
) mi3-ot Real-3SUM Full paper
FAE-Sparse-Tri mi3-ot Real-Exact-Tri Full gaﬁer
PO Int-3SUM [47]
no /7o Int-APSP [57]
AE-Mono-Tri no74-0t) Real-3SUM Full paper
n’/3-01) Real-Exact-Tri Full paper
2ot Real-APSP Full paper
. nol2o Real-Exact-Tri Full paper
#AE-Mono-Tri n®7om Real-3SUM Full paper
n?4—e( Real-APSP Thm. 4.2
Colorful-BMM 50D ¥ oV Thm. 14
Tri-Co M 1 | Int-APSP, Int-3SUM, SETH [4]
n?4=o(0) Real-3SUM Full paper
ACP-Tri-Co n>/7-o Real-APSP Full paper
n3-oM ¥ oV Cor. 5.3
Int-All-Nums-3SUM | n®/5-0(D) Real-3SUM Full paper
Int-AE-Exact-Tri n’/3-0(0) Real-AE-Exact-Tri Full paper
attern-to-text distinct
pHamming similarity n¥fe® ov Full paper
#AE- to indicate that we need to count the number of such triangles Problem 2.1 (3SUM). Given three sets A, B,C of numbers of size n,
involving each edge. determine whether there exist 3 numbersa € A,b € B,c € C such
thata+b+c=0.
2.1 Fine-Grained Reductions Problem 2.2 (All-Nums-3SUM). Given three sets A, B, C of numbers
We use the notion of fine-grained reduction [54, 56] which is as of size n, for each ¢ € C, determine whether there exista € A,b € B
follows. Let A and B be problems, and let a(n) and b(n) be running such thata+b+c¢ =0.
time functions where n is the input size or a suitable measure related
to the input size such as the number of nodes in a graph. Int-All-Nums-3SUM (resp. Real-All-Nums-3SUM) and Int-3SUM
We say that A is (g, b)-fine-grained reducible to B if for every (resp. Real-3SUM) are subquadratically equivalent [56]. Note that
€ > 0thereisad > 0 and an O(a(n)!~%) time algorithm that solves a “one-set” version of 3SUM (instead of the above “three-sets” ver-
size (or size measure) n instances of A making calls to an oracle for sion) has also been used in the literature, but they are known to be
problem B, so that the sizes (or size measures) of the instances of B equivalent. Often, it is more convenient to consider the version of
in the oracle calls are ny, ny, .. ., ny. and Zi—c:l(b(ni))l_g < a(n)1_5. the Problerr% where the third set is negated, in which case we are
If Ais (a, b)-fine-grained reducible to B, and there is an O(b(n)'~%) seeking a triple (a,b,¢) witha+b =c.

time algorithm for B for some ¢ > 0, then there is also an O(a(n)'~%)
time algorithm for some § > 0.

All the reductions in the paper will be fine-grained, and hence
we will often omit “fine-grained” when we say reduction.

2.2 Hard Problems

In this section, we define the problems that we will consider as our
hardness sources. In case a problem P has numbers in the input, we
will define the generic version of problem P and use Int-P to denote
the version where the input numbers are integers from +[n°] for
some sufficiently large constant ¢, and use Real-P to denote the
version where the input numbers are reals.

Problem 2.3 (APSP). Given an n-node directed graph whose edge
weights are given as numbers and which has no negative cycles, com-
pute the shortest path distances from u tov for every pair of nodes u
and v in the graph.

Problem 2.4 ((min, +)-Product). Given an n X d matrix A and a
d X n matrix B whose entries are given as numbers, compute ann X n
matrix C such that C[i, j] = ming ¢ (4] (A[i, k] + B[k, j]).

It is known [35, 56] that Real-APSPand Real-(min, +)-Product
between n X n real-valued matrices are subcubically equivalent;
similarly, Int-APSPand Int-(min, +)-Product between n X n integer-
valued matrices are subcubically equivalent as well.
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Problem 2.5 (AE-Exact-Triangle (AE-Exact-Tri)). Given an n-node
graph whose edge weights are given as numbers, for each edge de-
termine whether there is a triangle containing that edge whose edge
weights sum up to zero.

It is known that the Integer 3SUM and the Integer APSP hy-
potheses imply that Int-AE-Exact-Tri requires n3=°() time [55].
However, such tight reductions aren’t known for their real vari-
ants. However, we can adapt one previous non-tight reduction from
Int-3SUM to Int-AE-Exact-Tri [55] to the real case, which implies
Real-AE-Exact-Tri requires n?5-0(1) time assuming the Real 3SUM
hypothesis (see more details in the full paper).

Problem 2.6 (OV). Given a set of n Boolean vectors in f dimensions,
determine whether the set contains two vectors that are orthogonal.

2.3 Triangle Collection and Variants

We define a tripartite version of Triangle-Collection, which is slightly
different from the original definition of Abbound, Vassilevska W.
and Yu [4]. In the full version of the paper, we will show these two
definitions are equivalent.

For brevity, we will give short names for Triangle-Collection
and Triangle-Collection®, Tri-Co and Tri-Co” respectively. Similar
abbreviations will also be given for the All-Color-Pairs versions.

Problem 2.7 (Triangle-Collection (Tri-Co)). Given a tripartite graph
G = (V,E) on partitions A, B,C such that the colors of the nodes
in A are from a set Ky, the colors of the nodes in B are from a
set Kg and the colors of the nodes in C are from a set K¢, where
Ka NKp NKc = 0, and one needs to determine whether for all triples
of colorsa € K4, b € Kp, ¢ € K¢ there exists some triangle x,y,z € V
such that color(x) = a, color(y) = b, color(z) = c.

Problem 2.8 (ACP-Triangle-Collection (ACP-Tri-Co)). Given the
input to a Tri-Co instance, one needs to determine for every a €
K4, b € Kp, whether for all c € K¢ there exists some triangle x,y,z €
V such that color(x) = a, color(y) = b, color(z) = c.

All other variants of Tri-Co will have the same output as Tri-Co,
so they also naturally have an All-Color-Pairs (ACP) variant. We
will only define their normal versions for conciseness.

Problem 2.9 (Triangle-Collection™ (Tri-Co*)). AnTri-Co* instance
is a restricted Tri-Coinstance. For parameters p and t it is a node-
colored graph G which is a disjoint union of graphs G1, . . ., G¢. G (and
hence all the G;s) is tripartite on partitions A, B, C. The aforementioned
value p is an upper bound on the number of nodes of any particular
color in any G;.
The node colors are from [3] X [n]. For every t, the nodes of G; are:
o Nodes in A of the form (a,t) of color (1,a). Note that this
means that each G; has nodes of distinct colors in A.
e Nodes in B of the form (b, t, j) of color (2,b), where j < p. For
each (a, t) € A and every color (2, b), there is at most one node
(b, t, j) in B that (a,t) has an edge to.
e Nodes in C of the form (c, t, j) of color (3,¢) for j < p. For
each (a, t) € A and every color (3, c), there is at most one node
(¢c,t, ) in C that (a, t) has an edge to.
The last two bullets mean that in each G; all the neighbors of a node
in A have distinct colors. There is no restriction on the edges between
nodes in B and C (beyond that the graphs G; are disjoint).
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An algorithm for Tri-Co* needs to output whether for all triples
(a, b, ¢), there is a triangle with node colors (1, a), (2,b), (3, ¢).

We now define a another version of Tri-Co, Tri-Coyjgp, that has
Tri-Co* as a special case. The “light” part of the name stands for
“Light Colors”, meaning that each colors has few nodes.

Problem 2.10 (Tri-Coyjgpy). An instance of Tri-Coyjgy is a restricted
instance of Tri-Co. For an integer parameter p, it is a graph that has
at most p nodes of any fixed color.

2.4 Other Problems

Problem 2.11 (AE-Sparse-Tri. (AE-Sparse-Tri)). Given a graph with
m edges, for each edge determine whether it is in a triangle.

Problem 2.12 (AE-Monochromatic-Tri. (AE-Mono-Tri)). Given a
graph on n nodes where each edge has a color, for each edge determine
whether it is in a triangle whose three edges share the same color.

In some of our reductions, it is convenient to assume that in
AE-Sparse-Tri, for each edge where the answer is yes, a witness
(a triangle through the edge) must also be provided. This version
is equivalent (up to poly-logarithmic factors) by standard random
sampling techniques for witness finding [10, 51], which requires
only Las Vegas randomization. The same is true for AE-Mono-Tri
as well.

Problem 2.13 (Colorful Boolean Matrix Mult. (Colorful-BMM)).
Given an n X n Boolean matrix A and an n X n Boolean matrix B and
a mapping color : [n] — T, for each i € [n] and j € [n], decide
whether {color(k) : A[i,k] A Blk, j], k € [n]} =T.

3 HARDNESS OF ALL-EDGES SPARSE
TRIANGLE

In this section, we show lower bounds of AE-Sparse-Tri based on
the conjectured hardness of Real-APSP or Real-3SUM.

3.1 Real-APSP — AE-Sparse-Tri
Recall that we proved Theorem 1.13 in Section 1.2:

THEOREM 1.13. If AE-Sparse-Tri could be solved in O(m*/3-¢)
time, then Real-APSP could be solved in O(n3_38/2) time using Las
Vegas randomization.

More generally, we can obtain a near mD conditional lower
bound in terms of the degeneracy D, if D <« m1/3, which again
matches known upper bounds (regardless of the value of w).

THEOREM 3.1. IfAE-Sparse-Tri for graphs with m edges and degen-
eracy O(m®) could be solved in O(m*%~¢) time for some constant
a < 1/3, then Real-APSP could be solved in O(n®~2¢/(1¥®)) time
using Las Vegas randomization.

Proor. First, observe that the graph Gy p in Lemma 1.12’s proof
can be modified to have degeneracy O(d): Whenever a left node x
has Ay > d neighbors among the right nodes, we split x into [%"]

copies, where each copy is linked to up to d neighbors among the
right nodes. Each copy is also linked to all of the original O(d log n)
neighbors among the middle nodes. The number of left nodes

increases to ), [%x-l and so the number of edges increases by
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ody, [Aﬂ) = O(3, Ax +dn) = O(n?/d + dn). Now, each left

node has O(d) neighbors among the middle and right nodes. Each
right node has O(d) neighbors among the middle nodes. It follows
that the degeneracy of the modified graph is O(d).

To prove the theorem, choose d so that d = (n?/d)%, ie., d =
n2e/(1+@) Since @ < 1/3, we have d < yn and so dn < n?/d.
If AE-Sparse-Tri with m edges and degeneracy D could be solved
in T(m, D) time, then Real-APSP could be solved in time O(n -
T(n?/d, d)) = O(n372¢/(1+@)) if T(m) = O(m!*e¢). o

3.2 Real-3SUM — AE-Sparse-Tri

We next adapt our proof to reduce from Real-3SUM. We will more
generally consider an asymmetric version of Real-3SUM with three
sets A, B, and C of sizes n, n, and 7 respectively with i < n (the
standard version has /i = n). Sort A and B and divide the sorted
lists of A and B into sublists A1,..., Ay 4 and By, ..., B/ of size
d, for a given parameter d < n. Let A[i, k] denote the k-th element
of A; for each i € [n/d] and k € [d], and B[}, £] denote the ¢-th
element of Bj for each j € [n/d] and ¢ € [d]. We will consider
a slightly stronger problem: for each ¢ € C, find the predecessor
and successor of ¢ among A + B. (If ¢ is in this set, we will deviate
from convention and define the predecessor of ¢ to be itself.) By
a known observation (which was used in Grgnlund and Pettie’s
Real-3SUM algorithm [43] and in subsequent algorithms [21]), for
each ¢ € C, it suffices to search for ¢ in A; + Bj for O(n/d) pairs
(i, j) (since these (i, j) pairs form a “staircase” in the [n/d] X [n/d]
grid). Thus, Real-3SUM (or Real-All-Nums-3SUM) reduces to the
following problem (which was explicitly formulated, for example,
in Chan’s paper on Real-3SUM [21]):

Problem 3.2 (Real-3SUM-Variant;). We are given an (n/d) X dg
real matrix A and an (n/d) X dg real matrix B withda,dg < d. For
each i, j € [n/d], we are also given a set Cij of real numbers with
2, ICijl = O(An/d).

For each i, j € [n/d] and each c € C;j, we want to find the prede-
cessor and successor of the value c among the elements in {A[i, k] +
B[j,t] - k € [dal, t € [dB]}-

We again introduce an intermediate problem, which the original
problem reduces to via random sampling:

Problem 3.3 (Real-3SUM-Varianty). We are given an (n/d)xd real
matrix A and an (n/d) X d real matrix B. For each i, j € [n/d], we are
also given a set Q;j C [d]* of quadruples with 2,7 1Qij| = O(An/d).

Foreachi, j € [n/d] and eachq = (k™,¢7,k*,¢%) € Q;j, we want

to find indices kqu t’qu [d] (if they exist) satisfying

7] < Ali k]

AL K"1+BLj, K

1+Blj, ;4] < AlL, K" 1+B[j, 7]. (2)

Lemma 3.4. Real-3SUM-Variant; reduces to O(1) calls to an oracle
for Real-3SUM-Varianty using Las Vegas randomization.

Proor. We solve Real-3SUM-Variant; as follows: Take a ran-
dom subset R C [d4] of size d4/2. For each i, j € [n/d] and each

¢ € Cjj, first compute indices k] R) t’UER) k:r](CR), :,(CR) € [d] such

that A[, ]<R>] +B[j ¢ (R)] and A[i, *J(R)] + B[, e+<R)] are the
predecessor and successor (respectively) of the value ¢ among the
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elements in {A[i, k] + B[j, £]
can be done recursively.

:k € R, £ € [dg]}. This computation

= ®

ije

Ry and (kF 0+

ijc ije’ "ije

Next, initialize (k7 ,¢) =

ije ( ) =
(k:r](CR), :’(CR)) Invoke the oracle for Real-3SUM-Variant; to find

some (kuc, t’l’JC) € [da] x [dp] satistying (2) for each i, j € [n] and
ceCy If (kuc, t’l ) exists and A[j, ki’jc] + B[}, fi'jc] < ¢, find the
index ¢ € [dp] such that A[i, klfj 1+ B[}, £] is the predecessor of the
i, kl']c] +Bl[j,t] : ¢ € [dg]}. This
index can be found in O(logd) time by binary search, assuming
that each row of B has been sorted (which requires only O(nlogn)
preprocessing time). Reset (kUC, fljc) = (kt]c’ 0). If (kUC, [l’]c) exists
’

and A[i, kz]c] + B[}, Uc] > ¢, we proceed similarly, replacing “pre-
decessor” with “successor” and — superscripts with +. Now, repeat.
When (k] e t’l’J o) is nonexistent for all i, j € [n], we can stop.

To bound the number of iterations, observe that for each i, j €
[n] and each ¢ € C;j, the number of indices k" € [d4] such that

the predecessor of ¢ among {A[i, k"] + B[j, £] : £ € [dg]} is greater
than A[i, k; (R)] +B[6k;. (R)] is O(log n) w.h.p (since in a set of d4
values, there are at most O(log n) values greater than the maximum
of a random subset of size d4/2). A similar statement, replacing
“predecessor” with “successor”, — superscripts with +, and “greater”
with “less”, holds. Thus, O(log n) iterations suffice w.h.p.

As the recursion has O(logda) depth, the total number of or-
acle calls is O(log d log n) w.h.p., and the extra cost of the binary
searches is O((fin/d) log? d log n), which is negligible. o

ije’

value ¢ among the elements in {A[i

We now present our reduction from Real-3SUM-Variant; to
AE-Sparse-Tri, which is inspired by Grenlund and Pettie’s work [43]
and is also based on Fredman’s trick. Although we now need to work
with even more indices, the basic idea is similar to our earlier reduc-
tions. The extra complications cause further loss of efficiency (but
we still obtain a tight conditional lower bound for AE-Sparse-Tri, al-
beit for a more restricted range of degeneracy < m1/). The whole
proof is still simple (comparable to the original reductions from
Int-3SUM by Pitragcu [49] or Kopelowitz, Pettie and Porat [46],
but completely bypassing hashing arguments).

Lemma 3.5. Real-3SUM-Varianty reduces to a single instance of
AE-Sparse-Tri on a graph with O(fin/d + d%n) edges and degeneracy
0(d).

Proor. To solve Real-3SUM-Varianty, first sort the following
list of O(dn) elements in O(dnlogn) time:

L ={A[i, k'] - A[iLk] : i € [n/d), k. K’ € [d]}
U {Blj.€] - B[}, '] : j € [n/d], ¢,¢" € [d]}.

We then solve AE-Sparse-Tri on a tripartite graph G which is

defined as follows:

(0) The left nodes are {x[i,k~,k*] : i € [n/d], k~, kT € [d]},
the middle nodes are {y[I~,I"] : I",I" are dyadic intervals},
and the right nodes are {z[j,¢7,¢*] : j € [n/d], ¢, ¢ €
[d]}.

(1) For each i,j € [n/d] and (k™,¢7,k*,t*) € Q;j, create an
edge x[i,k—, k*] z[j,¢~, £*].

(2) For each i € [n/d], k~,k*,k’ € [d], and dyadic intervals
I” and I, create an edge x[i,k~, k*] y[I~,I*] if the rank of
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Ali,k™] = A[i,k’] in L is in the left half of I~ and the rank
of A[i,k’] — A[i,k*] in L is in the left half of I'*.

(3) For each j € [n/d], t~,¢*,¢’ € [d], and dyadic intervals
I” and I', create an edge y[I~,I"] z[j, £, £*] if the rank of
B[j,¢’] = B[j,£7] in L is in the right half of I~ and the rank
of B[j, £*] — B[j,£’] in L is in the right half of I'*.

Step 1 creates }; j|Qij| = O(fin/d) edges. Steps 2-3 create
O((n/d)d? log? n) edges, since any fixed value lies in O(log n) dyadic
intervals. Thus, the graph G has O(fin/d + d?n) edges.

For any given (i, j) € [n]? and (k™,¢7,k*, %) € Q;j, finding a
(k’,¢") with A[i,k™] + B[j,£7] < A[i, k'] + B[, ¢'] < A[i,k*] +
B[}, t*] is equivalent to finding a (k’, £’) with A[i,k™] — A[i, k'] <
B[j,¢'1-B[j,¢t"]and A[i,k’]—A[i, k*] < B[}, £*]-B[j, t’], which
is equivalent to finding a triangle x[i, k~, k™| y[I~, %] z[j, £, £*]
in the graph G. Thus, the answers to Real-3SUM-Variant, can be
deduced from the answers to the AE-Sparse-Tri instances.

Finally, to ensure that the graph G has degeneracy O(d), we
modify the graph by splitting nodes in the same way as in the last
paragraph of Theorem 3.1’s proof. The number of edges increases

by O(d Y, [Aﬂ) = O(3, Ax + (n/d)d? - d) = O(n/d + d®n). O

THEOREM 3.6. If AE-Sparse-Tri with m edges could be solved in
O(m®/5¢) time, then Real-3SUM (and Real-All-Nums-3SUM ) could
be solved in O(n?~%/3) time using Las Vegas randomization.

More generally, if AE-Sparse-Tri with m edges and degeneracy
O(m®) could be solved in O(m'**~%) time for some constant a <
B/(3 + 2p), then Real-3SUM for three sets of sizes n, n, and i =
nP (B < 1) could be solved in O(n'*F=c(1+B)/(1+@)y time ysing Las
Vegas randomization.

PRroOF. By combining the above two lemmas, if AE-Sparse-Tri
could be solved in T(m, D) time, then Real-3SUM-Variant; could
be solved in O(T (fin/d +d?n, d)) time. Also, Real-3SUM (and more
generally, Real-All-Nums-3SUM) reduces to a single instance of
Real-3SUM-Variant;, with 72 = nf. (For the original symmetric
version of Real-3SUM, f = 1.) Choose d so that d = (n*B/d)e,
ie, d = n(1*Pa/(1+a) gince o < B/ (2 +3p), we have d < nbl3
and so d?n < n'*#/d. The time bound becomes O(T (n'*#/d, d)) =
O(n1+ﬁ—s(1+ﬁ)/(1+a)) if T(m, m%) = O~(m1+a_€). O

4 HARDNESS OF COLORFUL BMM

In this section, we show that Real-APSP and OV can be reduced to
Colorful-BMM.

4.1 Real-APSP — Colorful-BMM

We first present our reduction from Real-APSP to Colorful-BMM,
which is simple and is inspired by Williams’s Real-APSP algo-
rithm [60] (and its derandomization by Chan and Williams [22])
using ANDs of ORs.

Lemma 4.1. Real-(min, +)-Product of an n X d real matrix A and
a d x n real matrix B reduces to one instance of Colorful-BMM for
annx0(d*n®) and an O(d*n) x n Boolean matrix with O(d) colors
(and O(d?n) nonzero input entries), after spending O(dn?=%) time.

ProoF. For simplicity, we assume that A[i, k]+B[k, j| # A[i, k"]+
B[k’, j] for all i, j € [n] and k, k" € [d]. This can be ensured, for
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example, by adding ké to A[i, k] for an infinitesimally small § > 0.
Note that we don’t need to explicitly store A[i, k] + kd. Instead,
we can store a number a + b§ as a pair of numbers (a, b). Every
time we need to compare two numbers (ai, b1) and (ag, b2), we
first compare a1 and ay and only compare by and by if a; = ay. This
implementation only incurs a constant factor overhead.

Fix t € [logd]. We will describe how to compute the ¢-th bit
of kij = argmingeq)(A[i, k] + B[k, j]). Let Ky = {k € [d] :
the ¢-th bit of k is 1}. Note that the ¢-th bit of k;; is 1 iff

A \/ [A[L K] +BIK j] < Ali, k] + B[k, /1]
ke[d]-K; k'€K;
= A v [Ali,k'] - A[i,k] < B[k, j] - BIK’, j]]-
ke[d]=K, K €K,
Thus, the answers can be determined by solving Colorful-BMM
on the following matrices A and B and color mapping to [d] — K;:
(1) For each i € [n], k € [d] — Ky, kK’ € Ky, and each dyadic
interval I, let A[i, (k,k’,I)] = 1 iff the rank of A[i, k'] —
Ali, k] lies in the left half of the dyadic interval I.

(2) For each j € [n], k € [d] — K¢, kK’ € Ky, and each dyadic
interval I, let B[(k,k’,I),j] = 1 iff the rank of B[k, j] —
B[k’ j] lies in the right half of the dyadic interval I.

(3) Define color((k,k’,I)) = k.

However, the inner dimension (i.e., the number of columns of
A or rows of B) is large. We lower the inner dimension by using
the “high vs. low degree” trick: Label a triple (k, k’,I) “high” if the
number of indices i for which A[i, (k,k’,I)] = 1 exceeds n!~¢/d?;
otherwise, label it “low”. For each low triple (k, k’, I), we enumerate
all (i, j) for which A[i, (k,k’,I)] = 1 and B[(k,k’,I), j] = 1, and
mark these pairs (i, j) as “bad”. There are O((d?nlogn)-n'~¢/d?) =
O(n?7%) bad pairs, and for each bad pair (i, j), we can compute
its corresponding entry of the (min, +)-product in O(d) time by
brute force. This takes O(dn®¢) time. For the remaining good
pairs (i, j), it suffices to keep only the high triples, and the num-

2
ber of high triples is O( ig?if

Colorful-BMM instance, A and B have dimensions O(n)xO(d*nf)
and O(d*n?) x O(n). O

) = O(d*n®). So, in the remaining

THEOREM 4.2. If Colorful-BMM for two n X n Boolean matrices
could be solved in O~(n9/4_58/4) time, then Real-APSP could be solved
in O(n®~¢) time.

More generally, if Colorful-BMM for two n X n Boolean matri-
ces with O(n%) colors could be solved in O(n**%¢) time for some
constant & < (1 — ¢) /4, then Real-APSP could be solved in O(n3~%)
time.

ProOF. The (min, +)-product of two nx n real matrices, and thus
Real-APSP, reduces to n/d rectangular (min, +)-products between
nxd matrices and d Xn matrices. Choose d = n%. Since a < (1—¢)/4,
we have d*n® < n. Then the theorem is immediately implied by
Lemma 4.1. m]

4.2 OV — Colorful-BMM

We can similarly reduce OV to Colorful-BMM, since the former
also reduces to computing expressions involving ANDs of ORs (as
exploited in Abboud, Williams, and Yu’s OV algorithm [5]). In fact,
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the reduction from OV is even simpler, and more efficient, than the
reduction from Real-APSP.

Lemma 4.3. One instance of OV for n Boolean vectors in f dimen-
sions reduces in O(ndf) time to one instance of Colorful-BMM for
an (n/d) x (d*f) and a (d*f) x (n/d) Boolean matrix with d? colors
for any givend < n.

Proor. Divide the input set A and B into groups Ay, ..., Ap/q
and By, ..., B4 of d Boolean vectors each. Let Ali, k, s] be the s-th
bit of the k-th vector in A; and let B[j, £, s] be the s-th bit of the
¢-th vector in Bj.

For each i, j € [n/d], there are no orthogonal pairs of vectors in
Aj X Bj iff

v (A[i, k,s] A B[j, £, s]).
k.te[d] se[f]

Thus, the answer can be determined by solving Colorful-BMM
on the following matrices A and B:

(1) Foreachi € [n/d],k,t € [d],ands € [f],let Ali, (k, £, s))]

Ali, k,s].
(2) Foreachj € [n/d],k,t € [d],ands € [f],let B[(k,¢,5s), j] =
B[j,t,s].

(3) Define color((k, ¢t,s)) = (k, t).

The inner dimension (i.e., the number of triples (k, £,5)) is df. O

THEOREM 4.4. If Colorful-BMM for two N X N Boolean matrices
could be solved in O(N>~¢) time, then OV for n Boolean vectors in f
dimensions could be solved in O(fo(l) n2=2¢/3y time.

More generally, if Colorful-BMM for two N X N Boolean matrices
with N% colors could be solved in O(N**®~¢) time for some constant
a < 1, then OV for n Boolean vectors in f dimensions could be solved

in O(fOW) p2-2¢/(2+)y yime

Proor. Choose d so that d2 = (n/d)%, i.e., d = n® (2@ Since
a < 1, we have d < n!/3 and so d? < n/d. Thus, if there is an
O(N?+2=¢) time algorithm for Colorful-BMM with O(N¥) colors,
we can solve OV in O((fOWn/d)2+a=¢) = O(fOW) p2-2¢/(2+a))
time. O

5 TRIANGLE COLLECTION AND
TRIANGLE-COLLECTION*

In the full version of the paper, we will prove Theorem 1.7, which
we recall as follows:

THEOREM 1.7. (ACP-) Tri-Coyjg with parameter n°M and (ACP-
) Tri-Co* with t, p < n°Y) are equivalent up to n°") factors.

Recall our main theorem is the following.

THEOREM 1.2. Assuming Hypothesis 2, ACP-Tri-Co requiresn
time for some § > 0, in a reasonable Real RAM model.

In Section 5.1, we will show a reduction from AE-Mono-Tri to
ACP-Tri-Co*. Combined with the Real-APSP and Real-3SUM hard-
ness of AE-Mono-Tri (which can be found in the full paper), we
obtain the Real-APSP and Real-3SUM hardness in the main the-
orem. In Section 5.2, we show a reduction from Colorful-BMM
to ACP-Tri-Co”. By combining with the reduction from OV to
Colorful-BMM and unrolling the whole reduction, we in fact obtain

2+5-0(1)
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a reduction from OV to Tri-Co*. This shows the OV hardness of the
main theorem, and thus concludes the proof of the main theorem.

5.1 From All-Edges Monochromatic Triangle to
All-Color-Pairs Triangle Collection

Here we show that the AE-Mono-Tri problem can be reduced to the
ACP-Tri-Co* problem. By our results above, it suffices to reduce
AE-Mono-Tri to ACP-Tri-Cojjghy With parameter no,

Recall that in AE-Mono-Tri we are given an n node graph G =
(V,E) with colors color : E +— [n?] on the edges and we want
to know for every edge (u,v) € E if there exists a w € V so that
(u,0), (v,w), (w,u) € E (i.e. they form a triangle) and color(u,v) =
color(v, w) = color(w, u).

THEOREM 5.1. An n-node instance of AE-Mono-Tri can be reduced
to an O(nlogn)-node instance of ACP-Tri-Coyjgyy With parameter
O(logn) in O(n?logn) time.

ProoF. Let G = (V, E) be the instance of AE-Mono-Tri with edge
colors color : E + [n®]. Without loss of generality, G is tripartite
with node parts A, B, C.

We will build an instance of ACP-Tri-Coyjgp, H. For every t €
[21og n] we will create a graph G; and H will be the disjoint union
of these O(log n) graphs.

For a fixed t € [2logn], the nodes of G; are as follows. G; will
be a tripartite graph on parts A’, B/, C’. For every node z € C of
G, we add a node z to Gy; z has color z (we associate the nodes of
G with the integers [n]). These nodes will be in part C’. For every
node v € AU B of G we create two copies of v in G;: vy and v1, both
having color v. If v was in A, vy, v are in the partition A, and if v
was in B, then v, v are in partition B’.

For every pair of nodes of G, v € AU B and z € C, if the tth bit
of the color color(v, z) is b, then add an edge between vj, and z. For
every pair of nodes of G, v € Aand o’ € B, add an edge between v,
and 0117’ for all choices of p and p” s.t. p # p’. In addition, add an edge
between between vj, and v; if the tth bit of the color color(v,v’) is
not b.

Notice that for every z € C,v € A,v” € B (which are now a triple
of colors), G; does not have a triangle of these colors iff the tth bit
of the colors of (z,0), (z,0”), (v,0”) in G match. Thus, there are no
triangles colored z,u,0” in H = U;G; if and only if the colors of
(z,0), (z,0’), (v,0’) in G match for all choices of t, and hence if and
only if the colors are exactly the same.

By construction, the number of nodes of each color is at most
O(logn). Thus we have reduced AE-Mono-Tri to an O(nlogn)-
node instance of ACP-Tri-Coyjgp-

O

5.2 Colorful-BMM — ACP-Tri-Co and OV —
Tri-Co*
We give a simple reduction from Colorful-BMM to ACP-Tri-Co.

Lemma 5.2. Any instance of Colorful-BMM on n X n matrices can
be reduced in O(n?) time to an instance of ACP-Tri-Co on n nodes. If
the maximum number of k of any given color in the Colorful-BMM
instance is n"(l), then Colorful-BMM also reduces to ACP-Tri-Co*
with parameter n°(1).



Hardness for Triangle Problems under Even More Believable Hypotheses

Proor. Let A and B be two n X n matrices that constitute an
instance of Colorful-BMM. Let color : [n] — [K] be the color
function of the columns of A and rows of B. Note that without loss
of generality K < O(n).

We will create an instance G of ACP-Tri-Co with O(n) colors.

For every color k € [K] and every t € [n] such that color(t) = k,
create a node kz; of color k.

For every i € [n], create a node i; of color i; and a node i3 of
color i3, and add an edge between i; and j3 for all i, j € [n].

For every pair i € [n],t € [n] with color(t) = k, add an edge
(i1, ko) if A[i,t] = 1 and add an edge (i3, ka) if B[¢,i] = 1.

Notice that for a fixed triple i € [n],j € [n],k € [K], there is
a triangle with colors iy, k, j3 if and only if there is some t € [n],
Ali, t] - B[t j] = 1.

ACP-Tri-Co asks for every pair of colors i1, j3 to compute whether
there is some k with no triangles of color triple i1, j3, k, conversely,
whether for all colors k there is a triangle with color triple iy, j3, k,
i.e. whether for all i, j, k there is some ¢ of color k such that A[i, ¢] -
B[t j] =1.

We get an instance of ACP-Tri-Co with O(n) nodes and colors.

Now suppose that the number of k in any given color of the
Colorful-BMM instance is at most T < n°() . In this case, the num-
ber of nodes of each color in the above reduction is at most no(l),
so we actually get an instance of ACP-Tri-Cojjgp, With parameter

n°@ By our reduction from AC P-Tri-Coyight with parameter no

to ACP-Tri-Co*, we get an instance of ACP-Tri-Co* with n'*0(1)
nodes and O(n) colors. O

We get as a corollary a reduction from OV to Tri-Co™.

Corollary 5.3. Forany1 < d < n, OV for n Boolean vectors in f di-
mensions reduces in O(n?/d? +ndf) time to an instance of Tri-Coyight
on O(nf /d+d?) nodes with parameter f. Thus if OV requires n=°(1)
time for f = n°W | then Tri-Coyight on N nodes with parameterN"(l)

requires N3°() time, then so does Tri-Co* with parameter n°(1).

Proor. Consider the reduction from Lemma 4.3 from OV to
Colorful-BMM. For any d < n, it partitioned the input sets of vec-
tors A and B into groups {A;};c[n/q] and {Bi}c[n/q) of d vectors
each, letting A[j, j,s] be the sth bit of the kth vector of A; and
B[}, t,s] be the sth bit of the ¢th vector of B;.

It then created an n x d?f matrix A with A, (k,£,5))] =
Ali,k,s] and an d?f x n matrix 8 with B[(k,¢,s), j] = B[j,4,s].
The color of (k,#,s) was (k, £). The number of columns of A of
each color is thus at most f.

With the above reduction, we then apply our reduction from
Colorful-BMM to ACP-Tri-Coyjgyy in the proof of Lemma 5.2 to
show that OV reduces to ACP-Tri-Coyjgh-

Notice that in the above reduction from OV to Colorful-BMM,
there are no pairs of orthogonal vectors iff for all i, j € [n/d] and
k,t € [d], there exists some s € [f] such that Al[i, (k,£,s))] =
B[(k,t,s),j] = 1. When we create the ACP-Tri-Coj;gp; instance
from the Colorful-BMM instance in our reduction, it suffices to
figure out whether for all triples of colors there is some triangle,
which is exactly the Tri-Cojjgp,; problem. O
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