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ABSTRACT
The 3SUM hypothesis, the All-Pairs Shortest Paths (APSP) hypothe-

sis and the Strong Exponential Time Hypothesis are the three main

hypotheses in the area of fine-grained complexity. So far, within

the area, the first two hypotheses have mainly been about integer

inputs in the Word RAM model of computation. The “Real APSP”

and “Real 3SUM” hypotheses, which assert that the APSP and 3SUM

hypotheses hold for real-valued inputs in a reasonable version of

the Real RAM model, are even more believable than their integer

counterparts.

Under the very believable hypothesis that at least one of the

Integer 3SUM hypothesis, Integer APSP hypothesis or SETH is

true, Abboud, Vassilevska W. and Yu [STOC 2015] showed that

a problem called Triangle Collection requires 𝑛3−𝑜 (1) time on an

𝑛-node graph.

The main result of this paper is a nontrivial lower bound for a

slight generalization of Triangle Collection, called All-Color-Pairs

Triangle Collection, under the even more believable hypothesis

that at least one of the Real 3SUM, the Real APSP, and the Or-

thogonal Vector (OV) hypotheses is true. Combined with slight

modifications of prior reductions from Triangle Collection, we ob-

tain polynomial conditional lower bounds for problems such as

the (static) ST-Max Flow problem and dynamic versions of Max

Flow, Single-Source Reachability Count, and Counting Strongly

Connected Components, now under the new weaker hypothesis.

Our main result is built on the following two lines of reductions.

In the first line of reductions, we show Real APSP and Real 3SUM

hardness for the All-Edges Sparse Triangle problem. Prior reduc-

tions only worked from the integer variants of these problems. In

the second line of reductions, we show Real APSP and OV hardness

for a variant of the Boolean Matrix Multiplication problem.
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Along the way we show that Triangle Collection is equivalent to

a simpler restricted version of the problem, simplifying prior work.

Our techniques also have other interesting implications, such as

a super-linear lower bound of Integer All-Numbers 3SUM based

on the Real 3SUM hypothesis, and a tight lower bound for a string

matching problem based on the OV hypothesis.
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1 INTRODUCTION
Fine-grained complexity is an active area of study that gives a

problem-centric approach to complexity. Its major goal is to prove

relationships and equivalences between problemswhose best known

running times have not been improved in decades. Through a va-

riety of techniques and sophisticated reductions many problems

from a huge variety of domains and with potentially vastly differ-

ent running time complexities are now known to be related via

fine-grained reductions (see e.g. the survey [54]).

As a consequence of the known reductions, the hardness of most

of the studied problems in fine-grained complexity can be based on

the presumed hardness of three key problems: the 3SUM problem,

the All-Pairs Shortest Paths (APSP) problem and CNF-SAT. Their
associated hardness hypotheses below are all defined for the Word

RAM model of computation with 𝑂 (log𝑛)-bit words:
• The (Integer) 3SUM hypothesis. There is no algorithm

that can check whether a list of 𝑛 integers from ±[𝑛𝑐 ] for
some constant 𝑐 contains three integers that sum up to zero

in 𝑂 (𝑛2−𝜀 ) time for 𝜀 > 0.
1

• The (Integer) APSP hypothesis. There is no algorithm

that can solve the APSP problem in an 𝑛-node graph whose

1
Throughout this paper, [𝑁 ] denotes {0, 1, . . . , 𝑁 − 1} and ±[𝑁 ] denotes {−(𝑁 −
1), . . . , 𝑁 − 1}.
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edge weights are from ±[𝑛𝑐 ] for some constant 𝑐 in𝑂 (𝑛3−𝜀 )
time for 𝜀 > 0.

• The Strong Exponential Time Hypothesis (SETH). For
every 𝜀 > 0, there exists an integer 𝑘 such that 𝑘-SAT on 𝑛

variables cannot be solved in𝑂 (2(1−𝜀)𝑛) time. An equivalent

formulation states that there is no𝑂 (2(1−𝜀)𝑛) time algorithm

for CNF-SATwith 𝑛 variables and𝑂 (𝑛) clauses for any 𝜀 > 0.

All three hardness hypotheses were studied before Fine-Grained

Complexity even got its name. The complexity of 3SUM was first

used as a basis for hardness in the computational geometry commu-

nity by Gajentaan and Overmars [39]. The complexity of APSP has

been used as a basis of hardness in the graph algorithms community

at least since the early 2000s (e.g. [50]). SETH was first studied in

1999 by Impagliazzo and Paturi [44], though the name “SETH” was

first given later in [19]. Together, the three hypotheses have been

very influential, giving very strong lower bounds for a wide range

of problems.

The 3SUM hypothesis is now known to imply tight hardness

results for many geometric problems (e.g. [6, 12, 13, 16, 23, 30, 32, 33,

52]), and also for some non-algebraic problems (e.g. [2, 3, 46, 47, 49]);

some convolution problems [47, 49] are known to be equivalent

to 3SUM. The APSP hypothesis is known to imply tight hardness

results for many problems (e.g. [2, 17, 49]), and many problems are

also known to be fine-grained equivalent to APSP ([1, 56]). SETH

is now known to imply an enormous number of lower bounds

both for problems in exponential time (e.g. [18, 26, 28, 48]), and

in polynomial time (e.g. [9, 14, 58] and many more); the hardness

of a small number of problems is also known to be equivalent to

SETH [25]. See [54] for more known implications.

There are no known direct relationships between the three hy-

potheses, and there is some evidence (e.g. [20]) that reducing be-

tween them might be difficult. As we do not really know which, if

any, of these hypotheses actually hold, it is important to consider

weaker hypotheses that still give meaningful hardness results.

A natural hardness hypothesis considered byAbboud, Vassilevska

W. and Yu [4] is the following:

Hypothesis 1. At least one of SETH, the (Integer) 3SUM or the
(Integer) APSP hypothesis is true.

Under Hypothesis 1, Abboud, Vassilevska W. and Yu proved

polynomial lower bounds for a variant of maximumflow and several

problems in dynamic graph algorithms: dynamically maintaining

the maximum flow in a graph, the number of nodes reachable from

a fixed source in a graph (#SSR), the number of strongly connected

components in a directed graph (#SCC), and more.

Dahlgaard [27] showed that computing the diameter of an un-

weighted graph with 𝑛 nodes and𝑚 edges requires 𝑛1−𝑜 (1)
√
𝑚 time

under Hypothesis 1. The reductions of both [4] and [27] utilized

a problem called Triangle-Collection, which we will abbreviate as

Tri-Co.
In the Tri-Co problem, given a node-colored graph with 𝑛 nodes,

one is asked whether it is true that for all triples of distinct colors

(𝑎, 𝑏, 𝑐), there exists a triangle whose nodes have these colors. A
key step in the above reductions proved in [4] is the following tight

hardness result for Tri-Co.

Theorem 1.1 ([4]). AssumingHypothesis 1, Tri-Co requires𝑛3−𝑜 (1)

time.

The main question that inspires this work is the following:

Is there a natural hypothesis that is weaker than Hypothesis 1 and
implies similar hardness results?

As mentioned, recent conditional lower bound results based on

APSP and 3SUM (especially since Pătraşcu’s seminal paper [49])

typically assumed the integer variants of these hypotheses. How-
ever, algorithms for APSP and 3SUM are more often designed for

the real-valued versions of the problems (this includes not only the

traditional cubic or quadratic time algorithms, but the celebrated,

slightly subcubic or subquadratic algorithms of Williams [59] or

Grønlund and Pettie [43], as we will review shortly). This discrep-

ancy between the literature on lower bounds and upper bounds

raises another intriguing question:

Do known conditional lower bounds derived from the
integer versions of the APSP and 3SUM hypotheses
hold for the real versions of these hypotheses?

Our work will give a positive answer to this second question

for a plethora of known conditional lower bound results, and will

hence provide an answer to the first question as well, since the real

versions of the hypotheses are weaker/more believable.

Remarks on models of computation. Within fine-grained complex-

ity it is standard to work in the Word RAM model of computation

with 𝑂 (log𝑛)-bit words. As we will consider variants of APSP and

3SUM with real-valued inputs, we will need to work in the Real

RAM, a standard model in computational geometry.

The Real RAM (see e.g. Section 6 in the full version of [34]) sup-

ports unit cost comparisons and arithmetic operations (addition,

subtraction, multiplication, division) on real numbers, unit cost

casting integers into reals, in addition to the standard unit cost op-

erations supported by an 𝑂 (log𝑛)-bit Word RAM. No conversions

from real numbers to integers are allowed, and randomization only

happens by taking random 𝑂 (log𝑛)-bit integers, not random reals.

Without further restrictions, the Real RAM can be unrealistically

powerful. However, it is not difficult to define a “reasonable” re-

stricted Real RAM model for which our reductions still work, such

that any algorithm for real-valued inputs in such a model can be

converted into an algorithm in the word RAM for integer-valued

inputs, running in roughly the same time. See the full paper for a

detailed discussion, and several natural ways to define such a rea-

sonable Real RAM model. Thus, the real versions of the hardness

hypotheses under such a model are indeed even more believable

than the integer versions.

Real 3SUM hypothesis. Historically, the early papers on the 3SUM
hypothesis from computational geometry were concerned with the

real instead of the integer case.
2

Let Real-3SUM refer to the version of 3SUM for real numbers

(in contrast to Int-3SUM, which refers to the integer version). In

its original form, the Real 3SUM hypothesis stated that there is

no 𝑜 (𝑛2) time algorithm that solves Real-3SUM in the Real RAM

model, and some evidence was provided by Erickson [32], who

2
Technically, the original paper by Gajentaan and Overmars [39] stated the 3SUM

hypothesis for integer inputs, but they assumed a Real RAM model of computation, as

in most work in computational geometry.
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proved quadratic lower bounds for algorithms that are allowed to

use only restricted forms of real comparisons (testing the signs of

linear functions involving just 3 input reals). Grønlund and Pettie

refuted this hypothesis by giving an𝑂 (𝑛2 (log log𝑛)2/3/(log𝑛)2/3)
time deterministic algorithm and an 𝑂 (𝑛2 (log log𝑛)2/log𝑛) time

randomized algorithm for Real-3SUM [43]. This was subsequently

improved by Freund [38], Gold and Sharir [42], and Chan [21],

reaching an 𝑛2 (log log𝑛)𝑂 (1)/log2 𝑛 deterministic running time.

Grønlund and Pettie obtained their initial breakthrough by first

proving a truly subquadratic upper bound, near 𝑛3/2, on the linear-

decision-tree complexity of Real-3SUM (using comparisons of two

sums of pairs of input reals). More recently, Kane, Lovett, and

Moran [45] in another breakthrough improved the linear-decision-

tree complexity upper bound to 𝑂̃ (𝑛),3 although their approach

has not yet led to improved algorithms. A truly subquadratic time

algorithm remains open.

The modern Real 3SUM hypothesis states that no 𝑂 (𝑛2−𝜀 ) time

algorithm exists for Real-3SUM with real-valued inputs, in a rea-

sonable Real RAM model, for any 𝜀 > 0.

The integer version of 3SUM has gained more attention after

a groundbreaking result by Pătraşcu [49] which showed that the

Integer 3SUM hypothesis implies lower bounds for many dynamic

problems that may not even have numbers in their inputs. Notably,

his reduction uses a hashing technique which does not quite apply

to Real-3SUM. Thus, these hardness results and many subsequent

results [2, 46] following [49] were not known to be true under the

Real 3SUM hypothesis. Thus, an intriguing question is whether

these problems are also hard under the Real 3SUM hypothesis.

Real-3SUM could conceivably be harder than Int-3SUM. Baran,

Demaine and Pătraşcu gave an 𝑛2 (log log𝑛)𝑂 (1)/log2 𝑛 time algo-

rithm for Int-3SUM as early as 2005 [15]. However, Real-3SUM
did not have an algorithm with the same asymptotic running time

(up to (log log𝑛)𝑂 (1)
factors) until more than ten years later [21].

Also, many techniques that are useful for Int-3SUM stop working

for Real-3SUM, for example, the hashing technique used by Baran,

Demaine and Pătraşcu. Therefore, the Real 3SUM hypothesis is

arguably weaker than the Integer 3SUM hypothesis.

Real APSP hypothesis. Similarly, one could naturally consider the

APSP problem where the edge weights of the input graph are real

numbers. In fact, historically, the APSP problem was first studied

when the edge weights are real numbers [36]. Fredman [37] gave

the first slightly subcubic time algorithm for Real-APSP, running in
𝑛3 (log log𝑛)𝑂 (1)/(log𝑛)1/3 time. Fredman obtained his result by

first proving a truly subcubic upper bound, near 𝑛5/2, on the linear-

decision-tree complexity of Real-APSP (using what is now known

as “Fredman’s trick” that later inspired Grønlund and Pettie’s work

on Real-3SUM). After a series of further improved poly-logarithmic

speedups, Williams [60] developed the current fastest algorithm

for Real-APSP, with running time 𝑛3/2Ω (
√
log𝑛)

(which was subse-

quently derandomized by Chan andWilliams [22]). A truly subcubic

algorithm remains open.

The Real APSP hypothesis states that no𝑂 (𝑛3−𝜀 ) time algorithm

exists for Real-APSP in graphs with real-valued weights for any

𝜀 > 0 in a reasonable Real RAM model.

3
In this work, we use 𝑂̃ to suppress poly-logarithmic factors.

Although the current upper bounds for Real-APSP and Int-APSP
are the same, Int-APSP could conceivably be easier than Real-APSP.
For example, in Williams’ APSP paper [60], he described a “rela-

tively short argument” for an 𝑛3/2Ω (log𝛿 𝑛)
algorithm in the integer

case as a warm-up, which did not immediately generalize to the

real case (which required further ideas).

It is known [35] that Int-APSP (resp. Real-APSP) is equivalent
to Int-(min, +)-Product (resp. Real-(min, +)-Product), where one is
given two𝑛×𝑛 integer (resp. real) matrices𝐴, 𝐵, and is asked to com-

pute an 𝑛 × 𝑛 matrix𝐶 where𝐶 [𝑖, 𝑗] = min𝑘∈[𝑛] (𝐴[𝑖, 𝑘] + 𝐵 [𝑘, 𝑗]).
Thus, (min, +)-Product has been the main focus of algorithms and

reductions for APSP.

The Orthogonal Vectors (OV) hypothesis. In the OV problem,

given a set of 𝑛 Boolean vectors in 𝑑-dimension for some 𝑑 =

𝜔 (log𝑛), one needs to determine if there are two vectors 𝑢, 𝑣 such

that

∨𝑑
𝑖=1 (𝑢 [𝑖] ∧𝑣 [𝑖]) is false. The OV hypothesis (OVH) states that

no𝑂 (𝑛2−𝜀 ) time algorithm exists forOV for any 𝜀 > 0.Williams [58]

showed that SETH implies OVH. In fact, a large fraction of the con-

ditional lower bounds based on SETH actually use the OV problem

as an intermediate problem (see the survey [54] for an overview of

problems that are hard under OVH and SETH).

In the 𝑘-OV problem we are given 𝑘 sets of Boolean vectors of

small dimension and are asked if there exists a 𝑘-tuple of vectors,

one from each set, that is orthogonal, i.e. there is no coordinate in

which all 𝑘 vectors have 1s. Williams’ argument [58] in fact implies

a fine-grained reduction from CNF-SAT with 𝑛 variables and 𝑂 (𝑛)
clauses to 𝑘-OV for any integer 𝑘 ≥ 2, so that under SETH, 𝑘-OV
requires 𝑛𝑘−𝑜 (1) time.

It is easy to reduce 𝑘-OV for any 𝑘 > 2 to OV, however a reduc-
tion in the reverse direction has been elusive. It is quite possible

that, say 1000-OV has an 𝑂 (𝑛999.99) time algorithm, yet OV still

requires 𝑛2−𝑜 (1) time. Thus basing hardness on OV is arguably bet-

ter than basing hardness on 𝑘-OV for 𝑘 > 2, and basing hardness

on any fixed 𝑘-OV is better than basing hardness on SETH, as all

one needs to do to refute SETH is to refute the presumed hardness

of 𝑘-OV for some 𝑘 .

1.1 Our Results
We first define our new hypothesis and then outline our reductions.

Combining OVH, the Real 3SUM hypothesis and the Real APSP

hypothesis, we consider the following very weak hypothesis.

Hypothesis 2. At least one of OVH, the Real 3SUM hypothesis or
the Real APSP hypothesis is true.

1.1.1 Main Result: Hardness for Triangle Collection. It is unclear
whether any of the Real 3SUM hypothesis, the Real APSP hypoth-

esis, and the OV hypothesis (let alone Hypothesis 2) implies non-

trivial lower bounds for the Tri-Co problem. Abboud, Vassilevska

W. and Yu’s prior reductions [4] from Int-3SUM and Int-APSP to

Tri-Co used hashing tricks that are not applicable to real inputs;

furthermore, their reduction from CNF-SAT to Tri-Co does not go

through OV, but was from the stronger 3-OV problem.

The proof of Theorem 1.1 in [4] uses an intermediate prob-

lem, Int-Exact-Tri, between Int-3SUM / Int-APSP and Tri-Co. In
Int-Exact-Tri, one is given an 𝑛-node graph with edge weights in

±[𝑛𝑐 ] for some constant 𝑐 and one needs to determine whether the
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graph contains a triangle whose edge weights sum up to zero. One

can define Real-Exact-Tri analogously by replacing edge weights

with real numbers. The Integer (resp. Real) Exact-Triangle hypoth-

esis states that no 𝑂 (𝑛3−𝜀 ) time algorithm for 𝜀 > 0 exists for

Int-Exact-Tri (resp. Real-Exact-Tri) in the Word RAM model (resp.

a reasonable Real RAM model), and it is well-known that the Inte-

ger 3SUM hypothesis and the Integer APSP hypothesis imply the

Integer Exact-Triangle hypothesis [55].

If one tries to mimic the approach of going through Int-Exact-Tri
in the real case, one would first reduce Real-APSP and Real-3SUM
to Real-Exact-Tri, and then reduce Real-Exact-Tri to Tri-Co. How-
ever, it was unclear whether Real-APSP reduces to Real-Exact-Tri,
since the previous reduction for the integer case relies on fixing

the results bit by bit [55]. The tight reduction from Int-3SUM to

Int-Exact-Tri also doesn’t seem to apply since it relies on Pătraşcu’s

hashing technique [49]. (However, a previous non-tight reduction

from Int-3SUM to Int-Exact-Tri by VassilevskaW. andWilliams [55]

does generalize to a reduction from Real-3SUM to Real-Exact-Tri;
see the full paper for more details.)

Secondly, even if one is able to successfully reduce Real-APSP
to Real-Exact-Tri, one still faces an obstacle in reducing further

to Tri-Co: the proof in [4] relies on transforming the integer edge

weights into vectors of tiny integers, which isn’t possible if the

edge weights are real numbers.

The reduction from SETH to Tri-Co in [4] implicitly goes through

the 3-OV problem. It is very natural to relate 3-OV to Tri-Co, since
3-OV asks whether all triples of vectors are not orthogonal, and

Tri-Co asks whether all triples of colors have a triangle. It is then
sufficient to embed 3-OV into Tri-Co so that a triple of vectors

are not orthogonal if and only if their corresponding colors have

a triangle. However, OV and Tri-Co are seemingly conceptually

different (OV is about pairs, whereas Tri-Co is about triples) and

thus it is not quite clear whether one can reduce OV to Tri-Co.
We consider the ACP-Tri-Co problem, a natural generalization of

the Tri-Co problem (“ACP” stands for “All-Color-Pairs”). The input

of ACP-Tri-Co is the same as the input of Tri-Co, while ACP-Tri-Co
requires the algorithm to output for every pair of distinct colors

(𝑎, 𝑏), whether there exists a triangle with colors (𝑎, 𝑏, 𝑐) for every
𝑐 different from 𝑎 and 𝑏.

As our main result, we give a nontrivial fine-grained lower bound

for ACP-Tri-Co based on the very weak Hypothesis 2.

Theorem 1.2. AssumingHypothesis 2,ACP-Tri-Co requires𝑛2+𝛿−𝑜 (1)

time for some 𝛿 > 0, in a reasonable Real RAM model.

Our reductions prove the above theorem for 𝛿 = 0.25. Combining

Theorem 1.2 with the reductions by Abboud, Vassilevska W. and

Yu [4], we obtain the following corollary. In the following, the #SS-
Sub-Conn problem asks to maintain the number of nodes reachable

from a fixed source in an undirected graph under node updates,

and the ST-Max-Flow problem asks to compute the maximum flow

in a graph for every pair of vertices (𝑠, 𝑡) ∈ 𝑆 × 𝑇 for two given

subsets of nodes 𝑆,𝑇 .

Corollary 1.3. Assuming Hypothesis 2, there exists a constant 𝛿 > 0

such that any fully dynamic algorithm for #SSR, #SCC, #SS-Sub-
Conn, and Max-Flow requires either amortized 𝑛𝛿−𝑜 (1) update or
query times, or 𝑛2+𝛿−𝑜 (1) preprocessing time.

Also, assuming Hypothesis 2, ST-Max-Flow on a network with 𝑛
nodes and 𝑂 (𝑛) edges requires 𝑛1+𝛿−𝑜 (1) time for some 𝛿 > 0, even
when |𝑆 | = |𝑇 | =

√
𝑛.

We obtain Theorem 1.2 via two conceptually different webs of

reductions, together with equivalence results between variants of

Triangle Collection.

1.1.2 Real APSP and Real 3SUM Hardness via All-Edges Sparse Tri-
angle. In the All-Edges Sparse Triangle problem, which we will

abbreviate as AE-Sparse-Tri, one is given a graph with𝑚 edges, and

is asked whether each edge in the graph is in a triangle. This prob-

lem has an𝑂 (𝑚2𝜔/(𝜔+1) ) time algorithm [11] where𝜔 is the square

matrix multiplication exponent. This running time is𝑂 (𝑚1.41) with
the current bound 𝜔 < 2.373 [8, 40, 53], and 𝑂̃ (𝑚4/3) if 𝜔 = 2.

Pătraşcu [49] showed that this problem requires𝑚4/3−𝑜 (1)
time

assuming the integer 3SUM hypothesis. Kopelowitz, Pettie, and

Porat [46] extended Pătraşcu’s result by showing conditional lower

bounds for Set-Disjointness and Set-Intersection, which general-

ize AE-Sparse-Tri. Recently, Vassilevska W. and Xu [57] showed a

reduction from Int-Exact-Tri to AE-Sparse-Tri. Combined with the

reductions from Int-APSP and Int-3SUM to Int-Exact-Tri [55, 56],
we obtain that AE-Sparse-Tri requires𝑚4/3−𝑜 (1)

time assuming ei-

ther the Integer 3SUM hypothesis or the Integer APSP hypothesis.

These reductions fail under the Real APSP hypothesis or the Real

3SUM hypothesis. Pătraşcu’s and Kopelowitz, Pettie, and Porat’s re-

ductions rely heavily on hashing, which does not seem to apply for

Real-3SUM. Vassilevska W. and Xu’s reduction uses Int-Exact-Tri
as an intermediate problem. As discussed earlier, it is unclear how to

reduce Real-APSP to Real-Exact-Tri. Even if such a reduction is pos-

sible, one still needs to replace a hashing trick used by Vassilevska

W. and Xu with some other technique that works for Real-Exact-Tri.
We overcome these difficulties by designing conceptually very

different reductions from before. On a very high level, instead of

hashing, we use techniques inspired by “Fredman’s trick” [37]. Us-

ing our new techniques, we obtain the following theorem. The

resulting reduction also appears simpler than previous reductions,

partly because we don’t need to design and analyze any hash

functions. For example, the entire proof of our reduction from

Real-APSP to AE-Sparse-Tri fits in under two pages, and is included

at the end of the introduction in Section 1.2. The reader is invited to

browse through Vassilevska W. and Xu’s longer, more complicated

proof [57] for a comparison.

Theorem 1.4. AE-Sparse-Tri on a graph with𝑚 edges requires
• 𝑚4/3−𝑜 (1) time assuming the Real APSP hypothesis;
• 𝑚5/4−𝑜 (1) time assuming the Real Exact-Triangle hypothesis;
• 𝑚6/5−𝑜 (1) time assuming the Real 3SUM hypothesis.

Theorem 1.4 immediately implies Real APSP and Real 3SUM

hardness for a large list of problems that were shown to be Integer

APSP and Integer 3SUM hard via AE-Sparse-Tri, such as dynamic

reachability, dynamic shortest paths and Pagh’s problem [2, 49].

We obtain higher conditional lower bounds if we consider the

counting version of AE-Sparse-Tri, #AE-Sparse-Tri, where one is

given a graph with𝑚 edges, and is asked to output the number of

triangles each edge is in. Note that the 𝑂 (𝑚2𝜔/(𝜔+1) ) time algo-

rithm by Alon, Yuster, and Zwick [11] still works for #AE-Sparse-Tri.
Therefore, the following theorem is tight if 𝜔 = 2.
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Theorem 1.5. #AE-Sparse-Tri on a graph with𝑚 edges requires
𝑚4/3−𝑜 (1) time if at least one of the Real APSP hypothesis, the Real
Exact-Triangle hypothesis or the Real 3SUM hypothesis is true.

We actually obtain slightly stronger results than Theorem 1.4:

we can reduce each of Real-APSP, Real-Exact-Tri and Real-3SUM
to some number of instances of AE-Sparse-Tri. Consequently, we
obtain Real APSP and Real 3SUM hardness for a problem called

the AE-Mono-Tri (i.e. All-Edges Monochromatic Triangles, defined

in Section 2), by combining a known reduction by Lincoln, Polak,

and Vassilevska W. [47] from multiple instances of AE-Sparse-Tri
to AE-Mono-Tri.

Finally, wewill reduceAE-Mono-Tri toACP-Tri-Co, thus proving
the Real APSP and Real 3SUM hardness in Theorem 1.2.

1.1.3 Real APSP and OV Hardness via Colorful Boolean Matrix Mul-
tiplication. As a key problem in our second line of reductions, we

define a natural generalization of the Boolean Matrix Multiplica-

tion problem, Colorful-BMM. In the Colorful-BMM problem, we

are given an 𝑛 ×𝑛 Boolean matrix 𝐴 and an 𝑛 ×𝑛 Boolean matrix 𝐵

and a mapping color : [𝑛] → Γ. For each 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑛], we
want to decide whether {color (𝑘) : 𝐴[𝑖, 𝑘] ∧ 𝐵 [𝑘, 𝑗], 𝑘 ∈ [𝑛]} = Γ.
In other words, for every pair of 𝑖, 𝑗 , we want to determine whether

the witnesses cover all the colors.

We show that Real-APSP can be reduced to the Colorful-BMM
problem. Our reduction uses an idea from Williams’ algorithm

for Real-APSP [60]: to compute the Min-Plus product of two real

matrices, it suffices to compute several logical ANDs of ORs. We

then show that these logical operations can be naturally reduced to

Colorful-BMM. Since OV also has a similar formulation of logical

ANDs of ORs [5], we similarly reduce OV to Colorful-BMM. We

obtain the following theorem using this idea.

Theorem 1.6. Colorful-BMM between two 𝑛×𝑛 matrices requires

• 𝑛2.25−𝑜 (1) time assuming the Real APSP hypothesis;
• 𝑛3−𝑜 (1) time assuming OVH.

We also obtain Real-APSP and OV hardness for several nat-

ural matrix product problems, such as (distinct,=)-Product and
(distinct, +)-Product (see the full paper for their definitions).

We will then reduce Colorful-BMM to ACP-Tri-Co, as detailed
in the following.

1.1.4 Equivalence between Variants of Triangle Collection. We also

show some equivalence results between variants of Tri-Co. These
equivalences will be useful when we further reduce the previous

two lines of reductions to ACP-Tri-Co to finish the proof of Theo-

rem 1.2.

Triangle-Collection* (Tri-Co* for short) as defined by [4] is a

“restricted” version of Tri-Co whose definition has two parameters

𝑡 and 𝑝 along with other details about the structure of the input

graphs. All previous reductions from Tri-Co [4, 27] are actually

from the Tri-Co* problem with small parameters 𝑡, 𝑝 ≤ 𝑛𝑜 (1) (or
𝑡, 𝑝 ≤ 𝑛𝜀 for every 𝜀 > 0).

We consider a conceptually much simpler variant of Tri-Co,
which we call Tri-Co

light
. The input and output of Tri-Co

light
are

the same as those of Tri-Co; however, we use a parameter which

denotes an upper bound for the number of nodes that can share

the same color (“light” means that the colors are light, i.e. have few

vertices each).

We then show the following equivalence between Tri-Co* and
Tri-Co

light
.

Theorem 1.7. (ACP-) Tri-Co
light

with parameter 𝑛𝑜 (1) and (ACP-
) Tri-Co* with 𝑡, 𝑝 ≤ 𝑛𝑜 (1) are equivalent up to 𝑛𝑜 (1) factors.

Therefore, in order to reduce problems to Tri-Co* and thus to

other problems known to be reducible from Tri-Co*, it suffices to

reduce them to the much cleaner problem Tri-Co
light

.

We obtain our main result, Theorem 1.2, by combining our pre-

vious reductions with Theorem 1.7.

First, by reducing AE-Mono-Tri to ACP-Tri-Co
light

, we obtain

Real-APSP and Real-3SUM hardness of ACP-Tri-Co*.
Second, Colorful-BMM easily reduces to ACP-Tri-Co, establish-

ing the OV hardness of ACP-Tri-Co and yielding another route of

reduction from the Real-APSP problem. However, Colorful-BMM
doesn’t seem to reduce to the more restricted problem ACP-Tri-Co*.
By unrolling our reduction from OV to ACP-Tri-Co, we show that

OV actually reduces to the original Tri-Co* problem.

Theorem 1.8. Tri-Co
light

with parameter𝑛𝑜 (1) (thus Tri-Co*with
parameters 𝑛𝑜 (1) and Tri-Co) requires 𝑛3−𝑜 (1) time assuming OVH.

Using Theorem 1.7 we are also able to prove the following sur-

prising result:

Theorem 1.9. If Tri-Co* with parameters 𝑡, 𝑝 ≤ 𝑛𝜀 for some 𝜀 > 0

has a truly subcubic time algorithm, then so does Tri-Co.

Theorem 1.9 establishes a subcubic equivalence between Tri-Co
and Tri-Co* with parameters 𝑛𝜀 , and in fact implies that all the

known hardness results so far that were proven from Tri-Co* also
hold from Tri-Co itself.

1.1.5 Other Reductions. Using our reductions and techniques, we

also obtain the following list of interesting applications.

A hard colorful version of AE-Sparse-Triangle. We give a tight
conditional lower bound under Hypothesis 2 for the parameterized

time complexity of a natural variant of AE-Sparse-Tri. Specifically,
in the AE-Colorful-Sparse-Tri problem, we are given a graph 𝐺 =

(𝑉 , 𝐸) with𝑚 edges and a mapping color : 𝑉 → Γ. For each edge

𝑢𝑣 , we want to decide whether {color (𝑤) : 𝑢𝑤𝑣 is a triangle} = Γ.
When the degeneracy of the graph is 𝑚𝛼 , we can clearly solve

the problem in 𝑂̃ (𝑚1+𝛼 ) time by enumerating all triangles in the

graph [24]. We show that, under Hypothesis 2, for any constant

0 < 𝛼 ≤ 1/5, no algorithm can solve AE-Colorful-Sparse-Tri in a

graph with𝑚 edges and degeneracy 𝑂 (𝑚𝛼 ) in 𝑂̃ (𝑚1+𝛼−𝜀 ) time for

𝜀 > 0.

Real-to-integer reductions. It is an intriguing question whether

we can base the hardness of a problem with integer inputs on the

hardness of the same problem but with real inputs. For instance,

it would be extremely interesting if one could show that the Real

3SUMhypothesis implies the Integer 3SUMhypothesis.We partially

answer this question by showing two conditional lower bounds of

this nature.

First, if Int-All-Nums-3SUM (a variant of Integer 3SUM where

one needs to output whether each input number is in a 3SUM
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solution) can be solved in 𝑂̃ (𝑛6/5−𝜀 ) time for some 𝜀 > 0, then

Real-All-Nums-3SUM can be solved in truly subquadratic time,

falsifying the Real 3SUM hypothesis.

Second, if Int-AE-Exact-Tri, which is the “All-Edges” variant of

Int-Exact-Tri, can be solved in 𝑂̃ (𝑛7/3−𝜀 ) time for 𝜀 > 0, then

Real-AE-Exact-Tri can be solved in truly subcubic time. We also

show variants of this result such as an analogous result for the

counting versions of these problems.

An application to string matching. In the pattern-to-text Ham-

ming distance problem, we are given a text string 𝑇 = 𝑡1 · · · 𝑡𝑁 and

a pattern string 𝑃 = 𝑝1 · · · 𝑝𝑀 in Σ∗ with 𝑀 ≤ 𝑁 , and we want

to compute for every 𝑖 = 0, . . . , 𝑁 −𝑀 , the Hamming distance be-

tween 𝑃 and 𝑡𝑖+1 · · · 𝑡𝑖+𝑀 , which is defined as𝑀 − |{ 𝑗 : 𝑝 𝑗 = 𝑡𝑖+𝑗 }|.
The current best algorithm in terms of 𝑁 runs in 𝑂̃ (𝑁 3/2) time

[7] while unfortunately there isn’t a matching conditional lower

bound under standard hypotheses (though there is an unpublished

non-matching 𝑁𝜔/2−𝑜 (1) time conditional lower bound based on

the presumed hardness of Boolean Matrix Multiplication that has

been attributed to Indyk, see e.g. [41]).

We consider a similar string matching problem which we call

pattern-to-text distinct Hamming similarity. The input to pattern-to-

text distinct Hamming similarity is the same as the input to pattern-

to-text Hamming distance, but for each 𝑖 = 0, . . . , 𝑁 −𝑀 , we need

to output |{𝑝 𝑗 : 𝑝 𝑗 = 𝑡𝑖+𝑗 }| instead. The 𝑂̃ (𝑁 3/2) time algorithm

for pattern-to-text Hamming distance can be easily adapted to

an 𝑂̃ (𝑁 3/2) time algorithm for pattern-to-text distinct Hamming

similarity. Using our reduction from OV to Colorful-BMM, we

show a matching 𝑁 3/2−𝑜 (1)
lower bound for pattern-to-text distinct

Hamming similarity based on OVH.

Real APSP hardness of Set-Disjointness and Set-Intersection. The
Set-Disjointness problem and the Set-Intersection problem are two

generalized versions of AE-Sparse-Tri (see the full paper for their
formal definitions). Kopelowitz, Pettie, and Porat [46] showed In-

teger 3SUM hardness of these two problems, and used them as

intermediate steps for showing 3SUM hardness of many graph

problems, such as Triangle Enumeration andMaximum Cardinality
Matching. Later, Vassilevska W. and Xu [57] showed reductions

from Int-Exact-Tri to these two problems, and thus obtained Inte-

ger APSP hardness for Set-Disjointness and Set-Intersection. By
generalizing the techniques used in our reduction from Real-APSP
to AE-Sparse-Tri, we obtain Real APSP hardness for these two prob-

lems. Therefore, all the hardness results shown by Kopelowitz,

Pettie, and Porat [46] now also have Real APSP hardness.

1.2 An Illustration of Our Techniques:
Reduction from Real-APSP to AE-Sparse-Tri

In this subsection, we will include our complete reduction from

Real-APSP to AE-Sparse-Tri to exemplify how our techniques are

different from, and simpler than, the previous hashing techniques [57].

Our main new insight is simple: we observe that Fredman’s beau-

tiful method for Real-APSP [37], which yielded an 𝑂̃ (𝑛5/2)-depth
decision tree but not a truly subcubic time algorithm, can actu-

ally be converted to an efficient algorithm when given an oracle

to AE-Sparse-Tri, if we combine the method with a standard ran-

domized search trick and an interesting use of “dyadic intervals”

(essentially corresponding to a one-dimensional “range tree” [29]).

We first recall the well-known fact [35] that Real-APSP is equiva-

lent to computing the (min, +)-product of two 𝑛×𝑛 real-valued ma-

trices𝐴 and 𝐵, defined as the matrix𝐶 with𝐶 [𝑖, 𝑗] = min𝑘 (𝐴[𝑖, 𝑘] +
𝐵 [𝑘, 𝑗]). This problem in turn reduces to 𝑂 (𝑛/𝑑) instances of com-

puting the (min, +)-product of an 𝑛 × 𝑑 matrix and 𝑑 × 𝑛 matrix.

We define the following intermediate problem, which we show

is equivalent to the original problem by a random sampling trick:

Problem 1.10 (Real-(min, +)-Product-Variant). We are given an
𝑛 × 𝑑 real matrix 𝐴 and a 𝑑 × 𝑛 real matrix 𝐵, where 𝑑 ≤ 𝑛. For each
𝑖, 𝑗 ∈ [𝑛], we are also given an index 𝑘𝑖 𝑗 ∈ [𝑑].

For each 𝑖, 𝑗 ∈ [𝑛], we want to find an index 𝑘 ′
𝑖 𝑗

∈ [𝑑] (if it exists)
satisfying

𝐴[𝑖, 𝑘 ′𝑖 𝑗 ] + 𝐵 [𝑘
′
𝑖 𝑗 , 𝑗] < 𝐴[𝑖, 𝑘𝑖 𝑗 ] + 𝐵 [𝑘𝑖 𝑗 , 𝑗] . (1)

Lemma 1.11. Real-(min, +)-Product of an 𝑛 × 𝑑 real matrix 𝐴
and a 𝑑 × 𝑛 real matrix 𝐵 reduces to 𝑂̃ (1) calls of an oracle for
Real-(min, +)-Product-Variant using Las Vegas randomization.

Proof. We compute the (min, +)-product of 𝐴 and 𝐵 as follows:

take a random subset 𝑅 ⊆ [𝑑] of size 𝑑/2. For each 𝑖, 𝑗 ∈ [𝑛], first
compute

𝑘
(𝑅)
𝑖 𝑗

= argmin

𝑘∈𝑅
(𝐴[𝑖, 𝑘] + 𝐵 [𝑘, 𝑗]).

This can be done recursively by (min, +)-multiplying an 𝑛 × (𝑑/2)
and a (𝑑/2) × 𝑛 matrix.

Next, we initialize 𝑘𝑖 𝑗 = 𝑘
(𝑅)
𝑖 𝑗

. Then we invoke the oracle for

Real-(min, +)-Product-Variant to find some 𝑘 ′
𝑖 𝑗

satisfying (1) for

each 𝑖, 𝑗 ∈ [𝑛]. If 𝑘 ′
𝑖 𝑗
exists, reset 𝑘𝑖 𝑗 = 𝑘

′
𝑖 𝑗
. Now, repeat. When 𝑘 ′

𝑖 𝑗

is nonexistent for all 𝑖, 𝑗 ∈ [𝑛], we can stop, since we would have

𝑘𝑖 𝑗 = argmin𝑘∈[𝑑 ] (𝐴[𝑖, 𝑘] + 𝐵 [𝑘, 𝑗]) for all 𝑖, 𝑗 ∈ [𝑛].
To bound the number of iterations, observe that for each 𝑖, 𝑗 ∈

[𝑛], the number of indices 𝑘 ′ ∈ [𝑑] satisfying 𝐴[𝑖, 𝑘 ′] + 𝐵 [𝑘 ′, 𝑗] <
𝐴[𝑖, 𝑘 (𝑅)

𝑖 𝑗
] + 𝐵 [𝑘 (𝑅)

𝑖 𝑗
, 𝑗] is𝑂 (log𝑛) w.h.p.4 (since in a set of 𝑑 values,

at most𝑂 (log𝑛) values are smaller than the minimum of a random

subset of size 𝑑/2 w.h.p.). Thus, 𝑂 (log𝑛) iterations suffice w.h.p.

As the recursion has 𝑂 (log𝑑) depth, the total number of oracle

calls is 𝑂 (log𝑑 log𝑛) w.h.p. □

With Lemma 1.11, we are ready to present our main reduction

from Real-(min, +)-Product-Variant to AE-Sparse-Tri, which is in-

spired by “Fredman’s trick” [37]—namely, the obvious but crucial

observation that 𝑎′ + 𝑏 ′ < 𝑎 + 𝑏 is equivalent to 𝑎′ − 𝑎 < 𝑏 − 𝑏 ′.

Lemma 1.12. Real-(min, +)-Product-Variant reduces to 𝑂 (𝑑) in-
stances of AE-Sparse-Tri on graphs with 𝑂̃ (𝑛2/𝑑 + 𝑑𝑛) edges.

Proof. To solve Real-(min, +)-Product-Variant, we first sort the
following list of 𝑂 (𝑑2𝑛) elements in 𝑂 (𝑑2𝑛 log𝑛) time:

𝐿 = {𝐴[𝑖, 𝑘 ′] −𝐴[𝑖, 𝑘] : 𝑖 ∈ [𝑛], 𝑘, 𝑘 ′ ∈ [𝑑]}
∪ {𝐵 [𝑘, 𝑗] − 𝐵 [𝑘 ′, 𝑗] : 𝑗 ∈ [𝑛], 𝑘, 𝑘 ′ ∈ [𝑑]}.

4
“w.h.p.” is short for “with high probability”, i.e., with probability 1 −𝑂 (1/𝑛𝑐 ) for an
arbitrarily large constant 𝑐 .

1506



Hardness for Triangle Problems under Even More Believable Hypotheses STOC ’22, June 20–24, 2022, Rome, Italy

Fix 𝑘 ∈ [𝑑]. Let 𝑃𝑘 = {(𝑖, 𝑗) ∈ [𝑛]2 : 𝑘𝑖 𝑗 = 𝑘}. Divide 𝑃𝑘 into⌈
|𝑃𝑘 |
𝑛2/𝑑

⌉
subsets of size 𝑂 (𝑛2/𝑑). Fix one such subset 𝑃 ⊆ 𝑃𝑘 . We

solve AE-Sparse-Tri on the following tripartite graph 𝐺𝑘,𝑃 :

(0) The left nodes are {𝑥 [𝑖] : 𝑖 ∈ [𝑛]}, the middle nodes are

{𝑦 [𝑘 ′, 𝐼 ] : 𝑘 ′ ∈ [𝑑], 𝐼 is a dyadic interval}, and the right

nodes are {𝑧 [ 𝑗] : 𝑗 ∈ [𝑛]}. Here, a dyadic interval refers
to an interval of the form [2𝑠𝑡, 2𝑠 (𝑡 + 1)) ⊂ [0, 4𝑑2𝑛) for
nonnegative integers 𝑠 and 𝑡 (here, 4𝑑2𝑛 − 1 is an upper

bound for the smallest power of 2 that is larger than or equal

to 2𝑑2𝑛). We don’t explicitly enumerate all these nodes, but

generate a node when we need to add an edge to it.

(1) For each (𝑖, 𝑗) ∈ 𝑃 , create an edge 𝑥 [𝑖] 𝑧 [ 𝑗].
(2) For each 𝑖 ∈ [𝑛], 𝑘 ′ ∈ [𝑑], and each dyadic interval 𝐼 , create

an edge 𝑥 [𝑖] 𝑦 [𝑘 ′, 𝐼 ] if the rank of 𝐴[𝑖, 𝑘 ′] −𝐴[𝑖, 𝑘] in 𝐿 is in

the left half of 𝐼 .

(3) For each 𝑗 ∈ [𝑛], 𝑘 ′ ∈ [𝑑], and each dyadic interval 𝐼 , create

an edge 𝑦 [𝑘 ′, 𝐼 ] 𝑧 [ 𝑗] if the rank of 𝐵 [𝑘, 𝑗] − 𝐵 [𝑘 ′, 𝑗] in 𝐿 is

in the right half of 𝐼 .

Step 1 creates𝑂 (𝑛2/𝑑) edges. Steps 2–3 create𝑂 (𝑑𝑛 log𝑛) edges,
since any fixed value lies in 𝑂 (log𝑛) dyadic intervals. Thus, the
graph 𝐺𝑘,𝑃 has 𝑂̃ (𝑛2/𝑑 + 𝑑𝑛) edges. The total number of graphs is∑
𝑘∈[𝑑 ]

⌈
|𝑃𝑘 |
𝑛2/𝑑

⌉
= 𝑂 (𝑑).

For any given (𝑖, 𝑗) ∈ [𝑛]2, take 𝑘 = 𝑘𝑖 𝑗 and 𝑃 to be the sub-

set of 𝑃𝑘 containing (𝑖, 𝑗). Finding a 𝑘 ′ with 𝐴[𝑖, 𝑘 ′] + 𝐵 [𝑘 ′, 𝑗] <

𝐴[𝑖, 𝑘𝑖 𝑗 ] + 𝐵 [𝑘𝑖 𝑗 , 𝑗] is equivalent to finding a 𝑘 ′ with 𝐴[𝑖, 𝑘 ′] −
𝐴[𝑖, 𝑘] < 𝐵 [𝑘, 𝑗] − 𝐵 [𝑘 ′, 𝑗], which is equivalent to finding a tri-

angle 𝑥 [𝑖] 𝑦 [𝑘 ′, 𝐼 ] 𝑧 [ 𝑗] in the graph 𝐺𝑘,𝑃 . Here, we are using the

following fact: for any two numbers 𝑎, 𝑏 ∈ [2𝑑2𝑛], we have 𝑎 < 𝑏

iff there is a (unique) dyadic interval 𝐼 such that 𝑎 lies on the left

half of 𝐼 and 𝑏 lies on the right half of 𝐼 . Thus, the answers to

Real-(min, +)-Product-Variant can be deduced from the answers to

the AE-Sparse-Tri instances. Note that we have assumed an equiv-

alent version of the AE-Sparse-Tri problem with “witnesses”, i.e.,

that outputs a triangle through each edge whenever such a triangle

exists [31]. □

A near𝑚4/3
lower bound for AE-Sparse-Tri immediately follows,

under theReal-APSP hypothesis; this matches known upper bounds

for AE-Sparse-Tri if 𝜔 = 2. The new proof not only strengthens the

previous proof by Vassilevska W. and Xu [57], which reduces from

integer APSP, but it is also simpler (not requiring more complicated

hashing arguments).

Theorem 1.13. If AE-Sparse-Tri could be solved in 𝑂̃ (𝑚4/3−𝜀 )
time, then Real-APSP could be solved in 𝑂̃ (𝑛3−3𝜀/2) time using Las
Vegas randomization.

Proof. By combining the above two lemmas, if AE-Sparse-Tri
could be solved in𝑇 (𝑚) time, then the (min, +)-product of an 𝑛 ×𝑑
and a 𝑑 × 𝑛 real matrix could be computed in 𝑂̃ (𝑑 ·𝑇 (𝑛2/𝑑 + 𝑑𝑛))
time. The (min, +)-product of two 𝑛 × 𝑛 real matrices, and thus

Real-APSP, reduce to 𝑛/𝑑 instances of such rectangular products

and could then be computed in 𝑂̃ (𝑛 ·𝑇 (𝑛2/𝑑+𝑑𝑛)) time. By choosing

𝑑 =
√
𝑛, the time bound becomes 𝑂̃ (𝑛 · 𝑇 (𝑛3/2)) = 𝑂̃ (𝑛3−3𝜀/2) if

𝑇 (𝑚) = 𝑂̃ (𝑚4/3−𝜀 ). □

Our reduction fromReal-3SUM toAE-Sparse-Tri (see Section 3.2)
is based on a similar insight: we observe that Grønlund and Pet-

tie’s elegant method (based on Fredman’s work), which yielded an

𝑂̃ (𝑛3/2)-depth decision tree for Real-3SUM, can also be converted

to an efficient algorithm when given an oracle to AE-Sparse-Tri.
Since Grønlund and Pettie’s method is a bit cleverer, this reduction

is technically more challenging (though it is still comparable in

simplicity with Pătraşcu’s original reduction from Int-3SUM [49]),

and because of these extra complications, the resulting conditional

bounds are not tight. Nevertheless, it is remarkable that nontrivial

conditional lower bounds can be obtained at all, and that we do get

tight bounds for a certain range of degeneracy values, and tight

bounds for reductions to the counting variant of AE-Sparse-Tri,
when 𝜔 = 2. (For applications to some of the dynamic graph prob-

lems, the earlier polynomial lower bounds weren’t tight anyways.)

Our reduction from Real-APSP to Colorful-BMM (see Section 4)

is even simpler (under one page long), and is inspired by ideas from

Williams’ Real-APSP algorithm [59], also based on Fredman’s trick.

Our reduction from OV to Colorful-BMM is more straightforward,

but we view the main innovation here to be the introduction of

the Colorful-BMM problem itself, which we hope will find fur-

ther applications. Sometimes, the key to conditional lower bound

proofs lies in formulating the right intermediate subproblems. Our

combined reduction from OV to ACP-Tri-Co via Colorful-BMM is

essentially as simple as Abboud, Vassilevska W. and Yu’s original

reduction from 3-OV to Tri-Co [4], but adds more understanding

of the Tri-Co and related problems as it reveals that a weaker hy-

pothesis is sufficient to yield conditional lower bounds for all the

dynamic graph problems in Corollary 1.3.

1.3 Paper Organization
In Section 2, we define necessary notations. In Section 3, we show

hardness of AE-Sparse-Tri under the Real 3SUM and the Real APSP

hypotheses. In Section 4, we show hardness ofColorful-BMM based

on the Real APSP and the OV hypotheses. We prove our main the-

orem in Section 5, by reducing problems in Section 3 and Section 4

to variants of Tri-Co. We defer the following proofs to the full

paper: hardness of AE-Sparse-Tri under the Real Exact-Triangle

hypothesis, hardness of #AE-Sparse-Tri under the Real 3SUM and

the Real Exact-Triangle hypotheses, hardness of AE-Mono-Tri (and
its counting version) under the Real 3SUM, the Real APSP and the

Real Exact-Triangle hypotheses. We also defer further applications

of our techniques and results, including Real-to-integer reductions

and conditional hardness for pattern-to-text distinct Hamming sim-

ilarity, Set-Disjointness and Set-Intersection, to the full paper.

Table 1 summarizes our main lower bound results.

2 PRELIMINARIES
In this section, we give definitions and abbreviations of terminolo-

gies and problems we will consider throughout the paper. We group

related definitions together for easier navigation.

Some problems require to output whether each edge in a given

graph is in some triangle with certain property. We use the prefix

AE- (short for “All-Edges-”) to denote that we need to output a

Boolean value for each edge indicating whether each edge is in

such a triangle. For these problems, we can instead use the prefix
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Table 1: Summary of some of our results and previous results. Ignoring 𝑛𝑜 (1) factors, entries marked † match known upper
bounds assuming 𝜔 = 2; entries marked ‡ match known upper bounds without the assumption.

Problems Lower Bounds Hypotheses References

AE-Sparse-Tri

𝑚4/3−𝑜 (1) † Int-3SUM [49]

𝑚4/3−𝑜 (1) † Int-APSP, Int-Exact-Tri [57]

𝑚6/5−𝑜 (1) Real-3SUM Thm. 3.6

𝑚5/4−𝑜 (1) Real-Exact-Tri Full paper

𝑚4/3−𝑜 (1) † Real-APSP Thm. 1.13

#AE-Sparse-Tri
𝑚4/3−𝑜 (1) † Real-3SUM Full paper

𝑚4/3−𝑜 (1) † Real-Exact-Tri Full paper

AE-Mono-Tri

𝑛5/2−𝑜 (1) † Int-3SUM [47]

𝑛5/2−𝑜 (1) † Int-APSP [57]

𝑛9/4−𝑜 (1) Real-3SUM Full paper

𝑛7/3−𝑜 (1) Real-Exact-Tri Full paper

𝑛5/2−𝑜 (1) † Real-APSP Full paper

#AE-Mono-Tri
𝑛5/2−𝑜 (1) † Real-Exact-Tri Full paper

𝑛5/2−𝑜 (1) † Real-3SUM Full paper

Colorful-BMM
𝑛9/4−𝑜 (1) Real-APSP Thm. 4.2

𝑛3−𝑜 (1) ‡ OV Thm. 4.4

Tri-Co 𝑛3−𝑜 (1) ‡ Int-APSP, Int-3SUM, SETH [4]

ACP-Tri-Co
𝑛9/4−𝑜 (1) Real-3SUM Full paper

𝑛5/2−𝑜 (1) Real-APSP Full paper

𝑛3−𝑜 (1) ‡ OV Cor. 5.3

Int-All-Nums-3SUM 𝑛6/5−𝑜 (1) Real-3SUM Full paper

Int-AE-Exact-Tri 𝑛7/3−𝑜 (1) Real-AE-Exact-Tri Full paper

pattern-to-text distinct

Hamming similarity

𝑛3/2−𝑜 (1) ‡ OV Full paper

#AE- to indicate that we need to count the number of such triangles

involving each edge.

2.1 Fine-Grained Reductions
We use the notion of fine-grained reduction [54, 56] which is as

follows. Let 𝐴 and 𝐵 be problems, and let 𝑎(𝑛) and 𝑏 (𝑛) be running
time functions where𝑛 is the input size or a suitable measure related

to the input size such as the number of nodes in a graph.

We say that 𝐴 is (𝑎, 𝑏)-fine-grained reducible to 𝐵 if for every

𝜀 > 0 there is a 𝛿 > 0 and an𝑂 (𝑎(𝑛)1−𝛿 ) time algorithm that solves

size (or size measure) 𝑛 instances of 𝐴 making calls to an oracle for

problem 𝐵, so that the sizes (or size measures) of the instances of 𝐵

in the oracle calls are 𝑛1, 𝑛2, . . . , 𝑛𝑘 and

∑𝑘
𝑖=1 (𝑏 (𝑛𝑖 ))1−𝜀 ≤ 𝑎(𝑛)1−𝛿 .

If𝐴 is (𝑎, 𝑏)-fine-grained reducible to𝐵, and there is an𝑂 (𝑏 (𝑛)1−𝜀 )
time algorithm for𝐵 for some 𝜀 > 0, then there is also an𝑂 (𝑎(𝑛)1−𝛿 )
time algorithm for some 𝛿 > 0.

All the reductions in the paper will be fine-grained, and hence

we will often omit “fine-grained” when we say reduction.

2.2 Hard Problems
In this section, we define the problems that we will consider as our

hardness sources. In case a problem P has numbers in the input, we

will define the generic version of problem P and use Int-P to denote

the version where the input numbers are integers from ±[𝑛𝑐 ] for
some sufficiently large constant 𝑐 , and use Real-P to denote the

version where the input numbers are reals.

Problem 2.1 (3SUM). Given three sets 𝐴, 𝐵,𝐶 of numbers of size 𝑛,
determine whether there exist 3 numbers 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 such
that 𝑎 + 𝑏 + 𝑐 = 0.

Problem 2.2 (All-Nums-3SUM). Given three sets𝐴, 𝐵,𝐶 of numbers
of size 𝑛, for each 𝑐 ∈ 𝐶 , determine whether there exist 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵
such that 𝑎 + 𝑏 + 𝑐 = 0.

Int-All-Nums-3SUM (resp.Real-All-Nums-3SUM) and Int-3SUM
(resp. Real-3SUM) are subquadratically equivalent [56]. Note that

a “one-set” version of 3SUM (instead of the above “three-sets” ver-

sion) has also been used in the literature, but they are known to be

equivalent. Often, it is more convenient to consider the version of

the problem where the third set is negated, in which case we are

seeking a triple (𝑎, 𝑏, 𝑐) with 𝑎 + 𝑏 = 𝑐 .

Problem 2.3 (APSP). Given an 𝑛-node directed graph whose edge
weights are given as numbers and which has no negative cycles, com-
pute the shortest path distances from 𝑢 to 𝑣 for every pair of nodes 𝑢
and 𝑣 in the graph.

Problem 2.4 ((min, +)-Product). Given an 𝑛 × 𝑑 matrix 𝐴 and a
𝑑 ×𝑛 matrix 𝐵 whose entries are given as numbers, compute an 𝑛 ×𝑛
matrix 𝐶 such that 𝐶 [𝑖, 𝑗] = min𝑘∈[𝑑 ] (𝐴[𝑖, 𝑘] + 𝐵 [𝑘, 𝑗]).

It is known [35, 56] that Real-APSPand Real-(min, +)-Product
between 𝑛 × 𝑛 real-valued matrices are subcubically equivalent;

similarly, Int-APSPand Int-(min, +)-Product between 𝑛 ×𝑛 integer-

valued matrices are subcubically equivalent as well.

1508



Hardness for Triangle Problems under Even More Believable Hypotheses STOC ’22, June 20–24, 2022, Rome, Italy

Problem 2.5 (AE-Exact-Triangle (AE-Exact-Tri)). Given an 𝑛-node
graph whose edge weights are given as numbers, for each edge de-
termine whether there is a triangle containing that edge whose edge
weights sum up to zero.

It is known that the Integer 3SUM and the Integer APSP hy-

potheses imply that Int-AE-Exact-Tri requires 𝑛3−𝑜 (1) time [55].

However, such tight reductions aren’t known for their real vari-

ants. However, we can adapt one previous non-tight reduction from

Int-3SUM to Int-AE-Exact-Tri [55] to the real case, which implies

Real-AE-Exact-Tri requires 𝑛2.5−𝑜 (1) time assuming the Real 3SUM

hypothesis (see more details in the full paper).

Problem 2.6 (OV). Given a set of 𝑛 Boolean vectors in 𝑓 dimensions,
determine whether the set contains two vectors that are orthogonal.

2.3 Triangle Collection and Variants
Wedefine a tripartite version of Triangle-Collection, which is slightly
different from the original definition of Abbound, Vassilevska W.

and Yu [4]. In the full version of the paper, we will show these two

definitions are equivalent.

For brevity, we will give short names for Triangle-Collection
and Triangle-Collection*, Tri-Co and Tri-Co* respectively. Similar

abbreviations will also be given for the All-Color-Pairs versions.

Problem2.7 (Triangle-Collection (Tri-Co)). Given a tripartite graph
𝐺 = (𝑉 , 𝐸) on partitions 𝐴, 𝐵,𝐶 such that the colors of the nodes
in 𝐴 are from a set 𝐾𝐴 , the colors of the nodes in 𝐵 are from a
set 𝐾𝐵 and the colors of the nodes in 𝐶 are from a set 𝐾𝐶 , where
𝐾𝐴 ∩𝐾𝐵 ∩𝐾𝐶 = ∅, and one needs to determine whether for all triples
of colors 𝑎 ∈ 𝐾𝐴, 𝑏 ∈ 𝐾𝐵, 𝑐 ∈ 𝐾𝐶 there exists some triangle 𝑥,𝑦, 𝑧 ∈ 𝑉
such that color (𝑥) = 𝑎, color (𝑦) = 𝑏, color (𝑧) = 𝑐 .
Problem 2.8 (ACP-Triangle-Collection (ACP-Tri-Co)). Given the
input to a Tri-Co instance, one needs to determine for every 𝑎 ∈
𝐾𝐴, 𝑏 ∈ 𝐾𝐵 , whether for all 𝑐 ∈ 𝐾𝐶 there exists some triangle 𝑥,𝑦, 𝑧 ∈
𝑉 such that color (𝑥) = 𝑎, color (𝑦) = 𝑏, color (𝑧) = 𝑐 .

All other variants of Tri-Co will have the same output as Tri-Co,
so they also naturally have an All-Color-Pairs (ACP) variant. We

will only define their normal versions for conciseness.

Problem 2.9 (Triangle-Collection* (Tri-Co*)). An Tri-Co* instance
is a restricted Tri-Coinstance. For parameters 𝑝 and 𝑡 it is a node-
colored graph𝐺 which is a disjoint union of graphs𝐺1, . . . ,𝐺𝑡 .𝐺 (and
hence all the𝐺𝑖 s) is tripartite on partitions𝐴, 𝐵,𝐶 . The aforementioned
value 𝑝 is an upper bound on the number of nodes of any particular
color in any 𝐺𝑖 .

The node colors are from [3] × [𝑛]. For every 𝑡 , the nodes of𝐺𝑡 are:
• Nodes in 𝐴 of the form (𝑎, 𝑡) of color (1, 𝑎). Note that this
means that each 𝐺𝑡 has nodes of distinct colors in 𝐴.

• Nodes in 𝐵 of the form (𝑏, 𝑡, 𝑗) of color (2, 𝑏), where 𝑗 ≤ 𝑝 . For
each (𝑎, 𝑡) ∈ 𝐴 and every color (2, 𝑏), there is at most one node
(𝑏, 𝑡, 𝑗) in 𝐵 that (𝑎, 𝑡) has an edge to.

• Nodes in 𝐶 of the form (𝑐, 𝑡, 𝑗) of color (3, 𝑐) for 𝑗 ≤ 𝑝 . For
each (𝑎, 𝑡) ∈ 𝐴 and every color (3, 𝑐), there is at most one node
(𝑐, 𝑡, 𝑗) in 𝐶 that (𝑎, 𝑡) has an edge to.

The last two bullets mean that in each 𝐺𝑡 all the neighbors of a node
in 𝐴 have distinct colors. There is no restriction on the edges between
nodes in 𝐵 and 𝐶 (beyond that the graphs 𝐺𝑖 are disjoint).

An algorithm for Tri-Co* needs to output whether for all triples
(𝑎, 𝑏, 𝑐), there is a triangle with node colors (1, 𝑎), (2, 𝑏), (3, 𝑐).

We now define a another version of Tri-Co , Tri-Co
light

, that has

Tri-Co* as a special case. The “light” part of the name stands for

“Light Colors”, meaning that each colors has few nodes.

Problem 2.10 (Tri-Co
light

). An instance of Tri-Co
light

is a restricted
instance of Tri-Co. For an integer parameter 𝑝 , it is a graph that has
at most 𝑝 nodes of any fixed color.

2.4 Other Problems
Problem 2.11 (AE-Sparse-Tri. (AE-Sparse-Tri)). Given a graph with
𝑚 edges, for each edge determine whether it is in a triangle.

Problem 2.12 (AE-Monochromatic-Tri. (AE-Mono-Tri)). Given a
graph on 𝑛 nodes where each edge has a color, for each edge determine
whether it is in a triangle whose three edges share the same color.

In some of our reductions, it is convenient to assume that in

AE-Sparse-Tri, for each edge where the answer is yes, a witness

(a triangle through the edge) must also be provided. This version

is equivalent (up to poly-logarithmic factors) by standard random

sampling techniques for witness finding [10, 51], which requires

only Las Vegas randomization. The same is true for AE-Mono-Tri
as well.

Problem 2.13 (Colorful Boolean Matrix Mult. (Colorful-BMM)).
Given an 𝑛 × 𝑛 Boolean matrix 𝐴 and an 𝑛 × 𝑛 Boolean matrix 𝐵 and
a mapping color : [𝑛] → Γ, for each 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑛], decide
whether {color (𝑘) : 𝐴[𝑖, 𝑘] ∧ 𝐵 [𝑘, 𝑗], 𝑘 ∈ [𝑛]} = Γ.

3 HARDNESS OF ALL-EDGES SPARSE
TRIANGLE

In this section, we show lower bounds of AE-Sparse-Tri based on

the conjectured hardness of Real-APSP or Real-3SUM.

3.1 Real-APSP → AE-Sparse-Tri
Recall that we proved Theorem 1.13 in Section 1.2:

Theorem 1.13. If AE-Sparse-Tri could be solved in 𝑂̃ (𝑚4/3−𝜀 )
time, then Real-APSP could be solved in 𝑂̃ (𝑛3−3𝜀/2) time using Las
Vegas randomization.

More generally, we can obtain a near 𝑚𝐷 conditional lower

bound in terms of the degeneracy 𝐷 , if 𝐷 ≪ 𝑚1/3
, which again

matches known upper bounds (regardless of the value of 𝜔).

Theorem 3.1. IfAE-Sparse-Tri for graphs with𝑚 edges and degen-
eracy 𝑂̃ (𝑚𝛼 ) could be solved in 𝑂̃ (𝑚1+𝛼−𝜀 ) time for some constant
𝛼 ≤ 1/3, then Real-APSP could be solved in 𝑂̃ (𝑛3−2𝜀/(1+𝛼) ) time
using Las Vegas randomization.

Proof. First, observe that the graph𝐺𝑘,𝑃 in Lemma 1.12’s proof

can be modified to have degeneracy 𝑂̃ (𝑑): Whenever a left node 𝑥

has Δ𝑥 > 𝑑 neighbors among the right nodes, we split 𝑥 into

⌈
Δ𝑥

𝑑

⌉
copies, where each copy is linked to up to 𝑑 neighbors among the

right nodes. Each copy is also linked to all of the original𝑂 (𝑑 log𝑛)
neighbors among the middle nodes. The number of left nodes

increases to

∑
𝑥

⌈
Δ𝑥

𝑑

⌉
, and so the number of edges increases by
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𝑂̃ (𝑑∑𝑥 ⌈Δ𝑥

𝑑

⌉
) = 𝑂̃ (∑𝑥 Δ𝑥 + 𝑑𝑛) = 𝑂̃ (𝑛2/𝑑 + 𝑑𝑛). Now, each left

node has 𝑂̃ (𝑑) neighbors among the middle and right nodes. Each

right node has 𝑂̃ (𝑑) neighbors among the middle nodes. It follows

that the degeneracy of the modified graph is 𝑂̃ (𝑑).
To prove the theorem, choose 𝑑 so that 𝑑 = (𝑛2/𝑑)𝛼 , i.e., 𝑑 =

𝑛2𝛼/(1+𝛼) . Since 𝛼 ≤ 1/3, we have 𝑑 ≤
√
𝑛 and so 𝑑𝑛 ≤ 𝑛2/𝑑 .

If AE-Sparse-Tri with𝑚 edges and degeneracy 𝐷 could be solved

in 𝑇 (𝑚,𝐷) time, then Real-APSP could be solved in time 𝑂̃ (𝑛 ·
𝑇 (𝑛2/𝑑, 𝑑)) = 𝑂̃ (𝑛3−2𝜀/(1+𝛼) ) if 𝑇 (𝑚) = 𝑂̃ (𝑚1+𝛼−𝜀 ). □

3.2 Real-3SUM → AE-Sparse-Tri
We next adapt our proof to reduce from Real-3SUM. We will more

generally consider an asymmetric version of Real-3SUMwith three

sets 𝐴, 𝐵, and 𝐶 of sizes 𝑛, 𝑛, and 𝑛̂ respectively with 𝑛̂ ≤ 𝑛 (the

standard version has 𝑛̂ = 𝑛). Sort 𝐴 and 𝐵 and divide the sorted

lists of 𝐴 and 𝐵 into sublists 𝐴1, . . . , 𝐴𝑛/𝑑 and 𝐵1, . . . , 𝐵𝑛/𝑑 of size

𝑑 , for a given parameter 𝑑 ≤ 𝑛. Let 𝐴[𝑖, 𝑘] denote the 𝑘-th element

of 𝐴𝑖 for each 𝑖 ∈ [𝑛/𝑑] and 𝑘 ∈ [𝑑], and 𝐵 [ 𝑗, ℓ] denote the ℓ-th
element of 𝐵 𝑗 for each 𝑗 ∈ [𝑛/𝑑] and ℓ ∈ [𝑑]. We will consider

a slightly stronger problem: for each 𝑐 ∈ 𝐶 , find the predecessor

and successor of 𝑐 among 𝐴 + 𝐵. (If 𝑐 is in this set, we will deviate

from convention and define the predecessor of 𝑐 to be itself.) By

a known observation (which was used in Grønlund and Pettie’s

Real-3SUM algorithm [43] and in subsequent algorithms [21]), for

each 𝑐 ∈ 𝐶 , it suffices to search for 𝑐 in 𝐴𝑖 + 𝐵 𝑗 for 𝑂 (𝑛/𝑑) pairs
(𝑖, 𝑗) (since these (𝑖, 𝑗) pairs form a “staircase” in the [𝑛/𝑑] × [𝑛/𝑑]
grid). Thus, Real-3SUM (or Real-All-Nums-3SUM) reduces to the

following problem (which was explicitly formulated, for example,

in Chan’s paper on Real-3SUM [21]):

Problem 3.2 (Real-3SUM-Variant1). We are given an (𝑛/𝑑) × 𝑑𝐴
real matrix 𝐴 and an (𝑛/𝑑) × 𝑑𝐵 real matrix 𝐵 with 𝑑𝐴, 𝑑𝐵 ≤ 𝑑 . For
each 𝑖, 𝑗 ∈ [𝑛/𝑑], we are also given a set 𝐶𝑖 𝑗 of real numbers with∑
𝑖, 𝑗 |𝐶𝑖 𝑗 | = 𝑂 (𝑛̂𝑛/𝑑).
For each 𝑖, 𝑗 ∈ [𝑛/𝑑] and each 𝑐 ∈ 𝐶𝑖 𝑗 , we want to find the prede-

cessor and successor of the value 𝑐 among the elements in {𝐴[𝑖, 𝑘] +
𝐵 [ 𝑗, ℓ] : 𝑘 ∈ [𝑑𝐴], ℓ ∈ [𝑑𝐵]}.

We again introduce an intermediate problem, which the original

problem reduces to via random sampling:

Problem 3.3 (Real-3SUM-Variant2). We are given an (𝑛/𝑑)×𝑑 real
matrix𝐴 and an (𝑛/𝑑) ×𝑑 real matrix 𝐵. For each 𝑖, 𝑗 ∈ [𝑛/𝑑], we are
also given a set𝑄𝑖 𝑗 ⊆ [𝑑]4 of quadruples with∑

𝑖, 𝑗 |𝑄𝑖 𝑗 | = 𝑂 (𝑛̂𝑛/𝑑).
For each 𝑖, 𝑗 ∈ [𝑛/𝑑] and each 𝑞 = (𝑘−, ℓ−, 𝑘+, ℓ+) ∈ 𝑄𝑖 𝑗 , we want

to find indices 𝑘 ′
𝑖 𝑗𝑞
, ℓ ′
𝑖 𝑗𝑞

∈ [𝑑] (if they exist) satisfying

𝐴[𝑖, 𝑘−]+𝐵 [ 𝑗, ℓ−] < 𝐴[𝑖, 𝑘 ′𝑖 𝑗𝑞]+𝐵 [ 𝑗, ℓ
′
𝑖 𝑗𝑞] < 𝐴[𝑖, 𝑘

+]+𝐵 [ 𝑗, ℓ+] . (2)

Lemma 3.4. Real-3SUM-Variant1 reduces to 𝑂̃ (1) calls to an oracle
for Real-3SUM-Variant2 using Las Vegas randomization.

Proof. We solve Real-3SUM-Variant1 as follows: Take a ran-

dom subset 𝑅 ⊆ [𝑑𝐴] of size 𝑑𝐴/2. For each 𝑖, 𝑗 ∈ [𝑛/𝑑] and each

𝑐 ∈ 𝐶𝑖 𝑗 , first compute indices 𝑘
−(𝑅)
𝑖 𝑗𝑐

, ℓ
−(𝑅)
𝑖 𝑗𝑐

, 𝑘
+(𝑅)
𝑖 𝑗𝑐

, ℓ
+(𝑅)
𝑖 𝑗𝑐

∈ [𝑑] such
that 𝐴[𝑖, 𝑘−(𝑅)

𝑖 𝑗𝑐
] + 𝐵 [ 𝑗, ℓ−(𝑅)

𝑖 𝑗𝑐
] and 𝐴[𝑖, 𝑘+(𝑅)

𝑖 𝑗𝑐
] + 𝐵 [ 𝑗, ℓ+(𝑅)

𝑖 𝑗𝑐
] are the

predecessor and successor (respectively) of the value 𝑐 among the

elements in {𝐴[𝑖, 𝑘] + 𝐵 [ 𝑗, ℓ] : 𝑘 ∈ 𝑅, ℓ ∈ [𝑑𝐵]}. This computation

can be done recursively.

Next, initialize (𝑘−
𝑖 𝑗𝑐
, ℓ−
𝑖 𝑗𝑐

) = (𝑘−(𝑅)
𝑖 𝑗𝑐

, ℓ
−(𝑅)
𝑖 𝑗𝑐

) and (𝑘+
𝑖 𝑗𝑐
, ℓ+
𝑖 𝑗𝑐

) =

(𝑘+(𝑅)
𝑖 𝑗𝑐

, ℓ
+(𝑅)
𝑖 𝑗𝑐

). Invoke the oracle for Real-3SUM-Variant2 to find

some (𝑘 ′
𝑖 𝑗𝑐
, ℓ ′
𝑖 𝑗𝑐

) ∈ [𝑑𝐴] × [𝑑𝐵] satisfying (2) for each 𝑖, 𝑗 ∈ [𝑛] and
𝑐 ∈ 𝐶𝑖 𝑗 . If (𝑘 ′𝑖 𝑗𝑐 , ℓ

′
𝑖 𝑗𝑐

) exists and 𝐴[𝑖, 𝑘 ′
𝑖 𝑗𝑐

] + 𝐵 [ 𝑗, ℓ ′
𝑖 𝑗𝑐

] ≤ 𝑐 , find the

index ℓ ∈ [𝑑𝐵] such that𝐴[𝑖, 𝑘 ′
𝑖 𝑗𝑐

] +𝐵 [ 𝑗, ℓ] is the predecessor of the
value 𝑐 among the elements in {𝐴[𝑖, 𝑘 ′

𝑖 𝑗𝑐
] +𝐵 [ 𝑗, ℓ] : ℓ ∈ [𝑑𝐵]}. This

index can be found in 𝑂 (log𝑑) time by binary search, assuming

that each row of 𝐵 has been sorted (which requires only 𝑂 (𝑛 log𝑛)
preprocessing time). Reset (𝑘−

𝑖 𝑗𝑐
, ℓ−
𝑖 𝑗𝑐

) = (𝑘 ′
𝑖 𝑗𝑐
, ℓ). If (𝑘 ′

𝑖 𝑗𝑐
, ℓ ′
𝑖 𝑗𝑐

) exists
and 𝐴[𝑖, 𝑘 ′

𝑖 𝑗𝑐
] + 𝐵 [ 𝑗, ℓ ′

𝑖 𝑗𝑐
] > 𝑐 , we proceed similarly, replacing “pre-

decessor” with “successor” and − superscripts with +. Now, repeat.
When (𝑘 ′

𝑖 𝑗𝑐
, ℓ ′
𝑖 𝑗𝑐

) is nonexistent for all 𝑖, 𝑗 ∈ [𝑛], we can stop.

To bound the number of iterations, observe that for each 𝑖, 𝑗 ∈
[𝑛] and each 𝑐 ∈ 𝐶𝑖 𝑗 , the number of indices 𝑘 ′ ∈ [𝑑𝐴] such that

the predecessor of 𝑐 among {𝐴[𝑖, 𝑘 ′] + 𝐵 [ 𝑗, ℓ] : ℓ ∈ [𝑑𝐵]} is greater
than 𝐴[𝑖, 𝑘−(𝑅)

𝑖 𝑗𝑐
] +𝐵 [ℓ, 𝑘−(𝑅)

𝑖 𝑗𝑐
] is𝑂 (log𝑛) w.h.p (since in a set of 𝑑𝐴

values, there are at most𝑂 (log𝑛) values greater than the maximum

of a random subset of size 𝑑𝐴/2). A similar statement, replacing

“predecessor” with “successor”, − superscripts with +, and “greater”
with “less”, holds. Thus, 𝑂 (log𝑛) iterations suffice w.h.p.

As the recursion has 𝑂 (log𝑑𝐴) depth, the total number of or-

acle calls is 𝑂 (log𝑑 log𝑛) w.h.p., and the extra cost of the binary

searches is 𝑂 ((𝑛̂𝑛/𝑑) log2 𝑑 log𝑛), which is negligible. □

We now present our reduction from Real-3SUM-Variant2 to

AE-Sparse-Tri, which is inspired by Grønlund and Pettie’s work [43]
and is also based on Fredman’s trick. Althoughwe nowneed towork

with even more indices, the basic idea is similar to our earlier reduc-

tions. The extra complications cause further loss of efficiency (but

we still obtain a tight conditional lower bound for AE-Sparse-Tri, al-
beit for a more restricted range of degeneracy ≪𝑚1/5

). The whole

proof is still simple (comparable to the original reductions from

Int-3SUM by Pătraşcu [49] or Kopelowitz, Pettie and Porat [46],

but completely bypassing hashing arguments).

Lemma 3.5. Real-3SUM-Variant2 reduces to a single instance of
AE-Sparse-Tri on a graph with 𝑂̃ (𝑛̂𝑛/𝑑 + 𝑑2𝑛) edges and degeneracy
𝑂̃ (𝑑).

Proof. To solve Real-3SUM-Variant2, first sort the following

list of 𝑂 (𝑑𝑛) elements in 𝑂 (𝑑𝑛 log𝑛) time:

𝐿 = {𝐴[𝑖, 𝑘 ′] −𝐴[𝑖, 𝑘] : 𝑖 ∈ [𝑛/𝑑], 𝑘, 𝑘 ′ ∈ [𝑑]}
∪ {𝐵 [ 𝑗, ℓ] − 𝐵 [ 𝑗, ℓ ′] : 𝑗 ∈ [𝑛/𝑑], ℓ, ℓ ′ ∈ [𝑑]}.

We then solve AE-Sparse-Tri on a tripartite graph 𝐺 which is

defined as follows:

(0) The left nodes are {𝑥 [𝑖, 𝑘−, 𝑘+] : 𝑖 ∈ [𝑛/𝑑], 𝑘−, 𝑘+ ∈ [𝑑]},
themiddle nodes are {𝑦 [𝐼−, 𝐼+] : 𝐼−, 𝐼+ are dyadic intervals},
and the right nodes are {𝑧 [ 𝑗, ℓ−, ℓ+] : 𝑗 ∈ [𝑛/𝑑], ℓ−, ℓ+ ∈
[𝑑]}.

(1) For each 𝑖, 𝑗 ∈ [𝑛/𝑑] and (𝑘−, ℓ−, 𝑘+, ℓ+) ∈ 𝑄𝑖 𝑗 , create an

edge 𝑥 [𝑖, 𝑘−, 𝑘+] 𝑧 [ 𝑗, ℓ−, ℓ+].
(2) For each 𝑖 ∈ [𝑛/𝑑], 𝑘−, 𝑘+, 𝑘 ′ ∈ [𝑑], and dyadic intervals

𝐼− and 𝐼+, create an edge 𝑥 [𝑖, 𝑘−, 𝑘+] 𝑦 [𝐼−, 𝐼+] if the rank of
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𝐴[𝑖, 𝑘−] −𝐴[𝑖, 𝑘 ′] in 𝐿 is in the left half of 𝐼− and the rank

of 𝐴[𝑖, 𝑘 ′] −𝐴[𝑖, 𝑘+] in 𝐿 is in the left half of 𝐼+.
(3) For each 𝑗 ∈ [𝑛/𝑑], ℓ−, ℓ+, ℓ ′ ∈ [𝑑], and dyadic intervals

𝐼− and 𝐼+, create an edge 𝑦 [𝐼−, 𝐼+] 𝑧 [ 𝑗, ℓ−, ℓ+] if the rank of

𝐵 [ 𝑗, ℓ ′] − 𝐵 [ 𝑗, ℓ−] in 𝐿 is in the right half of 𝐼− and the rank

of 𝐵 [ 𝑗, ℓ+] − 𝐵 [ 𝑗, ℓ ′] in 𝐿 is in the right half of 𝐼+.

Step 1 creates

∑
𝑖, 𝑗 |𝑄𝑖 𝑗 | = 𝑂 (𝑛̂𝑛/𝑑) edges. Steps 2–3 create

𝑂 ((𝑛/𝑑)𝑑3 log2 𝑛) edges, since any fixed value lies in𝑂 (log𝑛) dyadic
intervals. Thus, the graph 𝐺 has 𝑂̃ (𝑛̂𝑛/𝑑 + 𝑑2𝑛) edges.

For any given (𝑖, 𝑗) ∈ [𝑛]2 and (𝑘−, ℓ−, 𝑘+, ℓ+) ∈ 𝑄𝑖 𝑗 , finding a

(𝑘 ′, ℓ ′) with 𝐴[𝑖, 𝑘−] + 𝐵 [ 𝑗, ℓ−] < 𝐴[𝑖, 𝑘 ′] + 𝐵 [ 𝑗, ℓ ′] < 𝐴[𝑖, 𝑘+] +
𝐵 [ 𝑗, ℓ+] is equivalent to finding a (𝑘 ′, ℓ ′) with 𝐴[𝑖, 𝑘−] −𝐴[𝑖, 𝑘 ′] <
𝐵 [ 𝑗, ℓ ′]−𝐵 [ 𝑗, ℓ−] and𝐴[𝑖, 𝑘 ′]−𝐴[𝑖, 𝑘+] < 𝐵 [ 𝑗, ℓ+]−𝐵 [ 𝑗, ℓ ′], which
is equivalent to finding a triangle 𝑥 [𝑖, 𝑘−, 𝑘+] 𝑦 [𝐼−, 𝐼+] 𝑧 [ 𝑗, ℓ−, ℓ+]
in the graph 𝐺 . Thus, the answers to Real-3SUM-Variant2 can be

deduced from the answers to the AE-Sparse-Tri instances.
Finally, to ensure that the graph 𝐺 has degeneracy 𝑂̃ (𝑑), we

modify the graph by splitting nodes in the same way as in the last

paragraph of Theorem 3.1’s proof. The number of edges increases

by 𝑂̃ (𝑑∑𝑥 ⌈Δ𝑥

𝑑

⌉
) = 𝑂̃ (∑𝑥 Δ𝑥 + (𝑛/𝑑)𝑑2 · 𝑑) = 𝑂̃ (𝑛̂𝑛/𝑑 + 𝑑2𝑛). □

Theorem 3.6. If AE-Sparse-Tri with𝑚 edges could be solved in
𝑂̃ (𝑚6/5−𝜀 ) time, then Real-3SUM (and Real-All-Nums-3SUM) could
be solved in 𝑂̃ (𝑛2−5𝜀/3) time using Las Vegas randomization.

More generally, if AE-Sparse-Tri with 𝑚 edges and degeneracy
𝑂̃ (𝑚𝛼 ) could be solved in 𝑂̃ (𝑚1+𝛼−𝜀 ) time for some constant 𝛼 ≤
𝛽/(3 + 2𝛽), then Real-3SUM for three sets of sizes 𝑛, 𝑛, and 𝑛̂ =

𝑛𝛽 (𝛽 ≤ 1) could be solved in 𝑂̃ (𝑛1+𝛽−𝜀 (1+𝛽)/(1+𝛼) ) time using Las
Vegas randomization.

Proof. By combining the above two lemmas, if AE-Sparse-Tri
could be solved in 𝑇 (𝑚,𝐷) time, then Real-3SUM-Variant1 could
be solved in 𝑂̃ (𝑇 (𝑛̂𝑛/𝑑 +𝑑2𝑛, 𝑑)) time. Also, Real-3SUM (and more

generally, Real-All-Nums-3SUM) reduces to a single instance of

Real-3SUM-Variant1, with 𝑛̂ = 𝑛𝛽 . (For the original symmetric

version of Real-3SUM, 𝛽 = 1.) Choose 𝑑 so that 𝑑 = (𝑛1+𝛽/𝑑)𝛼 ,
i.e., 𝑑 = 𝑛 (1+𝛽)𝛼/(1+𝛼) . Since 𝛼 ≤ 𝛽/(2 + 3𝛽), we have 𝑑 ≤ 𝑛𝛽/3

and so 𝑑2𝑛 ≤ 𝑛1+𝛽/𝑑 . The time bound becomes 𝑂̃ (𝑇 (𝑛1+𝛽/𝑑, 𝑑)) =
𝑂̃ (𝑛1+𝛽−𝜀 (1+𝛽)/(1+𝛼) ) if 𝑇 (𝑚,𝑚𝛼 ) = 𝑂̃ (𝑚1+𝛼−𝜀 ). □

4 HARDNESS OF COLORFUL BMM
In this section, we show that Real-APSP and OV can be reduced to

Colorful-BMM.

4.1 Real-APSP → Colorful-BMM
We first present our reduction from Real-APSP to Colorful-BMM,

which is simple and is inspired by Williams’s Real-APSP algo-

rithm [60] (and its derandomization by Chan and Williams [22])

using ANDs of ORs.

Lemma 4.1. Real-(min, +)-Product of an 𝑛 × 𝑑 real matrix 𝐴 and
a 𝑑 × 𝑛 real matrix 𝐵 reduces to one instance of Colorful-BMM for
an 𝑛× 𝑂̃ (𝑑4𝑛𝜀 ) and an 𝑂̃ (𝑑4𝑛𝜀 ) ×𝑛 Boolean matrix with𝑂 (𝑑) colors
(and 𝑂̃ (𝑑2𝑛) nonzero input entries), after spending 𝑂̃ (𝑑𝑛2−𝜀 ) time.

Proof. For simplicity, we assume that𝐴[𝑖, 𝑘]+𝐵 [𝑘, 𝑗] ≠ 𝐴[𝑖, 𝑘 ′]+
𝐵 [𝑘 ′, 𝑗] for all 𝑖, 𝑗 ∈ [𝑛] and 𝑘, 𝑘 ′ ∈ [𝑑]. This can be ensured, for

example, by adding 𝑘𝛿 to 𝐴[𝑖, 𝑘] for an infinitesimally small 𝛿 > 0.

Note that we don’t need to explicitly store 𝐴[𝑖, 𝑘] + 𝑘𝛿 . Instead,
we can store a number 𝑎 + 𝑏𝛿 as a pair of numbers (𝑎, 𝑏). Every
time we need to compare two numbers (𝑎1, 𝑏1) and (𝑎2, 𝑏2), we
first compare 𝑎1 and 𝑎2 and only compare 𝑏1 and 𝑏2 if 𝑎1 = 𝑎2. This

implementation only incurs a constant factor overhead.

Fix 𝑡 ∈ [log𝑑]. We will describe how to compute the 𝑡-th bit

of 𝑘𝑖 𝑗 = argmin𝑘∈[𝑑 ] (𝐴[𝑖, 𝑘] + 𝐵 [𝑘, 𝑗]). Let 𝐾𝑡 = {𝑘 ∈ [𝑑] :

the 𝑡-th bit of 𝑘 is 1}. Note that the 𝑡-th bit of 𝑘𝑖 𝑗 is 1 iff∧
𝑘∈[𝑑 ]−𝐾𝑡

∨
𝑘′∈𝐾𝑡

[
𝐴[𝑖, 𝑘 ′] + 𝐵 [𝑘 ′, 𝑗] < 𝐴[𝑖, 𝑘] + 𝐵 [𝑘, 𝑗]

]
=

∧
𝑘∈[𝑑 ]−𝐾𝑡

∨
𝑘′∈𝐾𝑡

[
𝐴[𝑖, 𝑘 ′] −𝐴[𝑖, 𝑘] < 𝐵 [𝑘, 𝑗] − 𝐵 [𝑘 ′, 𝑗]

]
.

Thus, the answers can be determined by solving Colorful-BMM
on the following matrices A and B and color mapping to [𝑑] − 𝐾𝑡 :

(1) For each 𝑖 ∈ [𝑛], 𝑘 ∈ [𝑑] − 𝐾𝑡 , 𝑘 ′ ∈ 𝐾𝑡 , and each dyadic

interval 𝐼 , let A[𝑖, (𝑘, 𝑘 ′, 𝐼 )] = 1 iff the rank of 𝐴[𝑖, 𝑘 ′] −
𝐴[𝑖, 𝑘] lies in the left half of the dyadic interval 𝐼 .

(2) For each 𝑗 ∈ [𝑛], 𝑘 ∈ [𝑑] − 𝐾𝑡 , 𝑘 ′ ∈ 𝐾𝑡 , and each dyadic

interval 𝐼 , let B[(𝑘, 𝑘 ′, 𝐼 ), 𝑗] = 1 iff the rank of 𝐵 [𝑘, 𝑗] −
𝐵 [𝑘 ′, 𝑗] lies in the right half of the dyadic interval 𝐼 .

(3) Define color ((𝑘, 𝑘 ′, 𝐼 )) = 𝑘 .
However, the inner dimension (i.e., the number of columns of

A or rows of B) is large. We lower the inner dimension by using

the “high vs. low degree” trick: Label a triple (𝑘, 𝑘 ′, 𝐼 ) “high” if the
number of indices 𝑖 for which A[𝑖, (𝑘, 𝑘 ′, 𝐼 )] = 1 exceeds 𝑛1−𝜀/𝑑2;
otherwise, label it “low”. For each low triple (𝑘, 𝑘 ′, 𝐼 ), we enumerate

all (𝑖, 𝑗) for which A[𝑖, (𝑘, 𝑘 ′, 𝐼 )] = 1 and B[(𝑘, 𝑘 ′, 𝐼 ), 𝑗] = 1, and

mark these pairs (𝑖, 𝑗) as “bad”. There are𝑂 ((𝑑2𝑛 log𝑛) ·𝑛1−𝜀/𝑑2) =
𝑂̃ (𝑛2−𝜀 ) bad pairs, and for each bad pair (𝑖, 𝑗), we can compute

its corresponding entry of the (min, +)-product in 𝑂 (𝑑) time by

brute force. This takes 𝑂̃ (𝑑𝑛2−𝜀 ) time. For the remaining good

pairs (𝑖, 𝑗), it suffices to keep only the high triples, and the num-

ber of high triples is 𝑂 ( 𝑑
2𝑛 log𝑛

𝑛1−𝜀/𝑑2 ) = 𝑂̃ (𝑑4𝑛𝜀 ). So, in the remaining

Colorful-BMM instance,A andB have dimensions 𝑂̃ (𝑛)×𝑂̃ (𝑑4𝑛𝜀 )
and 𝑂̃ (𝑑4𝑛𝜀 ) × 𝑂̃ (𝑛). □

Theorem 4.2. If Colorful-BMM for two 𝑛 × 𝑛 Boolean matrices
could be solved in 𝑂̃ (𝑛9/4−5𝜀/4) time, then Real-APSP could be solved
in 𝑂̃ (𝑛3−𝜀 ) time.

More generally, if Colorful-BMM for two 𝑛 × 𝑛 Boolean matri-
ces with 𝑂 (𝑛𝛼 ) colors could be solved in 𝑂̃ (𝑛2+𝛼−𝜀 ) time for some
constant 𝛼 ≤ (1 − 𝜀)/4, then Real-APSP could be solved in 𝑂̃ (𝑛3−𝜀 )
time.

Proof. The (min, +)-product of two 𝑛×𝑛 real matrices, and thus

Real-APSP, reduces to 𝑛/𝑑 rectangular (min, +)-products between
𝑛×𝑑 matrices and𝑑×𝑛matrices. Choose𝑑 = 𝑛𝛼 . Since 𝛼 ≤ (1−𝜀)/4,
we have 𝑑4𝑛𝜀 ≤ 𝑛. Then the theorem is immediately implied by

Lemma 4.1. □

4.2 OV→ Colorful-BMM
We can similarly reduce OV to Colorful-BMM, since the former

also reduces to computing expressions involving ANDs of ORs (as

exploited in Abboud, Williams, and Yu’s OV algorithm [5]). In fact,
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the reduction from OV is even simpler, and more efficient, than the

reduction from Real-APSP.

Lemma 4.3. One instance of OV for 𝑛 Boolean vectors in 𝑓 dimen-
sions reduces in 𝑂 (𝑛𝑑 𝑓 ) time to one instance of Colorful-BMM for
an (𝑛/𝑑) × (𝑑2 𝑓 ) and a (𝑑2 𝑓 ) × (𝑛/𝑑) Boolean matrix with 𝑑2 colors
for any given 𝑑 ≤ 𝑛.

Proof. Divide the input set 𝐴 and 𝐵 into groups 𝐴1, . . . , 𝐴𝑛/𝑑
and 𝐵1, . . . , 𝐵𝑛/𝑑 of 𝑑 Boolean vectors each. Let𝐴[𝑖, 𝑘, 𝑠] be the 𝑠-th
bit of the 𝑘-th vector in 𝐴𝑖 and let 𝐵 [ 𝑗, ℓ, 𝑠] be the 𝑠-th bit of the

ℓ-th vector in 𝐵 𝑗 .

For each 𝑖, 𝑗 ∈ [𝑛/𝑑], there are no orthogonal pairs of vectors in

𝐴𝑖 × 𝐵 𝑗 iff ∧
𝑘,ℓ∈[𝑑 ]

∨
𝑠∈[𝑓 ]

(𝐴[𝑖, 𝑘, 𝑠] ∧ 𝐵 [ 𝑗, ℓ, 𝑠]).

Thus, the answer can be determined by solving Colorful-BMM
on the following matrices A and B:

(1) For each 𝑖 ∈ [𝑛/𝑑],𝑘, ℓ ∈ [𝑑], and 𝑠 ∈ [𝑓 ], letA[𝑖, (𝑘, ℓ, 𝑠))] =
𝐴[𝑖, 𝑘, 𝑠].

(2) For each 𝑗 ∈ [𝑛/𝑑],𝑘, ℓ ∈ [𝑑], and 𝑠 ∈ [𝑓 ], letB[(𝑘, ℓ, 𝑠), 𝑗] =
𝐵 [ 𝑗, ℓ, 𝑠].

(3) Define color ((𝑘, ℓ, 𝑠)) = (𝑘, ℓ).
The inner dimension (i.e., the number of triples (𝑘, ℓ, 𝑠)) is 𝑑2 𝑓 . □

Theorem 4.4. If Colorful-BMM for two 𝑁 × 𝑁 Boolean matrices
could be solved in 𝑂̃ (𝑁 3−𝜀 ) time, then OV for 𝑛 Boolean vectors in 𝑓
dimensions could be solved in 𝑂̃ (𝑓𝑂 (1)𝑛2−2𝜀/3) time.

More generally, if Colorful-BMM for two 𝑁 ×𝑁 Boolean matrices
with 𝑁𝛼 colors could be solved in 𝑂̃ (𝑁 2+𝛼−𝜀 ) time for some constant
𝛼 ≤ 1, then OV for 𝑛 Boolean vectors in 𝑓 dimensions could be solved
in 𝑂̃ (𝑓𝑂 (1)𝑛2−2𝜀/(2+𝛼) ) time.

Proof. Choose 𝑑 so that 𝑑2 = (𝑛/𝑑)𝛼 , i.e., 𝑑 = 𝑛𝛼/(2+𝛼) . Since
𝛼 ≤ 1, we have 𝑑 ≤ 𝑛1/3 and so 𝑑2 ≤ 𝑛/𝑑 . Thus, if there is an

𝑂̃ (𝑁 2+𝛼−𝜀 ) time algorithm for Colorful-BMM with 𝑂 (𝑁𝛼 ) colors,
we can solve OV in 𝑂̃ ((𝑓𝑂 (1)𝑛/𝑑)2+𝛼−𝜀 ) = 𝑂̃ (𝑓𝑂 (1)𝑛2−2𝜀/(2+𝛼) )
time. □

5 TRIANGLE COLLECTION AND
TRIANGLE-COLLECTION*

In the full version of the paper, we will prove Theorem 1.7, which

we recall as follows:

Theorem 1.7. (ACP-) Tri-Co
light

with parameter 𝑛𝑜 (1) and (ACP-
) Tri-Co* with 𝑡, 𝑝 ≤ 𝑛𝑜 (1) are equivalent up to 𝑛𝑜 (1) factors.

Recall our main theorem is the following.

Theorem 1.2. AssumingHypothesis 2,ACP-Tri-Co requires𝑛2+𝛿−𝑜 (1)

time for some 𝛿 > 0, in a reasonable Real RAM model.

In Section 5.1, we will show a reduction from AE-Mono-Tri to
ACP-Tri-Co*. Combined with the Real-APSP and Real-3SUM hard-

ness of AE-Mono-Tri (which can be found in the full paper), we

obtain the Real-APSP and Real-3SUM hardness in the main the-

orem. In Section 5.2, we show a reduction from Colorful-BMM
to ACP-Tri-Co*. By combining with the reduction from OV to

Colorful-BMM and unrolling the whole reduction, we in fact obtain

a reduction fromOV to Tri-Co*. This shows theOV hardness of the

main theorem, and thus concludes the proof of the main theorem.

5.1 From All-Edges Monochromatic Triangle to
All-Color-Pairs Triangle Collection

Here we show that the AE-Mono-Tri problem can be reduced to the

ACP-Tri-Co* problem. By our results above, it suffices to reduce

AE-Mono-Tri to ACP-Tri-Co
light

with parameter 𝑛𝑜 (1) .
Recall that in AE-Mono-Tri we are given an 𝑛 node graph 𝐺 =

(𝑉 , 𝐸) with colors color : 𝐸 ↦→ [𝑛2] on the edges and we want

to know for every edge (𝑢, 𝑣) ∈ 𝐸 if there exists a 𝑤 ∈ 𝑉 so that

(𝑢, 𝑣), (𝑣,𝑤), (𝑤,𝑢) ∈ 𝐸 (i.e. they form a triangle) and color (𝑢, 𝑣) =
color (𝑣,𝑤) = color (𝑤,𝑢).

Theorem 5.1. An 𝑛-node instance of AE-Mono-Tri can be reduced
to an 𝑂 (𝑛 log𝑛)-node instance of ACP-Tri-Co

light
with parameter

𝑂 (log𝑛) in 𝑂 (𝑛2 log𝑛) time.

Proof. Let𝐺 = (𝑉 , 𝐸) be the instance ofAE-Mono-Triwith edge
colors color : 𝐸 ↦→ [𝑛2]. Without loss of generality, 𝐺 is tripartite

with node parts 𝐴, 𝐵,𝐶 .

We will build an instance of ACP-Tri-Co
light

𝐻 . For every 𝑡 ∈
[2 log𝑛] we will create a graph𝐺𝑡 and 𝐻 will be the disjoint union

of these 𝑂 (log𝑛) graphs.
For a fixed 𝑡 ∈ [2 log𝑛], the nodes of 𝐺𝑡 are as follows. 𝐺𝑡 will

be a tripartite graph on parts 𝐴′, 𝐵′,𝐶 ′
. For every node 𝑧 ∈ 𝐶 of

𝐺 , we add a node 𝑧 to 𝐺𝑡 ; 𝑧 has color 𝑧 (we associate the nodes of

𝐺 with the integers [𝑛]). These nodes will be in part 𝐶 ′
. For every

node 𝑣 ∈ 𝐴∪𝐵 of𝐺 we create two copies of 𝑣 in𝐺𝑡 : 𝑣0 and 𝑣1, both

having color 𝑣 . If 𝑣 was in 𝐴, 𝑣0, 𝑣1 are in the partition 𝐴′
, and if 𝑣

was in 𝐵, then 𝑣0, 𝑣1 are in partition 𝐵′.
For every pair of nodes of 𝐺 , 𝑣 ∈ 𝐴 ∪ 𝐵 and 𝑧 ∈ 𝐶 , if the 𝑡th bit

of the color color (𝑣, 𝑧) is 𝑏, then add an edge between 𝑣𝑏 and 𝑧. For

every pair of nodes of𝐺 , 𝑣 ∈ 𝐴 and 𝑣 ′ ∈ 𝐵, add an edge between 𝑣𝑝
and 𝑣 ′

𝑝′ for all choices of 𝑝 and 𝑝
′
s.t. 𝑝 ≠ 𝑝 ′. In addition, add an edge

between between 𝑣𝑏 and 𝑣 ′
𝑏
if the 𝑡 th bit of the color color (𝑣, 𝑣 ′) is

not 𝑏.

Notice that for every 𝑧 ∈ 𝐶, 𝑣 ∈ 𝐴, 𝑣 ′ ∈ 𝐵 (which are now a triple

of colors), 𝐺𝑡 does not have a triangle of these colors iff the 𝑡 th bit

of the colors of (𝑧, 𝑣), (𝑧, 𝑣 ′), (𝑣, 𝑣 ′) in 𝐺 match. Thus, there are no

triangles colored 𝑧, 𝑣, 𝑣 ′ in 𝐻 = ∪𝑡𝐺𝑡 if and only if the colors of

(𝑧, 𝑣), (𝑧, 𝑣 ′), (𝑣, 𝑣 ′) in𝐺 match for all choices of 𝑡 , and hence if and

only if the colors are exactly the same.

By construction, the number of nodes of each color is at most

𝑂 (log𝑛). Thus we have reduced AE-Mono-Tri to an 𝑂 (𝑛 log𝑛)-
node instance of ACP-Tri-Co

light
.

□

5.2 Colorful-BMM → ACP-Tri-Co and OV→
Tri-Co*

We give a simple reduction from Colorful-BMM to ACP-Tri-Co.

Lemma 5.2. Any instance of Colorful-BMM on 𝑛 × 𝑛 matrices can
be reduced in𝑂 (𝑛2) time to an instance of ACP-Tri-Co on 𝑛 nodes. If
the maximum number of 𝑘 of any given color in the Colorful-BMM
instance is 𝑛𝑜 (1) , then Colorful-BMM also reduces to ACP-Tri-Co*
with parameter 𝑛𝑜 (1) .
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Proof. Let 𝐴 and 𝐵 be two 𝑛 × 𝑛 matrices that constitute an

instance of Colorful-BMM. Let color : [𝑛] → [𝐾] be the color

function of the columns of 𝐴 and rows of 𝐵. Note that without loss

of generality 𝐾 ≤ 𝑂 (𝑛).
We will create an instance 𝐺 of ACP-Tri-Co with 𝑂 (𝑛) colors.
For every color 𝑘 ∈ [𝐾] and every 𝑡 ∈ [𝑛] such that color (𝑡) = 𝑘 ,

create a node 𝑘2,𝑡 of color 𝑘 .

For every 𝑖 ∈ [𝑛], create a node 𝑖1 of color 𝑖1 and a node 𝑖3 of

color 𝑖3, and add an edge between 𝑖1 and 𝑗3 for all 𝑖, 𝑗 ∈ [𝑛].
For every pair 𝑖 ∈ [𝑛], 𝑡 ∈ [𝑛] with color (𝑡) = 𝑘 , add an edge

(𝑖1, 𝑘2,𝑡 ) if 𝐴[𝑖, 𝑡] = 1 and add an edge (𝑖3, 𝑘2,𝑡 ) if 𝐵 [𝑡, 𝑖] = 1.

Notice that for a fixed triple 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑛], 𝑘 ∈ [𝐾], there is
a triangle with colors 𝑖1, 𝑘, 𝑗3 if and only if there is some 𝑡 ∈ [𝑛],
𝐴[𝑖, 𝑡] · 𝐵 [𝑡, 𝑗] = 1.

ACP-Tri-Co asks for every pair of colors 𝑖1, 𝑗3 to computewhether

there is some 𝑘 with no triangles of color triple 𝑖1, 𝑗3, 𝑘 , conversely,

whether for all colors 𝑘 there is a triangle with color triple 𝑖1, 𝑗3, 𝑘 ,

i.e. whether for all 𝑖, 𝑗, 𝑘 there is some 𝑡 of color 𝑘 such that 𝐴[𝑖, 𝑡] ·
𝐵 [𝑡, 𝑗] = 1.

We get an instance of ACP-Tri-Co with 𝑂 (𝑛) nodes and colors.

Now suppose that the number of 𝑘 in any given color of the

Colorful-BMM instance is at most𝑇 ≤ 𝑛𝑜 (1) . In this case, the num-

ber of nodes of each color in the above reduction is at most 𝑛𝑜 (1) ,
so we actually get an instance of ACP-Tri-Co

light
with parameter

𝑛𝑜 (1) . By our reduction from ACP-Tri-Co
light

with parameter 𝑛𝑜 (1)

to ACP-Tri-Co*, we get an instance of ACP-Tri-Co* with 𝑛1+𝑜 (1)

nodes and 𝑂 (𝑛) colors. □

We get as a corollary a reduction from OV to Tri-Co*.

Corollary 5.3. For any 1 ≤ 𝑑 ≤ 𝑛,OV for 𝑛 Boolean vectors in 𝑓 di-
mensions reduces in𝑂 (𝑛2/𝑑2+𝑛𝑑 𝑓 ) time to an instance of Tri-Co

light

on𝑂 (𝑛𝑓 /𝑑+𝑑2) nodes with parameter 𝑓 . Thus ifOV requires 𝑛2−𝑜 (1)

time for 𝑓 = 𝑛𝑜 (1) , then Tri-Co
light

on 𝑁 nodes with parameter 𝑁𝑜 (1)

requires 𝑁 3−𝑜 (1) time, then so does Tri-Co* with parameter 𝑛𝑜 (1) .

Proof. Consider the reduction from Lemma 4.3 from OV to

Colorful-BMM. For any 𝑑 ≤ 𝑛, it partitioned the input sets of vec-

tors 𝐴 and 𝐵 into groups {𝐴𝑖 }𝑖∈[𝑛/𝑑 ] and {𝐵𝑖 }𝑖∈[𝑛/𝑑 ] of 𝑑 vectors

each, letting 𝐴[𝑖, 𝑗, 𝑠] be the 𝑠th bit of the 𝑘th vector of 𝐴𝑖 and

𝐵 [ 𝑗, ℓ, 𝑠] be the 𝑠th bit of the ℓth vector of 𝐵 𝑗 .

It then created an 𝑛 × 𝑑2 𝑓 matrix A with A[𝑖, (𝑘, ℓ, 𝑠))] =

𝐴[𝑖, 𝑘, 𝑠] and an 𝑑2 𝑓 × 𝑛 matrix B with B[(𝑘, ℓ, 𝑠), 𝑗] = 𝐵 [ 𝑗, ℓ, 𝑠].
The color of (𝑘, ℓ, 𝑠) was (𝑘, ℓ). The number of columns of A of

each color is thus at most 𝑓 .

With the above reduction, we then apply our reduction from

Colorful-BMM to ACP-Tri-Co
light

in the proof of Lemma 5.2 to

show that OV reduces to ACP-Tri-Co
light

.

Notice that in the above reduction from OV to Colorful-BMM,

there are no pairs of orthogonal vectors iff for all 𝑖, 𝑗 ∈ [𝑛/𝑑] and
𝑘, ℓ ∈ [𝑑], there exists some 𝑠 ∈ [𝑓 ] such that A[𝑖, (𝑘, ℓ, 𝑠))] =

B[(𝑘, ℓ, 𝑠), 𝑗] = 1. When we create the ACP-Tri-Co
light

instance

from the Colorful-BMM instance in our reduction, it suffices to

figure out whether for all triples of colors there is some triangle,

which is exactly the Tri-Co
light

problem. □
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