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Designing a new heterostructure electrode has many challenges associated with interface
engineering. Demanding simulation resources and lack of heterostructure databases con-
tinue to be a barrier to understanding the chemistry and mechanics of complex interfaces
using simulations. Mixed-dimensional heterostructures composed of two-dimensional
(2D) and three-dimensional (3D) materials are undisputed next-generation materials for
engineered devices due to their changeable properties. The present work computationally
investigates the interface between 2D graphene and 3D tin (Sn) systems with density func-
tional theory (DFT) method. This computationally demanding simulation data is further
used to develop machine learning (ML)-based potential energy surfaces (PES). The
approach to developing PES for complex interface systems in the light of limited data
and the transferability of such models has been discussed. To develop PES for graphene-
tin interface systems, high-dimensional neural networks (HDNN) are used that rely on
atom-centered symmetry function to represent structural information. HDNN are modified
to train on the total energies of the interface system rather than atomic energies. The per-
formance of modified HDNN trained on 5789 interface structures of graphene|Sn is tested
on new interfaces of the same material pair with varying levels of structural deviations from
the training dataset. Root-mean-squared error (RMSE) for test interfaces fall in the range of
0.01–0.45 eV/atom, depending on the structural deviations from the reference training
dataset. By avoiding incorrect decomposition of total energy into atomic energies, modified
HDNN model is shown to obtain higher accuracy and transferability despite a limited
dataset. Improved accuracy in the ML-based modeling approach promises cost-effective
means of designing interfaces in heterostructure energy storage systems with higher
cycle life and stability. [DOI: 10.1115/1.4054781]

Keywords: 2D materials, interfaces, deep learning, tin, DFT, potential energy surface,
batteries, novel materials, novel numerical and analytical simulations

1 Introduction
Intricately engineered device designs are put forth very often in

recent years under the broad spectrum of advanced technology to
target sustainability and enhanced efficiency. Complexity revolving
around such device designs calls for the discovery of new multi-
component systems or new materials altogether. The concept of
engineering materials has been applied in the vast sense in
multicomponent systems to enhance functionality based on
structure–function relationship [1]. For instance, in energy storage
alone, the development of electrode design as core-shell, layered,
or coating is continuously practiced for enhancing the electrode
capacity and cycle life [2–6]. Such arrangements of different mate-
rials together in engineered devices create unique interfaces whose
equilibrium and properties remain of intense research interest.
Two-dimensional (2D)material-based heterostructures (2D+ nD,

n= 0,1,2,3) have attracted enormous interest in various fields [7–9],
including batteries [10,11]. The discovery of graphene in 2004 [12]
opened a new space for mixed-dimensional materials where hetero-
structures based on graphene-like 2D materials layered with three-

dimensional (3D) bulkmaterials have exhibited intriguing properties
[7,13]. The mechanical, electrical, optical, magnetic, and thermal
properties exhibited by these heterostructures have applications in
batteries, optics, solar technologies, and electronics [14–22].
Arrangement of 2D–3D materials can be achieved either during

epitaxial growth of one material over the other or with post-growth
modification techniques [13]. Despite the development of multiple
synthesis modes, a complete characterization of these complex
nanoscale interfaces is yet a challenge. Scanning tunneling micros-
copy (STM) and atomic force microscopy (AFM) have enabled
studying the interface between ordered 2D material heterostructures
[23]. Yet, their scope is not expandable to polymorphing interfaces
where 3D bulk undergoes lattice distortions and phase transitions to
stabilize itself over a 2D substrate.
The fundamental understanding of interfacial properties in these

systems is critical for sustaining the desired electro-chemo-
mechanical behavior. Quantitative computational modeling efforts
with ab-initio methods such as density functional theory (DFT)
indicate the influence of structural polymorphism in 3D bulk on
interfacial properties such as interfacial strength, electron transfer,
and conductivity [24,25]. However, studies in this domain remain
less explored due to the high computational cost involved in
ab-initio methods. Moreover, molecular simulations of interfacial
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properties need reliable inter-atomic potential, limited to only a few
elements. Due to these restrictions, there has been no significant
advancement in interface studies at the atomic/molecular level.
These limitations are expected to be overcome with the emergence
of artificial intelligence (AI)-based models in materials.
Machine learning (ML)-based potential energy surface (PES) can

describe complex systems at low computational cost and with close
to first principles accuracy. These methods rely on a large amount of
DFT data of materials (structures, energies, and forces) to efficiently
explore the chemical space with respect to the target properties
during training. Atomic structures of materials are represented by
appropriate descriptors and fed to the neural network (NN) algo-
rithm to generate PES that is invariant to translational, rotational,
and permutation of homonuclear atoms [26,27]. Such PES are inde-
pendent of any physical parameters and approximations, unlike
empirical force fields, and hence are more accurate if descriptors
describe the atomic local environments efficiently. Several ML
techniques have been employed for PES development: linear
regression [28,29], Gaussian approximation [30,31], high-
dimensional neural networks (HDNN) [32], and graph neural
networks (GNN) [33,34]. Of particular interest are HDNN using
atom-centered symmetry functions (ACSF or SF) as input descrip-
tors [26] that have been successful for a wide range of materials due
to their generality [35–38]. Consequently, a lot of effort has been
spent on refining the original HDNN given by Behler and Parri-
nello[32] to develop more efficient approaches [39–41].
The development of ML-based PES is still in its nascent stage and

has barely explored materials’ domain beyond small organic mole-
cules [42–44], single component condensed systems [32,45,46],
bicomponent systems [47–49], and crystalline ordered motifs [50].
ML research in heterostructure territory is mostly limited to search-
ing and predicting new ordered heterostructures with targeted prop-
erties [51–53]. The recent attempts to model 3D-3D interface grain
boundaries demonstrate the scope of ML models in capturing
mechanics at the nanoscale when trained on high accuracy data
[54]. However, the primary bottleneck ML needs to scale in model-
ing complexmaterials is the tradeoff between quantity and quality of
training data. As the complexity of the problem increases, acquiring
ample data either computationally or empirically becomes a
challenge.
The present work explores a mixed-dimensional heterostructure

(2D–3D) interface formed by graphene (Gr) and tin (Sn) for the
lattice distortions by utilizing DFT. Geometry optimization of Sn bulk
over Gr results in the lattice rearrangements in interfacial Sn atomic
layers. The extensive computation undertaken to study these interfaces
withDFThas been further used to develop anML-basedPES forGr and
Sn interfaces. Here, the development ofMLmodels could reinforce the
atomic realization of these complex interfaces. This is one of the first
attempts at modeling complex polymorphing 2D–3D interfaces with
ML. We use a modified approach to the HDNN algorithm to develop
PES for Gr|Sn interfaces which exhibit good transferability to new Gr|
Sn interface systems despite limited training data. The design and utili-
zation of ML-based potentials can be extended to expedite interface
simulations in the future. Their scope of utilization in overcoming
existing battery electrode design issues has been presented as a compre-
hensive discussion in the last section.

2 Methodology and Computational Details
2.1 High-Dimensional Neural Networks. The present work

uses second-generation HDNN generalized by Behler and Parri-
nello [32]. Limitations possessed by first-generation feedforward
neural networks in addressing the full dimensionality of large-
condensed phase systems are overcome by assuming that the total
energy of the system Etotal can be disseminated into energy contri-
butions by each individual atom (Ei) based on their local chemical
environment

Etotal =
∑N
i=1

Ei (1)

A large part of this assumption relies on the accuracy in describ-
ing atomic interactions in the local chemical neighborhoods. Appro-
priate descriptors that can convert cartesian coordinates to numeric
vectors describing atomic interactions with translational, rotational,
and permutational invariance are critical for the PES development.
The descriptor defines the chemical environment of each atom
within a specific cutoff radius (Rc). A large Rc value ensures that
all energetically relevant interactions such as covalent, electrostatic,
dispersion, and van der Waals interactions are included. Once the
descriptor obtains fingerprints of atomic local space, separate feed-
forward neural networks are used for each atom in the system to
express atomic energy contributions Ei. These Ei are then added
to yield the total energy of the system Etotal.
High-dimensional neural networks model in the present work

(Fig. 1(b)) is a modified version of second-generation HDNN for
bicomponent systems (also called BPNN for Behler and Parrinello
Neural Networks, Fig. 1(a)). Figure 1 differentiates both HDNN
models for a system of six atoms, three Sn and three C. In the
BPNN model, chemical species are separated by a distinct set of
weights. Atomic input features defined by descriptors (Gi) are fed
to atomic neural networks (ann), and two sets of ann weights are
fitted corresponding to each chemical species in the system.
Weights corresponding to Sn atoms (set-a, red-ann) are identical,
as are the weights corresponding to C atoms (set-b, yellow-ann).
This ensures the invariance of total energy against the interchanging
of two identical atomswithin set-a and set-b. In addition, this permits
easy size extrapolation of the model. If another atom is added to the
system, additional ann corresponding to the species can be appended
to the architecture and added to the total energy expression (repre-
sented in Eq. (1)). Complete details of second-generation HDNN
(BPNN) for multicomponent systems can be found in Ref. [55]. In
contrast, modified HDNN in Fig. 1(b) identifies chemical species
with an added input feature rather than relying on separate trained
weights. Thus, weights of all ann (set-k) are trained to be identical
for the Sn–C system. All ann architectures and weights are suited
for a bicomponent system of Sn–C rather than an individual
species. This approach permits easy system size extrapolation.

2.2 Atom-Centered Symmetry Functions. There have been
several attempts to use cartesian coordinates as structural inputs
for ML-based PES [39,56]. These are recognized to be a poor
choice. Cartesian coordinates are not independent of molecular
translation and rotation. Since neural networks are mathematical
fitting methods, the output is sensitive to absolute values of input
features. To overcome these limitations in describing complex
chemical structures to HDNN, Behler and Parinello [32] introduced
ACSF that describe the chemical neighborhood of each atom with
the help of radial and angular symmetry functions. There are two
types of ACSF commonly used that define radial (G2) and
angular (G4) information of the central atom’s neighborhood
within the sphere defined by the cutoff radius (Rc). The cutoff func-
tion for all the neighboring atoms within Rc is defined as

fc(Rij) = 0.5 × cos
π Rij

Rc

( )
+ 1

[ ]
(2)

where Rij is the distance between central atom i and its neighboring
atom j. fc(Rij) is a continuous and differentiable function whose
value turns 0 when Rij >Rc. The radial and angular SF for central
atom i are defined with the help of the cutoff function as
two-body and three-body sums

G2
i =

∑
j

e−η(Rij−Rs)2 . fc (Rij) (3)

G4
i = 21−ζ

∑all
j,k≠i

(1 + λcos θijk)
ζ. e−η(R

2
ij+R

2
ik+R

2
jk ).fc(Rij).fc(Rik).fc(R jk)

(4)
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Here, Gi
2 is a sum of Gaussians multiplied by the cutoff function.

The width of the Gaussian and the center of the Gaussian can be
defined by parameters η and Rs. A non-zero Rs value can shift the
center of Gaussian away from the reference atom. Therefore, it is
preferably set to 0. The parameter η is a Gaussian exponent respon-
sible for indicating reduced interaction strength with increasing dis-
tance between the two atoms. Parameters ζ and λ in the function Gi

4

control the angular resolution and cosine function, respectively. λ
usually takes value either +1 or −1 for inverting the cosine function
maxima from θijk= 0 deg to θijk= 180 deg [26]. The most preferred
value for ζ is 1 as it provides sufficient coverage centered at 0 deg
(when λ= 1). Higher values can increase angular resolution close to
the center at a reduced coverage cost [57]. Multiple parameter set
for each symmetry function (SF) type are needed to cover different
portions of the chemical environment. Values of these parameters
define the high-dimensional input vector representing the local
environment of each atom in the material system. It is advisable
that 100–150 Gi be used for the bicomponent system, such as the
interface systems, to capture the full dimensionality of the
system. Redundancy of the information that can arise due to a
large number of Gi has been recognized to be not a problem for
HDNN [26]. SF are uniquely beneficial as input vectors for
HDNN because input vector size is independent of the actual
number of neighboring atoms within a set cutoff radius Rc [36].
We used DScribe package in PYTHON to calculate SF for interface
systems with the parameters defined in Table 1 [58].

We use a range of η values to capture the full dimensionality of
the structures. The presented parameter set is chosen based on the
benchmarking studies on descriptors for bicomponent bulk
systems having elemental makeup similar to our structures
[35,59,60]. λ has both values +1 and −1 corresponding to both
centers in the SF set. To attain high angular resolution as well as
complete coverage for intended interface systems, we use higher
values for ζ in addition to 1 (ζ= 1, 2, 4). These SF set yielded the
best results in our comparative evaluation and served as the founda-
tion for further assessment of our model. As described in Sec. 2.1,
we preferred to use large Rc for sufficient atomic interaction cover-
age. Here, Rc= 8.9 Å is found to be sufficient for optimum coverage
of atom’s local environment (validation presented in supplemental
information section I available in the Supplemental Materials on
the ASME Digital Collection). By using the SF parameter set in
Table 1, the chemical environment of each atom was represented
by 162 input features. It is important to note here that the
DScribe package used for the conversion of cartesian coordinates
to SF considers the atomic number (Z ) of chemical species in the
environment of a central atom by appending the value to the SF
(G2 and G4). However, it does not consider an atomic number of
central species in any way. To overcome this drawback, an addi-
tional input feature was added to the SF input feature for each
atom which was its own atomic number. Thus, each atom was rep-
resented by 163 input features in our study.

2.3 Density Functional Theory Computation Details.
Coherent interface models were created between ordered single
layer Gr and Sn allotropes with an optimum interfacial gap of
3.5 Å. Gr contains 60 sp2 hybridized carbon atoms in all the inter-
face structures, whereas the size of Sn bulk varies from atom size of
16 to 64. Sn is known for having many energetically similar allo-
tropes, with alpha (α-Sn) and beta (β-Sn) being the prominent
ones. The interfaces are set in the periodic x–y plane across Sn
(100) miller indices. These interface structures were modeled with
a vacuum of 15 Å in z dimensions to circumvent the periodic influ-
ences, followed by DFT optimization to obtain relaxed strain-free
interface configurations. All crystalline Sn bulks were derived
from the materials project database [61]. Amorphous Sn was
created with computational quenching of α-Sn64 following the
methodology discussed in our earlier works [24,62,63]. Both Gr
and Sn structures were DFT optimized individually before interfac-
ing. All DFT calculations are done using Vienna Ab initio

Fig. 1 Comparative schematics of HDNN for bicomponent (Sn|C) system: (a) HDNN by Behler and Parrinello (BPNN) for bicom-
ponent systems where weights and architecture of atomic neural networks (ann) are the same for single chemical species.
Red-ann in set-a corresponds to Sn atoms and yellow-ann in set-b corresponds to C atoms and (b) Modified HDNN in the
present study for bicomponent systems. Weights and architecture of all atomic neural networks (ann) are the same and corre-
spond to the Sn|C system rather than single species. Atomic species are differentiated by the added feature of atomic number.

Table 1 Parameters used to compute the ACSF in the study

Descriptors Parameters Values

G2 Rc (Å) 8.9
Rs (Å) 0
η (Å−1) 0.003214, 0.035711, 0.071421, 0.124987,

0.214264, 0.357106, 0.714213, 1.428426

G4 Rc (Å) 8.9
λ (Å) −1,1
ζ 1, 2, 4

η (Å−1) 0.003214, 0.035711, 0.071421, 0.124987,
0.214264, 0.357106, 0.714213, 1.428426

Note: Several values of Rc were tested and the value of 8.9 Å was found to
give optimum results for presented 2D|3D interface systems.
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Simulation Package (VASP) [64]. Projector-augmented-wave
(PAW) potentials are used to mimic inert core electrons, while
the valence electrons are represented by plane-wave basis set
[65,66]. Plane-wave energy cutoff and convergence tolerance for
all relaxations are 550 eV and 10−6 eV, respectively. The general-
ized gradient approximation (GGA) with the Perdew–Burke–Ern-
zerhof (PBE) exchange-correlation function is taken into account
[67] with inclusivity of vdW correction to incorporate the effect
of weak long-range van der Waals (vdW) forces [68]. The energy
minimizations are done by conjugate gradient method with
Hellmann-Feynman forces less than 0.02 eV/Å. Considering the
vacuum slab structure of all interfaces, gamma-centered k-meshes
4 × 4 × 1 are used for good convergence.

2.4 Training and Testing Dataset. Data for training and
testing are systematically selected to meet the primary objective of
the study, which is developing PES for Gr|Sn interfaces with the
least possible computation necessary and best possible transferabil-
ity.While material databases are a reliable source for most material’s
structural data for learning-based workflows, they are significantly
lacking in the domain of interfacial configurations. Tracing the equil-
ibration of interfaces where exists the possibility of prominent lattice
distortions, proved to be computationally expensive. It took approx-
imately 700 h with 72 CPU cores to finish the complete relaxation of
a single Gr|α-Sn interface system. To initiate 2D–3D interface-based
structural analysis in the future, there is a need to develop machine
learning-centered cheaper and faster workflows.
We optimized multiple unequilibrated Sn and Gr interface struc-

tures and divided them into training and testing datasets. The
training dataset consists of five Gr|Sn interfaces: crystalline
α-Sn(32 and 64), β-Sn(16 and 18), and amorphous Sn64 interfaced
with Gr (shown in supplemental information section II available
in the Supplemental Materials on the ASME Digital Collection).
The training dataset is built from convergence iterations of DFT
simulations which covers the trajectory of minima search for five
interfaces starting from the initial non-equilibrated structure. This
scheme ensured that non-equilibrated and intermittent interface
structures were as much part of the learning process as the
relaxed structures. The intermediate DFT iterations of five Gr|Sn
interface structures accounted for 5789 structures with their refer-
ence energies for training.
To analyze the performance of our model and test the transfer-

ability of PES in a sequential order of unfamiliarity, we use four

carefully contemplated test interface structures (Fig. 2). The first
test structure (T1) is the very Gr|β-Sn16 interface used in the training
dataset, except that the orientation of Sn bulk is slightly shifted over
the Gr surface in T1. It is an example of a known interface structure
and unknown orientation. The second test structure (T2) is again a
familiar interface with increased Sn bulk size (Gr|β-Sn16→Gr|
β-Sn32). The objective of T2 is to test the system size extrapolation
capabilities of the PES (see Fig. S2 available in the Supplemental
Materials on the ASME Digital Collection).
In contrast to T1 and T2, the third test structure (T3) is the

completely unfamiliar interface. A new Sn bulk (mp-949028 from
Materials Project Database) is interfaced with Gr. The fourth and
final test interface (T4) is derived from T3 by creating divacancy
defects in the interfacing Gr. This change adds complexities of
defects and surface adsorption in the interface structure, which are
not noted in the earlier test interfaces. Differences in test structures
from the training dataset are summarized in Table 2. The initial test
interface structures were created like training interfaces and sub-
jected to DFT optimizations. Since the current machine learning
scheme does not include automated equilibration, the ability of
PES to predict energies of intermediate configurations as structures
search for global minima is assessed by predicting energies of test
interfaces between initial and final configurations. The variations
in the test interfaces duringDFToptimization can be noted in the iter-
ation snapshots presented in supplemental information section III
available in the Supplemental Materials on the ASME Digital
Collection. While minimal Sn alignment changes are observed in
initial—final T2 and T3 structures, major structural transformative
and surface defects are seen in T1 and T4, respectively.

3 Results and Discussion
3.1 Phase Changes at Graphene|Sn Interface. This section

discusses the atomic specifications of the Gr|Sn interface in opti-
mized structures, which predominantly set apart these interfaces
from Gr-based interfaces reported previously [7,13]. Discussion
of interface phenomenon is important for designing interfaces and
controlling heterostructure properties in applied technologies. The
Gr|Sn interface systems are optimized by DFT to obtain relaxed
strain-free interface configurations. Presented interfaces structurally
resemble interfaces assembled in devices post-growth rather than
interfaces originated during direct epitaxial growth of Gr on a sub-
strate. Final interfacial configurations of Gr|Sn are depicted in Fig. 3
for two prominent Sn allotropes, α-Sn, and β-Sn, respectively. α-Sn
is a diamond cubic crystal and β-Sn is a body-centered tetragonal
crystal (Fig. 3(b)), which are two solid allotropes of Sn commonly
in use. At temperatures below room temperature (286 K), α-Sn is
the stable phase, which transitions to its β configurations rather
quickly as temperature rises [69]. The sensitivity of temperature
conditions symbolizes the significance of solid Sn α«b transitions
for practical applications. This sensitivity elevates in the interfacial
conditions with large lattice mismatch.
Differences in materials and lattice constants imply strained con-

ditions in the buffer layer of Sn at the Gr|Sn interface, which condi-
tions the Sn bulk towards a possible phase change. Consequently,
the observed lattice constant of interfacial Sn (c= 4.5 Å) is different
from the rest of the α-Sn bulk (c= 4.7 Å) in Fig. 3(a). This indicates

Fig. 2 Test interface structures (T1–T4) labeled in the order of
unfamiliarity

Table 2 Notable differences in test structures from training
dataset

Notable features of test structures T1 T2 T3 T4

Familiar interface O O × ×
Familiar interface orientation × O × ×
Similar Sn bulk size O × × ×
Familiar Sn allotrope bulk O O × ×
Familiar Gr substrate O O O ×
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a possible phase transformation from α-Sn to β-Sn in the buffer
layer at Gr|α-Sn interface. However, these structural transforma-
tions of Sn are at a few layers limit at the surfaces and do not pro-
liferate to central regions of the bulk where α conformations are
retained (Fig. 4). Surface relaxation of independent α-Sn slab did
not show any distortions, which eradicates the possibility of this
structural reconstruction at Gr|α-Sn interface as mere surface
defects. We repeated the simulation with increased vacuum in z
dimensions to ensure structural distortions in the top layer are not
due to periodic influences (shown in supplemental information
section IV available in the Supplemental Materials on the ASME
Digital Collection). Our observations indicate that this surface hard-
ening of α-Sn is nucleated due to the presence of the Gr interface. In
contrast to Gr|α-Sn interface, no structural distortions are noted in
the relaxed Gr|β-Sn in Fig. 3(c), indicating the preference of the
Gr interface toward β-Sn.
Structural changes in Sn at the Gr interface are also significantly

impacted by Sn bulk size. Figures 3(d ) and 3(e) exhibit Gr|Sn inter-
faces with smaller α-Sn and β-Sn bulks. Complete distortion of
α-Sn32 bulk is noted in Fig. 3(d ) with an increased density (see sup-
porting information section V available in the Supplemental Materi-
als on the ASME Digital Collection). Likewise, β-Sn16 rearranged
over Gr surface as a single atomic layer in Fig. 3(e) with near-atomic
distances of 3.15 Å. A drop in the Sn bulk size causes a reduction in
the dimensions of Sn bulk and brings all the Sn atoms to the surface,

much like 2D materials. These observations in small Sn crystals fall
in line with prior experimental evidence of Sn nanocrystals becom-
ing denser over graphene surfaces [70]. The relative differences in
thematerial surfaces and charge analysis of Gr|Sn interfaces strongly
indicate the weak van der Waals forces as the foundation of the
formed interfaces. Charge analysis was performed in the said inter-
faces using Bader charge scripts by the Henkelman group [71].
The net electron exchange across the Gr|Sn interface is less than
1 e−1 for all interfaces denoting negligible covalent interaction.
Sn is a well-known high-capacity anode for lithium ion batteries

(LIB) and sodium ion batteries (NIB) with prominent shortcomings
from phase transitions (β↔ α) and volumetric strains. The presence
of Gr substrate for Sn anode provenly scales down the volume
expansion associated with mechanical failures [62,70]. Our analysis
suggests it can possibly minimize frequented phase transitions from
β↔ α due to its preference for β-Sn. With our computational study,
we attempt to closely understand the swift structural transforma-
tions in Gr|Sn interfaces. However, there is scope for further exper-
imental X-ray diffraction analysis of Sn crystals interfaced with Gr,
which can validate the presented observations.

3.2 Model Performance. HDNN is traditionally trained on ref-
erence energy per atom. However, electronic simulations do not
provide actual energy per atom for reference, and energy per atom

Fig. 3 DFT relaxed Graphene|Sn interface systems: (a) Side view of relaxed graphene|α-Sn64 interface system. Phase trans-
formations of α-Sn to β-Sn noted in the Sn surface layers due to the presence of graphene substrate, (b) Unit cell representa-
tions of α-Sn and β-Sn with lattice constants 4.7 Å and 4.48 Å, derived frommaterials project database (mp-117 and mp-84) and
used for construction of Sn bulks, (c) Side view of relaxed Graphene|β-Sn32 interface system, (d ) Side view of relaxed Gra-
phene|α-Sn32 interface system. Phase transformation of α-Sn to β-Sn noted in the entire Sn bulk with modified lattice constant
of 4.52 Å, and (e) Side view of relaxed Graphene|β-Sn16 interface with Sn rearranged over Gr surface as a single atomic layer of
modified β′-Sn.

Fig. 4 Intermediate graphene|α-Sn64 interface structures between initial and equilibrium interface configurations. Structural
configuration in the first 250 DFT iterations is presented depicting quick structural transformations in early DFT stages. Simula-
tion took approximately 1100 iterations to completely optimize. No major structural rearrangements were noted in the later
iterations.
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is deduced based on the total energy of the system [26]. Atomic ener-
gies are realized by dividing the total energy of the system by the
number of atoms. This scheme gives equivalent atomic energies
for all the atoms in a system. Such an approximation is suitable for
a single component condensed system where atoms are present in
a single phase. However, in Sec. 3.1, it can be observed that Gr|Sn
interface structures have multiple phases with strained interfacial
Sn atoms. Assuming interfacial Sn atoms will have higher atomic
energies than sub-interfacial Sn atoms, training distinct atomic
chemical environments in interface systems on uniform atomic ener-
gies is not considered a suitable approach.
To validate this assumption, we use two different training

approaches: loss calculationwith atomic energies (Ei) and loss calcu-
lation with total system energies (Etotal). In the first approach, the
model is trained to learn from the reference atomic energies
derived from total system energies, as per earlier reports [26]. We
use a uniform ann architecture throughout the study. Each ann con-
sists of three hidden layers having 100–50–10 nodes. The input fea-
tures count is 163 that defines an individual atom’s species and
chemical environment, as described in Sec. 2.2. Hyperbolic
tangent (tanH) activation function is used in the hidden layers,
while the output layer giving atomic energy contribution is linear
(ann: 163-100-50-10-1). Weights and biases are optimized through
supervised learning process using Adam optimizer [72] with a learn-
ing rate of 0.00001. Loss function after each epoch was determined
by the mean squared error of atomic energies from reference DFT
energies

Loss =
1

Size
(EDFT − Epredict) 2 (5)

The batch size for the training is kept at 10 (Size), and the accuracy
of the energy prediction after each epoch is measured in terms of
root-mean-square error (RMSE). Models are trained until accuracy
metrics RMSE of at least 0.002 eV/Atom has been achieved. This
amounted to 5000 epochs. The performance of the trained model is
validated (validation split= 10%) and then tested on test structures
T1 and T2. The performance of the trained model on a 10% valida-
tion split results in RMSE 0.0042 eV/Atom. This result is compara-
ble to earlier reported deep learning studies on condensed phase
systems [47,73], thereby concluding that this approach effectively
develops PES for interfaces if target interfaces are similar to the train-
ing data.Next, trained PES are further used to predict atomic energies
of the test structures T1 and T2. The results are summarized in
Table 3. While the model performs well on validation split (test
data randomly separated out of training data), its performance for
new interfaces has been poor, indicating an overfitting case. A poten-
tial reason for this performance could be the training process where
different atomic environments in a single system are assigned the
same atomic energies. This renders the model inefficient in differen-
tiating atomic energies of the atoms with different chemical
neighborhoods.
The second training approach considers the total energy of the

system as the final output of modified HDNN. In the last layer of
HDNN, atomic energies Ei from all ann are added to yield Etotal.
This required fixing the atomic size (number of atoms in each
system) in the training data to be 300. Input features for any
system having less than 300 atoms have been extrapolated by
zero padding. Inputs (Gi) to anns for each interface system are shuf-
fled during each epoch. Gi is a one-dimensional array that encodes

information about the central atom species and its local chemical
environment. Hence, permutations at this stage do not change
either the atomic energy or combined total energy. Loss is calcu-
lated from the total energies of the system. This allowed model to
assign atomic energies based on the chemical space of each atom.
Nested ann in modified HDNN has three hidden layers with
100–50–10 nodes. Hyperparameters of ann (nodes, activation func-
tion) remain the same as described before. Weights and biases are
optimized through a supervised learning process using Adam opti-
mizer and a learning rate of 0.00001. The loss function after each
epoch was determined by the mean squared error of predicted total
energies from reference DFT energies as per Eq. (5). The batch
size for the training was kept one. The accuracy of the energy predic-
tion after each epoch is measured in terms of RMSE, and the model is
trained on 5789 Gr|Sn interface structures until the total energy
RMSE of at least 0.2 eV is achieved.
Once trained, new PES is used to predict energies of test struc-

tures obtained from T1 (familiar interface, different orientation).
Between unequilibrated and equilibrated T1 structures, there are
approximately 260 structural configurations. All of which were
used as test data. Figure 5 compares system energies of T1 struc-
tures obtained from DFT (EDFT) with energies predicted by new
PES (Epredict). Both system energies match closely with the
RMSE value 0.0901 eV. Slight error is noted for non-equilibrated
structures (below 50 DFT iterative structures), which further
reduces as the structure stabilizes. Because HDNN is fitted to the
total energies of the structure, we note that Epredict is bordering on
EDFT values but is not equivalent to the exact values even though
the T1 interface is very close to trained structural configuration.

3.3 Transferability of Potential Energy Surfaces. The
primary objective of the targeted potentials (PES) is the ability to
predict energies of new Gr|Sn interfaces and avail the least compu-
tation necessary during the development. The HDNN model trained
on structures from 5 Gr|Sn interfaces has been tested on new inter-
faces T1–T4 described in Sec. 2.4. The results are summarized in
Table 4. Between unequilibrated and equilibrated system configura-
tions, there are approximately 260–400 structural configurations for
each test structure used for testing. Predicted energies of new inter-
faces by modified HDNN weights have smaller RMSE values
(eV/Atom). RMSE values for T1 and T2 in Table 4 are significantly
lower than RMSE values noted in Table 3. This clearly indicates
that the deep neural network model designed for such multiphasic
interfaces should train across total energies rather than atomic ener-
gies to gather complete system information. The difference noted in
energies of completely unfamiliar interfaces T3 and T4 is also rel-
atively small. In the absence of accurate empirical potentials in lit-
erature, the developed PES demonstrates acceptable performance
for new Gr|Sn interfaces constituting structural distortions.

3.4 Discussion. Mathematical models like machine learning or
deep learning can have powerful predictive accuracy when trained
on large datasets. Data requirements are major barriers that delay
the adoption of ML/DL techniques in artificial intelligence-assisted
material development and discovery. The lack of a sizable dataset
can be compensated with advanced sampling techniques such as
heterogeneous dataset, random sampling, and stochastic surface
walking [35,74]. Each of these methods concentrates on a different
aspect of PES development. In this work, we use the geometry opti-
mization arc of interfaces as a dataset, which includes unequili-
brated, metastable, and equilibrated structures. The advisable
course of using ab-initio molecular dynamics (AIMD) simulations
to explore new equilibria for interfaces prior to DFTs is skipped
due to the computational demand of the undertaking. The time to
run a single AIMD simulation with 500 steps and 2 fs timestep
on Gr|Sn interface ranged between 400 and –700 h on a CPU
with 72 cores during our initial tests. Despite the limited dataset,
our model predicted energies of new interface structures with
lower RMSE when compared with the traditional approach. This

Table 3 Performance of PES on validation set and test interface
structures

Performance RMSE in eV/atom

Validation set 0.0042
T1 0.2235
T2 0.9496
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can be said especially for the interface structures such as T1 and T2,
where the Sn phase is familiar with reference training data. By
avoiding incorrect decomposition of total energy into atomic ener-
gies, the model can obtain a high degree of accuracy and transfer-
ability even with a limited dataset.
To overcome the limitations of data, a heterogenous dataset was

created consisting of individual Gr and Sn structures and distribu-
tion of Sn clusters adsorbed on the surface of Gr (2D–1D interface).
This new heterogeneous dataset consisted of 9646 structures (see
supporting information Fig. S6 available in the Supplemental Mate-
rials on the ASME Digital Collection). However, the modified
HDNN model trained on heterogeneous datasets performed
poorly for test interface structures (T1–T4). Since RMSE values
from the heterogenous dataset approach were higher than the
values in Table 4, these results have not been shown in the

present work. The failure of the heterogenous dataset approach to
capture 2D–3D interface structures accurately is primarily on
account of the unique microstructural characteristics of 2D–3D
interface from its individual 2D–1D interface counterparts. While
the present study emphasizes a correct description of atomic ener-
gies in neural networks, there is further scope to develop successful
data sampling approaches for 2D–3D interfaces.
The current state of existing ML models is still miles away from

completely replacing DFT for complex interface systems. However,
for the purpose of molecular dynamics simulations, modified HDNN
models trained with appropriate atomic energy decomposition could
be sufficient. Applications of ML-based PES depend on the dataset
sampling approach adopted. While AIMD generated dataset trained
model could be successfully used for simulations where more than
one equilibrium is searched for, DFT-based dataset could be sufficient
toexploreoneglobalminimumfor the structureswith a certain tradeoff
between accuracy and computation times. Ongoing advancements in
training and sampling techniques can possibly overcome the chal-
lenges associated with ML-assisted interface studies.

4 2D–3D Interfaces in Electrochemical Energy Storage
The conventional bulk materials-based batteries (Fig. 6(a)) have

practical issues to meet the ever-increasing energy demand [75].

Fig. 5 Total energies of the test structures T1 predicted by trained HDNNmodel.
Epredict and EDFT are total energies predicted by HDNN and DFT, respectively. The
dashed sphere with cutoff radius Rc=8.9 Å represents the chemical neighbor-
hood that was observed for all the atoms in the system.

Table 4 Performance of PES on unfamiliar test interfaces

Test interface RMSE eV/atom

T1 0.016
T2 0.222
T3 0.360
T4 0.458

Fig. 6 (a) Schematic of anode, (b) failure at the interface of binder/active materials and current-collector/active-materials, and
(c) failure of active materials
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The two most critical chemo-mechanical failure modes in batteries
are—(i) interface failure leading to electrical isolation of active elec-
trode particles [76] and (ii) mechanical failure of active materials
[77–79]. The active electrode particles (e.g., Si) have to be in
contact with the metal current collector (Fig. 6(b1)), such as Ni,
to ensure a uniform electron exchange [80]. During Li intercalation,
active particles undergo substantial volume expansion [81]. For
example, Si undergoes 300% volume expansion upon lithiation
[82]. Since the metal current collectors (e.g., Cu and Ni) act as non-
slippery surfaces, the volume expansion/contraction of active parti-
cles generates excessive interfacial stress (Fig. 6(b1)), leading to
fracture of active particles, causing battery failures [62].
Another critical interface is between the polymer binder and

active particles (Fig. 6(b2)) [83]. The polymer binder network
keeps active particles adhered together and ensures continued elec-
trical contact throughout the electrode [84]. However, volume
expansion/contraction of active particles causes excessive interfa-
cial stress at polymer-active particle interface, leading to detach-
ment and electrical isolation of active particles (Fig. 6(b2)) [83].
Besides interface failure, another prominent reason for battery
failure is the active particles’ fracture (Fig. 6(c)) [85]. Again
volume expansion/contraction of Si anode particle upon lithiation/
delithiation causes its formation of cracks [86], leading to battery
failure [87]. These practical problems in battery electrodes need
to be addressed by strategizing the electrode design.
Two-dimensional material-based heterostructures are promising

candidates to solve these burning issues [88–90]. Electrical isola-
tion of active particles can be avoided by replacing polymer
binders with conductive and flexible 2D material such as
MXenes, which can form an omnipresent electron-conducting
network within the electrode [91] (Fig. 7(a1)). Next, the issue of
the current collector and active particle interface failure
(Fig. 7(b1)) can be addressed with two options: (i) Fig. 7(a2): addi-
tion of 2DM such as graphene as “coating” on the current collector
to make it a “slippery” interface [24,62], (ii) Fig. 7(a3): completely
replace the current collector with 2DM such as MXenes [92,93]. On
the other hand, the problem of active materials failure (Fig. 6(c)) can
be solved by using 2D materials-based anode (Fig. 7(b1)) [10] or
3D active materials integrated with 2D materials (Fig. 7(b2)) [7,94].
In all the 2D materials-based cases discussed, interface plays a

critical role in electrochemical performance, i.e., energy and
power density, volumetric capacity and so on.. The mechanical
integrity of these interfaces dictates the long-term performance of
energy storage systems [95–97]. Computational modeling
methods such as DFT and MD simulations have been good alterna-
tives to expensive experimental characterization for developing a
deeper understanding of complex interfacial characteristics in batte-
ries. Work by Basu et al.[62] on recognized benefits of slippery gra-
phene surface at current collector end in combating stresses in Si
anode upon lithiation is an example of the comprehensive scope
of simulation studies. However, MD-based methodology to study

interfacial stress cannot be extended to new and heavy metal elec-
trodes such as Sn, Se, and more, due to the lack of appropriate for-
cefields. Presented work lays the foundation for developing the
futuristic AI-based potentials to study a wide variety of 2D
materials-based interfaces. Although the present study considers
only graphene-based interfaces, the presented approach can be
implemented in other 2D materials-based systems.

5 Conclusions
In summary, we performed optimization of different graphene

and Sn-based 2D–3D interfaces resulting in a unique dataset, a
kind lacking in existing databases. Our DFT simulation results
show lattice distortions in Sn interfacing with graphene in great
atomic details and highlight the preferred stability of β-Sn over gra-
phene as opposed to α-Sn. One of the best application cases of Gr|
Sn interface systems is in Sodium-ion batteries, where the presence
of graphene interface can alleviate mechanical stresses upon Na
intercalation in otherwise high capacity-low stability Sn anode.
Usage of graphene-based heterostructures is undisputedly vast,
and the need to model structural-functional aspects of such inter-
faces is an emergent need. We present the development of
ML-based PES that can predict the energies of complex
graphene-Sn 2D|3D interface systems with good accuracies that
could be used to replace expensive ab-initio methods in future mod-
eling efforts. Applicability of high-dimensional neural networks
(HDNN) developed by Behler and Parrinello that utilize atom-
centered symmetry functions as structural descriptors has been
shown. The widely used approach to calculate loss function on
atomic energies showed good performance on validation split but
failed to predict energies of the new interface systems. To overcome
this, we modify the HDNN model to enable training on the total
energies of the system rather than atomic energies. This latter
approach significantly improves the performance of PES in predict-
ing the total energies of new Gr|Sn interface systems that constitute
the test interfaces. The primary reason for this enhanced perfor-
mance is the freedom model gained to assign atomic energies
based on the atomic chemical environment. This opens the possibil-
ity for the more accurate evaluation of atomic energies and forces
from ML models, allowing the scope for automated equilibration.
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