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Despite the global investment in One Health disease surveillance, it remains difficult and costly to identify and
monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can guide sampling target prioritisation,
but the predictions from any given model might be highly uncertain; moreover, systematic model validation is rare,
and the drivers of model performance are consequently under-documented. Here, we use the bat hosts of
betacoronaviruses as a case study for the data-driven process of comparing and validating predictive models of
probable reservoir hosts. In early 2020, we generated an ensemble of eight statistical models that predicted host-virus
associations and developed priority sampling recommendations for potential bat reservoirs of betacoronaviruses and
bridge hosts for SARS-CoV-2. During a time frame of more than a year, we tracked the discovery of 47 new bat hosts
of betacoronaviruses, validated the initial predictions, and dynamically updated our analytical pipeline. We found that
ecological trait-based models performed well at predicting these novel hosts, whereas network methods consistently
performed approximately as well or worse than expected at random. These findings illustrate the importance of
ensemble modelling as a buffer against mixed-model quality and highlight the value of including host ecology in
predictive models. Our revised models showed an improved performance compared with the initial ensemble, and
predicted more than 400 bat species globally that could be undetected betacoronavirus hosts. We show, through
systematic validation, that machine learning models can help to optimise wildlife sampling for undiscovered viruses
and illustrates how such approaches are best implemented through a dynamic process of prediction, data collection,

validation, and updating.

Introduction
Identifying the probable reservoirs of zoonotic pathogens
is challenging.! Sampling wildlife for the presence of
an active or previous infection (ie, by testing for
seropositivity) represents the first stage of a pipeline for
the proper inference of a host species,” but sampling is
often limited on a phylogenetic, temporal, and spatial
scale by logistical constraints.® Given such restrictions,
statistical models can play a crucial role by helping
to identify which pathogen surveillance targets are a
priority, by narrowing the set of plausible sampling
targets by either ruling out clades of low-likelihood
hosts** or predicting clades at a high risk of being
hosts.® For example, machine learning approaches have
generated candidate lists of probable, but unsampled,
primate reservoirs of Zika virus, bat reservoirs of
filoviruses, and avian reservoirs of Borrelia burgdorferi.
At the same time, host predictions are rarely validated
empirically.® Occasional case studies suggest both
success and failures. For example, models predicted
Eonycteris spelaea as an undetected bat host of filoviruses,’
which was later confirmed by field sampling in southeast
Asia."™? Similarly, models of mosquito—Zika virus
interactions predicted Culex quinquefasciatus as a probable
vector,” which was rapidly validated by experimental
competence trials.** A 2019 model of Nipah virus in
India also predicted several bat species as undetected
hosts.? However, experimental infection of the predicted
Rousettus aegyptiacus showed that this species could
not support virus replication.” Further, Nipah virus
was found circulating in Pipistrellus pipistrellus in 2021, a
species with a low predicted probability of being a host.”
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More generally, predictions from most models are either
untested or opportunistically validated, allowing for little
insight into which approaches have greatest predictive
accuracy. Systematically validating predictions would
provide crucial insight into the broader usefulness (or
inefficacy) of different models in zoonosis research.
Moreover, these modelling approaches are generally
developed in isolation; the implementation of multiple
modelling approaches collaboratively and simultaneously,
as part of a model-to-validation workflow, could reduce
redundancy and apparent disagreement at the earliest
stages of pathogen tracing at the same time as advancing
predictive analytics by addressing inter-model reliability.

Coronaviruses are an ideal family of viruses with which
to compare and validate predictive models of probable
zoonotic reservoirs. Coronaviruses are positive-sense,
single-stranded RNA viruses that have been detected in
both mammals and birds.” They have a broad host range,
a high mutation rate, and the largest genomes of any
RNA virus; but they have also evolved mechanisms for
RNA proofreading and repair to mitigate the deleterious
effects of a high recombination rate acting over a large
genome.” Consequently, coronaviruses fit the profile of
viruses with a high potential for being a zoonotic
disease. There are eight human coronaviruses (three in
the genera alphacoronavirus and five in the genera
betacoronavirus), of which three are highly pathogenic in
humans: SARS-CoV, MERS-CoV, and SARS-CoV-2.
These viruses are zoonotic and widely agreed to have
evolutionary origins in bats.”?

The challenges caused by both SARS-CoV and MERS-
CoV illustrate the difficulty of tracing the specific animal
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hosts of emerging viruses. During the 2002-03 severe
acute respiratory syndrome (SARS) epidemic, SARS-CoV
was traced to the masked palm civet (Paguma larvata),” but
the ultimate origin was unknown for several years.
Horseshoe bats (family Rhinolophidae, genus Rhinolophus)
were implicated as reservoir hosts in 2005, but their SARS-
like coronaviruses were not identical to circulating human
strains.” Stronger data from 2017 placed the most
likely evolutionary origin of SARS-CoV in Rhinolophus

i Departmentof - oy mequinum or Rhinolophus sinicus.” There is even less

certainty about the origins of MERS-CoV, although
spillover to humans often occurs through contact with
dromedary camels (Camelus dromedarius). A virus with
100% nucleotide identity in an approximately 200 base pair
region of the MERS-CoV polymerase gene was detected in
Taphozous perforatus (family Emballonuridae) in Saudi
Arabia;* however, based on spike gene similarity, other
sources treat the HKU4 virus from Tylonycteris pachypus
(family Vespertilionidae) in China as the most closely
related bat virus to MERS-CoV.”* Several bat coronaviruses
have shown close phylogenetic relationships with MERS-
CoV, with a surprisingly broad geographical distribution
from Mexico to China.?*

COVID-19 is caused by SARS-CoV-2, a novel virus with
presumed evolutionary origins in bats. Although the
earliest cases were linked to a wildlife market,” contact
tracing was low, and there has been no definitive
identification of the wildlife contact that resulted in the
spillover nor a true so-called index case. The divergence
time between SARS-CoV-2 and two of the closest related
bat viruses (RaTG13 from Rhinolophus affinis and
RmYNO2 from Rhinolophus malayanus) has been
estimated to be 40-50 years,” suggesting that the main
host(s) involved in the spillover are unknown. A viral
recombination in pangolins has been suggested but is
unconfirmed.* In 2020, SARS-like betacoronaviruses
were isolated from Sunda pangolins (Manis javanica)
traded in wildlife markets,”** and these viruses have a
high amino acid identity to SARS-CoV-2, but only show
an approximately 90% similarity in nucleotide identity
with SARS-CoV-2 or bat coronavirus RaTG13.* None of
these host species are universally accepted as the origin
of SARS-CoV-2 nor are any of the viruses a clear
SARS-CoV-2 progenitor, and a better fit wildlife reservoir
could still be identified. However, substantial gaps in
betacoronavirus sampling across wildlife reduce how
much actionable inference can be made about plausible
reservoir hosts and bridge hosts for SARS-CoV-2.”

Building a predictive ensemble

Here, we use betacoronaviruses in bats as a case study
for the data-driven process of comparing and validating
predictive models of probable reservoir hosts, with the
aim of helping to identify which targets to prioritise for
surveillance for known and future zoonotic viruses. We
focused on betacoronaviruses rather than SARS-like
coronaviruses (subgenus Sarbecovirus) specifically,

because SARS-like coronaviruses are only characterised
from a small number of bat species in publicly available
data. This sparsity makes current modelling methods
poorly suited to more precisely infer potential reservoir
hosts of Sarbecoviruses specifically. Instead, we used
predictive models to firstly identify bats (and other
mammals) that might broadly host any betacoronavirus,
and secondly to identify species with a high viral sharing
probability with the two Rhinolophus species carrying the
earliest known close viral relatives of SARS-CoV-2. In
mid-2020, in the early stages of the COVID-19 pandemic,
we developed a standardised dataset of mammal-virus
associations by integrating a previously published edge
list* with a targeted scrape of all GenBank accessions
for Coronaviridae and their associated hosts. Our final
dataset spanned 710 host species and 359 virus genera,
including 107 mammal hosts of betacoronaviruses as
well as hundreds of other (non-coronavirus) association
records. We integrated our host-virus data with a
mammal phylogenetic supertree® and more than
60 standardised ecological traits of bat species.*#

We then used these data to generate an ensemble
of predictive models and drew on two popular
approaches, network-based and trait-based approaches,
as well as a hybrid approach, to identify the candidate bat
reservoir hosts of betacoronaviruses (table). Network-
based methods estimate a full set of true unobserved
host—virus interactions on the basis of a recorded
network of associations (here, pairs of host species and
associated viral genera). These methods are increasingly
popular to identify latent processes structuring ecological
networks,”* but they are often confounded by sampling
bias and often can only make predictions for species
within the observed network (ie, those that have available
virus data; in-sample prediction). In contrast, trait-based
methods use observed relationships concerning host
traits to identify species that fit the morphological,
ecological, or phylogenetic profile of known host species
of a given pathogen, and rank the suitability of unknown
hosts on the basis of these trait characteristics.**
These methods might be more likely to recapitulate
patterns in observed host-pathogen association data
(eg, geographical biases in sampling and phylogenetic
similarity in host morphology), but they more easily
correct for sampling bias and can predict host species
without known viral associations (ie, out-of-sample
prediction).

In total, we implemented eight different predictive
models of host—virus associations, including four network-
based approaches, three trait-based approaches, and one
hybrid approach using trait and phylogenetic information
to make network predictions. These efforts generated eight
ranked lists of suspected bat hosts of betacoronaviruses.
Each ranked list was then scaled proportionally and
consolidated in an ensemble of recommendations for
betacoronavirus sampling and broader ecological-
evolutionary research. Next, approximately 1 year after our
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Prediction on hosts without  Predictive extent and use of pseudoabsences
known associations (out of
sample)
Network 1: k-nearest neighbours No Only predicts link probabilities among species in the association data
Network 2: linear filter No Only predicts link probabilities among species in the association data
Network 3: plug and play No Uses pseudoabsences to predict over all mammals in association data, using
latent approach
Network 4: scaled phylogeny No Only predicts link probabilities among species in the association data
Trait 1: boosted regression trees Yes Uses pseudoabsences for all bats in trait data to predict over all species,
including those without known associations
Trait 2: Bayesian additive regression trees Yes Uses pseudoabsences for all bats in trait data to predict over all species,
including those without known associations
Trait 3: neutral phylogeographic Yes Trains on a broader network, and predicts sharing probabilities among any
mammals in phylogeny and International Union for Conservation of Nature
range map data
Hybrid 1: two-step kernel ridge regression Yes Uses pseudoabsences for all bats in trait data to predict over all species,
including those without known associations
Some methods use pseudoabsences to expand the scale of prediction but still only analyse existing host-virus data, with no out-of-sample inference, whereas other methods
can predict onto new data.
Table: Scope and calibration of different predictive modelling approaches

initial model ensemble, we reran our entire analytical
pipeline with new bat betacoronavirus detections, taking
advantage of the new proliferation of published research
on bat coronaviruses. This process provided an
unprecedented opportunity to rapidly compare model
performance, provide up-to-date predictions of probable
but unsampled bat hosts, and assess model accuracy in the
context of ongoing sampling for bat coronaviruses.

Predicted bat reservoirs of betacoronaviruses
Our initial ensemble found a wide variation in model
performance; individual models explained 0-69% of
the variance in betacoronavirus positivity (with a mean of
25%), whereas the ensemble generally had improved
predictive capacity (R2=42%; appendix p 22). The
predictions of bat betacoronavirus hosts derived from
network-based and trait-based modelling approaches
displayed strong inter-model agreement within each
group but largely differed between groups (as measured
by pairwise Spearman’s rank correlations among
predicted ranks; figure 1). Of the 1037 included bat species
not known to be infected by betacoronaviruses during our
initial analysis in 2020 (against 79 bat species known
to be infected), our models identified between 7 and
723 potential hosts on the basis of a 10% omission
threshold (90% sensitivity). Applying this same threshold
to our ensemble predictions, our initial models identified
371 bat species as probable undetected hosts. Notably,
only 48 suspect hosts were identified in sample, whereas
we identified 323 suspect hosts out of sample,
highlighting that most undiscovered hosts—and, in turn,
undiscovered  betacoronaviruses—should ~ be in
unsampled bat species.

This multi-model ensemble predicted undiscovered
betacoronavirus bat hosts with notable geographical
and taxonomic patterning (figure 2). In-sample predicted
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Figure 1: Agreement across an ensemble of predictive modelling approaches

Agreement across models identifying hosts with available virus data (in sample) (A) and without known viral
associations (out of sample) (B). The pairwise Spearman’s rank correlations between models’ ranked species-level
predictions were generally substantial and positive. Models were arranged in decreasing order of their mean correlation
with other models. Models that used trait data made more similar predictions to each other than approaches using
network methods with the same data. Network-based models that used some ecological data made more similar
predictions than all other models (eg, network 4, which uses phylogeny, and hybrid 1, which uses both phylogeny and
trait data). All models that could make out-of-sample predictions used trait data and showed strong agreement.

hosts were globally distributed and recapitulated
geographical patterns of known bat betacoronavirus hosts
in Europe, the Neotropics, and southeast Asia; however,
our models also predicted a high richness of probable bat
reservoirs in North America. Applying a graph partitioning
algorithm (phylogenetic factorisation) to the bat phylo-
geny,® we similarly found that both betacoronavirus
positivity and in-sample predictions were, on average,
lowest for the superfamilies Noctilionoidea and Vespe-
rtilionoidea in the suborder Yangochiroptera. This finding
makes intuitive sense, because these taxa do not include
the groups known to harbour most of the betacoronaviruses
detected in bats (eg, Rhinolophus and Hipposideridae). In
contrast, our out-of-sample predicted hosts were more
notably clustered in much of sub-Saharan Africa and

See Online for appendix
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Figure 2: Initial ensemble predictions of the geographical and evolutionary distribution of known and predicted bat hosts of betacoronaviruses

Known hosts of betacoronaviruses (A,B) are found worldwide, but particularly in southern Asia and southern Europe. Taxonomically, betacoronaviruses are less
common in two superfamilies of the suborder Yangochiroptera, Noctilionoidea, and Vespertilionoidea (clade 1). The predicted in-sample bat hosts (ie, those

with any viral association records; C,D) tend to recapitulate observed geographical patterns of known hosts but with a higher concentration in the Neotropics.
Similarly, taxonomic patterns reflect those of known betacoronavirus hosts. In contrast, the out-of-sample bat host predictions based on phylogeny and ecological
traits (E,F) are mostly clustered in Myanmar, Vietnam, and southern China, with none in the Neotropics, and North America. Predicted hosts are likewise more
common in the Rhinolophidae (clade 2) and subfamilies of Old World bats (clade 5) and are rare in many Neotropical taxa (clades 1 and 7) and emballanurids
(clades 3 and 4). In the phylogenies, bar height indicates betacoronavirus positivity (B) or predicted rank (D,F; higher values indicate lower proportional ranks).
Colours indicate likelihood of clades to contain hosts identified through phylogenetic factorisation (red indicates clades more likely to contain hosts, blue indicates

less likely hosts; appendix).

southeast Asia (eg, Vietham, Myanmar, and southern
China), with no representation in the western hemisphere.
Likewise, out-of-sample predictions were lower in
Neotropical bat families (eg, Noctilionidae, Mormoopidae,
and Phyllostomidae), most emballonurids, and primarily
Neotropical molossids; whereas the Rhinolophus genus
and most of the Old World subfamily Pteropodinae were
predicted to be more likely to host betacoronaviruses
(appendix p 18).

Because only trait-based models were capable of out-of-
sample prediction, the differences in geographical and
taxonomic patterns of our predictions probably reflect
distinctions between the network-based and trait-based
modelling approaches. We suggest that these should be
considered as qualitatively different lines of evidence.
Network approaches proportionally upweight species with
a high observed viral diversity, recapitulating sampling
biases largely unrelated to coronaviruses (eg, frequent
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screening for rabies lyssaviruses in the common vampire
bat Desmodus rotundus, which has been sampled only a few
times for coronaviruses™). Highly ranked species might
also have been previously sampled without evidence of a
betacoronavirus presence; for example, Rhinolophus luctus
from China and Macroglossus sobrinus from Thailand tested
negative for betacoronaviruses, but the detection probability
was limited by small sample sizes.”* In contrast, trait-
based approaches are constrained by their reliance on
phylogeny, ecological traits, and geographical covariates, all
of which made the models more likely to recapitulate
existing spatial (ie, clustering in southeast Asia) and
taxonomic (ie, the Rhinolophus genus) patterns. However,
out-of-sample predictions are, by definition, inclusive of
unsampled bat hosts,” which potentially offer a greater
return on viral discovery investment.

Model validation

After this initial 2020 model ensemble, we used
broad literature searches to systematically track
betacoronavirus-positive bat species that were missed in
our initial data compilation (eg, coronavirus sequences
that were not annotated to genus on GenBank).*** These
searches also tracked the exponential increase in data on
bat coronaviruses stemming from the emergence of
SARS-CoV-2 that were published after our first model
ensemble. This informal non-systematic Review used a
combination of a Web of Science and PubMed searches
(on Sept 24, 2020) and an ongoing Google Scholar search
to update these results (from May 24, 2020, to
Sept 30, 2021), including papers in English, with
keywords such as “bat” and “betacoronavirus”; all
specific search terms and species identified are given in
the appendix (p 14). A year after our initial data
compilation (in June, 2021), we also reran our initial
scrape of GenBank to identify new betacoronavirus-
positive bats, limiting our search to matches to
betacoronavirus (taxid: 694002) and the order Chiroptera
(taxid: 9397); however, this did not recover any additional
host species positive for betacoronavirus not already
recorded as positives in our updated data. We also mined
publicly available metagenomic and transcriptomic
datasets for evidence of a betacoronavirus infection.””
However, no published libraries contained evidence of
betacoronaviruses (appendix p 15). Lastly, we analysed
the wildlife testing data from the US Agency for
International Development Emerging Pandemic Threats
PREDICT programme, collected from 2009 to 2019,
which was publicly released in June, 2021, and includes
many betacoronaviruses that were discovered during the
programme’s run but have only published and identified
down to the genus level in the full release.

In total, we uncovered 47 novel bat hosts of beta-
coronaviruses that were either absent from our original
dataset or newly discovered after our initial analyses.
This data update resulted in a total of 126 known bat
species that host betacoronaviruses, and we continue to
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Figure 3: Measuring model performance with novel data

Performance is based on the comparison of total predicted prevalence (ie, what proportion of species are predicted
hosts of betacoronaviruses) with the sensitivity measured from validation data (ie, how many of the 47 new
species are correctly identified). The null expectation for a model with a random performance is that these should
be equivalent, whereas a model with strong performance will be more than that null expectation (grey line).

(A) The training prevalence-test sensitivity curve is a novel diagnostic that is conceptually similar to the receiver-
operator curve, in that the model is evaluated at each possible scaled rank threshold between 0 and 1. (B) The same
analysis as shown in (A), but only showing the point estimate of positivity created by each model’s internally
calibrated threshold. For model-guided sampling, the best model would be one that predicts a low-to-medium
positivity rate and has a disproportionately high sensitivity (ie, in the upper left corner). Both (A) and (B) show
that the trait-based models (including the hybrid model) perform well, whereas the network-only models perform
roughly at-random or worse than random (ie, close to the line); the ensemble model, which includes all eight,
performs similarly to the two best trait models and better than six of the eight component models.

collate these records in a public online database. Of these
47 new hosts, the original ensemble correctly predicted
only 36 (77% success rate), but some sub-models
performed significantly better than others; for instance,
three models (trait 3, network 1, and network 4) all
correctly identified 100% of novel hosts in their predictive
sample. The high performance of all these models, and
their high performance on the training data
(appendix p 22), suggest that both approaches contributed
usefully to the initial ensemble.

The 47 newly discovered hosts also enabled us to develop
a new kind of performance metric for machine learning
tasks with presence-only validation data (ie, new positives
can be collected, whereas negatives are substantially more
difficult to prove). If a model makes predictions at random,
the predicted prevalence of positives in the training data
should be roughly the same as the success rate with novel
test data. For example, a so-called coin toss model
will estimate that approximately 50% of species are
betacoronavirus hosts and would likewise successfully
identify approximately 50% of newly discovered hosts. A
high-performing model, however, will identify a higher
proportion of newly discovered hosts than expected at
random. To evaluate how models perform in this regard,
we developed a new diagnostic called the training
prevalence-test sensitivity curve (TPTSC) that can be
applied to modelling problems where the training data are
composed of a mix of true positives, true negatives, and
false negatives, but test data only include novel true

For more on the
betacoronavirus reservoir
database see https://www.
viralemergence.org/betacov
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Figure 4: Comparing bat betacoronavirus host prediction with dynamic model updates

Scatterplots show bat species predictions from our original ensemble in 2020 against the revised predictions after updating models with 47 new hosts (A), and the
final predictions from the weighted revised ensemble (B). Species are coloured by their status in the respective revised ensemble: unlikely host, a retained suspected
host, a new betacoronavirus-positive host (new host), lost as a suspected host (lost), or a novel suspected host (gained). Trendlines show a linear regression fit
between the original and revised predictions against a 1:1 line, whereas dashed lines display the threshold cutoffs from each ensemble. The top ten in-sample and
out-of-sample predictions from the original (C) and final (D) ensemble are also listed. *Five of the original top ten in-sample predictions, and one of the top ten
out-of-sample predictions, have been empirically confirmed since the first iteration of our study.

positives (figure 3). The TPTSC plots the assumed
prevalence in the training data against the sensitivity in
the test data at every possible threshold from 0 to 1; these
curves can be treated similarly to receiver—operator or
precision-recall curves, where a higher area under the
curve (AUC) indicates a better-than-random performance.
Using the AUC-TPTSC scores, we found that trait-based
and hybrid models consistently performed well (trait 1,
AUC-TPTSCO0-79; trait2,0-78; trait 3,0-73; hybrid 1,0-67),
whereas network methods performed at random or worse
(network 1, 0-56; network 2, 0-42; network 3, 0-50;
network 4, 0-52). Accordingly, the ensemble model
performed similarly to the trait-based models (0-75).
These results have two key implications for future
efforts in target sampling for putative reservoir hosts.
First, ensemble modelling can be useful as a buffer
against a variation in model quality, particularly in

settings when the wunderlying drivers of model
performance have yet to be identified. Second, and
perhaps more importantly, models have been unable to
have better-than-random performance without trait data
that characterised bat ecology, even when they included
phylogenetic data (eg, network 4). Part of this difference
might also be attributable to the different scope of
prediction: the response variable of trait-based models is
betacoronavirus presence, whereas betacoronavirus-
relevant predictions were extracted from a broader set of
predictions made by the network models. However, this
is contraindicated by the results of hybrid 1, which
performed similarly to the other trait-based models.
Therefore, we conclude that making meaningful
predictions about probable zoonotic reservoirs is best
accomplished by incorporating detailed information on
the host ecology. The substantially greater performance
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Figure 5: Updated ensemble model predictions of geographical and evolutionary hotspots of bat betacoronavirus hosts

(A) Geographical map of the weighted revised ensemble predictions. Most predicted undiscovered betacoronavirus hosts were found in sub-Saharan Africa and
southeast Asia, especially in Malaysia and Borneo (and less so in the high-elevation mainland hotspots where most reservoirs of severe acute respiratory syndrome
coronavirus-like viruses are found). (B) Phylogeny of the weighted revised ensemble predictions. Predicted hosts from this final ensemble were also most likely in the
Rhinolophus genus (clade 7), several subclades of the Pteropodidae (clades 5 and 6), and the Old World Molossidae (clade 8), even though the Molossidae family as a
whole had less likely hosts (clade 3). Bar height in the phylogeny indicates predicted rank, and colours indicate clades identified through phylogenetic factorisation
(red indicates clades more likely to contain hosts, blue indicates clades less likely to contain hosts; appendix p 19).

of trait-based models compared with network-based
models provides another compelling reason, in addition
to other One Health and conservation rationales, to
better understand the fundamental ecology and evolution
of bats.

Dynamic prediction

Inclusion of these 47 novel bat hosts substantially
improved the performance of our predictive models.
When revised with new data, our eight individual
models explained 7-77% (mean, 33%) of the variance in
betacoronavirus positivity, with the ensemble R2
increasing to 62% (appendix p 23). Using our previously
applied 90% sensitivity threshold, our revised ensemble
identified a narrower set of 318 bat species as probable
undetected hosts of betacoronaviruses. Predictions from
the initial and revised ensembles were strongly correlated
(p=0-97). However, after dynamically updating our
models, our revised ensemble lost 46 suspected reservoirs
and gained 29 new suspected reservoirs (figure 4A). The
predicted reservoir species that were lost from the initial
ensemble were dominated by members of the family
Vespertillionidae, whereas new suspect hosts were
gained in the family Vespertillionidae, Hipposideridae,
and Molossidae.

Using the 47 newly discovered hosts, we were also able
to tailor the updated ensemble responsively to model
performance. To do so, we weighted the rank averaging
across models based on their AUC-TPTSC score relative
to the lowest performing model (network 2). In doing so,
we effectively dropped network 2 from the ensemble, a
choice supported by the fact the model’s predictions were
substantially poorer than expected at random. In the
original ensemble, this correction would have created a
marginal improvement in the model performance
(unweighted ensemble: AUC-TPTSC, 0-746; weighted
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ensemble: AUC-TPTSC, 0-783). Therefore, we applied
this weighting to the ensemble of updated predictions in
the final copy released with this study.

This weighted, revised ensemble identified 412 suspect
bat hosts, substantially expanding the scope of plausible
candidates for future virus discovery compared with
the two previous unweighted ensembles (figure 4B).
Predictions from this final ensemble iteration were
slightly less correlated with those from our initial
ensemble (p=0-92) than those in the unweighted revised
ensemble, and these final predictions retained most of
the suspected hosts from the original ensemble. The
top-ranked undiscovered hosts retained between our
model updates included Murina leucogaster, Mpyotis
nattereri, M blythii, Barbastella barbastellus, and Taphozous
melanopogon in-sample, and the top out-of-sample hosts
consistent between ensembles included Macroglossus
sobrinus, Rhinolophus fumigatus, R marshalli, and
Sphaerias blanfordi (figure 4C). Only 30 predicted hosts
were lost, most of which were from the Pteropodidae
and Vespertilionidae families, and the Rhinolophus
genus. Of the 107 additional predicted hosts added to our
final ensemble, most of these bat species were observed
in the families Vespertilionidae (primarily the genus
Myotis), Pteropodidae (primarily the genus Pteropus),
Molossidae  (primarily the genus Mops), and
Hipposideridae (all in the genus Hipposideros), although
we also identified several new predicted betacoronavirus
hosts in the families Nycteridae, Emballonuridae,
Rhinolophidae, and Phyllostomidae. The top-ranked
novel predicted in-sample hosts included Myotis myotis,
Molossus  nigricans,  Hipposideros  bicolor,  Pteropus
scapulatus, and P vampyrus, and the most likely new out-
of-sample hosts included Myotis chinensis, M altarium,
Nycticeinops ~ schlieffeni,  Pipistrellus  rueppellii, and
Scotophilus viridis (figure 4D).
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Species (ranked) Family
(b) 1. Arctonyx collaris Mustelidae
2. Budorcas taxicolor Bovidae
3. Viverra tangalunga Viverridae
(c) 4. Manis javanica Manidae
(d) 5. Mustela altaica Mustelidae
6. Ursus thibetanus Ursidae
7. Cynogale bennettii Viverridae
8. Elaphodus cephalophus Cervidae
9. Lutrogale perspicillata Mustelidae
10. Viverricula indica Viverridae
11. Capricornis sumatraensis Bovidae
12. Chimarrogale himalayica Soricidae
13. Helarctos malayanus Ursidae
14. Herpestes javanicus Herpestidae
15. Hylomys suillus Erinaceidae

Species (ranked) Family
(b) 1. Arctonyx collaris Mustelidae
2. Herpestes urva Herpestidae
3. Lutrogale perspicillata Mustelidae
(d) 4. Melogale personata Mustelidae
5. Viverra megaspila Viverridae
6. Arctictis binturong Viverridae
7. Euroscaptor klossi Talpidae
8. Lutra sumatrana Mustelidae
(a) 9. Sus scrofa Suidae
10. Capricornis milneedwardsii Bovidae
(c) 11. Manis javanica Manidae
12. Manis pentadactyla Manidae
(b) 13. Mustela nudipes Mustelidae
(a) 14. Paguma larvata Viverridae
15. Panthera pardus Felidae

Figure 6: Potential bridge hosts involved in SARS-CoV-2's emergence

Each dot represents predicted species-level sharing probabilities with Rhinolophus affinis (A) and R malayanus (B), estimated according to the phylogeographical viral
sharing model trait-3.% Each coloured point is a different mammal species. Black points and error bars denote the means and standard errors of viral sharing probability
for each order; the mammal orders are arranged according to their mean sharing probability, ascending from left to right. The tables below report the top 15 predicted
non-bat species for R affinis and R malayanus; several families are disproportionately represented, including pangolins (order, Pholidota; family, Manidae), mustelids
(order, Carnivora; family, Mustelidae), and civets (order, Carnivora; family, Viverridae). Notable species are bolded (ordered based on immediate relevance to possible
origins): (a) the wild boar S scrofa and palm civet P larvata were both traded in wildlife markets in Wuhan, China, before the pandemic; as were (b) close relatives of the
greater hog badger, A collaris, (the northern hog badger, A albogularis), and of the mountain weasel, M altaica, and Malayan weasel, M nudipes (the Siberian weasel,

M siberica). (c) SARS-CoV-2-like viruses have been found in traded Sunda pangolins (M javanica) outside of Wuhan, China, though the species was not reported in
Wuhan. (d) The ferret badger (M personata) was also reportedly of interest in WHO's origins investigation, which explored the role of wildlife farm supply chains.

For Rhinolophus bats specifically, our final ensemble
identified 44 suspected hosts relative to 21 known hosts,
suggesting that more than two thirds of potential
reservoirs in this genus could still be unidentified. Given
the known roles of Rhinolophus bats as hosts of SARS-like
coronaviruses,* it is notable that our results suggest
that the diversity of these viruses could be undescribed
from approximately three quarters of Rhinolophus species
not currently known to be hosts.

As in our initial ensemble, we lastly evaluated the
geographical and taxonomic patterns in this finalised
set of predicted betacoronavirus hosts. Spatially,
undiscovered bat hosts were globally distributed (in not
only the eastern but also western hemisphere), especially
concentrated within a narrower band of equatorial
sub-Saharan Africa, and more starkly in Malaysia and
Borneo (figure 5A). Notably, the geography of these
predicted hosts contrasted with the distributions of both
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known bat hosts and probable hosts from our initial
ensemble, each of which instead showed a stronger
hotspot in southern China. We also identified distinct
clades of bats highly predicted to be hosts by the
weighted revised ensemble (figure 5B; appendix p 19).
Both the Rhinolophus genus and subclades of the
Pteropodidae family again had greater concentrations of
predicted betacoronavirus hosts, although the phylo-
genetic factorisation now identified the Old World
Molossidae family (ie, genus Mops and Chaerophon) as
particularly likely to host these viruses, even though the
Molossidae family as a whole had lower mean proba-
bilities of having betacoronavirus hosts.

These geographical hotspots and clade-specific patterns
of predictions could be particularly applicable for guiding
future viral discovery and surveillance. On the one hand,
betacoronavirus sampling in southeast Asian bat taxa
(especially the genus Rhinolophus) might have a high
success of viral detection (and isolation) of sarbecoviruses
specifically, but might not substantially improve existing
bat sampling gaps.” On the other hand, the discovery of
novel betacoronaviruses in pteropodid clades, Old World
Molossidae, and bats in the Neotropics could substantially
revise our understanding of the bat-virus association
network relative to the coevolutionary distribution of bat
betacoronaviruses.® For example, predicted bat hosts
in the Neotropics might be unlikely reservoirs of
sarbecoviruses (given their known distribution in the
eastern hemisphere) but would be expected to carry
novel viruses from the subgenus merbecovirus. Such
discoveries could be particularly important for global
health security, given the surprising identification of
MERS:-like viruses within the merbecoviruses in Mexican
and Belizean bats** and the likelihood that post-COVID
research efforts will focus disproportionately on Asia,
despite the near-global presence of bat betacoronavirus
hosts.

Insight into SARS-CoV-2's emergence

Our work suggests that more than 400 species of bats
might host undiscovered betacoronaviruses and that these
species can be prioritised for sampling more efficiently via
machine learning. Although our models do not target
sarbecoviruses specifically, these efforts might help to find
more SARS-like viruses in wildlife and might even uncover
the direct progenitor of SARS-CoV-2, particularly given
that 44 species of horseshoe bats are predicted to host
undiscovered betacoronaviruses. However, our models
provide otherwise limited insight into the origins of
SARS-CoV-2, given the probable role of non-bat bridge
hosts in spillover to humans.*® We, thus, attempted a
similar model ensemble in June, 2020, using five of our
eight models to predict the broader mammal-virus
network with a focus on potential betacoronavirus bridge
hosts. At the time, only 30 non-bat hosts of beta-
coronaviruses were available in our data. Among the
five models, we found a poor concordance in predictions
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(appendix p 24). The predictions were also heavily biased
towards well studied and domesticated mammals
(eg, Ovis aries, Vulpes vulpes, Capra hircus, Procyon lotor, and
Rattus rattus), indicating that the sampling bias dwarfed
biological signals. As such, we evaluated these models as
having little value or consistency for an ensemble. This
finding might be relevant given other studies have also
modelled the susceptibility to SARS-CoV-2 across
mammals; however, some have used more detailed trait
data and thus probably make better predictions on this
broader taxonomic scale.®*

Instead of further calibrating this mammal-wide
ensemble, we focused on the outputs of trait 3, which
predicted how species should share viruses in nature
based on their evolutionary history and geography. In
June, 2020, we predicted the mammals expected to share
viruses with R affinis and R malayanus, which hosted the
two viruses (RaTG13 and RmYNO02) most relevant to
SARS-CoV-2’s origins known at that time”® (a closer
related virus, RpYNO6, has since been discovered in
Rhinolophus pusillus).* We predicted that these two bat
species are disproportionately more likely to share viruses
with pangolins (of the order Pholidota) and carnivores (of
the order Carnivora), including civets (Viverridae family),
mustelids (Mustelidae family), and cats (Felidae family;
appendix p 25). These predictions have been broadly
validated by the role of the masked palm civet (P larvata)
in the original SARS-CoV outbreak,“* the discovery
of SARS-CoV-2-like viruses in the Sunda pangolin
(Manis javanica),”* and extensive so-called spillback of
SARS-CoV-2 into captive big cats, domestic cats, and both
farmed and wild mink.”** Notably, only the association
between palm civets and SARS-CoV was present in the
training data used for generating predictions from trait 3.

Given these successful predictions, we expect there
might be potential insights into SARS-CoV-2’s emergence
when these predictions are paired with data on
wildlife supply chains. Of the top 30 species (figure 6),
two are known to have been traded in wildlife markets in
Wuhan, China, immediately before the pandemic (the
wild boar, Sus scrofa, and the palm civet, Paguma larvata),
as were two species closely related to those in the top
predictions (the Siberian weasel, Mustela siberica; the
northern hog badger, Arctonyx albogularis).” Another top
species, the Burmese ferret badger (Melogale personata),
was also reportedly of interest in WHO’s origins
investigation.” Our models indicate that any of these
species would be expected to regularly share viruses with
relevant Rhinolophus bats in nature. Although bats use
habitats differently than most of these probable bridge
host species, opportunities for contact exist: one study
from Gabon found cohabitation among pangolins, bats,
and other mammals in burrows” Many species
potentially implicated in the origins of SARS-CoV-2 could
therefore have plausibly acquired a progenitor to
SARS-CoV-2 in nature, at some point before contact with,
and spillover into, humans.” We suggest that this
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shortlist of species (figure 6) might, therefore, be useful
for further investigations into the identity of potential
bridge hosts, especially in combination with the experi-
mental evaluation of susceptibility.

Conclusions

This Review is the first to show, by using predictive
validation, that machine learning models could help to
optimise wildlife sampling for undiscovered viruses. As
such, the growing toolkit of models that predict host—
pathogen interactions are likely to aid future efforts both
to predict and prevent pandemics and to trace the origins
of novel infections after they emerge. However, these
tools will work best if they are implemented through a
dynamic process of prediction, data collection, validation,
and updating, as we have implemented here. Although
some previous studies have incidentally tested specific
hypotheses (eg, filovirus models and bat surveys,™
henipavirus models and experimental infections,>"*
and vector-virus models and competence trials®™"),
predictions are almost never subject to systematic
verification. More dialogue between modelers and
empiricists is necessary to confront this research gap.
This improved communication is particularly necessary
when establishing a species’ role as a viral reservoir rather
than incidental hosts; susceptibility is only one aspect
of host competence. Future work, including the
longitudinal tracking of viral shedding over space and
time, the isolation of the live virus from wild animals, and
the experimental confirmation of viral replication, can
support more robust conclusions about whether predicted
host species actually play a role in viral maintenance' as
well as inform related efforts to pinpoint and minimise
risk factors for pathogen spillover.””

This Review is also the first to benchmark the
performance of a set of differently calibrated and
designed statistical models all trained for one host
prediction task. We found a range in model performances,
even among a set of models that all performed well on
training data. This finding underscores the need to
incorporate long-term validation into similar studies and
suggests there might be key lessons about viral ecology
to be learned from this type of process. In our study, we
found that network-based models performed mostly at
random in validation against new bat hosts, whereas
trait-based models were more successful in their
predictions. There are two possible explanations for this
difference in model performance. First, models that
successfully predict the broader mammal-virus network
are likely to vary in performance when subset to any
given node. This likelihood might seem contradictory to
the idea that understanding the broader so-called rules of
life underpinning mammal-virus interactions will
improve predictions in specific cases. However, there are
ways to combine the strengths of both network-based
and trait-based approaches. In a similar study, network-
based predictions of zoonotic risk performed essentially

at random, whereas a hybrid approach that embedded
network predictions in targeted, trait-based models
performed better than any approach in isolation.” Future
work should aim to develop and benchmark these types
of hybrid model approaches more extensively and treat
exclusively network-driven predictions with caution in
the interim.

Second, models that integrate data on host ecology,
evolution, and biogeography are likely to make more
powerful predictions than those that mostly do not
incorporate biology. This finding has many broader
implications. Most notably, it suggests that filling gaps in
the basic biology of bats is a key step towards zoonotic
risk assessment and can benefit both pandemic
prevention and bat conservation. High-quality host
genomes are crucial to developing better predictive
features, including genome composition bias metrics,
improved host phylogenetic trees, and immunological
traits.””* Whole-genome sequencing through initiatives
such as the Bat1K project will expand the sparse available
data on bat genomics and can facilitate other insights
into the immune pathways used by bats to harbour
virulent viruses.®® Targeted sequencing could also
identify endogenised viral elements in bat genomes,
shedding light on bat virus diversity and the evolution of
bat immune systems.** Large-scale research networks,
such as the Global Union of Bat Diversity Networks and
its member networks, will further facilitate efficient
sample sharing and ensure proper partnerships and
equitable access and benefit sharing of knowledge across
countries.*®” Additionally, museum specimens and
historical collections offer opportunities to retrospectively
screen samples for betacoronaviruses (thereby testing
predictions), sequence tissue for an assembly of host
genomes, and enhance understanding of complex host—
virus interactions.*®

Lastly, our iterative modelling of bat betacoronaviruses
fits into a broader set of synergies in One Health research
on bats, which can create win-win scenarios for
conservation and outbreak prevention. For example,
North American bats are threatened by an emerging
disease, white-nose syndrome,® which has documented
synzootic interactions with other bat coronaviruses;” at
least seven North American bat species that can be
infected by the fungal pathogen (Eptesicus fuscus,
Mpyotis ciliolabrum, Myotis lucifugus, Myotis septentrionalis,
Myotis velifer, Myotis volans, and Tadarida brasiliensis) are
among the 412 bat species that we predicted could be
undiscovered betacoronavirus hosts. Although our
predictions do not imply bat susceptibility to SARS-CoV-2
specifically (and experimental infections of E fuscus have
been unsuccessful®), efforts to minimise the risks of
SARS-CoV-2 spillback into novel bat reservoirs,”* as
well as to understand the dynamics of other bat
coronaviruses, will both reduce zoonotic risk and help to
understand and counteract disease-related population
declines. Similarly, conservationists have expressed
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concern that the negative framing of bats as the source of
SARS-CoV-2 has affected public and governmental
attitudes toward bat conservation;” this can fuel negative
responses, including indiscriminate culling (ie, the
reduction of populations by slaughter), which has already
occurred in response to COVID-19 even outside of Asia
(where a spillover probably occurred).” Evidence shows
that culling has many negative consequences, not only
threatening population viability” but also possibly
increasing viral transmission within the very species
that are targeted.™' Bat conservation programmes and
One Health practitioners should continue to work
together to find sustainable solutions for humans to live
safely alongside wildlife and to communicate with the
public about the ecological importance of these highly
vulnerable species and the science of pathogen spillover.
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