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In this paper, we characterize quasicrystalline interacting topological phases of matter, i.e., phases
protected by some quasicrystalline structure. We show that the elasticity theory of quasicrystals, which
accounts for both “phonon” and “phason” modes, admits nontrivial quantized topological terms with far
richer structure than their crystalline counterparts. We show that these terms correspond to distinct phases
of matter and also uncover intrinsically quasicrystalline phases, which have no crystalline analogs. For
quasicrystals with internal U(1) symmetry, we discuss a number of interpretations and physical
implications of the topological terms, including constraints on the mobility of dislocations in d ¼ 2

quasicrystals and a quasicrystalline generalization of the Lieb-Schultz-Mattis-Oshikawa-Hastings theorem.
We then extend these ideas much further and address the complete classification of quasicrystalline
topological phases, including systems with point-group symmetry as well as noninvertible phases. We
hence obtain the “quasicrystalline equivalence principle,” which generalizes the classification of crystalline
topological phases to the quasicrystalline setting.
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I. INTRODUCTION

Spurred by the theoretical prediction [1–5] and exper-
imental discovery [6,7] of topological band insulators, there
has been remarkable progress in the topological classifi-
cation of gapped quantum matter [8,9]. By now, it is well
established that topological insulators and other free-
fermion topological states [10,11] belong to the much
larger family of symmetry-protected topological (SPT)
phases, which encompass strongly correlated systems with
internal (on-site) symmetries [12–19]. SPT phases lack
spontaneous symmetry breaking and are instead charac-
terized by a bulk gap to all excitations, a unique ground
state (with periodic boundary conditions), and nontrivial
surface states which are robust against arbitrary local
symmetry-preserving perturbations [20,21]. The ground
state of a nontrivial SPT can be adiabatically connected
to a trivial product wave function only if the bulk gap is
closed or if the symmetries protecting the system are

explicitly broken. Thus, two states which are smoothly
connected absent any symmetries may belong to distinct
SPT phases once a symmetry is enforced.
The topological classification has been further extended

to include crystalline point-group and space-group sym-
metries, such as spatial reflection or rotation, which are of
intrinsic interest, being crucial for understanding phenom-
ena in solids. Noninteracting fermionic systems protected
by such symmetries, also called topological crystalline
materials (see Refs. [22,23], and references therein), are
particularly well understood and include so-called higher-
order topological insulators (HOTIs) [24]. As a conse-
quence of crystalline symmetry, a d-dimensional higher-
order topological phase is gapped everywhere except on a
(d − n)-dimensional surface (with n > 1), such that a
nontrivial 3D HOTI can host gapless hinge (n ¼ 2) or
corner (n ¼ 3) modes. More recently, a general framework
for interacting topological phases protected by crystalline
symmetries—crystalline SPT (cSPT) phases—has emerged
and is conjectured to give a complete classification of
crystalline topological matter [25–28].
Given the progress in classifying crystalline topological

phases, a natural question is whether topological phenom-
ena can be protected by the structure of quasicrystals,
which possess long-range orientational order but are

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 11, 041051 (2021)

2160-3308=21=11(4)=041051(21) 041051-1 Published by the American Physical Society

https://orcid.org/0000-0001-6063-4943
https://orcid.org/0000-0002-4870-4109
https://orcid.org/0000-0003-4438-7107
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.11.041051&domain=pdf&date_stamp=2021-12-14
https://doi.org/10.1103/PhysRevX.11.041051
https://doi.org/10.1103/PhysRevX.11.041051
https://doi.org/10.1103/PhysRevX.11.041051
https://doi.org/10.1103/PhysRevX.11.041051
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


nonperiodic [29,30], and, hence, occupy a regime inter-
mediate between periodic and amorphous structures. The
long-range order of quasicrystals manifests in sharp Bragg
peaks, and, although lacking translation symmetry, quasi-
crystals can still have a notion of rotation symmetries (often
crystallographically forbidden). Moreover, quasicrystals
can always be understood as an incommensurate projection
of a higher-dimensional periodic lattice to the physical
space. This latter fact has been exploited for understanding
topological phases of quasicrystals, whose properties can
sometimes be inferred from those of a higher-dimensional
periodic system. For instance, certain 1D quasiperiodic
systems have been shown [31] to inherit the topological
indices and edge states of the ubiquitous 2D Harper-
Hofstadter model [32,33]. Indeed, a plethora of intriguing
phenomena have been unearthed in the context of non-
interacting quasicrystalline topological phases [31,34–46],
including HOTI phases without crystalline analogs [47–49].
Besides its intrinsic theoretical interest, the study of

quasicrystalline topological matter has immediate exper-
imental relevance, especially given the possibility of
creating and manipulating synthetic lattices with quasiperi-
odic structures on various platforms, including ultracold
atoms and optical cavities, among others [50–61]. A
burgeoning platform for realizing electronic quasicrystals
are layered materials [62–65], including twisted bilayer
graphene, which provide an exciting avenue for exploring
the interplay between quasicrystalline order, topology, and
strong interactions. However, there has been little progress
toward the classification and characterization of strongly
correlated quasicrystalline topological phases. While some
studies consider the stability of topologically nontrivial
quasiperiodic spin chains to interactions [66–68], a general
classification akin to that of cSPTs remains far from com-
plete. In this paper, we fill this gap by proposing a general
classification of quasicrystalline topological phases.
We proceed by first characterizing cSPT phases in terms

of their response to elastic deformations, as captured by the
presence of a quantized topological response term in the
action. Espousing this topological elasticity theory per-
spective proves particularly efficacious when generalizing
to quasicrystals, whose elasticity theory is distinguished by
the presence of both “phonon” and “phason” modes [69–
73]. In particular, we show that, despite the absence of any
translation symmetry, the elasticity theory of quasicrystals
admits quantized topological terms with a far richer
structure than their crystalline counterparts.
For d-dimensional quasicrystalline SPTs with internal U

(1) symmetry, we enumerate several allowed topological
terms. These terms, which we show correspond to distinct
quasicrystalline phases of matter, include terms describing
the quantized response to a background U(1) gauge field;
topological theta terms; and Wess-Zumino-type topological
terms. The latter two classes, which do not require U(1)
symmetry, are intrinsically quasicrystalline, i.e., have no

crystalline analogs. We discuss several interpretations and
consequences of the term describing the response to a
background U(1) gauge field, including the mobility restric-
tions it imposes on dislocations in a d ¼ 2 quasicrystal. We
also show that our results reproduce known results in the
classical limit and in the limit of noninteracting fermions.
However, an important aspect of our approach is that it
naturally incorporates the role of quantum fluctuations and
strong correlations and, hence, also accounts for intrinsically
interacting topological phases, i.e., those with no noninter-
acting analog.
We then extend these ideas much further and address the

complete classification of quasicrystalline topological
phases. As a first nontrivial extension, we consider quasi-
crystalline SPTswith only internal symmetries and no point-
group symmetry. We show that, despite the absence of
translation symmetry, such phases are partially classified by
generalizations of the “weak invariants” [74,75] that appear
in the classification of SPT phases with translation sym-
metry. We also find additional intrinsically quasicrystalline
topological phases, which have no crystalline analog.
Finally, we provide a general classification which accounts
for point-group symmetry and also extends to symmetry-
enriched topological phases; this is encapsulated in the
“quasicrystalline equivalence principle,” which extends the
classification of crystalline topological states to the quasi-
crystalline setting and represents our main result.
The rest of this paper is organized as follows: In Sec. II,

we give a pedagogical overview of our approach and
summarize the main results. We discuss the topological
elasticity theory for cSPTs with lattice translation and U(1)
symmetry in Sec. III. Section IV reviews the primary
concepts regarding quasicrystals that we need throughout
this paper. This is where we define what we mean by a
quasicrystalline topological phase and introduce the phase
angle fields that parameterize elastic deformations in a
quasicrystal; this differs from the usual description in terms
of phonon and phason variables, so even those familiar with
the elasticity theory of quasicrystals are encouraged not to
skip this section. In Sec. V, we generalize the topological
elasticity theory to quasicrystals and show that the topo-
logical terms correspond to distinct quasicrystalline phases
of matter; their classification in terms of integral cohomol-
ogy is also stated here. Sections VI–VII are devoted to
physical implications and interpretations of the topological
terms for quasicrystals with U(1) symmetry: In Sec. VI, we
show how the topological term constrains the mobility of
dislocations in 2D quasicrystals; in Sec. VII, we formulate
a quasicrystalline version of the Lieb-Schultz-Mattis-
Oshikawa-Hastings (LSMOH) theorem; and in Sec. VIII,
we discuss some simple interpretations of the topological
invariants. Finally, we present the general classification of
quasicrystalline topological phases in Sec. IX, which
includes systems with and without point-group symmetry
as well as noninvertible phases. We conclude with a dis-
cussion of open questions and future directions in Sec. X.
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II. SUMMARY OF APPROACH AND
MAIN RESULTS

A. Definition of quasicrystalline topological phases

The usual definition of an SPT or symmetry-enriched
topological (SET) phase is that of a family of gapped
Hamiltonians that can be continuously deformed into
each other while respecting the relevant symmetries and
without closing the bulk gap [76]. If the symmetries include
crystalline symmetries, then this constitutes a crystalline
SPT or SET phase. The main point of this paper is to
generalize these ideas to quasicrystals. However, in this
case, the definitions become somewhat more subtle,
because, unlike crystals, quasicrystals do not have any
exact lattice translation symmetry, and, while point-group
symmetry can be defined for a quasicrystal, it is not literally
a symmetry of the Hamiltonian [77]. Instead, we consider
families of gapped Hamiltonians that can be continuously
deformed into each other while preserving some notion of
quasicrystallinity. We give the precise definition later on
(see Secs. IVA and IX).
Finally, let us note that a real quasicrystal, as in the

crystalline case, always possesses gapless phononmodes due
to the spontaneously broken continuous translation sym-
metry. Therefore, as in the case of crystalline topological
phases, when we talk about gapped Hamiltonians, what we
reallymean is that there exists a gap for the remainingdegrees
of freedom after the phonons (and, in the case of quasicrys-
tals, the phasons—see below) are gapped out by adding a
pinning term to the Hamiltonian that explicitly breaks the
continuous translation symmetry (for example, by applying a
periodic or quasiperiodic potential to pin the atoms to
particular locations in space). It is in this case that the
classification of topological phases can be made totally
precise. However, much of the physics we discuss is still
relevant for the real crystal or quasicrystalwhere the phonons
and phasons are gapless; we return to this point later on.

B. Understanding crystalline topological phases
through elasticity theory

In general, symmetry-protected topological phases of
matter can be characterized by their response to back-
ground gauge fields; for example, quantum Hall states are
characterized by their Hall conductance. Attempts have
been made [27,78,79] to generalize this to “crystalline
gauge fields,” which are gauge fields for crystalline
symmetries; however, the results are rather formal and
difficult to interpret, and certainly it is not clear how to
generalize them to quasicrystalline systems, which do not
have exact crystalline symmetries to “gauge.”
A core idea of this paper is that we should instead

characterize crystalline topological phases through their
response to elastic deformations (i.e., to phonons), which
ismuchmore physically meaningful in any case. This imme-
diately makes it clear how to generalize to quasicrystalline

topological phases; one simply needs to take into account
that the elasticity theory of quasicrystals is richer than that of
crystals, since, in addition to phonon modes, they also host
phason modes.
To illustrate the idea, let us recall that “integer” or

“invertible” topological phases (i.e., those without topo-
logically nontrivial excitations) in a d-dimensional crystal
with d lattice translation symmetries and a U(1) charge
conservation symmetry have an integer invariant ν, repre-
senting the charge per unit cell. For a system with invariant
ν, we claim that the topological response of such a system
to elastic deformations and to a background U(1) gauge
field Aμ is characterized by a quantized topological term that
appears in the action (previous works discussing quantized
topological terms in elasticity theory include Refs. [80–84]).
For example, in d ¼ 2, this term takes the form

Z
ν
8π2

ϵμνλϵIJAμ∂νθI∂λθJd2xdt; ð1Þ

where the phase angle fields θ1ðx; tÞ and θ2ðx; tÞ are related
to the phononmodes and are defined below. Furthermore,we
argue that, once the phason modes are included, these phase
angles get generalized, for a two-dimensional system, to D
phase angle fields θ1;…; θD for someD > 2. Then, one can
generalize the above topological term to [85]

Z
1

8π2
CIJϵμνλAμ∂νθI∂λθJd2xdt; ð2Þ

where CIJ can be any antisymmetric D-dimensional integer
matrix. Thus, such matrices give a partial classification of
quasicrystalline topological phases with U(1) symmetry. In
general space dimension d, the analogous partial classifica-
tion is by D-dimensional rank-d integer tensors that are
antisymmetric in each pair of indices.Anotherway to say this
is that there is an independent integer-valued invariant for
each size-d subset of the set f1;…; Dg.
In this paper, we discuss various interpretations and

implications of these invariants, such as the following.
(i) We show that these invariants determine which

directions a dislocation in a quasicrystalline topologi-
cal phase can move in. This generalizes the familiar
observation that, in a crystal, dislocations can move
only in the direction of their Burgers vector.

(ii) Since these invariants determine the average
charge density as in the crystalline case, they allow
one to formulate the quasicrystalline version of the
LSMOH theorem [86–89]; recall that the crystalline
version of this theorem states that, for an integer
topological phase, the charge per unit cell must be an
integer. The quasicrystalline version similarly spec-
ifies which average charge densities are permissible.

(iii) We give a generalization of the interpretation of ν as
the charge per unit cell in the crystalline case; we
argue that, in a construction of a quasicrystal by
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tiling space through a set of tiles, the integer
invariants CIJ can be identified as the charge bound
to each kind of tile.

We emphasize that, although when studying topological
phases one traditionally considers only the electronic
sector, the quasicrystalline invariants we discuss can also
be applied to the atomic lattice of a quasicrystalline solid,
where we identify the U(1) symmetry as representing
conservation of a number of atoms (one can, of course,
have a generalization in which there is more than one
conserved species of atoms). The invariants then coincide
with “stoichiometric coefficients for quasicrystalline com-
pounds” that have long been studied in connection with
quasicrystals [90,91]. However, while such quantities were
previously studied assuming that the positions of the atoms
are classical points, our new perspective makes it clear that
the invariants are still well defined and quantized in the
presence of quantum fluctuations of the atomic locations.

C. The general classification

In this paper, we also go further and extend these ideas to
address the complete classification of quasicrystalline
topological phases. One can distinguish between quasi-
crystals with nontrivial point-group symmetry and those
without any point-group symmetry.

1. Invertible topological phases without
point-group symmetry

In the case without point-group symmetry, we show that
“integer,” i.e., invertible, topological phases with internal
symmetry G in a quasicrystalline system with D indepen-
dent elastic modes (phonons and phasons) are classified by

⨁
D

k¼0

Q
×

!
D

k

"

d−k : ð3Þ

Here, Qp, for p ≥ 0, is the classification of invertible
topological phases with internal symmetry G in p spatial
dimensions. In words, Eq. (3) is saying that, for each
0 ≤ k ≤ d, there are topological invariants for d-dimensional
topological phases that are related to the classification of
(d − k)-dimensional topological phases; specifically, there
are ðDkÞ independent such invariants. In the crystalline case
(D ¼ d), Eq. (3) reduces to the familiar classification of so-
called “weak invariants,”which are based on stacking lower-
dimensional topological phases. The invariants discussed in
Sec. II B above correspond to the k ¼ d term in Eq. (3) when
the internal symmetry is G ¼ Uð1Þ [recall that the classi-
fication of 0-dimensional topological phases with U(1)
symmetry is Q0 ¼ Z, i.e., the U(1) charge; hence, those
invariants are integer valued].
However, in the quasicrystalline case, there is an

additional phenomenon that has no crystalline analog.

For D > d, d − k can become negative in the sum
Eq. (3). Topological phases in negative spatial dimension
might not seem to make much physical sense, but it turns
out that to get the correct classification of quasicrystalline
topological phases it is necessary to define

Q−1 ¼
#
Z2 G contains time reversal;

0 otherwise;
ð4Þ

as well as

Q−2 ¼
#
0 G contains time reversal;

Z otherwise;
ð5Þ

while Qp ¼ 0 for p < −2. We do not discuss the physical
interpretations of these intrinsically quasicrystalline topo-
logical phases in the present work very much, but it seems
important to study them further.

2. The general case (including noninvertible
topological phases)

Finally, we describe the complete theory taking into
account point-group symmetries and applied also to non-
invertible topological phases. Our main result is the
quasicrystalline equivalence principle, which states that
the classification of quasicrystalline topological phases is in
one-to-one correspondence with the classification of topo-
logical phases with only internal symmetry, with an
effective symmetry group Ĝ related to the quasicrystalline
structure. This is the quasicrystalline generalization of the
“crystalline equivalence principle” for crystalline topologi-
cal phases proposed in Ref. [27].

III. CRYSTALLINE SPTS AND “TOPOLOGICAL
ELASTICITY THEORY”

In this section, we review the classification of crystalline
SPT phases for the case where there are no lattice
symmetries other than translation symmetry and the only
internal symmetry is a U(1) charge conservation symmetry.
In this case, there is an integer-valued invariant ν, which
represents the average charge per unit cell. The LSMOH
theorem ensures that, for a gapped SPT ground state, ν is an
integer.
There is an important interpretation of this invariant ν: It

is the coefficient of a quantized topological term that
appears in the action describing the elasticity theory of the
system (i.e., the dynamics of phonons), after integrating out
all the degrees of freedom other than the long-wavelength
elastic modes. The elastic modes can be described by a
slowly varying displacement field uðx; tÞ corresponding to
the displacement of atoms from their equilibrium positions.
The topological term is most naturally expressed in terms
of the “phase angles” θI (I ¼ 1;…; d), defined in terms
of u as
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uðx; tÞ ¼ 1

2π
aIθIðx; tÞ − x; ð6Þ

where we use the repeated index summation convention
and aI (I ¼ 1;…; d) are a set of primitive lattice vectors.
Then, in the presence of a background gauge field Aμ for
the U(1) symmetry, the Lagrangian can contain, in addition
to the kinetic term, a topological term:

L ¼ L0 þ
ν
2π

ϵμνAμ∂νθ1 ðd ¼ 1Þ; ð7Þ

L ¼ L0 þ
ν
8π2

ϵμνλϵIJAμ∂νθI∂λθJ ðd ¼ 2Þ; ð8Þ

L ¼ L0 þ
ν

48π3
ϵμνλσϵIJKAμ∂νθI∂λθJ∂σθK ðd ¼ 3Þ: ð9Þ

By demanding that the action be invariant (modulo 2π)
under large gauge transformations of A on any space-time
manifold, one can show that ν must be an integer.
From the topological term, one can derive various

properties. Let us focus on the d ¼ 2 case for concreteness.
Then, one finds that the charge density is

ρ ¼ δS
δA0

¼ ν
8π2

ϵijϵIJ∂iθI∂jθJ: ð10Þ

In particular, in equilibrium, one has [setting u ¼ 0 in
Eq. (6)] that θI ¼ KI

ixi [where KI
i is the inverse of the

matrix ð1=2πÞaiI whose columns are the vectors ð1=2πÞaI],
which gives

ρ ¼ ν
4π2

detK ¼ ν
Vunit

; ð11Þ

where Vunit ¼ det a is the volume of the unit cell. Note that,
because the topological term is part of the effective theory
that describes the system on length scales large compared
with the unit cell size, the ρ that we calculate represents the
average charge density over such a scale; of course, the
microscopic charge density can vary rapidly over the scale
of the unit cell, which is not captured by the effective
theory. From Eq. (11), one finds that the charge per unit cell
is ν, as expected. In fact, in general, one can show that
Eq. (10) is equivalent to

ρ ¼ ν

Ṽunit
; ð12Þ

where Ṽunit is the volume of the deformed unit cell due to
the local strain. One can also compute the current density

Ji ¼ δS
δAi

¼ ν
4π2

ϵIJϵij∂jθI∂0θJ; ð13Þ

which one can convince oneself is indeed the correct
expression for the current density for elastic deformations
of a crystal in which a charge ν is bound to each unit cell.

Here, we should mention some conceptual sleight of
hand has taken place. Normally, one thinks of crystalline
SPT phases characterized by the integer invariants ν as
protected by the lattice translation symmetry. By contrast,
phonons are the Goldstone modes arising from the sponta-
neous breaking of a continuous translation symmetry down
to the aforementioned lattice translation symmetry. One
might wonder what the topological term of the Goldstone
modes has to do with the SPT phase with respect to the
residual symmetry. However, in fact, one does expect there
to be a general relation [92].
The topological elasticity point of view proves particu-

larly fruitful when one passes from crystals, which have
discrete translation symmetry, to quasicrystals, which have
no translation symmetry at all. Nevertheless, what we show
is that the elasticity theory of quasicrystals still admits
quantized topological terms, in fact, with an even richer
structure compared to the crystalline case, and that these
topological terms correspond to distinct quasicrystalline
phases of matter.
Finally, let us note that, if we want to take the view that

we are classifying gapped topological phases of matter as
described at the end of Sec. IVA, we can view the elastic
deformations described by the field θI as being imposed
externally, through spatial and temporal variations in the
pinning potential that we impose to make the system
gapped, in which case θI is a nondynamical probe field.
If, on the other hand, we do not care about precise
definitions of topological phases and simply want to study
the physical properties of a real crystal, we are free to treat
the θI as gapless dynamical fields and study the physical
implications of the topological terms. In the latter case, the
prerequisite property for the validity of our discussion is
that the low-energy effective theory of the system should
contain only the elastic modes; thus, metals, for instance,
are excluded.

IV. REVIEW OF QUASICRYSTALS

A. Definition of quasicrystals and quasicrystalline
topological phases

Let us describe the definition of a quasicrystal that we
adopt in the present paper. We consider systems for which
there is a countable set L of wave vectors such that the
expectation value hôðxÞi of all local observables in the
ground state can be expanded in a Fourier series:

hôðxÞi ¼
X

Q∈L
aQ expðiQ · xÞ; ð14Þ

with coefficients aQ that depend on the choice of operator
ô. In a crystal, L is simply the reciprocal lattice of the
crystal, and for a system in d spatial dimensions it can be
generated by a finite set of d vectors (the primitive
reciprocal lattice vectors), in the sense that all elements
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of L can be written as an integer linear combination of
primitive reciprocal lattice vectors. By contrast, we say that
the system is a quasicrystal if L can be generated by a finite
set of vectors, but the smallest such set has size greater
than d.
When we talk about a quasicrystalline topological phase,

we mean a family of Hamiltonians such that the ground
state is always gapped and satisfies the quasicrystallinity
property stated above, with the reciprocal lattice L held
fixed throughout the whole family. In the crystalline case,
this would be equivalent to demanding that the ground state
always respects the discrete translation symmetry of the
lattice, i.e., to a topological phase protected by discrete
translation symmetry. We return to the question of how to
consider topological phases protected by the point-group
“symmetry” of a quasicrystal later on. We also note that the
definition of quasicrystalline topological phases is distinct
from that of “local isomorphism” classes of quasicrystals—
see the Appendix A for a discussion.

B. Phonons and phasons in quasicrystals

The main reason that the elasticity theory of quasicrystals
is richer than that of crystals is that there are two independent
types of elastic deformations in a quasicrystal, corresponding
to phonon and phason modes. In this section, we review the
physics of phonons and phasons, with a particular view to
setting up the notation that we use in later sections.
Let us imagine a ground state in which the local

observables satisfy Eq. (14). One can then argue that, if
the Hamiltonian has continuous translation symmetry (that
is, we are thinking of the quasicrystal as resulting from
spontaneously breaking continuous translation symmetry),
then there is a whole manifold of ground states with equal
energy in the thermodynamic limit. Specifically, one can
show that there is a ground state in which expectation
values take the form

hôðxÞi0 ¼
X

Q∈L
aQ expðiϕQ þ iQ · xÞ; ð15Þ

with the same coefficients aQ as the original state, for any
choice of phases ϕQ (independent of ô) satisfying

ϕQ1þQ2
¼ ϕQ1

þ ϕQ2
½mod 2π& ð16Þ

for any Q1;Q2 ∈ L. The proof is basically that a state that
assigns expectation values Eq. (15) is either a translation of
the original state or else can be arbitrarily well locally
approximated by translations of that state (in the language
of Appendix A, it is in the same “local isomorphism class”
as the original state); either way, it must have the same
energy.
The phases satisfying Eq. (16) can be thought of as

the “order parameter” that labels the spontaneous sym-
metry-breaking ground states. The low-energy elastic

deformations correspond to long-wavelength fluctuations
of this order parameter. Thus, we replace ϕQ in Eq. (15)
with slowly varying functions ϕQðx; tÞ [which are still
required to satisfy Eq. (16) at each point x]. A helpful
way to formulate this is by introducing the phase fields
θQðx; tÞ ¼ ϕQðx; tÞ þQ · x; then, we have

hôðxÞi0 ¼
X

Q∈L
aQ exp½iθQðx; tÞ&; ð17Þ

where θQðx; tÞ satisfies

θQ1þQ2
ðx; tÞ ¼ θQ1

ðx; tÞ þ θQ2
ðx; tÞ ½mod 2π& ð18Þ

and where, for a low-energy deformation, we must have

∇θQðx; tÞ ≈Q; ð19Þ

while in the ground state Eq. (19) becomes an equality.
We can obtain a concrete parameterization of the

solutions to Eq. (18) by introducing a set K1;…;KD,
of reciprocal vectors that generate L. For a crystal, one
would have D ¼ d, whereas for a quasicrystal D > d.
Specifically, we impose the following properties.
(1) Every Q ∈ L can be written as an integer linear

combination of the KI’s.
(2) TheK’s are linearly independent over the integers; if

nIKI ¼ 0 for some integers nI (here, we are using
the repeated index summation convention), then all
the nI’s are zero.

In some cases, it is traditional to drop the second require-
ment and have an overcomplete set of vectors. This is
commonly done in order for the set of generating vectors to
be closed under point-group symmetry, as with the pen-
tagonal quasicrystal discussed in Ref. [70], for which an
overcomplete set of five vectors is traditionally used even
though one of them is an integer linear combination of the
other four. However, in this paper, we do not adopt such
an approach and our generating sets are never overcom-
plete. Note that, because there are infinitely many possible
choices of generating sets for a given L, related by
GLðD;ZÞ transformations, there is always a GLðD;ZÞ
gauge freedom associated with formulas that depend on the
definition of the KI’s. In Appendix B, we discuss an
example of the choice of K vectors for an octagonal
quasicrystal in 2D.
The solutions to Eq. (18) can then be parameterized in

terms of D phase angle fields θIðxÞ (I ¼ 1;…; D) as

θQðx; tÞ ¼ θIðx; tÞnIðQÞ; ð20Þ

where nIðQÞ is the unique integer vector such that
Q ¼ nIKI . Equation (19) can then be expressed as

∇θIðx; tÞ ≈KI: ð21Þ
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Thus, the elastic deformations are parameterized by the D
fields θIðx; tÞ. In a crystal, we have that D ¼ d, and these
are just the usual phonon modes. On the other hand, for a
quasicrystal, we have D > d, and there are more elastic
modes than in a crystal. It is conventional [69–73] to
decompose these modes into phonon and phason modes,
corresponding to certain linear combinations of the θI’s.
However, in this paper, we find it more convenient to work
with the θI’s directly.
Finally, let us note an appealing interpretation of the θ

fields. Define a function õ on RD according to

õðθÞ ¼
X

n∈ZD

anIKI expðin · θÞ; ð22Þ

which is periodic with respect to 2π translations along
any of the coordinate directions in RD and where aQ are
the Fourier coefficients in Eq. (14). Then, we can write
Eq. (15) as

hôðxÞi0 ¼ õ½θðx; tÞ&; ð23Þ

where θðx; tÞ is the vector in RD whose components are
θIðx; tÞ. Thus, in the ground state, where θIðx; tÞ ¼ θIð0Þþ
KI · x, the expectation values of observables in a quasi-
crystal are given by linearly mapping d-dimensional
physical space into a hyperplane slicing through a D-
dimensional “crystal.” Moreover, phonon and phason
deformations correspond to keeping the D-dimensional
crystal fixed (so the function õ remains fixed) but
deforming the mapping from d-dimensional space to the
D-dimensional “superspace.”

V. TOPOLOGICAL TERM FOR THE ELASTICITY
THEORY OF QUASICRYSTALS

The generalization to quasicrystals of the topological
term discussed in Sec. III, expressed in terms of the fields θI

introduced in Sec. IV B, can be written as

L ¼ L0 þ
1

2π
CIϵμνAμ∂νθI ðd ¼ 1Þ; ð24Þ

L ¼ L0 þ
1

8π2
CIJϵμνλAμ∂νθI∂λθJ ðd ¼ 2Þ; ð25Þ

L ¼ L0 þ
1

48π3
CIJKϵμνλσAμ∂νθI∂λθJ∂σθK ðd ¼ 3Þ:

ð26Þ

Here, CI is a D-dimensional vector, CIJ is a ðD ×DÞ
antisymmetric matrix, and CIJK is a rank-3 tensor of
dimension D which is antisymmetric in all pairs of indices.
By demanding that the action be invariant (modulo 2π)
under large gauge transformations of A on any space-time

manifold, one can show that each entry of C is quantized to
be an integer. Therefore, we obtain a partial classification of
quasicrystalline SPTs with U(1) symmetry by integral
antisymmetric rank-d tensors of dimension D. In the
crystalline case, where D ¼ d, all such tensors are simply
integer multiples of the Levi-Civita tensor, and we recover
Eq. (1) in d ¼ 2, for example.
Note that, for a given quasicrystalline SPT phase with

underlying reciprocal lattice L, the entries of C depend on
the arbitrary choice of the generating reciprocal vectors
KI’s for L. We see later that a more abstract way to state
the classification, that has the advantage of being gauge
invariant, is as follows: The SPT phases are classified by
integral cohomology HdðL';ZÞ, where L is the space of
homomorphisms from L' into U(1), that is, the space of
solutions to Eq. (16) (note that we are taking singular
cohomology of the topological space L', discarding its
group structure, not group cohomology). We can recover
the concrete classification in terms of integral antisym-
metric tensors if we observe that L' is topologically a
D torus.
For quasicrystals, there are, in fact, additional possible

topological terms that one can write, which do not depend
on the U(1) symmetry. First, if D ≥ dþ 1, then we can
write the term

LTheta ¼ ΘIJ
1

8π2
ϵμν∂μθI∂νθJ ðd ¼ 1Þ; ð27Þ

LTheta ¼ ΘIJK
1

48π3
ϵμνλ∂μθI∂νθJ∂λθJ ðd ¼ 2Þ; ð28Þ

and so on, whereΘ is an antisymmetric tensor in dimension
D. One can show that, if the entries of Θ are integer
multiples of 2π, then the action is a multiple of 2π on any
closed manifold; therefore, the entries ofΘ are defined only
modulo 2π. Hence, since under time-reversal symmetry we
have Θ → −Θ, we see that, if we impose time-reversal
symmetry, then the components of Θ are quantized to be 0
or π (modulo 2π). Thus, for each independent component
of Θ, we obtain a Z2 quantized topological invariant (these
arguments should, of course, be very reminiscent of those
for a topological insulator in three spatial dimensions [93]).
In the more abstract language, these topological terms (and,
hence, the corresponding quasicrystalline SPTs) are clas-
sified by Hdþ1ðL';Z2Þ.
Finally, if time-reversal symmetry is broken and

D ≥ dþ 2, then there is an additional class of topological
terms of the Wess-Zumino type [94]. These ones are not
canonically expressible as a local Lagrangian in dþ 1 space-
time dimensions. Instead, the action is written in terms of an
extension of the θ fields into one higher dimension:

SWZ½θ& ¼
Z

Mdþ2

LΘ
dþ2½θ̃&; ð29Þ
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where Mdþ2 is a (dþ 2)-dimensional manifold whose
(dþ 1)-dimensional boundary corresponds to the physical
space-time and θ̃ is an extension of the θ fields onto Mdþ2.
Ldþ2 is an action of the form analogous to Eqs. (27) and (28)
(but in space-time dimension dþ 2), parameterized by a
rank-dþ 2, dimension D antisymmetric integer tensor. In
order for the action to be independent of the choice of
extension θ̃, we require that all the components of Θ are an
integer multiple of 2π. In the abstract language, these terms
are classified by Hdþ2ðL';ZÞ.
In this paper, we focus on the topological terms of the

form Eqs. (24)–(26), leaving a detailed examination of the
consequences of the other topological terms described
above for future work.

VI. MOBILITY OF DISLOCATIONS IN A
QUASICRYSTAL

A well-known fact about defects in crystals is that
dislocations can move only in the direction of their
Burgers vector. Specifically, this applies to systems with
a conserved charge, such that the charge ν per unit cell
(see Sec. II B) is nonzero. One can then show that moving
the dislocation in a direction not parallel to the Burgers
vector violates charge conservation. For crystals, an
approach based on topological terms in the elasticity
theory is given in Ref. [80]. More recently, these mobility
constraints have been interpreted in terms of a duality
between the elasticity theory of a crystal and higher-rank
tensor gauge theory [95–97].
In this section, we show that a generalization of

this mobility constraint applies to dislocations in two-
dimensional quasicrystals. A dislocation in a quasicrystal is
characterized by a nontrivial winding number of the θ field
defined in Sec. IV B above as the dislocation is encircled:

1

2π

I

C
dxi∂iθI ¼ bI ∈ ZD; ð30Þ

where C is a loop surrounding the dislocation and bI is the
Burgers vector. The topological mobility constraint of a
dislocation can be derived from the charge conservation, as
we now show.
From Eq. (25), we see that there is a contribution to the

current given by

Jμ ¼ 1

8π2
CIJϵμνλ∂νθI∂λθJ: ð31Þ

From this, we find that the condition for local charge
conservation takes the form

∂μJμ ¼ CIJϵμνλð∂μ∂νθI − ∂ν∂μθIÞ∂λθJ ¼ 0: ð32Þ

Assuming that we are close to the equilibrium configura-
tion, we have

∂0θI ≈ 0; ∂iθI ≈ KI
i: ð33Þ

We then expand Eq, (32) to the leading order in ∂iθI − KI
i,

giving

∂μJμ ¼ CIJϵijð∂0∂iθI − ∂i∂0θIÞKJ
j ¼ 0: ð34Þ

Now consider a dislocation with Burgers vector bI at
position xiðtÞ moving at velocity vj. Then, one finds that

ð∂0∂i − ∂i∂0ÞθI ¼ ϵijvjδ2½x − vðtÞ&; ð35Þ

and, hence, the local charge conservation requires that

CIJbIKJ
jvj ¼ 0: ð36Þ

Equation (36) gives the topological mobility constraint of
dislocations in a two-dimensional quasicrystal. We see that
a dislocation can move only along the direction set by a
combination of the reciprocal lattice vectors, the SPT
invariant CIJ, and the Burgers vector bI.
One can, of course, raise an objection regarding the rigor

of the above argument, since it is based on linearizing about
the equilibrium configuration, while, in fact, θI always
becomes singular at the dislocation core. Moreover, one
does not expect the continuum field theory description that
we are using to be valid near the dislocation core. In
Appendix E, we give a more careful argument for the
constraint Eq. (36) by invoking the continuum field theory
description only far away from the dislocation core, where
one expects such a description to be valid.
Note that there is always at least one direction vj that

satisfies Eq. (36). Thus, as in crystals, dislocations in
quasicrystals are never completely immobilized but can
move in some direction. On the other hand, at low tem-
peratures, quasicrystals are found experimentally to be
quite brittle, reflecting the fact that, for dynamical reasons,
it is more difficult (but not impossible) for dislocations to
move in quasicrystals than in crystals [98], even though
there is no topological constraint that fully immobil-
izes them.

VII. AVERAGE CHARGE DENSITY FOR
QUASICRYSTALS AND THE LSMOH THEOREM

Another consequence of the topological terms in
Eqs. (24)–(26) is for the overall charge density of the
system. Since the charge density can be evaluated as
ρ ¼ δS=δA0 and using the fact that, in the ground state
∂iθI ¼ KI

i, we find the average density

ρ ¼ 1

2π
CIKI ðd ¼ 1Þ; ð37Þ

ρ ¼ 1

8π2
CIJϵijKI

iKJ
j ðd ¼ 2Þ; ð38Þ
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ρ ¼ 1

48π2
CIJKϵijkKI

iKJ
jKK

k ðd ¼ 3Þ: ð39Þ

Here, we assume that the nontopological part of the action
does not contribute to the average charge density. This is a
reasonable assumption, because the phonon and phason
fields do not transform nontrivially under U(1), so they do
not minimally couple to the gauge field (and one can verify
that a nonminimal coupling does not give any contribution
to the ground state charge density).
In the crystalline case, where C is always an integer

multiple ν of the Levi-Civita symbol, then this simply
amounts to saying that the charge per unit cell is ν. More
generally, a helpful way to interpret these expressions is in
terms of the tile picture in Sec. VIII A; these densities are
precisely the average charge densities that one expects from
having integer charges bound to the tiles (with the charge
bound to each class of tiles given by the appropriate entry
of C), once one takes into account how often each tile class
appears in a tiling of space.
The set SðLÞ of all allowed densities, generated by

varying C in Eqs. (37)–(39) over all integer antisymmetric
tensors, determines the quasicrystalline version of the
LSMOH theorem: Only densities in this set are allowed
in an insulating quasicrystal with reciprocal lattice L
without noninvertible topological order (i.e., without
ground state degeneracy on the torus). Unlike in the
crystalline case, the set SðLÞ is typically dense in the
space of all real numbers; that is, for any ρ ∈ R, we can find
allowed densities arbitrarily close to ρ. However, the
allowed densities are not continuous—there is no interval
½ρ0; ρ1& with ρ0 < ρ1 such that ½ρ0; ρ1& is a subset of SðLÞ—
as can be seen from the fact that SðLÞ is a countable set.
Note that, in order for SðLÞ to be dense, one must allow the
integer entries of C to take arbitrary large values. In fact, we
expect that systems with large entries of C are probably
very hard to realize in practice.
Finally, let us remark that in the case of free-fermion

insulators, Eqs. (37)–(39), involving the quantized integer
“gap labels” C, have long been known [99,100]. Our work
can, thus, be seen as a demonstration that these free-
fermion topological invariants are robust to arbitrary local
interactions that respect the quasicrystalline structure.

VIII. SIMPLE INTERPRETATIONS
OF THE SPT INVARIANTS

A. Tiling interpretation

We now discuss a simple interpretation of the SPT
invariants C in Eqs. (24)–(26) in terms of the tiles forming
the quasicrystal. Recall first the well-known fact that a
quasicrystalline structure can be obtained by tiling space in
such a way that each tile Ti can, by translation, be related to
one of a finite set fTigni¼1 of primitive tiles. In fact, there is
a canonical way to generate such a tiling for any reciprocal

lattice L [101], such that, for an L withD primitive vectors,
there are n ¼ ðDdÞ primitive tiles. In the case of a periodic
crystal, we have D ¼ d and, hence, n ¼ 1, so that only a
single primitive tile is required (the unit cell).
Now, since C is a rank-d antisymmetric integer tensor of

dimensionD, it has ðDdÞ independent entries. The basic idea
is that, in a suitable limit, we can interpret these integer
entries of C as the charge bound to the corresponding tiles
of the quasicrystal. For example, Fig. 1 illustrates this
picture for the case of a d ¼ 2, D ¼ 4 quasicrystal, for
which there are six independent invariants (for a discussion
of how the tiling shown in Fig. 1, known as Ammann-
Beenker tiling, is constructed, see Appendix D). In the case
D ¼ d, where there is only one kind of tile, this evidently
reduces to just the total charge per unit cell. Of course, this
picture is valid only in the limit where the charges are
tightly bound to the tiles; however, the discussion in the
previous section demonstrates that the SPT invariants are
still robust in the presence of charge fluctuations, as long as
the system remains gapped.
This picture corresponds to the k ¼ d invariants in the

general classification discussed in Sec. II C 1. The picture
can also be generalized to the other SPT invariants in that
classification, at least for k ≤ d. For example, consider the
case of k ¼ d − 1. Then, there are ð D

d−1Þ independent SPT
invariants, each of which takes values in the classification
group of one-dimensional SPTs with respect to the internal
symmetry. ð D

d−1Þ is the number of different kinds of
codimension-1 faces of the tiles. Thus, the SPT states
correspond to piercing the codimension-1 faces with the

FIG. 1. A construction of the k ¼ 2 quasicrystalline topological
phases for a d ¼ 2, D ¼ 4 quasicrystal. Each color (of which
there are six) is assigned a topological invariant that can be
chosen independently (if no rotational symmetry is imposed) and
represents the charge bound to the corresponding tile. If eightfold
rotational symmetry is imposed, then there are two independent
invariants, corresponding to the square and rhombus tiles.
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corresponding one-dimensional SPTs. This is illustrated
in Fig. 2.
In order to demonstrate the validity of this tile picture in

the k ¼ d case for a system with U(1) symmetry, it is
instructive to compute the average charge density ρ of the
system. Let us focus on the d ¼ 2 case for concreteness.
The tiles’ classes are then labeled by pairs of indices ðIJÞ.
Then, since each tile of type ðIJÞ carries charge CIJΣIJ
(where ΣIJ ¼ (1 defines some sign convention, such that
ΣIJ ¼ −ΣJI), we find that

ρ ¼ 1

2
CIJρIJ; ð40Þ

where ρIJ ¼ ΣIJjρIJj and jρIJj is the average number of
ðIJÞ-type tiles in the tiling per unit volume. Moreover, we
show in Appendix C that

ρIJ ¼ 1

ð2πÞ2
KI

iKJ
jϵij: ð41Þ

Hence, we find

ρ ¼ 1

8π2
CIJKI

iKJ
jϵij; ð42Þ

which agrees with Eq. (38).

1. Example: Fibonacci tiling

To further illuminate the tile picture (for the k ¼ d case),
let us consider for simplicity the case of a Fibonacci

quasicrystal in d ¼ 1 dimension. In this case, we have
D ¼ 2 and so ðDdÞ ¼ 2 distinct tiles. A typical Fibonacci
quasicrystal is obtained by putting particles at positions

xn ¼ x0 þ nð3=τ − 1Þ þ ð1=τ − 1Þfracðn=τÞ; ð43Þ

where fracðxÞ is the fractional part of x and τ ¼ ð1þffiffiffi
5

p
Þ=2 is the golden ratio. The distances of neighboring

points xn − xn−1 are either 1 or 1=τ. One can, thus, equi-
valently view the Fibonacci quasicrystal as consisting of a
sequence of intervals with length 1 and 1=τ. These two
types of intervals are called a long (L) and a short (S) tile,
respectively—a typical Fibonacci quasicrystal is shown in
Fig. 3, where the L and S tiles are colored in blue and green,
respectively. The primitive reciprocal vectors K1 and K2

(actually just scalars, since d ¼ 1) for the Fibonacci
quasicrystal are given by [102]

1

2π

!
K1

K2

"
¼ 1

2 − 1=τ

!
1

1=τ

"
: ð44Þ

From Eq. (37), we obtain the charge density of the
Fibonacci quasicrystal:

ρ ¼ 1

2π
CIKI ð45Þ

¼ C1

2 − 1=τ
þ C2=τ
2 − 1=τ

: ð46Þ

We now show that we can interpret the SPT invariants C1

and C2 as the integer charges bound to the L and S tiles,

FIG. 2. A construction of the k ¼ 1 quasicrystalline topological
phases for a d ¼ 2, D ¼ 4 quasicrystal. Each color (blue, orange,
green, and red) is assigned a 1D SPT invariant that can be chosen
independently (if no rotational symmetry is imposed) and
represents the 1D SPT phases placed along the corresponding
paths. If eightfold rotational symmetry is imposed, there is only
one independent SPT invariant.

FIG. 3. Generating the d ¼ 1 Fibonacci quasicrystal from a
D ¼ 2 square lattice decorated with d ¼ 1 atomic surfaces σ (red
line segments). Black dots denote lattice sites, and dashed black
lines indicate the superspace unit cell. Intersections between the
atomic surfaces and physical space Ek generate the quasicrystal;
the intersections divide Ek into a sequence of long (L, in blue)
and short (S, in green) intervals.
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respectively. Consider a large region with length V in the
physical space, and let C1 and C2 be the integer charges
bound to the L and S tiles, respectively. The total charge Q
inside the region V is given by

Q ¼ nLC1 þ nSC2; ð47Þ

where nL and nS denote the number of L and S tiles,
respectively, inside the region V. Let lL and lS be the
lengths of L and S tiles. The total length of this region is
then given by

V ¼ lLnL þ lSnS: ð48Þ

Combining the above, we find the average charge density:

Q
V

¼ nLC1 þ nSC2

lLnL þ lSnS
ð49Þ

¼ C1 þ C2=τ
2 − 1=τ

1

lL
: ð50Þ

To obtain the second equality, we use the fact that the L tile
appears more frequently than the S tile and that the ratio of
their frequencies converges to the golden ratio τ. Hence, we
have nL ¼ τnS. We also use that the lengths of the tiles
satisfy lL ¼ τlS and 1þ ð1=τÞ2 ¼ 2 − 1=τ. In calculating
the average charge density, we see that it is important to
take the frequency of each class of tiles into account, which
is a unique feature of quasicrystals. Comparing Eq. (50)
with Eq. (46), we further see that the density ρ given in
Eq. (46) is the average charge density over a scale much
larger than the length of the L tile. We can, therefore,
interpret the SPT invariants C1 and C2 as the integer
charges bounds to the L and S tiles.

B. Atomic surfaces

In this section, we provide another interpretation of the
SPT invariants introduced in Eqs. (24)–(26). Specifically,
we describe how to assign a quantized topological invariant
to any quasicrystal such that the location of particles whose
number is conserved forms a classical point set (they no
longer need to be rigidly bound to the center of tiles as they
were in the previous interpretation). In this context, the
invariant is a well-known one in the quasicrystal literature
[90,91]. In this section, we refer to the particles as “atoms”
in line with previous literature. As always, the consider-
ations of the present paper demonstrate that the SPT
invariants do remain well defined beyond the limit of
classical point particles, but in the current section we focus
on this limit.
First, we need to introduce some important concepts of

quasicrystals from the superspace perspective. Recall that a
quasiperiodic arrangement of point atoms can be described
as a d-dimensional section of a D-dimensional periodic

measure (where there exists a unique minimal value for
D [103]). More specifically, a function of d real variables
on an affine d-dimensional space Ek is said to be
quasiperiodic if it is the restriction to Ek of some periodic
function ofD real variables defined in a higher-dimensional
space RD. Of course, when the physical space Ek (also
referred to as the “embedded” space or the “cut”) is
oriented rationally with respect to the lattice of periods
of the periodic function, the restriction of this function to
Ek is itself a periodic function. However, a quasiperiodic
function is obtained upon restriction of the periodic
function to a cut that is irrationally oriented.
As discussed in Ref. [91], to describe a quasiperiodic

arrangement of point atoms, consider a D-dimensional
periodic measure μ such that its restriction toEk results in a
quasiperiodic configuration of Dirac delta functions. Let Λ
be the lattice of periods of this measure; then, the support
of μ defines a Λ-periodic geometric locus Σ. We refer to Σ
as the set of atomic surfaces. The quasiperiodic atomic
configuration is then generated by the intersection points of
Σ with Ek.
As an example, let us consider a two-dimensional

(D ¼ 2) square lattice (with lattice constant unity) and
Ek given by a d ¼ 1 subspace oriented at an angle α with
respect to the x axis (see Fig. 3). Each vertex of the square
lattice is decorated with an atomic surface of length
l ¼ sinðαÞ þ cosðαÞ. The intersection points of Σ with
Ek generate a quasicrystalline structure iff tan α is irra-
tional; in particular, one obtains the paradigmatic Fibonacci
quasicrystal when tanðαÞ ¼ 1=τ, where τ ¼ ð1þ

ffiffiffi
5

p
Þ=2 is

the golden ratio. As shown in Fig. 3, Σ divides Ek into a
sequence of long (L) and short (S) intervals—or “tiles”—of
length 1 and 1=τ, respectively.
We can imagine that there are two different species of

atoms, corresponding to particles that appear to the right of
an L tile and atoms that appear to the right of an S tile; we
refer to these as L and S atoms, respectively. Therefore, we
can classify segments of atomic surface into two different
“types,” depending on which kind of particle they produce
upon intersection with Ek, as shown in Fig. 4. Moreover,
while the atomic surfaces are originally discontinuous, we
introduce segments that are parallel to the physical space to
make the atomic surfaces of each type closed curves
without affecting the quasicrystalline structure on Ek.
The property that the atomic surfaces should be closed
is referred to as the “closeness condition” [91]. Physically,
this condition reflects the conservation of the two species of
atoms, since it ensures that a phason deformation (which
corresponds to moving Ek in the superspace) at most
causes particles to jump to nearby positions but not to be
created or destroyed. Henceforth, we take the term “atomic
surface” to mean a continuous atomic surface.
Figure 4 shows an S atom (yellow dot) with the

corresponding S-type atomic surface represented by the
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yellow line. Figure 4 also shows an L atom (red dot),
with the corresponding S-type atomic surface shown in
red. As one can see from Fig. 4, the S-type atomic
surface winds nontrivially on the 2-torus along the θ1

direction; that is, it has a “winding number” (1,0), while
the S-type atomic surface winds nontrivially on the 2-
torus along the θ2 direction; that is, it has a winding
number (0,1). These winding numbers precisely deter-
mine the SPT invariants with respect to the two U(1)
symmetries corresponding to the conservation of S and L
atoms, respectively.
Similarly, one can give a general statement of the

topological invariant for any configuration of atomic
surfaces corresponding to a conserved species of par-
ticles. We represent an atomic surface as a Z-valued
(D − d) cycle on TD. Topologically nontrivial configu-
rations of the atomic surfaces are then classified by the
homology group HD−dðTD;ZÞ. By applying the Poincaré
duality, we see that these are then equivalently classified
by the cohomology group HdðTD;ZÞ. As discussed in
Sec. V, the SPT invariants are classified by the same
cohomology group HdðL';ZÞ, with L' topologically
equivalent to TD; therefore, the SPT invariants are
determined by the (co)homology classes of the atomic
surfaces on the D torus.
This concludes our second interpretation of the SPT

invariants C in terms of the atomic surfaces. We finally
note that this picture can be generalized in an obvious
way to the other SPT invariants discussed in Sec. II C 1
with k < d, where we replace the assumption of classical
point particles in d spatial dimensions with the
assumption that there is some configuration of (d − k)-
dimensional surfaces in d spatial dimensions that host
(d − k)-dimensional SPTs.

IX. THE GENERAL CLASSIFICATION OF
QUASICRYSTALLINE TOPOLOGICAL PHASES

A. Without point-group symmetry

As we discuss in Sec. IV B above, the “order parameter
manifold” for a quasicrystal is L', the group of homomor-
phisms from the reciprocal lattice L into U(1). As pre-
viously discussed, for example, in Ref. [92], in general,
“topological terms for Goldstone modes” arise when the
symmetry-breaking ground states, viewed as a family of
gapped ground states parameterized by the order parameter
manifold, are a topologically nontrivial family. Thus, in
order to classify quasicrystalline topological phases, which
we view as being characterized by the topological term of
the phonons and phasons, we want to classify topological
families of ground states parameterized by L'.
Let us briefly note one subtlety, which is that, for

quasicrystals, the ground states are not necessarily con-
tinuous functions of the order parameter. For example, in
Fig. 3, varying the order parameter corresponds to moving
the location of the cut in superspace, and one readily sees
that this sometimes results in discontinuous jumps of the
locations of particles. This is a well-known fact about
phasons in quasicrystals. Nevertheless, these jumps always
involve only local rearrangements; this implies, for exam-
ple, that they can be effected by a local unitary. We
conjecture, therefore, that the classification of topological
families remains unchanged. In any case, these disconti-
nuities are likely an artifact of treating the particle locations
as totally classical variables and would likely get smoothed
out once one allows these variables to quantum fluctuate.
The problem of classifying topological classes of fam-

ilies of gapped ground states parameterized by a space L',
in the presence of internal symmetry Gint, has previously
been considered in Refs. [27,104–110]. Although not
rigorously proven, it is believed that, for invertible states,
such families are classified by hdðL' × BGintÞ, where BGint
is the classifying space of Gint and h• is some generalized
cohomology theory, probably cobordism for bosonic sys-
tems and spin cobordism for fermionic systems.2 From
axioms of generalized cohomology and using the fact that
L' ≅ TD, one can show [111] that

hdðL' × BGintÞ ¼ ⨁
D

k¼0

Hk½L'; hd−kðBGintÞ&: ð51Þ

To interpret this equation, it is helpful to recall that, for
d − k ≥ 0, hd−kðBGintÞ is the classification of SPTs (and
invertible topological phases) with internal symmetry Gint
in d − k spatial dimensions. Thus, this result reduces to the

FIG. 4. Atomic surfaces (black lines) of a Fibonacci quasi-
crystal. The vertices of the Fibonacci quasicrystal are determined
by the intersection points of the physical space and the atomic
surfaces. The blue and green regions are the long (L) and the
short (S) tiles that tile the d ¼ 1 physical space. The yellow line is
an S-type atomic surface associated to the yellow particle. The red
line is an L-type atomic surface associated to the red particle.

2For systems with antiunitary symmetries or nontrivial ex-
tensions ofGint by fermion parity, the precise statement is slightly
modified; we disregard this subtlety, since it does not affect the
conclusions.
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classification Eq. (3) stated in Sec. II C 1. As mentioned
there, we can think of the terms of Eq. (51) (for 0 < k ≤ d)
as a generalization of the “weak invariants” that classify
SPT phases with translation symmetry, associated with
stacking lower-dimensional SPT phases.
Intriguingly, however, the sum in Eq. (51) can also

contain terms with k > d, which are not a straightforward
generalization of weak invariants. In particular, one can
argue that, if Gint contains an antiunitary symmetry, then
h−1ðBGintÞ ¼ Z2; h−2ðBGintÞ ¼ 0; whereas, if G does not
contain an antiunitary symmetry, then h−1ðBGintÞ ¼ 0;
h−2ðBGintÞ ¼ Z. To show this, one can consider the d ¼
0 case of the classification Eq. (51); here, we no longer
interpret L' as reflecting actual phonon and phason modes,
just some manifold that parameterizes the ground state of
the system. If we set L' ¼ S1, then, for time-reversal
invariant systems, there must be a Z2 topological invariant
corresponding to the Berry’s phase of the ground state
around the circle being 0 or π; while if we set L' to be a
2-torus, then for non-time-reversal-invariant systems there
be must be a Z topological invariant corresponding to the
Chern number of the Berry connection over the torus. One
can further argue that there are no new invariants arising in
the d ¼ 0 case if L' is a higher-dimensional torus, so we
can conclude that hrðBGintÞ ¼ 0 for r < −2. The terms
in Eq. (51) corresponding to k > d reflect the theta and
Wess-Zumino terms that can appear in the elasticity theory,
as we discuss in Sec. V; see, in particular, Ref. [108] for a
microscopic discussion of the topological invariant for
ground states parameterized by a space X that gives rise
to a Wess-Zumino term on X.
Finally, let us note that it is not necessary to restrict

ourselves only to invertible states. We can also discuss
quasicrystalline enrichment for noninvertible topological
phases; we discuss this below as part of the general theory,
taking into account point-group symmetries as well.

B. With point-group symmetry

We also can extend the above considerations to incor-
porate point-group symmetry. We first need to recall
the somewhat subtle notion of point-group symmetry
in a quasicrystal [77]. Let R ∈ OðdÞ be some (possibly
improper) rotation, and recall from the previous sections
that, for a quasicrystal, there is a family of ground states
labeled by the “order parameter manifold” L'. We say that
a quasicrystal has point-group symmetry R if there is an
action of R on the Hilbert space that permutes these ground
states among themselves. This ensures, for example, that
the intensity of the peaks of the Fourier transform of the
expectation value of any local observables is invariant
under R.
Specifically, let jΨ½ϕ&i be the family of quasicrystalline

ground states labeled by ϕ ∈ L'. Let G be some group, let
ρ∶G → OðdÞ and γ∶G → L' be homomorphisms, and let
UðgÞ, g ∈ G, be an (anti)unitary representation of G on the

Hilbert space of the system that maps operators supported
near the point x to operators supported near the point
ρðgÞx. Then, we say that the system has the symmetry G if

UðgÞjΨ½ϕ&i ¼ jΨ½ϕþ γðgÞ&i: ð52Þ

Let us remark that, upon identifying L' with RD=ZD, it
is always possible to find a group Ĝ and an affine-linear
action of Ĝ on RD, i.e.,

x ↦ RðgÞxþ γ̂ðgÞ; g ∈ Ĝ; ð53Þ

where RðgÞ ∈ GLðD;ZÞ and γ̂ðgÞ ∈ RD, with the follow-
ing properties: (a) Ĝ contains all the unit translations ZD as
a normal subgroup, and Ĝ=ZD ≅ G; (b) σ½γ̂ðgÞ& ¼ γ½πðgÞ&
for all g ∈ Ĝ, where σ∶RD → RD=ZD and π∶Ĝ → G are
the projection maps; and (c) the action of RðgÞ ∈ GLðD;ZÞ
on the torus L' ¼ RD=ZD agrees with the action induced
on L' from the action of ρðgÞ on L. In terms of the
superspace picture, we can think of Ĝ as the space group of
the D-dimensional crystal through which we take a cut to
obtain a d-dimensional quasicrystal. The subgroupZD ≤ Ĝ
is the translation symmetry of the D-dimensional crystal,
and G ¼ Ĝ=ZD is its point group.
It turns out that Ĝ can be thought of as the “effective

symmetry group” of the quasicrystal from the point view of
the classification, even though there is no sense in which Ĝ
can literally be interpreted as a symmetry of the quasi-
crystal. To show the classification, we note that the problem
of how to classify topological families satisfying Eq. (52)
is precisely the problem considered in Ref. [27] (some
subtleties glossed over in Ref. [27] are clarified in
Ref. [28]), even though the physical interpretation given
in Refs. [27,28] is different. Moreover, Refs. [27,28] focus
on the case where the family is parameterized by a d-
dimensional torus Td or, equivalently, by Euclidean space
Rd. Here, the family is parameterized by the spaceL' ≅ TD

of dimension D > d. However, it is not, in fact, essential
for any of the arguments of Refs. [27,28] that the
parameterizing space have dimension d. Therefore, by
similar arguments to Refs. [27,28], we obtain the following
principle.

1. Quasicrystalline equivalence principle

The classification of quasicrystalline topological phases
in d spatial dimensions with “effective symmetry” Ĝ is in
one-to-one correspondence with the classification of topo-
logical phases with internal symmetry Ĝ in d spatial
dimensions.
This is the quasicrystalline generalization of the crys-

talline equivalence principle of Ref. [27] and holds for both
symmetry-protected and symmetry-enriched topological
phases. As in the crystalline case, there are some “twists”;
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for example, a unitary spatial orientation-reversing sym-
metry maps to an antiunitary internal symmetry.
We emphasize that we are not saying that quasicrystal-

linity is equivalent to additional spatial dimensions. Both
sides of the correspondence relate to topological phases in
d spatial dimensions; it is only the effective symmetry
group Ĝ that can be interpreted, if one likes, as the space
group of a fictitious crystal in D spatial dimensions.
Moreover, from the arguments in Ref. [28], we can also

derive a “defect network” picture for quasicrystalline
topological phases. The defect network lives in the D-
dimensional superspace and is required to be invariant
under the symmetry Ĝ, but it is not equivalent to a defect
network for a D-dimensional crystalline topological phase.
The difference is that, in the latter, an r-dimensional defect
carries the data of an r-dimensional SPT (in the invertible
case, say), whereas, in the former, an r-dimensional defect
carries the data of an ½r − ðD − dÞ&-dimensional SPT.

X. CONCLUSIONS

In this work, we describe a general approach for under-
standing many-body topological phases of matter protected
by quasicrystallinity, leading ultimately to a general clas-
sification result. More concretely, we focus on the physical
implications of a particular class of quasicrystalline topo-
logical phases, namely, those protected by U(1) charge
conservation. For such phases, we provide various inter-
pretations and implications through the lens of topological
elasticity theory. In the future, it will be desirable to explore
the physical characteristics of other quasicrystalline topo-
logical phases that result from our general classification,
particularly those with the “Wess-Zumino”-type response
discussed in Sec. V; such phases are fundamentally new to
quasicrystals and do not occur in crystals. Another impor-
tant direction will be to search for these phases of matter in
experimental platforms. As a step in this direction, it would
also be useful to find concrete microscopic models real-
izing such phases.
Here, we focus on the bulk manifestations of quasicrys-

talline topological phases. It would also be interesting to
consider whether the surfaces of these phases host pro-
tected gapless edge modes. For phases protected by
quasicrystalline point-group symmetries, one presumably
expects some kind of corner or hinge modes, as in the case
of crystalline HOTIs. For noninteracting systems, this has
already been verified in Refs. [47–49]. Meanwhile, phases
such as the one depicted in Fig. 2 [more generally, any of
the phases classified by terms of Eq. (3) with 0 < k < d]
are generalizations of crystalline weak SPT phases that host
gapless edge modes provided that the surface preserves
some subgroup of lattice translation symmetry. In order to
extend this to quasicrystals, one would first need to develop
a theory of quasicrystalline surfaces, including formulating
a surface property that generalizes “preserving a subgroup
of lattice translation symmetry” to the quasicrystalline case.

It would be interesting to generalize the quasicrystalline
LSMOH result discussed in Sec. VII above. For crystalline
systems, in cases where LSMOH forbids a trivial gapped
ground state, a gapless ground state must still obey
constraints such as Luttinger’s theorem; such constraints
were recently placed on a general footing in Ref. [112]. It
might be possible to combine our results with those of
Ref. [112] to obtain analogs of such constraints on gapless
systems for the quasicrystalline case.
With regards to the general classification scheme dis-

cussed here, further developing the “defect network”
picture (discussed in Sec. IX B) as well as the “building
block” picture (developed for cSPT phases in Refs. [25,26])
could shed further light on the nature of quasicrystalline
topological phases. Finally, it will be instructive to study
noninvertible quasicrystalline phases in more detail as well,
since the interplay of quasicrystallinity with topological
order has yet to receive much attention.
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APPENDIX A: TOPOLOGICALLY EQUIVALENT
LOCAL ISOMORPHISM CLASSES

In this Appendix, we comment on how the classification
discussed in the main text relates to existing notions of
equivalence classes for quasicrystals. First, it is important
to understand which quasicrystals are physically indistin-
guishable, i.e., have the same diffraction pattern and
correlation functions. For periodic crystals, there is a
unique arrangement of the fundamental repeating units
(atoms or tiles/unit cells) that forms the ideal crystal, up to
translations and rotations. In contrast, for quasicrystals
there is an infinite number of ways of arranging the
repeating units to form the ideal structure—the choice of
orientational symmetry and the fundamental repeating units
(be they atoms or tiles) does not suffice to uniquely specify
a quasicrystal [98]. Indeed, there exists an uncountable
infinity of distinguishable arrangements of the same repeat-
ing units whose diffraction patterns (Fourier spectra) are
given by the same set of reciprocal wave vectors with
different Bragg peak intensities.
It is, hence, desirable to organize quasicrystals into

equivalence classes. One such existing notion is that of
local isomorphism (LI) classes [113,114], where two
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quasicrystals are said to be in the same LI class iff any
bounded configuration of repeating units present in one
appears, up to finite translations (plus global rotations and
inversions), in the other with the same frequency.
Quasicrystals within the same LI class cannot be distin-
guished by measurements made on any finite length scale.
In fact, one can show that two quasicrystals are locally
isomorphic if and only if they have identical diffraction
patterns: The locations of the Bragg peaks and the peak
intensities of locally isomorphic quasicrystals match
[113,114]. On the other hand, two quasicrystals whose
diffraction patterns have Bragg peaks in the same locations
but with differing peak intensities belong to distinct LI
classes. Consequently, quasicrystals have the same free
energy if they belong to the same LI class. Note that for
periodic crystals, for which there exists a unique arrange-
ment (up to translations) of the fundamental repeating
units, each LI class contains a single element.
In the atomic surface description of quasicrystals dis-

cussed in Sec. VIII B, notice that, once we fix an orientation
for Ek, we can automatically generate an infinite number of
different quasiperiodic arrangements. However, for a
generic atomic surface, arrangements obtained from two
cuts belong to the same LI class if and only if they can be
mapped onto each other by a translation in superspace, as
these shifts do not alter the diffraction pattern [91]. For
example, we can consider a translation of the two-dimen-
sional periodic structure in Fig. 3 with respect to the origin
O of Ek by a vector v. It can be shown that the resulting
atomic configurations onEk before and after the translation
overlap out to arbitrary finite distances by a finite trans-
lation along Ek; i.e., they belong to the same LI class and
are physically indistinguishable.
Hence, LI classes subdivide quasicrystals such that

elements of a given LI class are physically equivalent;
i.e., their diffraction patterns have Bragg peaks at identical
locations and have the same intensities. As mentioned
earlier, this classification is not particularly meaningful for
periodic crystals where each LI class contains a single
element. Nevertheless, one can still define topological
equivalence classes for periodic crystals. As discussed in
Sec. III, for the case where the only symmetries are
translation and U(1) charge conservation, the integer-
valued invariant ν [see Eqs. (7)–(9)] labels the topologically
inequivalent classes, where elements within a class can be
smoothly deformed into each other without changing ν.
This notion of topological equivalence classes general-

izes to quasicrystals. As discussed earlier, there exist
infinitely many arrangements of the same repeating units
whose Fourier spectra have Bragg peaks in the same
positions but with different peak intensities. We subdivide
this space of quasicrystals into topological classes such that
each class consists of LI classes that can be smoothly
deformed into each other. In particular, two physically
inequivalent LI classes are topologically equivalent iff one

is smoothly connected to the other via deformations that
leave invariant the positions of the Bragg peaks but are
allowed to modify the peak intensities. Recall that defor-
mations that also do not change the peak intensities do not
change the LI class. Hence, our classification can be
understood as further defining an equivalence relation over
the space of LI classes of quasicrystals (see Fig. 5).

APPENDIX B: 2D OCTAGONAL
QUASICRYSTALS

In this Appendix, we show how the reciprocal lattice
vectors KI are obtained for a 2D octagonal quasicrystal.
The idea is to obtain a decomposition R4 ¼ Ek ⊕ E⊥,
where in the four-dimensional “superspace” the physical
system lives on the two-dimensional plane Ek.
Let aI (I ¼ 1;…; 4) denote the basis vectors of the unit

hypercubic latticeZ4. The C8 rotation matrix in this basis is
given by

R8 ¼

0

BBB@

0 0 0 −1
1 0 0 0

0 −1 0 0

0 0 −1 0

1

CCCA: ðB1Þ

Diagonalizing R8, we find that its eigenvalues are given by
ξn ¼ exp ð2πin=8Þ, where n ¼ 1;…; 4. Note that there
are two conjugate pairs: ðξ; ξ−1Þ and ðξ2; ξ−2Þ. This implies
that the superspace R4 decomposes into two orthogonal
two-dimensional planes, with both planes invariant under
C8 rotation. The eigenvectors corresponding to ξn

(n ¼ 1;…; 4) are

FIG. 5. Topological equivalence classes for d ¼ 1 quasicrystals
are labeled by a pair of integers ðC1; C2Þ (see Secs. V and VIII).
Each class consists of physically inequivalent LI classes which
are equivalent topologically.
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vn ¼ ðξn; ξ2n; ξ3n; ξ4nÞ: ðB2Þ
Although these eigenvectors have complex entries, it is

possible to find a basis such that they contain only real
entries. The basis vectors for one of the two-dimensional
planes, which we choose to be our physical plane Ek, are
given by

v1 ¼
!
−

1ffiffiffi
2

p ; 0;−
1ffiffiffi
2

p ; 1
"
; ðB3Þ

v2 ¼
!

1ffiffiffi
2

p ; 1;−
1ffiffiffi
2

p ; 0
"
: ðB4Þ

The basis vectors for the perpendicular plane E⊥ are

v3 ¼
!
−

1ffiffiffi
2

p ; 0;−
1ffiffiffi
2

p ;−1
"
; ðB5Þ

v4 ¼
!
−

1ffiffiffi
2

p ; 1;
1ffiffiffi
2

p ; 0
"
: ðB6Þ

Let M be the transformation matrix between the two sets
of basis vectors: aI ¼ MI

JvJ, where aI span a four-
dimensional hypercubic reciprocal lattice and vJ are
orthonormal unit vectors of the four-dimensional super-
space. We find that the transformation matrix is

M ¼

0

BBB@

−1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
−1=

ffiffiffi
2

p
−1=

ffiffiffi
2

p

0 1 0 1

−1=
ffiffiffi
2

p
−1=

ffiffiffi
2

p
−1=

ffiffiffi
2

p
1=

ffiffiffi
2

p

1 0 −1 0

1

CCCA: ðB7Þ

The corresponding direct lattice is spanned by four vectors
a'I ¼ aI=2. By definition, the reciprocal lattice vectors are
given by KI

i ¼ 2πMI
i for i ¼ 1, 2:

K ¼

0

BBB@

−1=
ffiffiffi
2

p
1=

ffiffiffi
2

p

0 1

−1=
ffiffiffi
2

p
−1=

ffiffiffi
2

p

1 0

1

CCCA: ðB8Þ

The projections of the basis vectors a' of the direct lattice
Z4 into the physical plane Ek are given by

πða'1Þ ¼ −
1

2
ffiffiffi
2

p v1 þ
1

2
ffiffiffi
2

p v2;

πða'2Þ ¼
1

2
v2;

πða'3Þ ¼ −
1

2
ffiffiffi
2

p v1 −
1

2
ffiffiffi
2

p v2;

πða'4Þ ¼
1

2
v1: ðB9Þ

This information is useful in constructing the tiles of the
octagonal quasicrystals in a later Appendix.

APPENDIX C: DENSITY OF TILES IN A
QUASICRYSTALLINE TILING

In this Appendix, we derive Eq. (41) for the density of a
given tile in a quasicrystalline tiling generated according to
the scheme in Ref. [101]. As shown in Ref. [101], such a
tiling can be obtained via a cut-and-project scheme. That is,
one considers some d-dimensional hyperplane in a D-
dimensional superspace, which can be identified with the
physical spaceRd via a linear mappingK∶Rd → RD. Then,
one defines an acceptance window surrounding this hyper-
plane. All the d-dimensional facets of the D-dimensional
hypercubic lattice (with lattice constant 2π) that lie wholly
within the acceptance window are projected onto the image
of K, and the preimage of these projections in Rd forms the
tiles in a quasiperiodic tiling of Rd. There are ðDdÞ different
facet orientations in the D-dimensional hypercubic lattice,
labeled by unordered d-tuples of indices that can range over
1;…; D. The projected version of these facets then form the
different kinds of tiles in the quasicrystalline tiling.
Here, what we want to prove is that, in d ¼ 2, the density

ρIJ of such tiles satisfies (in some sign convention)

ρIJ ¼ 1

ð2πÞ2
KI

iKJ
jϵij: ðC1Þ

We invoke the fact that, as shown in Ref. [101], the
unprojected versions of the facets contained within the
acceptance window define a closed d-dimensional surface
in superspace, which we call the unprojected surface.
As a warmup, let us consider the d ¼ 1 case, where the

analogous formula to Eq. (C1) is

ρI ¼ 1

2π
KI: ðC2Þ

Now, consider some interval of length V within the one-
dimensional physical space. Then, after mapping the physi-
cal space into superspace, the end points of this interval are
separated by a displacement vector in superspace of

K⃗V; ðC3Þ

where K⃗ is the vector in superspace whose components are
KI . Meanwhile, the portion of the unprojected surface that is
near the mapped interval consists of a curve with end points,
where the end points are separated by a displacement

2πNIe⃗I; ðC4Þ

where e⃗I is the basis vector in the Ith coordinate direction and
NI is the number of tiles of type I in the quasicrystalline tiling
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that are contained within the interval of length V. Because
the unprojected surface lies within the acceptance window,
whosewidth is independent ofV, we conclude that Eqs. (C3)
and (C4) must be equal up to a correction that is Oð1Þ in V.
Hence, by taking the Ith component, we find

NI

L
¼ 1

2π
KI þO

!
1

V

"
; ðC5Þ

and taking the limit V → ∞ gives Eq. (C2).
The d ¼ 2 version of the argument proceeds similarly,

except that the quantity that we need to equate between
the physical plane and the unprojected surface is the “net
directed area,” as measured by a bivector (i.e., a rank-2
element of the exterior algebra of RD). Thus, we require
that

ð2πÞ2NIJe⃗I ∧ e⃗J ¼ ϵijVK⃗i ∧ K⃗j þOð1Þ; ðC6Þ

where K⃗i is the vector inRD given by taking the ith column
of the matrix K. Taking components of this equation
gives Eq. (C1).

APPENDIX D: AMMANN-BEENKER TILING

A 2D octagonal quasicrystal can be constructed by the
Ammann-Beenker tilings. In an Ammann-Beenker tiling,
there are two kinds of tiles: a rhombus (with the small angle
equal to π=4) and a square. Here, we briefly explain how to
obtain these tiles by the projection method. We are going to
follow Ref. [101] closely.
The tiles are simply given by the projection of the 2-

facets of a D ¼ 4 hypercubic unit cell onto the physical
plane. Let M2 ¼ fI ¼ fi1; i2g ⊂ f1; 2; 3; 4gg be the set of
subsets of f1; 2; 3; 4g. The 2-facets of the unit hypercube,
indexed by M2, are defined as follows:

γI ¼
#X

i∈I
λia'i jλi ∈ ½0; 1&

%
ðD1Þ

for all I ∈ M2. Now, we use Eq. (B9) to obtain the
projections of the facets γ onto the physical plane:

DI ¼ πðγIÞ ¼
#X

i∈I
λivPi jλi ∈ ½0; 1&

%
; ðD2Þ

where we define vPi ≔ πða'I Þ. Since a tile in 2D requires
two coordinates, there are ð42Þ ¼ 6 prototiles. For example,
a rhombus indexed by I12 ≔ f1; 2g is

DI12 ¼ λ1vP1 þ λ2vP2 : ðD3Þ

A square indexed by I24 ≔ f2; 4g is

DI24 ¼ λ2vP2 þ λ4vP4 : ðD4Þ

Figure 6 shows the prototiles of the Ammann-Beenker
tiling along with their index. Note that, if we include the C8

rotation in the definition of the congruence classes, there
are only two prototiles: the rhombus and the square. The
Ammann-Beenker tiling shown in Fig. 1 can be constructed
by using the prototiles shown in Fig. 6.

APPENDIX E: DERIVING THE MOBILITY
CONSTRAINT OF DISLOCATIONS

IN A 2D QUASICRYSTAL

In this Appendix, we give a more precise argument for
the constraint Eq. (36) on the motion of dislocations in a 2D
quasicrystal.
The θ field for a dislocation moving uniformly in space

with its core at position aðtÞ [we assume that að0Þ ¼ 0] can
be written as

θIðx; tÞ ¼ ΘIðx; tÞ þ ϕIðx; tÞ; ðE1Þ

where we define ΘIðxÞ ¼ KI
ix

i and ϕ satisfies

ϕIðx; tÞ ¼ ϕI½x − aðtÞ; 0&: ðE2Þ

Let Σ be a loop in 2D space encircling the dislocation at
time t ¼ 0, and let ΣðtÞ ¼ Σþ aðtÞ. Now define Σþ½0; T&
to be the 2D world sheet in 3D space-time swept out by
ΣðtÞ between time t ¼ 0 and time t ¼ T. We can evaluate
the amount of charge that must be created at the dislocation
core during the motion from time t ¼ 0 to time t ¼ T by
evaluating the integral

ΔQ ¼
Z

Σþ½0;τ&
ð'JÞ; ðE3Þ

where J is the 1-form in 3D space-time constructed by
using the metric to lower the index of the current 3-vector
Jμ and ' is the Hodge star operator. Here and in what
follows, we use the abstract notation for differential forms
to simplify the derivation. From Eq. (31), we have that

FIG. 6. Prototiles of the Ammann-Beenker tiling and their
indices.
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'J ¼ 1

8π2
CIJdθI ∧ dθJ ðE4Þ

¼ 1

8π2
ðCIJKI ∧KJ þ 2CIJKI ∧ dϕI þdϕI ∧ dϕJÞ: ðE5Þ

The integral of the first term gives zero, while the integral of
the third term can also be shown to be zero by first showing
that it is invariant under small deformations of ϕI [provided
that Eq. (E2) remains satisfied] and then deforming ϕI to a
reference configuration for a particular winding number
sector and evaluating the integral.
This leaves only the integral of the second term, and,

hence, we find

4π2ΔQ ¼
Z

Σþ½0;T&
CIJKI ∧ dϕJ ðE6Þ

¼
Z

Σþ½0;T&
CIJdΘI ∧ dϕJ ðE7Þ

¼
Z

Σþ½0;T&
CIJdðΘIdϕJÞ ðE8Þ

¼
Z

∂Σþ½0;τ&
CIJΘIdϕJ ðE9Þ

¼ CIJ

&Z

ΣðTÞ
KI

ixi½∇ϕJðx; TÞ& · dx

−
Z

Σ
KI

ixi½∇ϕJðx; 0Þ& · dx
'

ðE10Þ

¼ CIJKI
iaiðTÞ

Z

Σ
½∇ϕJðx; 0Þ& · dx ðE11Þ

¼ CIJKI
iaiðTÞbJ; ðE12Þ

where in Eq. (E9) we use Stokes’ theorem and to go from
Eq. (E10) to Eq. (E11) we invoke Eq. (E2) and make the
change of variables x → xþ aðTÞ in the first term. Here,
bJ is the “Burgers vector” of the dislocation defined by
Eq. (30). If we demand that ΔQ ¼ 0 and take the limit of
infinitesimal T, we recover the constraint Eq. (36).
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