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Abstract—Deep learning models, especially those large-scale
and high-performance ones, can be very costly to train, demand-
ing a considerable amount of data and computational resources.
As a result, deep learning models have become one of the most
valuable assets in modern artificial intelligence. Unauthorized
duplication or reproduction of deep learning models can lead to
copyright infringement and cause huge economic losses to model
owners, calling for effective copyright protection techniques. Ex-
isting protection techniques are mostly based on watermarking,
which embeds an owner-specified watermark into the model.
While being able to provide exact ownership verification, these
techniques are 1) invasive, i.e., they need to tamper with the
training process, which may affect the model utility or introduce
new security risks into the model; 2) prone to adaptive attacks
that attempt to remove/replace the watermark or adversarially
block the retrieval of the watermark; and 3) not robust to the
emerging model extraction attacks. Latest fingerprinting work
on deep learning models, though being non-invasive, also falls
short when facing the diverse and ever-growing attack scenarios.

In this paper, we propose a novel testing framework for
deep learning copyright protection: DEEPJUDGE. DEEPJUDGE

quantitatively tests the similarities between two deep learning
models: a victim model and a suspect model. It leverages a
diverse set of testing metrics and efficient test case generation
algorithms to produce a chain of supporting evidence to help
determine whether a suspect model is a copy of the victim model.
Advantages of DEEPJUDGE include: 1) non-invasive, as it works
directly on the model and does not tamper with the training
process; 2) efficient, as it only needs a small set of seed test
cases and a quick scan of the two models; 3) flexible, i.e., it can
easily incorporate new testing metrics or test case generation
methods to obtain more confident and robust judgement; and
4) fairly robust to model extraction attacks and adaptive attacks.
We verify the effectiveness of DEEPJUDGE under three typical
copyright infringement scenarios, including model finetuning,
pruning and extraction, via extensive experiments on both image
classification and speech recognition datasets with a variety of
model architectures.

I. INTRODUCTION

Deep learning models, e.g., deep neural networks (DNNs),

have become the standard models for solving many com-

plex real-world problems, such as image recognition [18],

speech recognition [15], natural language processing [7], and

autonomous driving [5]. However, training large-scale DNN

models is by no means trivial, which requires not only large-

scale datasets but also significant computational resources. The

training cost can grow rapidly with task complexity and model

�Corresponding author.

capacity. For instance, it can cost $1.6 million to train a BERT

model on Wikipedia and Book corpora (15 GB) [37]. It is

thus of utmost importance to protect DNNs from unauthorized

duplication or reproduction.

One concerning fact is that well-trained DNNs are often

exposed to the public via remote services (APIs), cloud

platforms (e.g., Amazon AWS, Google Cloud and Microsoft

Azure), or open-source toolkits like OpenVINO1. It gives rise

to adversaries (e.g., a model “thief”) who attempt to steal the

model in stealthy ways, causing copyright infringement and

economic losses to the model owners. Recent studies have

shown that stealing a DNN can be done very efficiently with-

out leaving obvious traces [38], [33]. Arguably, unauthorized

finetuning or pruning is the most straightforward way of model

stealing, if the model parameters are publicly accessible (for

research purposes only) or the adversary is an insider. Even

when only the API is exposed, the adversary can still exploit

advanced model extraction techniques [38], [33], [32], [21],

[45] to steal most functionalities of the hidden model. These

attacks pose serious threats to the copyright of deep learning

models, calling for effective protection methods.

A number of defense techniques have been proposed to pro-

tect the copyright of DNNs, where DNN watermarking [40],

[47], [1], [9] is one major type of technique. DNN watermark-

ing embeds a secret watermark (e.g., logo or signature) into

the model by exploiting the over-parameterization property of

DNNs [1]. The ownership can then be verified when the same

or similar watermark is extracted from a suspect model. The

use of watermarks has an obvious advantage, i.e., the owner

identity can be embedded and verified exactly, given that the

watermark can be fully extracted. However, these methods still

suffer from certain weaknesses. Arguably, the most concerning

one is that they are invasive, i.e., they need to tamper with

the training procedure to embed the watermark, which may

compromise model utility or introduce new security threats

into the model [25], [41], [10], [17].

More recently, DNN fingerprinting [2], [27] has been pro-

posed as a non-invasive alternative to watermarking. Lying at

the design core of fingerprinting is uniqueness — the unique

feature of a DNN model. Specifically, fingerprinting extracts

a unique identifier (or fingerprint) from the owner model

to differentiate it from other models. The ownership can be

claimed if the identifier of the owner model matches with that

1https://github.com/openvinotoolkit/open model zoo
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of a suspect model. However, in the context of deep learning,

a single fingerprinting feature/metric can hardly be sufficient

or flexible enough to handle all the randomness in DNNs or

against different types of model stealing and adaptive attacks

(as we will show in our experiments). In other words, there

exist many scenarios where a DNN model can easily lose its

unique feature or property (i.e., fingerprint).

In this work, we propose a testing approach for DNN

copyright protection. Instead of solely relying on one metric,

we propose to actively test the “similarities” between a victim

model and a suspect model from multiple angles. The core

idea is to 1) carefully construct a set of test cases to compre-

hensively characterize the victim model, and 2) measure how

similarly the two models behave on the test cases. Intuitively,

if a suspect model is a stolen copy of the victim model, it will

behave just like the victim model in certain ways. An extreme

case is that the suspect is the exact duplicate of the victim

model, and in this case, the two models will behave identically

on these test cases. This testing view creates a dilemma for

the adversary as better stealing will inevitably lead to higher

similarities to the victim model. We further identify two major

challenges for testing-based copyright protection: 1) how to

define comprehensive testing metrics to fully characterize the

similarities between two models, and 2) how to effectively

generate test cases to amplify the similarities. The set of

similarity scores can be viewed as a proof obligation that

provides a chain of strong evidence to judge a stolen copy.

Following the above idea, we design and implement DEEP-

JUDGE, a novel testing framework for DNN copyright pro-

tection. As illustrated in Fig. 1, DEEPJUDGE is composed

of three core components. First, we propose a set of multi-

level testing metrics to fully characterize a DNN model from

different angles. Second, we propose efficient test case gener-

ation algorithms to magnify the similarities (or differences)

measured by the testing metrics between the two models.

Finally, a ‘yes’/‘no’ (stolen copy) judgment will be made for

the suspect model based on all similarity scores.

The advantages of DEEPJUDGE include 1) non-invasive: it

works directly on the trained models and does not tamper with

the training process; 2) efficient: it can be done very efficiently

with only a few seed examples and a quick scan of the models;

3) flexible: it can easily incorporate new testing metrics or

test case generation methods to obtain more evidence and

reliable judgement, and can be applied in both white-box

and black-box scenarios with different testing metrics; 4)

robust: it is fairly robust to adaptive attacks such as model

extraction and defense-aware attacks. The above advantages

make DEEPJUDGE a practical, flexible, and extensible tool

for copyright protection of deep learning models.

We have implemented DEEPJUDGE as an open-source self-

contained toolkit and evaluated DEEPJUDGE on four bench-

mark datasets (i.e., MNIST, CIFAR-10, ImageNet and Speech

Commands) with different DNN architectures, including both

convolutional and recurrent neural networks. The results con-

firm the effectiveness of DEEPJUDGE in providing strong

evidence for identifying the stolen copies of a victim model.

DEEPJUDGE is also proven to be more robust to a set of

adaptive attacks compared to existing defense techniques.

In summary, our main contributions are:

• We propose a novel testing framework DEEPJUDGE for

copyright protection of deep learning models. DEEP-

JUDGE determines whether one model is a copy of the

other depending on the similarity scores obtained from

a comprehensive set of testing metrics and test case

generation algorithms.

• We identify three typical scenarios of model copying

including finetuned copy, pruned copy, and extracted

copy; define positive and negative suspect models for

each scenario; and consider both white-box and black-

box protection settings. DEEPJUDGE can produce reliable

evidence and judgement to correctly identify the positive

suspects across all scenarios and settings.

• DEEPJUDGE is a self-contained open-source tool for

robust copyright protection of deep learning models and

a strong complement to existing techniques. DEEPJUDGE

can be flexibly applied in different DNN copyright pro-

tection scenarios and is extensible to new testing metrics

and test case generation algorithms.

II. BACKGROUND

A. Deep Neural Network

A DNN classifier is a decision function f : X → Y
mapping an input x ∈ X to a label y ∈ Y = {1, 2, · · · , C},

where C is the total number of classes. It comprises of L
layers: {f1, f2, · · · , fL−1, fL}, where f1 is the input layer,

fL is the probability output layer, and f2, · · · , fL−1 are the

hidden layers. Each layer f l can be denoted by a collection of

neurons: {nl,1, nl,2, · · · , nl,Nl
}, where Nl is the total number

of neurons at that layer. Each neuron is a computing unit that

computes its output by applying a linear transformation fol-

lowed by a non-linear operation to its input (i.e., output from

the precedent layer). We use φl,i(x) to denote the function

that returns the output of neuron nl,i for a given input x ∈ X .

Then, we have the output vector of layer f l (2 ≤ l ≤ L):

f l(x) = 〈φl,1(x), φl,2(x), · · · , φl,Nl
(x)〉. Finally, the output

label f(x) is computed as f(x) = argmax fL(x).

B. DNN Watermarking

A number of watermarking techniques have been proposed

to protect the copyright of DNN models [1], [9], [23], [40],

[47], [20]. Similar to traditional multimedia watermarking,

DNN watermarking works in two steps: embedding and

verification. In the embedding step, the owner embeds a

secret watermark (e.g., a signature or a trigger set) into the

model during the training process. Depending on how much

knowledge of the model is available in the verification step,

existing watermarking methods can be broadly categorized

into two classes: a) white-box methods for the case when

model parameters are available; and b) black-box methods

when only predictions of the model can be acquired.

White-box watermarking embeds a pre-designed signature

(e.g., a string of bits) into the parameter space of the model

via certain regularization terms [9], [40]. The ownership could

be claimed when the extracted signature from a suspect model

is similar to that of the owner model. Black-box watermarking
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Fig. 1: The overview of DEEPJUDGE Testing Framework.

usually leverages backdoor attacks [16] to implant a watermark

pattern into the owner model by training the model with a set

of backdoor examples (also known as the trigger set) relabeled

to a secret class [23], [47]. The ownership can then be claimed

when the defender queries the suspect model for examples

attached with the watermark trigger and receives the secret

class as predictions.

C. DNN Fingerprinting

Recently, DNN fingerprinting techniques have been pro-

posed to verify model ownership via two steps: fingerprint

extraction and verification. According to the categorization

rule for watermarking, fingerprinting methods [2], [27] are all

black-box techniques. Moreover, they are non-invasive, which

is in sharp contrast with watermarking techniques. Instead

of modifying the training procedure to embed identities, fin-

gerprinting directly extracts a unique feature or property of

the owner model as its fingerprint (i.e., a unique identifier).

The ownership can then be verified if the fingerprint of

the owner model matches with that of the suspect model.

For example, IPGuard [2] leverages data points close to the

classification boundary to fingerprint the boundary property

of the owner model. A suspect model is determined to be a

stolen copy of the owner model if it predicts the same labels

for most boundary data points. [27] proposes a Conferrable

Ensemble Method (CEM) to craft conferrable (a subclass of

transferable examples) adversarial examples to fingerprint the

overlap between two models’ decision boundaries or adversar-

ial subspaces. CEM fingerprinting demonstrates robustness to

removal attacks including finetuning, pruning and extraction

attacks, except several adapted attacks like adaptive transfer

learning and adversarial training [27]. It is the closest work to

our DEEPJUDGE. However, as a fingerprinting method, CEM

targets uniqueness, while as a testing framework, our DEEP-

JUDGE targets completeness, i.e., comprehensive characteriza-

tion of a model with multi-level testing metrics and diverse test

case generation methods. Note that CEM fingerprinting can be

incorporated into our framework as a black-box metric.

III. DNN COPYRIGHT THREAT MODEL

We consider a typical attack-defense setting with two par-

ties: the victim and the adversary. Here, the model owner is the

victim who trains a DNN model (i.e., the victim model) using

private resources. The adversary attempts to steal a copy of

the victim model, which 1) mimics its functionality while 2)

cannot be easily recognized as a copy. Following this setting,

we identify three common threats to DNN copyright: 1) model

finetuning, 2) model pruning, and 3) model extraction. The

three threats are illustrated in the top row of Fig. 1.

Threat 1: Model Finetuning. In this case, we assume the

adversary has full knowledge of the victim model, including

model architecture and parameters, and has a small dataset to

finetune the model [1], [40]. This occurs, for example, when

the victim open-sourced the model for academic purposes

only, but the adversary attempts to finetune the model to build

commercial products.

Threat 2: Model Pruning. In this case, we also assume the

adversary has full knowledge of the victim model’s architec-

ture and parameters. Model pruning adversaries first prune the

victim model using some pruning methods, then finetune the

model using a small set of data [26], [35].

Threat 3: Model Extraction. In this case, we assume the

adversary can only query the victim model for predictions

(i.e., the probability vector). The adversary may be aware of

the architecture of the victim model but has no knowledge

of the training data or model parameters. The goal of model

extraction adversaries is to accurately steal the functionality

of the victim model through the prediction API [21], [38],

[33], [32], [45]. To achieve this, the adversary first obtains an

annotated dataset by querying the victim model for a set of

auxiliary samples, then trains a copy of the victim model on

the annotated dataset. The auxiliary samples can be selected

from a public dataset [8], [32] or synthesized using some

adaptive strategies [33], [21].

IV. TESTING FOR DNN COPYRIGHT PROTECTION

In this section, we present DEEPJUDGE, the proposed test-

ing framework that produces supporting evidence to determine

whether a suspect model is a copy of a victim model. The

victim model can be copied by model finetuning, pruning,

or extraction, as discussed in Section III. We identify the

following criteria for a reliable copyright protection method:
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Algorithm 1: DEEPJUDGE(O,S,D)

Input: owner model O, suspect model S , data set D
Output: judgement J , evidence E
// Test case generation (Section IV-C)

1 Seeds ← SelectSeeds (O,D)
2 T ← GenerateTestCases (O, Seeds)
// Testing metrics (Section IV-B)

3 E ← ComputeMetrics (O,S, T )
// Final judgement (Section IV-D)

4 J ← Judging (E) // Copy, Right? Yes or No.

5 return J , E

1) Fidelity. The protection or ownership verification pro-

cess should not affect the utility of the owner model.

2) Effectiveness. The verification should have high preci-

sion and recall in identifying stolen model copies.

3) Efficiency. The verification process should be efficient,

e.g., taking much less time than model training.

4) Robustness. The protection should be resilient to adap-

tive attacks.

DEEPJUDGE is a testing framework designed to satisfy all

the above criteria. In the following three subsections, we will

first give an overview of DEEPJUDGE, then introduce its multi-

level testing metrics and test case generation algorithms.

A. DEEPJUDGE Overview

As illustrated in the bottom row of Fig. 1, DEEPJUDGE

consists of two components and a final judgement step: i)

test case generation, ii) a set of multi-level distance metrics

for testing, and iii) a thresholding and voting based judge-

ment mechanism. Alg. 1 depicts the complete procedure of

DEEPJUDGE with pseudocode. It takes the victim model O, a

suspect model S , and a set of data D associated with the victim

model as inputs and returns the values of the testing metrics as

evidence as well as the final judgement. The set of data D can

be provided by the owner from either the training or testing set

of the victim model. At the test case generation step, it selects

a set of seeds from the input dataset D (Line 1) and carefully

generates a set of extreme test cases from the seeds (Line 2).

Based on the test cases generated, DEEPJUDGE computes the

distance (dissimilarity) scores defined by the testing metrics

between the suspect and victim models (Line 3). The final

judgement of whether the suspect is a copy of the victim can

be made via a thresholding and voting mechanism according

to the dissimilarity scores between the victim and a set of

negative suspect models (Line 4).

B. Multi-level Testing Metrics

We first introduce the testing metrics for two different

settings respectively: white-box and black-box. 1) White-box

Setting: In this setting, DEEPJUDGE has full access to the

internals (i.e., intermediate layer outputs) and the final prob-

ability vectors of the suspect model S . 2) Black-box Setting:

In this setting, DEEPJUDGE can only query the suspect model

S to obtain the probability vectors or the predicted labels. In

both settings, we assume the model owner is willing to provide

TABLE I: Proposed multi-level testing metrics.

Level Metric Defense Setting

Property-level Robustness Distance (RobD) Black-box

Neuron-level
Neuron Output Distance (NOD) White-box

Neuron Activation Distance (NAD) White-box

Layer-level

Layer Outputs Distance (LOD) White-box

Layer Activation Distance (LAD) White-box

Jensen-Shanon Distance (JSD) Black-box

full access to the victim model O, including the training and

test datasets, and the training details if necessary.

The proposed testing metrics are summarized in Table I,

with their suitable defense settings highlighted in the last

column. DEEPJUDGE advocates evidence-based ownership

verification of DNNs via multi-level testing metrics that com-

plement each other to produce more reliable judgement.

1) Property-level metrics: There is an abundant set of

model properties that could be used to characterize the simi-

larities between two models, such as the adversarial robust-

ness property [11], [4], [2], [27] and the fairness property

[30]. Here, we consider the former and define the robustness

distance to measure the adversarial robustness discrepancy

between two models on the same set of test cases. We will

test more properties in our future work.

Denote the function represented by the victim model O
by f , given an input xi and its ground truth label yi, an

adversarial example x
′
i can be crafted by slightly perturbing xi

towards maximizing the classification error of f . This process

is known as the adversarial attack, and f(x′
i) �= yi indicates

a successful attack. Adversarial examples can be generated

using any existing adversarial attack methods such as FGSM

[14] and PGD [28]. Given a set of test cases, we can obtain its

adversarial version T = {x′
1,x

′
2, · · · }, where x

′
i denotes the

adversarial example of xi. The robustness property of model

f can then be defined as its accuracy on T :

Rob(f, T ) =
1

|T |

|T |
∑

i=1

(f(x′
i)) = yi).

Robustness Distance (RobD). Let f̂ be the suspect model,

we define the robustness distance between f and f̂ by the

absolute difference between the two models’ robustness:

RobD(f, f̂ , T ) = |Rob(f̂ , T )−Rob(f, T )|.

The intuition behind RobD is that model robustness is closely

related to the decision boundary learned by the model through

its unique optimization process, and should be considered as

a type of fingerprint of the model. RobD requires minimal

knowledge of the model (only its output labels).

2) Neuron-level metrics: Neuron-level metrics are suitable

for white-box testing scenarios where the internal layers’

output of the model is accessible. Intuitively, the output of each

neuron in a model follows its own statistical distribution, and

the neuron outputs in different models should vary. Motivated

by this, DEEPJUDGE uses the output status of neurons to

capture the difference between two models and defines the

following two neuron-level metrics NOD and NAD.
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Neuron Output Distance (NOD). For a particular neuron nl,i

with l being the layer index and i being the neuron index

within the layer, we denote the neuron output function of

the owner’s victim model and the suspect copy model by

φl,i and φ̂l,i respectively. NOD measures the average neuron

output difference between the two models over a given set

T = {x1,x2, · · · } of test cases:

NOD(φl,i, φ̂l,i, T ) =
1

|T |

∑

x∈T

|φl,i(x)− φ̂l,i(x)|.

Neuron Activation Distance (NAD). Inspired by the Neuron

Coverage [34] for testing deep learning models, NAD mea-

sures the difference in activation status (‘activated’ vs. ‘not

activated’) between the neurons of two models. Specifically,

for a given test case x ∈ T , the neuron nl,i is determined to

be ‘activated’ if its output value φl,i(x) is larger than a pre-

specified threshold. The NAD between the two models with

respect to neuron nl,i can then be calculated as:

NAD(φl,i, φ̂l,i, T ) =
1

|T |

∑

x∈T

|S(φl,i(x))− S(φ̂l,i(x))|,

where the step function S(φl,i(x)) returns 1 if φl,i(x) is

greater than a certain threshold, 0 otherwise.
3) Layer-level metrics: The layer-wise metrics in DEEP-

JUDGE take into account the output values of the entire layer

in a DNN model. Compared with neuron-level metrics, layer-

level metrics provide a full-scale view of the intermediate layer

output difference between two models.

Layer Output Distance (LOD). Given a layer index l, let

f l and f̂ l represent the layer output functions of the victim

model and the suspect model, respectively. LOD measures the

Lp-norm distance between the two models’ layer outputs:

LOD(f l, f̂ l, T ) =
1

|T |

∑

x∈T

||f l(x)− f̂ l(x)||p,

where || · ||p denotes the Lp-norm (p = 2 in our experiments).

Layer Activation Distance (LAD). LAD measures the average

NAD of all neurons within the same layer:

LAD(f l, f̂ l, T ) =
1

|Nl|

|Nl|
∑

i=1

NAD(φl,i, φ̂l,i, T ),

where Nl is the total number of neurons at the l-th layer, and

φl,i and φ̂l,i are the neuron output functions from f l and f̂ l.

Jensen-Shanon Distance (JSD). JSD [13] is a metric that

measures the similarly of two probability distributions, and a

small JSD value implies the two distributions are very similar.

Let fL and f̂L denote the output functions (output layer) of

the victim model and the suspect model, respectively. Here,

we apply JSD to the output layer as follows:

JSD(fL, f̂L, T ) =
1

2|T |

∑

x∈T

K(fL(x), q) +K(f̂L(x), q),

where q = (fL(x) + f̂L(x))/2 and K(·, ·) is the Kullback-

Leibler divergence. JSD quantifies the similarity between two

models’ output distributions, and is particularly more powerful

against model extraction attacks where the suspect model

is extracted based on the probability vectors (distributions)

returned by the victim model.

Fig. 2: DEEPJUDGE uses adversarial examples of the victim

model to probe the difference in models’ decision boundary.

C. Test Case Generation

To fully exercise the testing metrics defined above, we need

to magnify the similarities between a positive suspect and the

victim model, while minimizing the similarities of a negative

suspect to the victim model. In DEEPJUDGE, this is achieved

by smart test case generation methods. Meanwhile, test case

generation should respect the model accessibility in different

defense settings, i.e., black-box vs. white-box.
1) Black-box setting: When only the input and output

of a suspect model are accessible, we populate the test set

T using adversarial inputs generated by existing adversarial

attack methods on the victim model. We consider three widely

used adversarial attack methods, including Fast Gradient Sign

Method (FGSM) [14], Projected Gradient Descent (PGD) [28],

and Carlini & Wagner’s (CW) attack [4], where FGSM and

PGD are L∞-bounded adversarial methods, and CW is an

L2-bounded attack method. This gives us more diverse test

cases with both L∞- and L2-norm perturbed adversarial test

cases. The detailed description and exact parameters used for

adversarial test case generation are provided in Appendix D.

Fig. 2 illustrates the rationale behind using adversarial

examples as test cases. Finetuned and pruned model copies

are directly derived from the victim model, thus they share

similar decision boundaries (purple line) as the victim model.

However, the negative suspect models are trained from scratch

on different data or with different initializations, thus having

minimum or no overlapping with the victim model’s decision

boundary. By subverting the model’s predictions, adversarial

examples cross the decision boundary from one side to the

other (we use untargeted adversarial examples). Although the

extracted models by model extraction attacks are trained from

scratch by the adversary, the training relies on the probability

vectors returned by the victim model, which contains infor-

mation about the decision boundary. This implies that the

extracted model will gradually mimic the decision boundary of

the victim model. From this perspective, the decision boundary

(or robustness) based testing imposes a dilemma to model

extraction adversaries: the better the extraction, the more

similar the extracted model to the victim model, and the easier

it to be identified by our decision boundary based testing.
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Fig. 3: DEEPJUDGE tests each neuron and generates a test

case to explore the corner region of its output distribution.

2) White-box setting: In this case, the internals of the sus-

pect model are accessible, thus a more fine-grained approach

for test case generation becomes feasible. As shown in Fig. 3,

given a seed input and a specified layer, DEEPJUDGE generates

one test case for each neuron, and the corner case of the

neuron’s activation is of our particular interest.

The test generation algorithm is described in Alg. 2. It

takes the owner’s victim model O and a set of selected seeds

Seeds as input, and returns the set of generated test cases

T . T is initialized to be empty (Line 1). The main content

of the algorithm is a nested loop (Lines 2-13), in which for

each neuron nl,i required by the metrics in Section IV-B, the

algorithm searches for an input that activates the neuron’s

output φl,i(x
′) more than a threshold value. At each outer

loop iteration, an input is sampled from the Seeds (Lines 3-

4). It is then iteratively perturbed in the inner loop following

the neuron activation’s gradient update (Lines 6-7), until an

input x′ that can satisfy the threshold condition is found and is

added into the test suite T (Lines 8-11) or when the maximum

number of iterations is reached. The parameter lr (Line 7)

is used to control that the search space of the input with

perturbation is close enough to its seed input. Finally, the

generated test suite T is returned.

We discuss how to configure the specific threshold k for a

neuron nl,i used in Alg. 2. Since the statistics may vary across

different neurons, we pre-compute the threshold k based on

the training data and the owner model, which is the maximum

value (upper bound) of the corresponding neuron output over

all training samples. The final threshold value is then adjusted

by a hyper-parameter m to be used in Alg. 2 for more

reasonable and adaptive thresholds. Note that the thresholds

for all interested neurons can be calculated once by populating

layer by layer across the model.

D. Final Judgement

The judgment mechanism of DEEPJUDGE has two steps:

thresholding and voting. The thresholding step determines a

proper threshold for each testing metric based on the statistics

of a set of negative suspect models (see Section V-A3 for more

details). The voting step examines a suspect model against

each testing metric, and gives it a positive vote if its distance

to the victim model is lower than the threshold of that metric.

Algorithm 2: GenerateTestCases(O, Seeds)

Input: owner model O, a set of seed inputs Seeds
Output: test suite T

1 Initialize test suite T ← ∅
2 for each neuron nl,i do
3 Sample a seed input x ← Seeds.choice()
4 x

′ ← copy(x)
5 for iter = 1 to iters do

6 Calculate gradients grads ←
∇φl,i(x

′)

∇x
′

7 Perturb input x′ ← x
′ + lr · grads

8 if φl,i(x
′) > threshold k then

9 Add new test case T ← T ∪ {x′}
10 break
11 end
12 end
13 end
14 return T

The lower a measured metric value, the more likely the suspect

model is a copy of the victim, according to this metric. The

final judgment can then be made based on the votes: the

suspect model will be identified as a positive suspect if it

receives more positive votes, and a negative suspect otherwise.

For each testing metric λ, we set the threshold adaptively

using an ε-difference strategy. Specifically, we use one-tailed

T-test to calculate the lower bound LBλ based on the statistics

of the negative suspect models at the 99% confidence level.

If the measured difference λ(O,S, T ) is lower than LBλ, S
will be a copy of O with high probability. The threshold for

each metric λ is defined as: τλ = αλ · LBλ, where αλ is a

user-specified relaxing parameter controlling the sensitivity of

the judgement. As αλ decreases, the false positive rate (the

possibility of misclassifying a negative suspect as a stolen

copy) will also increase. We empirically set α = 0.9 for black-

box metrics and α = 0.6 for white-box metrics respectively,

depending on the negative statistics.

DEEPJUDGE makes the final judgement by voting below:

pcopy(O,S, T ) =
1

|Λ|

∑

λ∈Λ

�
(

λ(O,S, T ) ≤ τλ
)

,

where � in the indicator function and Λ denotes the set of

DEEPJUDGE testing metrics, i.e., {RobD, NOD, NAD, LOD,

LAD, JSD}. Note that, depending on the defense setting

(white-box vs. black-box), only a subset of the testing metrics

can be applied and the averaging can only be applied on the

available metrics. DEEPJUDGE identifies a positive suspect

copy if pcopy is larger than 0.5 and a negative one otherwise.

Arguably, voting is the most straightforward way of making

the final judgement. While this simple voting strategy works

reasonably well in our experiments, we believe more advanced

judgement rules can be developed for diverse real-world

protection scenarios.

E. DEEPJUDGE vs. Watermarking & Fingerprinting

Here, we briefly discuss why our testing approach is more

favorable in certain settings and how it complements exist-

ing defense techniques. Table II summarizes the differences

of DEEPJUDGE to existing watermarking and fingerprinting
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TABLE II: A comparison of different copyright protection methods.

Method Type Non-invasive
Evaluated Settings Evaluated Attacks

Black-box White-box Finetuning Pruning Extraction

Uchida et al. [40] Watermarking � � � � � �

Merrer et al. [23] Watermarking � � � � � �

Adi et al. [1] Watermarking � � � � � �

Zhang et al. [47] Watermarking � � � � � �

Darvish et al. [9] Watermarking � � � � � �

Jia et al. [20] Watermarking � � � � � �

Cao et al. [2] Fingerprinting � � � � � �

Lukas et al. [27] Fingerprinting � � � � � �

DeepJudge (Ours) Testing � � � � � �

methods, from three aspects: 1) whether the method is non-

invasive (i.e., independent of model training); 2) whether it

is particularly designed for or evaluated in different defense

settings (i.e., white-box vs. black-box); and 3) whether the

method is evaluated against different attacks (i.e., finetuning,

pruning and extraction). DEEPJUDGE is training-independent,

able to be flexibly applied in either white-box or black-box

settings, and evaluated (also proven to be robust) against all

three types of common copyright attacks including model

finetuning, pruning and extraction, with empirical evaluations

and comparisons deferred to Section V-B3.

Watermarking is invasive (training-dependent), whereas fin-

gerprinting and testing are non-invasive (training independent).

The effectiveness of watermarking depends on how well the

owner model memorizes the watermark and how robust the

memorization is to different attacks. While watermarking can

be robust to finetuning or pruning attacks [40], [47], it is

particularly vulnerable to the emerging model extraction attack

(see Section V-C2). This is because model extraction attacks

only extract the key functionality of the model, however,

watermarks are often task-irrelevant. Despite the above weak-

nesses, watermarking is the only technique that can embed the

owner identity/signature into the model, which is beyond the

functionalities of fingerprinting or testing.

Fingerprinting shares certain similarities with testing. How-

ever, they differ in their goals. Fingerprinting aims for “unique-

ness”, i.e., a unique fingerprint of the model, while testing aims

for “completeness”, i.e., to test as many dimensions as possible

to characterize not only the unique but also the common prop-

erties of the model. Arguably, effective fingerprints are also

valid black-box testing metrics. But as a testing framework,

our DEEPJUDGE is not restricted to a particular metric or

test case generation method. Our experiments in Section VI

show that a single metric or fingerprint is not sufficient

to handle the diverse and adaptive model stealing attacks.

In Section VI-B, we will also show that our DEEPJUDGE

can survive those adaptive attacks that break fingerprinting

by dynamically changing the test case generation strategy.

We anticipate a long-running arms race in deep learning

copyright protection between model owners and adversaries,

where watermarking, fingerprinting and testing methods are

all important for a comprehensive defense.

V. EXPERIMENTS

We have implemented DEEPJUDGE as a self-contained

toolkit in Python2. In the following, we first evaluate the

performance of DEEPJUDGE against model finetuning and

model pruning (Section V-B), which are two threat scenarios

extensively studied by watermarking methods [1], [9]. We then

examine DEEPJUDGE against more challenging model extrac-

tion attacks in Section V-C. Finally, we test the robustness of

DEEPJUDGE under adaptive attacks in Section VI. Overall, we

evaluated DEEPJUDGE with 11 attack methods, 3 baselines,

and over 300 deep learning models trained on 4 datasets.

A. Experimental Setup

1) Datasets & Victim Models: We run the experiments on

three image classification datasets (i.e., MNIST [24], CIFAR-

10 [22] and ImageNet [36]) and one audio recognition dataset

(i.e., SpeechCommands [42]). The models used for the four

datasets are summarized in Table III, including three convo-

lutional architectures and one recurrent neural network. For

each dataset, we divide the training data into two subsets. The

first subset (50% of the training examples) is used to train

the victim model. More detailed experimental settings can be

found in Appendix A.

2) Positive suspect models: Positive suspect models are

derived from the victim models via finetuning, pruning, or

model extraction. These models are considered as stolen copies

of the owner’s victim model. DEEPJUDGE should provide

evidence for the victim to claim ownership.

3) Negative suspect models: Negative suspect models have

the same architecture as the victim models but are trained

independently using either the remaining 50% of training data

or the same data but with different random initializations.

The negative suspect models serve as the control group to

show that DEEPJUDGE will not claim wrong ownership. These

models are also used to compute the testing thresholds (τ ).

The same training pipeline and the setting are used to train

the negative suspect models. Specifically, “Neg-1” are trained

with different random initializations while “Neg-2” are trained

using a separate dataset (the other 50% of training samples).

2The tool and all the data in the experiment are publicly available via
https://github.com/Testing4AI/DeepJudge
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TABLE III: Datasets and victim models.

Dataset Type Model #Params Accuracy

MNIST Image LeNet-5 107.8 K 98.5%

CIFAR-10 Image ResNet-20 274.4 K 84.8%

ImageNet Image VGG-16 33.65 M 74.4%

SpeechCommands Audio LSTM(128) 132.4 K 94.9%

#Params: number of parameters

4) Seed selection: Seed selection prepares the Seeds ex-

amples used to generate the test cases. Here, we apply the

sampling strategy used in DeepGini [12] to select a set of high-

confidence seeds from the test dataset (details are in Appendix

B). The intuition is that high-confidence seeds are well-learned

by the victim model, thus carrying more unique features of

the victim model. More adaptive seed selection strategies are

explored in the adaptive attack section VI-B1.
5) Adversarial example generation: We use three classic

attacks including FGSM [14], PGD [28] and CW [4] to

generate adversarial test cases as introduced in Section IV-C1.

B. Defending Against Model Finetuning & Pruning

As model finetuning and pruning threats are similar in

processing the victim model (see Section III), we discuss them

together here. These two are also the most extensively studied

threats in prior watermarking works [1], [40].
1) Attack strategies: Given a victim model and a small set

of data in the same task domain, we consider the following

four commonly used model finetuning & pruning strategies:

a) Finetune the last layer (FT-LL). Update the parameters of

the last layer while freezing all other layers. b) Finetune all

layers (FT-AL). Update the parameters of the entire model.

c) Retrain all layers (RT-AL). Re-initialize the parameters

of the last layer then update the parameters of the entire

model. d) Parameter pruning (P-r%). Prune r percentage

of the parameters that have the smallest absolute values, then

finetune the pruned model to restore the accuracy. We test both

low (r=20%) and high (r=60%) pruning rates. Typical data-

augmentations are also used to strengthen the attacks. More

details of these attacks are in Appendix C.
2) Effectiveness of DEEPJUDGE: The results are presented

separately for black-box vs. white-box settings.

Black-box Testing. In this setting, only the output probabil-

ities of the suspect model are accessible. Here, DEEPJUDGE

uses the two black-box metrics: RobD and JSD. For both

metrics, the smaller the value, the more similar the suspect

model is to the victim model. Table IV reports the results

of DEEPJUDGE on the four datasets. Note that we randomly

repeat the experiment 6 times for each finetuning or pruning

attack and 12 times for independent training (as more negative

suspect models will result in a more accurate judging thresh-

old). Then, we report the average and standard deviation (in

the form of a ± b) in each entry of Table IV. Clearly, all

positive suspect models are more similar to the victim model

with significantly smaller RobD and JSD values than negative

suspect models. Specifically, a low RobD value indicates that

the adversarial examples generated on the victim model have

a high transferability to the suspect model, i.e., its decision

boundary is closer to the victim model. In contrast, the RobD

values of the negative suspect models are much larger than

that of the positives, which matches our intuition in Fig. 2.

To further confirm the effectiveness of the proposed metrics,

we show the ROC curve for a total of 54 models (30 positive

suspect models and 24 negative suspect models) for RobD and

JSD in Figure 4. The AUC values are 1 for both metrics. Note

that we omit the plots for the following white-box testing as

the AUC values for all metrics are also 1.

White-box Testing. In this setting, all intermediate-layer

outputs of the suspect model are accessible. DEEPJUDGE can

thus use the four white-box metrics (i.e., NOD, NAD, LOD,

and LAD) to test the models. Table V reports the results on the

four datasets. Similar to the two black-box metrics, the smaller

the white-box metrics, the more likely the suspect model is a

stolen copy. As shown in Table V, there is a fundamental

difference between the two sets (positive vs. negative) of sus-

pect models according to each of the four metrics. That is, the

two sets of models are completely separable, leading to highly

accurate detection of the positive copies. It is not surprising

as white-box testing can collect more fine-grained information

from the suspect models. In both the black-box and white-box

settings, the voting in DEEPJUDGE overwhelmingly supports

the correct final judgement (the ‘Copy?’ column).

Combined Visualization. To better understand the power of

DEEPJUDGE, we combine the black-box and white-box testing

results for each suspect model into a single radar chart in

Fig. 5. Each dimension of the radar chart corresponds to

a similarity score given by one testing metric. For better

visual effect, we normalize the values of the testing metrics

into the range [0, 1], and the larger the normalized value,

the more similar the suspect model to the victim. Thus, the

filled area could be viewed as the accumulated supporting

evidence by DEEPJUDGE metrics for determining whether

the suspect model is a stolen copy. Clearly, DEEPJUDGE is

able to accurately distinguish positive suspects from negative

ones. Among the positive suspect models, the areas of RT-

AL and P-60% are noticeably smaller than the other two,

meaning they are harder to detect. This is because these

two attacks make the most parameter modifications to the

victim model. Comparing the metrics, activation-based metrics

(e.g., NAD) demonstrate better performance than output-based

metrics (e.g., NOD), while white-box metrics are stronger than

black-box metrics, especially against strong attacks like RT-

AL. In Appendix D, we also analyze the influencing factors

including adversarial test case generation and layer selection

(for computing the testing metrics) via several calibration

experiments. An analysis of how different levels of finetuning

or pruning affect DEEPJUDGE is presented in Appendix H.

Time Cost of DEEPJUDGE. The time cost of generating test

cases using 1k seeds is provided in appendix Table IX. For the

black-box setting, we report the cost of PGD-based generation,

while for the white-box setting, we report that of Algorithm 2.

It shows that the time cost of white-box generation is slightly

higher but is still very efficient in practice. The maximum time

cost occurs on the SpeechCommands dataset for white-box

generation, which is ∼ 1.2 hours. This time cost is regarded
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TABLE IV: Performance of DEEPJUDGE against model finetuning and pruning attacks in the black-box setting. PGD [28]

is used to generate the adversarial test cases. ACC is the validation accuracy. For each metric, the values below (indicating

‘copy’) or above (indicating ‘not copy’) the threshold τλ (the last row) are highlighted in red (copy alert) and green (no

alert), respectively. ‘Yes (2/2)’: two of the metrics vote for ‘copy’ (pcopy = 100%); ‘No (0/2)’: none of the metrics vote for

‘copy’ (pcopy = 0%).

Model Type
MNIST CIFAR-10

ACC RobD JSD Copy? ACC RobD JSD Copy?

Victim Model 98.5% – – – 84.8% – – –

Positive

Suspect

Models

FT-LL 98.8±0.0% 0.019±0.003 0.016±0.002 Yes (2/2) 82.1±0.1% 0.000±0.000 0.002±0.001 Yes (2/2)

FT-AL 98.7±0.1% 0.045±0.016 0.033±0.010 Yes (2/2) 79.9±1.4% 0.192±0.028 0.162±0.014 Yes (2/2)

RT-AL 98.4±0.2% 0.298±0.039 0.151±0.017 Yes (2/2) 79.4±0.8% 0.237±0.055 0.197±0.027 Yes (2/2)

P-20% 98.7±0.1% 0.058±0.014 0.035±0.009 Yes (2/2) 81.7±0.2% 0.155±0.032 0.128±0.018 Yes (2/2)

P-60% 98.6±0.1% 0.172±0.024 0.097±0.010 Yes (2/2) 81.1±0.6% 0.318±0.036 0.233±0.019 Yes (2/2)

Negative

Suspect

Models

Neg-1 98.4±0.3% 0.968±0.014 0.614±0.016 No (0/2) 84.2±0.6% 0.920±0.021 0.603±0.016 No (0/2)

Neg-2 98.3±0.2% 0.949±0.029 0.600±0.020 No (0/2) 84.9±0.5% 0.926±0.030 0.615±0.021 No (0/2)

τλ – 0.852 0.538 – – 0.816 0.537 –

Model Type
ImageNet SpeechCommands

ACC RobD JSD Copy? ACC RobD JSD Copy?

Victim model 74.4% – – – 94.9% – – –

Positive

Suspect

Models

FT-LL 73.2±0.4% 0.034±0.007 0.009±0.003 Yes (2/2) 95.2±0.1% 0.104±0.007 0.036±0.006 Yes (2/2)

FT-AL 70.8±0.9% 0.073±0.011 0.043±0.011 Yes (2/2) 95.8±0.3% 0.326±0.024 0.155±0.014 Yes (2/2)

RT-AL 53.3±0.8% 0.192±0.008 0.251±0.015 Yes (2/2) 94.3±0.3% 0.445±0.019 0.231±0.016 Yes (2/2)

P-20% 69.7±1.1% 0.106±0.010 0.064±0.003 Yes (2/2) 95.4±0.2% 0.310±0.026 0.152±0.013 Yes (2/2)

P-60% 68.8±1.0% 0.161±0.017 0.091±0.004 Yes (2/2) 95.0±0.5% 0.437±0.030 0.215±0.013 Yes (2/2)

Negative

Suspect

Models

Neg-1 74.2±0.3% 0.737±0.007 0.395±0.006 No (0/2) 94.9±0.7% 0.819±0.025 0.456±0.014 No (0/2)

Neg-2 73.9±0.5% 0.760±0.010 0.429±0.004 No (0/2) 94.5±0.8% 0.832±0.024 0.472±0.012 No (0/2)

τλ – 0.659 0.356 – – 0.727 0.405 –

Fig. 4: The detection ROC curves of metrics RobD and JSD

on CIFAR-10 suspect models, and AUC = 1 for both metrics.

as efficient since test case generation is a one-time effort, and

the additional time cost of scanning a suspect model with the

test cases is almost negligible.

Remark 1: DEEPJUDGE is effective and efficient in

identifying finetuning and pruning copies.

3) Comparison with existing techniques: We compare

DEEPJUDGE with three state-of-the-art copyright defense

methods against model finetuning and pruning attacks. More

details of these defense methods can be found in Appendix E.

Black-box: Comparison to Watermarking and Fingerprint-

ing. DNNWatermarking [47] is a black-box watermarking

method based on backdoors, and IPGuard [2] is a black-box

fingerprinting method based on targeted adversarial attacks.

Here, we compare these two baselines with DEEPJUDGE in

the black-box setting. For DNNWatermarking, we train the

watermarked model (i.e., victim model) using additionally

patched samples from scratch to embed the watermarks, and

the TSA (Trigger Set Accuracy) of the suspect model is

calculated for ownership verification. IPGuard first generates

targeted adversarial examples for the watermarked model then

calculates the MR (Matching Rate) (between the victim and the

suspect) for verification. For DEEPJUDGE, we only apply the

RobD (robustness distance) metric here for a fair comparison.

The left subfigure of Fig. 6 visualizes the results. DEEP-

JUDGE demonstrates the best overall performance in this

black-box setting. DNNWatermarking and IPGuard fail to

identify the positive suspect models duplicated by FT-AL, RT-

AL, P-20% and P-60%. Their scores (TSA and MR) drop

drastically against these four attacks. This basically means

that the embedded watermarks are completely removed, or

the fingerprint can no longer be verified. While for the RobD

metric of DEEPJUDGE, the gap remains huge between the

negative and positive suspects, demonstrating much better

effectiveness to diverse finetuning and pruning attacks.

White-box: Comparison to Watermarking. Embedding-

Watermark [40] is a white-box watermarking method based

on signatures. It requires access to model parameters for

signature extraction. We train the victim model with the

embedding regularizer [40] from scratch to embed a 128-bits

signature. The BER (Bit Error Rate) is calculated and used

to measure the verification performance. The right subfigure

of Fig. 6 visualizes the comparison results to two white-

box DEEPJUDGE metrics NOD and NAD. The three metrics
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TABLE V: Performance of DEEPJUDGE against model finetuning and pruning attacks in the white-box setting. Algorithm 2

is used to generate the test cases. For each metric, the values below (indicating ‘copy’) or above (indicating ‘not copy’) the

threshold τλ (the last row) are highlighted in red (copy alert) and green (no alert) respectively. ‘Yes (4/4)’: all 4 metrics

vote for ‘copy’ (pcopy = 100%); ‘No (0/4)’: none of the metrics vote for ‘copy’ (pcopy = 0%).

Model Type
MNIST CIFAR-10

NOD NAD LOD LAD Copy? NOD NAD LOD LAD Copy?

Positive

Suspect

Models

FT-LL 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 Yes (4/4) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 Yes (4/4)

FT-AL 0.08±0.01 0.23±0.21 0.32±0.03 0.82±0.16 Yes (4/4) 0.15±0.02 0.30±0.12 0.74±0.07 0.21±0.04 Yes (4/4)

RT-AL 0.31±0.02 0.37±0.20 0.97±0.04 1.27±0.29 Yes (4/4) 0.18±0.02 0.26±0.10 0.78±0.03 0.22±0.02 Yes (4/4)

P-20% 0.10±0.01 0.16±0.12 0.36±0.03 0.79±0.15 Yes (4/4) 0.28±0.03 0.32±0.09 0.77±0.06 0.24±0.02 Yes (4/4)

P-60% 0.11±0.01 0.82±0.26 0.43±0.03 1.16±0.08 Yes (4/4) 0.62±0.03 1.65±0.34 2.80±0.21 0.93±0.10 Yes (4/4)

Negative

Suspect

Models

Neg-1 0.77±0.07 11.46±1.14 1.73±0.06 6.42±0.84 No (0/4) 3.09±0.30 10.94±1.74 11.85±1.01 5.41±0.67 No (0/4)

Neg-2 0.79±0.08 12.28±1.50 1.78±0.13 6.37±0.47 No (0/4) 3.21±0.18 11.09±0.71 12.60±1.33 5.37±0.72 No (0/4)

τλ 0.45 6.74 1.03 3.65 – 1.79 6.14 6.89 3.01 –

Model Type
ImageNet SpeechCommands

NOD NAD LOD LAD Copy? NOD NAD LOD LAD Copy?

Positive

Suspect

Models

FT-LL 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 Yes (4/4) 0.000±0.000 0.00±0.00 0.00±0.00 0.000±0.00 Yes (4/4)

FT-AL 0.02±0.01 0.18±0.09 0.16±0.05 0.58±0.13 Yes (4/4) 0.037±0.003 0.05±0.02 0.42±0.02 12.82±1.00 Yes (4/4)

RT-AL 0.03±0.00 0.30±0.07 0.25±0.03 0.78±0.05 Yes (4/4) 0.055±0.003 0.25±0.31 0.64±0.08 21.64±2.47 Yes (4/4)

P-20% 0.11±0.01 0.83±0.06 0.76±0.01 1.67±0.22 Yes (4/4) 0.038±0.002 0.03±0.02 0.44±0.02 14.57±3.12 Yes (4/4)

P-60% 0.77±0.01 3.09±0.12 3.41±0.03 6.63±0.23 Yes (4/4) 0.094±0.004 0.45±0.32 0.67±0.04 20.58±3.44 Yes (4/4)

Negative

Suspect

Models

Neg-1 6.55±0.78 32.18±2.97 35.03±3.13 30.32±1.91 No (0/4) 0.488±0.013 39.61±9.74 2.82±0.08 64.32±2.42 No (0/4)

Neg-2 6.25±0.39 30.04±2.44 44.21±3.11 29.58±0.86 No (0/4) 0.480±0.012 34.84±6.07 2.79±0.09 62.69±1.75 No (0/4)

τλ 3.48 17.17 20.74 17.20 – 0.286 19.77 1.66 37.48 –

Fig. 5: Similarities of different suspect models to the victim model on CIFAR-10 (left 3 columns) and SpeechCommands (right

3 columns). We use the orange line for the positive suspect models and the blue line for negatives. Each dimension of the radar

chart corresponds to a similarity score given by one DEEPJUDGE metric. The similarity score is computed by first normalizing

the metric, e.g., RobD, to [0, 1] then taking 1−RobD.

demonstrate a comparable performance with NAD wins on

4 out of the 5 positive suspects. Note that the huge gap

between the positives and negatives indicates that all metrics

can correctly identify the positive suspects. Here, a single

metric of DEEPJUDGE was able to achieve the same level

of protection as EmbeddingWatermark.

Remark 2: Compared to state-of-the-art defense meth-

ods, DEEPJUDGE performs better in the black-box

setting and comparably in the white-box setting against

model finetuning and pruning attacks, while not tam-

pering with model training.

C. Defending Against Model Extraction

Model extraction (also known as model stealing) is consid-

ered to be a more challenging threat to DNN copyright. In

this part, we evaluate DEEPJUDGE against model extraction

attacks, which has not been thoroughly studied in prior work.

1) Attack strategies: We consider model extraction with

two different types of supporting data: auxiliary or synthetic

(see Section III). We consider the following state-of-the-art

model extraction attacks: a) JBA (Jacobian-Based Augmen-

tation [33]) samples a set of seeds from the test dataset,

then applies Jacobian-based data augmentation to synthesize

more data from the seeds. b) Knockoff (Knockoff Nets [32])

works with an auxiliary dataset that shares similar attributes

as the original training data used to train the victim model.

c) ESA (ES Attack [45]) requires no additional data but a

833

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on August 08,2022 at 18:43:48 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6: DEEPJUDGE vs. three state-of-the-art copyright defense methods. Left: a comparison with two black-box methods

[47], [2]; Right: a comparison with one white-box method [40]. The results are normalized into [0, 1] for better visualization.

The higher the normalized value, the better the identification of a positive suspect model.

TABLE VI: Performance of DEEPJUDGE against model extraction attacks in the black-box setting. PGD [28] is used to

generate adversarial test cases. ACC is the validation accuracy. For each metric, the values below (indicating ‘copy’) or above

(indicating ‘not copy’) the threshold τλ (the last row) are highlighted in red (copy alert) and green (no alert), respectively.

‘Yes (2/2)’: two of the metrics vote for positive (pcopy = 100%); ‘No (0/2)’: none of the metrics vote for positive (pcopy = 0%).

See more details about the 3 extraction attacks in Appendix F.

Model Type
MNIST CIFAR-10 SpeechCommands

ACC RobD JSD Copy? ACC RobD JSD Copy? ACC RobD JSD Copy?

Positive

Suspect

Models

JBA 83.6±1.7% 0.866±0.034 0.596±0.006 No (0/2) 40.3±1.5% 0.497±0.044 0.541±0.015 No (1/2) 40.1±1.7% 0.381±0.030 0.470±0.011 No (1/2)

Knock 94.8±0.6% 0.491±0.032 0.273±0.021 Yes (2/2) 74.4±1.0% 0.715±0.018 0.436±0.019 Yes (2/2) 86.6±0.5% 0.618±0.012 0.303±0.007 Yes (2/2)

ESA 88.7±2.5% 0.175±0.056 0.141±0.042 Yes (2/2) 67.1±1.9% 0.144±0.031 0.249±0.033 Yes (2/2) × × × –

Negative

Suspect

Models

Neg-1 98.4±0.3% 0.968±0.014 0.614±0.016 No (0/2) 84.2±0.6% 0.920±0.021 0.603±0.016 No (0/2) 94.9±0.7% 0.817±0.025 0.456±0.014 No (0/2)

Neg-2 98.3±0.2% 0.949±0.029 0.600±0.020 No (0/2) 84.9±0.5% 0.926±0.030 0.615±0.021 No (0/2) 94.5±0.8% 0.832±0.024 0.472±0.012 No (0/2)

τλ – 0.852 0.538 – – 0.816 0.537 – – 0.727 0.405 –

huge amount of queries. ESA utilizes an adaptive gradient-

based optimization algorithm to synthesize data from random

noise. ESA could be applied in scenarios where it is hard

to access the task domain data, such as personal health data.

With the extracted data, the adversary can train a new model

from scratch, assuming knowledge of the victim model’s

architecture. The new model is considered as a successful

stealing if its performance matches with the victim model.

2) Failure of watermarking: Our experiments in Section

V-B show the effectiveness and robustness of watermarking to

finetuning and pruning attacks. Unfortunately, here we show

that the embedded watermarks can be removed by model

extraction attacks. We show the results of DNNWatermarking

and EmbeddingWatermark in Fig. 12. The extracted models by

different extraction attacks all differ greatly from the victim

model according to either TSA (from DNNWatermarking) or

BER (from EmbeddingWatermark). For example, the TSA

value for the victim model is 100%, however, the TSA values

for the three extracted copies are all below 1%. This basically

means that the original watermarks are all erased in the

extracted models. It will inevitably lead to failed ownership

claims. This is somewhat not too surprising as watermarks are

task-irrelevant contents and not the focus of model extraction.

3) Effectiveness of DEEPJUDGE: Table VI summarizes

the results of DEEPJUDGE, which successfully identifies all

positive suspect models, except when the stolen copies (by

JBA) have extremely poor performance with 15%, 44% and

55% lower accuracy than the corresponding victim model.

We note that model extraction does not always work, and

poorly performed extractions are less likely to pose a real

threat. We also observe that DEEPJUDGE works better when

the extraction is better, which therefore counters the ultimate

perfect matching goal of model extraction attacks.

Compared to model finetuning or pruning, the average RobD

and JSD values on extracted models are relatively larger,

meaning that the decision boundaries of extracted models are

more different from that of the victim model. The reason is that

extracted models are often trained from a random point, while

finetuning only slightly shifts the original boundary of the vic-

tim model, as depicted in Fig. 2. As such, model extraction is

more stealthy and more challenging for ownership verification.

Nonetheless, the two metrics RobD and JSD, can still reveal

the unique similarities (smaller values) of the extracted models

to the victim model: the better the extraction (higher accuracy

of the extracted model), the lower the RobD and JSD values.

This indicates that the extracted model behaves more similarly

to the victim as its decision boundary gradually approaching

that of the victim, and also highlights the unique advantage

of DEEPJUDGE against model extraction attacks. Note that

JBA attack can only extract 50% of the original accuracy on

either CIFAR-10 or SpeechCommands, which should not be

considered as successful extractions.

In Fig. 7, we further show the evolution of the RobD

and JSD values throughout the entire extraction process of

Knockoff, ESA and JBA attacks. We find that both RobD

(orange line) and JSD (red line) values decrease as the

extraction progresses, again, except for JBA. This confirms

our speculation that, when tested by DEEPJUDGE, a better

extracted model will expose more similarities to its victim. By

contrast, we also study how these two values change during
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Fig. 7: The RobD (orange line) and JSD (red line) scores

between the victim and extracted models throughout the entire

extraction procedure (defined by sample sizes, epochs or

rounds) on MNIST.

the training process of the negative model in Fig. 7, which

shows that the independently trained negative suspect models

tend to vary more from the victim model and produce higher

RobD and JSD values.

Remark 3: Model extraction attacks are more chal-

lenging than finetuning or pruning attacks, however,

DEEPJUDGE can still correctly identify those success-

ful extractions. Moreover, the better the extraction,

the easier the extracted model will be identified by

DEEPJUDGE as a stolen copy.

VI. ROBUSTNESS TO ADAPTIVE ATTACKERS

In this section, we explore potential adaptive attacks to

DEEPJUDGE based on the adversary’s knowledge of DEEP-

JUDGE: 1) the adversary knows the testing metrics and the

test cases, or 2) the adversary only knows the testing metrics.

Contrast evaluation of watermarking & fingerprinting against

similar adaptive attacks are in Appendix G.

A. Knowing Both Testing Metrics and Test Cases

In this threat model, the adversary has full knowledge of

DEEPJUDGE including the testing metrics Λ and the secret test

cases T . We also assume the adversary has a subset of clean

data. In DEEPJUDGE, we have two test settings, i.e., white-

box testing and black-box testing. The two testings differ in

the testing metrics and the generated test cases (see examples

in Fig. 17). The black-box test cases are labeled. Therefore, the

adversary can mix T into its clean subset to finetune the stolen

model to have large testing distances (i.e., black-box testing

metrics RobD and JSD) while maintaining good classification

performance. This will fool DEEPJUDGE to identify the stolen

model to be significantly different from the victim model.

This adaptive attack against black-box testing is denoted by

Adapt-B. Since the white-box test cases are unlabeled, the

adversary can use the predicted labels (by the victim model)

as ground-truth and finetunes the stolen model following a

Fig. 8: Detection ROC curve of RobD with exposed (left) and

new (right) test cases against Adapt-B attack on CIFAR-10.

similar procedure as Adapt-B. This attack against white-box

testing is denoted by Adapt-W. Note that the suffix ‘-B/-W’

marks the target testing setting to attack, while both attacks

are white-box adaptive attacks knowing all the information.

The results of DEEPJUDGE using the exposed test cases

T are reported in Table VII. It shows that: 1) DEEPJUDGE is

robust to Adapt-W, which fails to maximize the output distance

and activation distance simultaneously nor maintaining the

original classification accuracy; 2) though DEEPJUDGE is not

robust to Adapt-B when the test cases are exposed with labels,

it can easily recover the performance with new test cases

generated with different seeds (see the ROC curves on the

exposed and new test cases in Fig. 8); and 3) DEEPJUDGE

can still correctly identify the stolen copies by Adapt-B

when combining black-box and white-box testings (the final

judgements are all correct). Comparing the non-trivial effort

of retraining/finetuning a model to the efficient generation of

new test cases, DEEPJUDGE holds a clear advantage in the

arms race against finetuning-based adaptive attacks.

It is noteworthy that Adapt-W did not break all white-box

metrics of DEEPJUDGE, since the mechanism of white-box

testing is robust. Specifically, black-box testing characterizes

the behaviors of the output layer, while white-box testing

characterizes the internal behaviors of more shallow layers.

Due to the over-parameterization property of DNNs, it is

relatively easy to fine-tune the model to overfit the set of

black-box test cases, subverting the results of the black-box

metrics. However, in white-box testing, changing the activation

status of all hidden neurons on the set of white-box test

cases is almost impossible without completely retraining the

model. Therefore, white-box testing is inherently more robust

to adaptive attacks, especially when the test cases are exposed.

B. Knowing Only the Testing Metrics

In this threat model, the adversary can still adapt in different

ways. We consider two adaptive attacks: adversarial training

targeting on black-box testing and a general transfer learning

attack on white-box testing, respectively.
1) Blind adversarial training: Since our black-box testing

mainly relies on probing the decision boundary difference

using adversarial test cases, the adversary may utilize adver-

sarial training to improve the robustness of the stolen copy.

Given the PGD parameters and a subset of clean data (20%

of the original training data), the adversary iteratively trains

the stolen model to smooth the model decision boundaries

following [28]. This type of adaptive attack is denoted by Adv-

Train. As Table VII shows, it can indeed circumvent our black-
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TABLE VII: Performance of DEEPJUDGE against several adaptive attacks on the CIFAR-10 dataset. Adapt-B: adaptive attack

against black-box testing; Adapt-W: adaptive attack against white-box testing; Adv-Train: adversarial training, VTL: vanilla

transfer learning. For each metric, the values below (indicating ‘copy’) or above (indicating ‘not copy’) the threshold τλ (the

last row) are highlighted in red (copy alert) and green (no alert) respectively.

Model Type
Black-box Testing White-box Testing

ACC RobD JSD NOD NAD LOD LAD Copy?

Positive

Suspect

Models

Adapt-B 81.4±0.9% 0.985±0.011 0.665±0.007 0.38±0.04 0.44±0.15 1.12±0.06 0.40±0.05 Yes (4/6)

Adapt-W 71.9±1.8% 0.519±0.048 0.372±0.025 3.11±0.12 1.94±0.12 11.62±0.54 1.89±0.33 Yes (4/6)

Adv-Train 74.5±2.3% 0.939±0.087 0.637±0.036 0.68±0.11 0.79±0.17 1.89±0.14 0.75±0.08 Yes (4/6)

VTL 93.3±1.7% × × 0.85±0.23 1.08±0.14 2.58±0.24 0.64±0.15 Yes (4/4)

Negative

Suspect

Models

Neg-1 84.2±0.6% 0.920±0.021 0.603±0.016 3.09±0.30 10.94±1.74 11.85±1.01 5.41±0.67 No (0/6)

Neg-2 84.9±0.5% 0.926±0.030 0.615±0.021 3.21±0.18 11.09±0.71 12.60±1.33 5.37±0.72 No (0/6)

τλ – 0.816 0.537 1.79 6.14 6.89 3.01 –

Fig. 9: Detection ROC curve of RobD with adversarial test

cases generated from high-confidence (left) or low-confidence

seeds (right) against Adv-Train attack on CIFAR-10.

box testing, with a sacrifice of ∼ 10% performance (a phe-

nomenon known as accuracy-robustness trade-off [39], [46]).

However, interestingly, if we replace the high-confidence seeds

used in DEEPJUDGE with low-confidence seeds, DEEPJUDGE

becomes effective again (as shown in Fig. 9). One possible

reason is that, compared to high-confidence seeds, these low-

confidence seeds are natural boundary (hard) examples that

are close to the decision boundary, thus can generate more test

cases to cross the adversarially smoothed decision boundary

within certain perturbation budget. Examples of high/low

confidence test seeds are provided in Fig. 15. It is also worth

mentioning that our white-box testing still performs well in

this case. Overall, DEEPJUDGE is robust to Adv-Train or at

least can be made robust by efficiently updating the seeds.

2) Transfer learning: The adversary may transfer the stolen

copy of the victim model to a new dataset. The adversary

exploits the main structure of the victim model as a backbone

and adds more layers to it. Here, we test a vanilla transfer

learning (VTL) strategy from the 10-class CIFAR-10 to a 5-

class SVHN [31]. The last layer of the CIFAR-10 victim

model is first replaced by a new classification layer. We then

fine-tune all layers on the subset of SVHN data. Note that,

in this setting, the black-box metrics are no longer feasible

since the suspect model has different output dimensions to

the victim model, however, the white-box metrics can still

be applied since the shallow layers are kept. The results are

reported in Table VII. Remarkably, DEEPJUDGE succeeds

in identifying transfer learning attacks with distinctively low

testing distances and an AUC = 1.

In one recent work [29], it was observed that the knowledge

of the victim model could be transferred to the stolen models.

Dataset Inference (DI) technique was then proposed to probe

whether the victim’s knowledge (i.e., private training data) is

preserved in the suspect model. We believe such knowledge-

level testing metrics could also be incorporated into DEEP-

JUDGE to make it more comprehensive. An analysis of how

different levels of transfer learning could affect DEEPJUDGE

can be found in Appendix H.

Remark 4: DEEPJUDGE is fairly robust to adversarial

finetuning, adversarial training or transfer learning

based adaptive attacks, although sometimes it needs

to regenerate the seeds or test cases.

VII. CONCLUSION

In this work, we proposed DEEPJUDGE, a novel testing

framework for copyright protection of deep learning models.

The core of DEEPJUDGE is a family of multi-level testing

metrics that characterize different aspects of similarities be-

tween the victim model and a suspect model. Efficient and

flexible test case generation methods are also developed in

DEEPJUDGE to help boost the discriminating power of the

testing metrics. Compared to watermarking methods, DEEP-

JUDGE does not need to tamper with the model training

process. Compared to fingerprinting methods, it can defend

more diverse attacks and is more resistant to adaptive attacks.

DEEPJUDGE is applicable in both black-box and white-box

settings against model finetuning, pruning and extraction at-

tacks. Extensive experiments on multiple benchmark datasets

demonstrate the effectiveness and efficiency of DEEPJUDGE.

We have implemented DEEPJUDGE as a self-contained open-

source toolkit. As a generic testing framework, new testing

metrics or test case generation methods can be effortlessly

incorporated into DEEPJUDGE to help defend future threats to

deep learning copyright protection.

ACKNOWLEDGEMENT

We are grateful to the anonymous reviewers and shepherd

for their valuable comments. This research was supported by

the Key R&D Program of Zhejiang (2022C01018) and the

NSFC Program (62102359, 61833015).

836

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on August 08,2022 at 18:43:48 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph
Keshet. Turning your weakness into a strength: Watermarking deep
neural networks by backdooring. In USENIX Security, pages 1615–
1631, 2018.

[2] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. IPGuard: Protecting
intellectual property of deep neural networks via fingerprinting the
classification boundary. In Asia CCS, pages 14–25, 2021.

[3] Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. Cryptanalytic
extraction of neural network models. In CRYPTO, pages 189–218.
Springer, 2020.

[4] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In S&P, pages 39–57. IEEE, 2017.

[5] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deep-
Driving: Learning affordance for direct perception in autonomous driv-
ing. In ICCV, pages 2722–2730, 2015.

[6] Keunwoo Choi, Deokjin Joo, and Juho Kim. Kapre: On-gpu audio
preprocessing layers for a quick implementation of deep neural network
models with keras. In Machine Learning for Music Discovery Workshop

at ICML, 2017.

[7] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Ko-
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APPENDIX

A. Details of Datasets and Models

We use four benchmark datasets from two domains for the

evaluation:

• MNIST [24]. This is a handwritten digits (from 0 to 9)

dataset, consisting of 70,000 images with size 28×28×1,

of which 60,000 and 10,000 are training and test data.

• CIFAR-10 [22]. This is a 10-class image classification

dataset, consisting of 60,000 images with size 32×32×3,

of which 50,000 and 10,000 are training and testing data.

• ImageNet [36]. This is a large-scale image dataset con-

taining more than 1.2 million training images of 1,000

categories. It is more challenging due to the higher image

resolution 224×224×3. We randomly sample 100 classes

to construct a subset of ImageNet, of which 120,000 are

training data and 30,000 are testing data.

• Speech Commands [42]. This is an audio dataset of 10

single spoken words, consisting of about 40,000 training

samples and 4,000 testing samples. We pre-processed the

data to obtain a Mel Spectrogram [6]. Each audio sample

is transformed into an array of size 120× 85.

To explore the scalability of DEEPJUDGE, various model

structures are tested as in Table III. LeNet-5, ResNet-20 and

VGG-16 are standard CNN structures, while LSTM(128) is

an RNN structure: an LSTM layer with 128 hidden units,

followed by three fully-connected layers (128/64/10).

B. Seed Selection Strategy

Seed selection is important for generating high-quality test

cases. We use DeepGini [12] to measure the certainty of each

candidate sample. Given the victim model f and a testing

dataset D, we first calculate the Certainty Score (CS) for each

seed x ∈ D as: CS(fL,x) =
∑C

i fL
i (x)

2, then we rank the

seed list by the certainty score, and the first part of the seeds

of the highest scores (i.e., most certainties) will be chosen for

the following generation process. Here, we assume to have two

seeds {x1,x2} with CS(fL,x1) > CS(fL,x2), that means

the victim model f is more confident at x1, which also means

that x1 is farther from the decision boundary and easier for

classification (see examples in Fig. 15).

C. Data-augmentation

During the finetuning and pruning processes, typical data-

augmentation techniques are used to strengthen the attacks

except for the SpeechCommands dataset, including random

rotation (10◦), random width- and height-shift (both 0.1).

D. Test Case Generation Details and Calibrations

Specifically, we consider three adversarial attacks for gen-

erating black-box test cases (see Section IV-C1).

FGSM [14] perturbs a normal example x by one single step

of size ε to maximize the model’s prediction error with respect

to the groundtruth label y:x′ = x+ ε · sign(	xL(f
L(x), y)),

where sign(·) is the sign function, L is the cross entropy (CE)

loss, and 	xL is the gradient of the loss to the input.

PGD [28] is an iterative version of FGSM but with smaller

step size: x
k = Πε(x

k−1 + α · sign(	xL(f
L(xk−1), y))),

TABLE VIII: The hyper-parameters used in different test case

generation strategies.

Method Params MNIST CIFAR-10 ImageNet SpeechCmds

PGD [28] ε/steps 0.1/10 0.03/10 0.01/10 0.1/10

Alg. 2 m/iters 3/1k 3/1k 3/1k 1/1k

FGSM [14] ε/steps 0.1/1 0.03/1 0.01/1 0.1/1

CW [4] c/iters 5/1k 5/1k 5/1k 5/1k

IPG [2] k/iters 10/1k 10/1k 10/1k 10/1k

TABLE IX: Time cost (seconds) of test cases generation.

Method MNIST CIFAR-10 ImageNet SpeechCmds

PGD [28] 0.3 3.7 227.6 1.2

Alg. 2 635.3 1200.3 1280.1 4424.6

where x
k is the adversarial example obtained at the k-th

perturbation step, α is the step size and Πε is a projection

(clipping) operation that projects the perturbation back onto

the ε-ball centered around x if it goes beyond.

CW [4] generates adversarial examples by solving the opti-

mization problem: x
′ = min

x
′

‖x′ − x‖
2

2
− c · L(fL(x′), y),

where c is a hyperparameter balancing the two terms and

the pixel values of adversarial example x
′ are bounded to be

within a legitimate range, e.g., [0, 1] for 0-1 normalized input.

The hyper-parameters used for the generation algorithms on

different datasets are summarized in Table VIII. Here, we take

CIFAR-10 dataset as an example and analyze the influencing

factors of the test case generation process.

Adversarial Examples. PGD is the default choice for gen-

erating adversarial examples in the black-box setting. Here,

we further compare PGD with two other methods, FGSM

and CW. We use the same selected seeds for the generation.

Table X shows the results of the RobD metric. We observe

that the gap in RobD values between the positive and negative

suspect models is very small when CW is used, which fails to

distinguish the two types of models. One reason is that CW at-

tack optimizes adversarial examples for minimal perturbations,

which is more sensitive (less robust) to model modifications.

FGSM can be regarded as a one-step PGD, which usually has

a larger average perturbation than PGD. When the perturbation

increases, the RobD value of negative suspect models would

decrease since adversarial examples with larger perturbations

tend to have better transferability [43]. It is similar to PGD3ε

when the perturbation bound increases. In general, the absolute

RobD gap between the positive and negative suspects tested

with PGD-generated test cases is larger than that of FGSM

and CW. Moreover, PGD is relatively cheaper to calculate

than CW, i.e., the time cost of PGD is 100× lower than CW.

Overall, PGD is more suitable for fingerprinting the decision

boundary with untargeted adversarial examples, as shown in

Fig. 2. We will explore more effective metrics and test case

generation methods with diverse granularity in future work.

Remark 5: Different generation strategies and pa-

rameters can impact DEEPJUDGE differently. Overall,

PGD is a better choice for characterizing the model’s

decision boundary.
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TABLE X: Using different methods to generate adversarial examples for the RobD metric evaluation on CIFAR-10 dataset.

PGDε/3 : with 1

3
× perturbation bound, PGD3ε : with 3× bound, PGD10s: with 10× steps.

Model Type FGSM CW PGD PGDε/3 PGD3ε PGD10s

Positive

Suspect

Models

FT-LL 0.024±0.004 0.0±0.0 0.0±0.0 0.034±0.002 0.0±0.0 0±0.0

FT-AL 0.261±0.025 0.905±0.028 0.192±0.028 0.733±0.012 0.046±0.010 0.350±0.027

RT-AL 0.267±0.025 0.917±0.024 0.237±0.055 0.748±0.046 0.073±0.022 0.400±0.046

P-20% 0.252±0.030 0.882±0.038 0.155±0.032 0.702±0.023 0.045±0.020 0.299±0.049

P-60% 0.293±0.027 0.940±0.013 0.318±0.036 0.792±0.023 0.123±0.022 0.502±0.031

Negative

Suspect

Models

Neg-1 0.662±0.058 0.999±0.002 0.920±0.021 0.989±0.007 0.573±0.093 0.958±0.013

Neg-2 0.672±0.019 0.998±0.003 0.926±0.030 0.986±0.004 0.576±0.030 0.948±0.012

τλ 0.583 0.897 0.816 0.886 0.489 0.851

Fig. 10: Normalized distance evaluations based on different

layers of the CIFAR-10 network: ‘-Shallow’ means the results

on the shallow layer, and ‘-Deep’ means the deep layer.

Layer Selection. Layer selection is important when applying

DEEPJUDGE in the white-box setting with NOD and NAD.

Here, we evaluate how the choice of layers affects the perfor-

mance of DEEPJUDGE. For comparison, we choose a shallow

layer and a deep layer of the victim model, and re-generate

the test cases respectively for each layer. Fig. 10 shows the

results of NOD and NAD metrics. In general, the NOD/NAD

difference between the positive and negative suspect models

becomes much larger at the shallow layer. The reason is that

the shallow layers of a network usually learn the low-level

features [44], and they tend to stay the same or at least

similar during model finetuning. Particularly, the performance

on RT-AL degrades the most when the deep layer is selected,

since the parameters of the last layer are re-initialized. Thus,

choosing the shallow layers to compute the NOD and NAD

metrics could help the robustness of DEEPJUDGE. Moreover,

the time cost of generating and testing with the shallow layer

is 10× less than the deep layer, since most of the back-

propagation computations are eliminated.

Remark 6: The shallow layers are a better choice for

testing metrics NOD and NAD.

E. Defense Baselines

1) Backdoor-based watermarking (Black-box): [47] em-

beds backdoors into the model. In our experiments, we select

500 samples from the training dataset, of which the ground

truth labels are “automobile”. Then we patch an “apple” logo

at the bottom right corner of each sample and change their

labels to “cat” (see Fig. 11). These trigger examples (i.e.,

trigger set) are mixed into the clean training dataset to train

Fig. 11: A trigger input example used in backdooring.

a watermarked model from scratch. The initial TSA of the

watermarked model is 100.0% (on a separate trigger set).
2) Signature-based watermarking (White-box): [40] em-

beds a T -bit vector (i.e., the watermark) b ∈ {0, 1}T into one

of the convolutional layers, by adding an additional parameter

regularizer into the loss function: E(w) = E0(w) + λER(w),
where E0(w) is the original task loss function, ER(w) is the

regularizer that imposes a certain restriction on the model

parameters w, and λ is a hyper-parameter. In our experiments,

λ is set to 0.01, and we embed a 128-bit watermark (generated

by the random strategy) into the second convolutional block

(Conv-2 group) as recommended in [40]. The initial BER of

the watermarked model is 3.13%.
3) Fingerprinting (Black-box): IPGuard [2] proposes a type

of adversarial attack that targets on generating adversarial

examples x′ around the classification boundaries of the victim

model, and the matching rate (MR) of these key samples is

calculated for the verification similar to [47]. We generate a set

of 1,000 adversarial examples following [2] and the initial MR

of the victim model on the generated key samples is 100.0%.

F. Model Extraction Attacks

Jacobian-Based Augmentation. The seeds used for augmen-

tation are all sampled from the testing dataset. We sample

150 seeds for extracting the MNIST victim model, 500 seeds

for SpeechCommands, 1,000 seeds for CIFAR-10, and use all

other default settings [33].

Knockoff Nets. We use the Fashion-MNIST dataset for ex-

tracting the MNIST victim model, an independent speech

dataset for SpeechCommands, and CIFAR-100 for CIFAR-10.

We use other default hyper-parameter settings of [32].

ES Attack. We use the OPT-SYN algorithm [45] to heuristi-

cally synthesize the surrogate data. We set the stealing epoch to

50 for MNIST and 400 for CIFAR-10. We failed to extract the

SpeechCommands Victim model since the validation accuracy

could not exceed 20%. All other hyper-parameters are the

same as in [45].
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∗Functionality-equivalent Extraction. Besides the above

three extraction attacks, we are also aware of the functionality-

equivalent extraction attacks [19], [3] that attempt to obtain

a precise functional approximation of the victim model. For

instance, [3] proposed a differential attack that could steal the

parameters of the victim model up to floating-point precision

without the knowledge of training data. We remark that

defending this type of attack is a trivial task for DEEPJUDGE

as there will be no difference between the extracted model and

the victim model in an ideal approximation.
Note that Black-box model extraction is still underexplored,

and more extraction attacks may appear in the future. This

poses a continuous challenge for deep learning copyright

protection. We hope that DEEPJUDGE could evolve with the

adversaries by incorporating more advanced testing metrics

and test case generation methods, and provide a possibility to

fight against this continuing model stealing threat.

G. Adaptive Attacks for Watermarking & Fingerprinting

In addition to Section VI, here we conduct an extra eval-

uation of existing watermarking [40], [47] and fingerprinting

[2] methods under similar adaptive attack settings.
Adaptive attacks. Adv-Train and VTL are the two adaptive

attacks in Table VII, while the Adapt-X attack is specifically

designed for each method as follows:

• Adapt-X for [40]. Since the embedded watermark (signa-

ture) is known, the adversary copies (steals) the victim

model then fine-tunes it on a small subset of clean

examples while maximizing the embedding loss ER(w)
on the signature.

• Adapt-X for [47]. Since the embedded watermark (back-

door) is known, the adversary can follow a similar

approach as above to steal the victim model and remove

the backdoor watermark with a few backdoor-patched but

correctly-labeled examples.

• Adapt-X for [2]. Similar to our Adapt-B for DEEPJUDGE,

the adversary copies the victim model then fine-tunes it

on a small subset of clean and correctly-labeled finger-

print examples to circumvent fingerprinting.

As the results in Table XI show, all three methods are

completely broken by the adaptive attacks. DEEPJUDGE is the

only method that can survive these attacks and was partially

compromised but not fully broken (the final judgments are still

correct, as shown in the ‘Copy?’ column of Table VII). This

implies that a single metric of watermarking or fingerprinting

is not sufficient enough to combat adaptive attacks. By con-

trast, a testing framework with comprehensive testing metrics

and test case generation methods may have the required

flexibility to address this challenge. For example, Adv-Train

may break the black-box testing of DEEPJUDGE but cannot

break the white-box testing (see Section VI-B). Moreover,

DEEPJUDGE can quickly recover its performance by switching

to a new set of seeds (see Fig. 9).

H. How Different Levels of Finetuning, Pruning and Transfer

Learning Affect DEEPJUDGE?

There is a spectrum of building a new model with access to

a victim model, from different ways of finetuning to transfer

learning. Different levels of modifications to the victim model

would accordingly influence the testing of DEEPJUDGE in

different ways. Intuitively, a larger modification would lead

to more dissimilarity between the victim and suspect models

and a larger metric distance.

Here, we test different proportions of training samples

and learning rates used for finetuning, proportions of pruned

weights (pruning ratios) for pruning, and proportions of sam-

ples used for transfer learning (w.r.t. the setting described in

Section VI-B2). Fig. 16 shows the metrics’ values at different

levels of finetuning, pruning and transfer learning. At a high

level, black-box metrics (i.e., RobD and JSD) have higher nor-

malized distances than white-box metrics (i.e., NOD and NAD)

on average. This implies that the model’s decision boundary

is more sensitive to almost all levels of modifications. For

finetuning, the two black-box metrics (yellow and orange

bars) increase significantly with the amount of finetuning

samples or amplified learning rate, whereas the two white-

box metrics are relatively stable. Note that ‘4x’ (4 times the

default learning rate) causes a significant drop (∼ 20%) in the

model accuracy. For pruning, all metrics including the white-

box metrics increase with the amount of pruned weights at a

much higher rate than finetuning with different sample sizes.

This indicates that pruning has more impact on the model

than finetuning and will greatly distort the model’s internal

activations (measured by the two white-box metrics NOD and

NAD). Transfer learning has much higher metric values (only

white-box metrics are applicable here) than finetuning. This

is because the victim model’s functionality has been greatly

altered by transferring to a new data distribution. However, it

seems that the modification caused by transfer learning does

not accumulate with more samples, resulting in similar metric

values even with 40% more samples.

In this work, we follow the principle that any derivations

from the victim model other than independent training should

be treated as having a certain level of copying. However, it

can be hard to judge what degree of similarity (or level of

modification) should be considered as “real copying” in real-

world scenarios. In DEEPJUDGE, we introduced a good range

of testing metrics, hoping to provide more comprehensive

evidence for making the final judgement. Moreover, the final

judgement mechanism of DEEPJUDGE (Section IV-D) can be

flexibly adjusted to suit different application needs.

I. Additional Figures

Fig. 12: Existing watermarking methods [47] and [40] failed

to verify the ownership of the extracted models by several

extraction attacks.
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TABLE XI: Performance of existing watermarking and fingerprinting baselines on CIFAR-10 dataset against adaptive attacks:

1) Adapt-X, adaptive attack designed specifically against the defense method; 2) Adv-Train, blind adversarial training; and 3)

VTL, vanilla transfer learning. The broken metrics (close to the negatives) are highlighted in red. Adapt-X breaks all three

metrics, while Adv-Train breaks the adversarial-examples-based fingerprinting.

Model Type
Black-box Watermarking [47] White-box Watermarking [40] Black-box Fingerprinting [2]

ACC TSA ACC BER ACC MR

Victim Model 82.9% 100.0% 83.8% 3.13% 84.8% 100.0%

Positive

suspect

models

Adapt-X 81.8±0.8% 0.01±0.01% 71.2±2.6% 46.3±3.3% 81.9±0.2% 1.2±0.8%

Adv-Train 73.8±1.6% 5.5±3.2% 73.5±1.7% 4.0±0.8% 74.5±2.3% 4.2±1.5%

VTL 92.2±1.3% × 91.7±1.6% 6.1±1.2% 93.3±1.7% ×

Negative

models

Neg-1 84.2±0.6% 0.05±0.04% 84.2±0.6% 50.3±4.1% 84.2±0.6% 2.2±1.4%

Neg-2 84.9±0.5% 0.03±0.03% 84.9±0.5% 50.6±4.3% 84.9±0.5% 3.1±1.2%

Fig. 13: Similarity evaluation between the victim and suspect models on MNIST (left 3 columns) and ImageNet (right 3

columns). We use the orange line for positive suspect models and the blue line for negatives.

Fig. 14: The RobD/JSD scores between the CIFAR-10 (first

row) and SpeechCommands (second row) victim models and

their extracted copies by model extraction attacks.

Fig. 15: Selected test seeds with the highest or lowest certainty

scores. The first row belongs to ‘automobile’ and the second

row belongs to ‘horse’.

Fig. 16: DEEPJUDGE metrics computed at different levels of

model modifications on CIFAR-10. ‘2x’ means 2 times the

default learning rate.

Fig. 17: Example test cases generated in black-box and white-

box testings. Note that the white-box test cases are not regular

images and are unlabeled.
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