
Critical Initialization of Wide and Deep Neural Networks through Partial

Jacobians: General Theory and Applications

Darshil Doshi
1 *

Tianyu He
1 *

Andrey Gromov
1

Abstract

Deep neural networks are notorious for defying
theoretical treatment. However, when the num-
ber of parameters in each layer tends to infinity
the network function is a Gaussian process (GP)
and quantitatively predictive description is possi-
ble. Gaussian approximation allows to formulate
criteria for selecting hyperparameters, such as
variances of weights and biases, as well as the
learning rate. These criteria rely on the notion of
criticality defined for deep neural networks. In
this work we describe a new practical way to di-
agnose criticality. We introduce partial Jacobians
of a network, defined as derivatives of preactiva-
tions in layer l with respect to preactivations in
layer l0  l. We derive recurrence relations for
the norms of partial Jacobians and utilize these
relations to analyze criticality of deep fully con-
nected neural networks with LayerNorm and/or
residual connections. We derive and implement a
simple and cheap numerical test that allows to se-
lect optimal initialization for a broad class of deep
neural networks. Using these tools we show quan-
titatively that proper stacking of the LayerNorm
(applied to preactivations) and residual connec-
tions leads to an architecture that is critical for
any initialization. Finally, we apply our methods
to analyze the MLP-Mixer architecture and show
that it is everywhere critical.

1. Introduction

When the number of parameters in each becomes large the
functional space description of deep neural networks simpli-
fies dramatically. The network function, f(x), in this limit,
is a Gaussian process (Neal, 1996; Lee et al., 2018) with a
kernel – sometimes referred to as neural network Gaussian

*Equal contribution 1Brown Theoretical Physics Center
& Department of Physics, Brown University, Providence,
Rhode Island, USA. Correspondence to: Andrey Gromov <an-
drey gromov@brown.edu>.

process (NNGP) kernel (Lee et al., 2018) – determined by
the network architecture and hyperparameters (e.g depth,
precise choice of layers and the activation functions, as well
as the distribution of weights and biases). Similar line of
reasoning was earlier developed for recurrent neural net-
works (Molgedey et al., 1992). Furthermore, for the MSE
loss function the training dynamics under gradient descent
can be solved exactly in terms of the neural tangent kernel
(NTK) (Jacot et al., 2018; Lee et al., 2019). A large body
of work was devoted to the calculation of the NNGP kernel
and NTK for different architectures, calculation of the finite
width corrections to these quantities, and empirical investi-
gation of the training dynamics of wide networks (Novak
et al., 2018b; Xiao et al., 2018; Hron et al., 2020; Dyer &
Gur-Ari, 2019; Andreassen & Dyer, 2020; Lewkowycz &
Gur-Ari, 2020; Aitken & Gur-Ari, 2020; Geiger et al., 2020;
Hanin, 2021; Roberts et al., 2021; Yaida, 2020; Shankar
et al., 2020; Arora et al., 2019b;a; Lee et al., 2020; Yang
et al., 2018; Yang & Hu, 2021; Yang, 2019b;a; Matthews
et al., 2018; Garriga-Alonso et al., 2018; Allen-Zhu et al.,
2019; Tsuchida et al., 2021; Martens et al., 2021).

One important result that arose from these works is that
the network architecture determines the most appropriate
initialization of the weights and biases (Poole et al., 2016;
Schoenholz et al., 2016; Lee et al., 2018). To state this result
we define the preactivations as follows

hl+1
i

(x) =
�w
p
Nl

NlX

j=1

wl+1
ij

�(hl

j
(x)) + �bb

l+1
i

. (1)

Here, wl+1
ij

is the Nl ⇥ Nl+1 matrix of weights, bl+1
i

is
1⇥Nl+1 vector of biases in the (l+1)-th layer; and � is the
activation function. We will sometimes denote weights and
biases collectively as ✓l = {wl

ij
, bl

i
}. Both wl

ij
and bl

i
are

initialized from standard normal distribution N (0, 1). Hy-
perparameters �w and �b need to be tuned. This convention
is known as NTK parametrization (Jacot et al., 2018). Fi-
nally, x is the 1⇥N0 vector of inputs. For results discussed
in this work, x can be sampled from either a realistic (i.e.
highly correlated) dataset or a high entropy distribution.

For a network of depth L, the network function is given
by f(x) = hL(x). Different network architectures, and,

ar
X

iv
:2

11
1.

12
14

3v
3

 [c
s.L

G
]

27
 Ja

n
20

22

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

in particular, activation functions, �, lead to different “op-
timal” choices of (�w,�b). The “optimal” choice can be
understood using the language of statistical mechanics as a
critical point (or manifold) in the �b–�w plane. The notion
of criticality becomes sharp as the network depth, L, be-
comes large. Criticality ensures that both NNGP and NTK
remain O(1) as the network gets deeper (Roberts et al.,
2021). Furthermore, at early stage of training after every
step of SGD the network function f(x) receives an O(1)
update (assuming that the learning rate is also O(1)). Very
deep networks will not train, unless initialized critically.

1.1. Results

We reformulate the criticality condition directly in the func-
tional space, i.e. in terms of preactivations. To state our
main results we introduce the notion of a partial Jacobian.
Definition 1.1. Let hl

i
(x) be preactivations of a neural net-

work f(x). The partial Jacobian J l0,l

ij
is defined as derivative

of preactivations at layer l with respect to preactivations at
layer l0  l

J l0,l

ij
(x) =

@hl

j
(x)

@hl0
i
(x)

. (2)

The partial Jacobian is a random matrix with vanishing
mean. We introduce a deterministic measure of the mag-
nitude of J l0,l

ij
— their L2 norm, averaged over parameter-

initializations, which is denoted as J l0,l(x).
Definition 1.2. Let J l0,l

ij
be a partial Jacobian of a neural

network f(x). Averaged partial Jacobian norm (APJN) is
defined as

J
l0,l(x) = E✓

2

4 1

Nl

NlX

j=1

Nl0X

i=1

@hl

j
(x)

@hl0
i
(x)

@hl

j
(x)

@hl0
i
(x)

3

5 , (3)

where E✓ indicates averaging over initializations.

In what follows, we show that criticality, studied previ-
ously in literature, occurs when APJN either remains finite,
or varies algebraically as l becomes large. To prove this
we derive the recurrence relation for J l0,l(x) in the limit
Nl ! 1 and analyze it at large depth. Algebraic behaviour
of APJN with depth is characterized by an architecture-
dependent critical exponent, ⇣ , so that J l0,l(x) ⇡ l�⇣ . Such
behaviour is familiar from statistical mechanics when a sys-
tem is tuned to a critical point (Cardy, 1996). Away from
criticality, there are two phases: ordered and chaotic. In
the ordered phase APJN vanishes exponentially with depth,
whereas in the chaotic phase APJN grows exponentially

J
l0,l ⇡ cl0e

± l
⇠ . (4)

Here ⇠ is the correlation length. It characterizes how fast
gradients explode or vanish during backpropagation. Net-
works with depth L ⇡ k⇠, where k is a number of order 10

can train and generalize1. Now we are ready to state our
main result.
Theorem 1.3 (Main result). Let f(x) be a deep MLP net-
work with Lipschitz activation �(x). Assume that the Lay-
erNorm is applied to preactivations and there are residual
connections with strength µ acting according to (30). In the
limit Nl ! 1 the correlation length is bounded from below
for �2

b
< 1

⇠ �
1

| log
⇥
(1� µ2)A

B
+ µ2

⇤
|
, (5)

where the non-negative constants A and B are given by

A = E✓

"
1

Nl

NlX

k=1

�0(h̃l

k
)�0(h̃l

k
)

#
, (6)

B = E✓

"
1

Nl

NlX

k=1

�(h̃l

k
)�(h̃l

k
)

#
, (7)

where h̃l

k
is the normalized preactivation, defined in (21).

When µ = 1 the correlation length diverges and the neural
network is critical for any initialization, with ⇣ = O(1).

In practice Theorem 1.3 means that different choices of
initialization bear no effect on trainability of the network
provided that LayerNorm and residual connections are ar-
ranged as stated.

1.2. Related Work

Some of our results were either surmised or obtained in a
different form in the literature. We find that LayerNorm
ensures that NNGP kernel remains finite at any depth as
suggested in the original work of (Ba et al., 2016). Lay-
erNorm also alters the criticality of J l0,l(x) (and, equiva-
lently, NTK). It was noted in (Xu et al., 2019) that Layer-
Norm (applied to preactivations) regularizes the backward
pass. We formalize this observation by showing that Lay-
erNorm (applied to preactivations) dramatically enhances
correlation length (which is not the case for LayerNorm
applied to activations). This can be seen from Theorem 1.3
setting µ = 0. When residual connections of strength 1 are
combined with erf (or any other tanh-like) activation, the
neural network enters a subcritical phase with enhanced
correlation length (see Theorem 4.4). A version of this re-
sult was discussed in (Yang & Schoenholz, 2017). When
residual connections are introduced on top of LayerNorm,
the correlation length ⇠ is further increased. If residual
connections have strength 1 the network enters a critical
phase for any initialization. Importance of correct ordering
of LayerNorm, residual connections and attention layers
was discussed in (Xiong et al., 2020). Several architectures

1This is an empirical result.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

with the same order of GroupNorm and residual connections
were investigated in (Yu et al., 2021).

The Jacobian norm (i.e. ||J0,l
ij

||
2) of trained feed-forward

neural networks was studied in (Novak et al., 2018a), where
it was correlated with generalization. Partial Jacobians with
l0 = l � 1 were studied in the context of RNNs (Chen
et al., 2018; Can et al., 2020), where they were referred to
as state-to-state Jacobians.

We combine all our results to show that the recently intro-
duced MLP-Mixer architecture (Tolstikhin et al., 2021a) is
critical for any initialization. Finally, we show that all our
theoretical results are in excellent agreement with empirical
tests performed at finite width.

2. Recurrence Relations

Here we derive the infinite width recurrence relations for
the APJN, as well as the norm of preactivations.

Definition 2.1. We define averaged preactivation norm as
follows

K
l(x, x) = E✓

"
1

Nl

NlX

i=1

hl

i
(x)hl

i
(x)

#
. (8)

Lemma 2.2. When Nl ! 1 for l = 1, . . . , L�1, the aver-
aging over parameter initializations can be expressed as the
averaging over the Gaussian process hl(x) with covariance
K

l(x, x0). An expectation value of a general function of
preactivations, O(hl(x)) can be represented as a Gaussian
integral over preactivations

E✓

⇥
O(hl

i
(x))

⇤
=

1p
2⇡Kl(x, x)

Z
dhl

O(hl

i
(x))e

� (hl
i(x))2

2Kl(x,x) .

(9)

This result has been established in (Lee et al., 2018). We
will refer to K

l(x, x) as NNGP kernel.
Remark 2.3. In the infinite width limit the means appearing
in (11)-(13) are self-averaging and, therefore, deterministic.
Consequently, we can drop the averaging over parameters

E✓

"
1

Nl

NlX

i=1

�(hl

i
)2
#

Nl!1

�!
1

Nl

NlX

i=1

�(hl

i
)2 . (10)

Alternatively, we can drop the summation over i and take
the average using (9).

When preforming analytic calculations we use the infinite
width convention, while in our experiments we average over
initializations of ✓l.

Theorem 2.4. In the infinite width limit the NNGP kernel
K

l+1(x, x) is deterministic, and can determined recursively

via

K
l+1(x, x) = �2

w
E✓

"
1

Nl

NlX

i=1

�(hl

i
(x))�(hl

i
(x))

#
+ �2

b
.

(11)

Theorem 2.5. Let f(x) be an MLP network with a Lips-
chitz continuous activation function �(x). In the infinite
width limit, APJN J

l0,l+1(x) is deterministic and satisfies
a recurrence relation

J
l0,l+1(x) = �l

JJ
l0,l(x) , (12)

where the factor �l

J is given by

�l

J = E✓

"
�2
w

Nl

NlX

i=1

�0(hl

i
(x))�0(hl

i
(x))

#
. (13)

Theorem 2.4 is due to (Lee et al., 2018). Theorem 2.5 is
new and is valid only in the limit of infinite width. The
proof is similar to the proof of recurrence relation for NTK
discussed in (Jacot et al., 2018) and is fleshed out in the
Appendix. From here on we drop the explicit dependence
on x to improve readability.

The expectation values that appear in (11)-(13) are evaluated
using (9). When the integrals can be taken analytically, they
lead to explicit equations for the critical lines and/or the
critical points. Details of these calculations as well as the
derivation of (11)-(13) can be found in the Appendix. A
subtlety emerges in (12) when l0 = 0, where a correction of
the order O(N�1

0) arises for non-scale invariant activation
functions. This subtlety is discussed in the Appendix.

When the depth of the network becomes large, the l-
dependence of the expectation values that appear in (8),
(13) saturate to a (possibly infinite) constant value; which
means that Kl, J l0,l and �l

J have reached a fixed point.
We denote the corresponding quantities as K

?,J l0,?,�?

J .
The existence of a fixed point is not obvious and should be
checked on a case by case basis. Fixed point analysis for
K

l was done in (Poole et al., 2016) for bounded activation
functions and in (Roberts et al., 2021) for the general case.
The stability is formulated in terms of

�?

K =
@Kl+1

@Kl

���
Kl=K?

. (14)

The norm of preactivations remains finite (or behaves alge-
braically) when �?

K = 1.

Eq. (12) nicely expresses J
l0,l+1 as a linear function of

J
l0,l. The behaviour of J l0,l+1 at large l is determined by

�l

J . When �l

J > 1 partial Jacobians diverge exponentially,
while for �l

J < 1 partial Jacobians vanish exponentially.
Neural networks are trainable only up to a certain depth

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

when initialized O(1) away from criticality, which is deter-
mined by the equation

�?

J = 1 . (15)

Eq. (15) is an implicit equation on �b,�w and generally
outputs a critical line in �b–�w plane. The parameter �?

J
has to be calculated on a case-by-case basis using either (13)
or the method presented in the next section. Everywhere
on the critical line J

l0,l saturates to a constant or behaves
algebraically.

When the condition �?

K = 1 is added, we are left with a
critical point2. This analysis of criticality at infinite width
agrees with (Roberts et al., 2021), where �? is to be iden-
tified with �?

J . In particular, condition (15) together with
�?

K = 1 ensures that NTK is O(1) at initialization. Eq. (15)
is equivalent to the condition C 0(1) = 1 of (Martens et al.,
2021).

2.1. Empirical Diagnostic of Criticality

APJN J
l0,l provides a clear practical way to diagnose

whether the network is critical or not. Proper choice of
l0 and l allows us to minimize the non-universal effects and
cleanly extract �?

J . This method can be straightforwardly
implemented in PyTorch (Paszke et al., 2019) using hooks
and an efficient Jacobian approximate algorithm (Hoffman
et al., 2019).

Recurrence relation (12), supplemented with the initial con-
dition J

l0,l0+1 = �l0
J , can be formally solved as

J
l0,l =

l�1Y

`=l0

�`

J . (16)

We would like to obtain an estimate of �?

J as accurately as
possible. To that end, imagine that for some l0 > l0 the fixed
point has been essentially reached and �l

0

J ⇡ �?

J . Then the
APJN

J
l0,l = (�?

J)l�l
0�1

·

l
0Y

`=l0

�`

J (17)

depends on the details of how the critical point is ap-
proached. These details are encoded in the last factor.

Proposition 2.6. Assume that the network f(x) is homoge-
neous, i.e. consists of a (possibly complex) block of layers
repeated periodically L times. Let l0, l index the blocks.
Then APJN computed next to the output provides an accu-
rate estimate of �?

J

J
L�2,L�1

���
L!1

= �?

J . (18)
2Scale-invariant activation functions are more forgiving: away

from the critical point Kl scales algebraically with l.

Proposition 2.6 is the central result of this section and will
be heavily used in the remainder of this work.

Note that for deep networks, away from criticality, APJN
takes form

J
l0,l ⇡ cl0e

± l
⇠ , ⇠ =

1

| log�?

J |
, (19)

where cl0 is a non-universal constant that depends on l0. If
the sign in (19) is positive (�?

J > 1) the network is in the
chaotic phase, while when the sign is negative (�?

J < 1)
the network is in the ordered phase. ⇠ has the meaning of
correlation length: on the depth scale of approximately k⇠
the gradients remain appreciable, and hence the network
with the depth of ⇡ k⇠ will train.

We used (18) to map out the �b–�w phase diagrams of vari-
ous MLP architectures. The partial Jacobians are calculated
numerically with Nl = 500, L = 50 and averaged over ini-
tializations. The details are further elaborated in Appendix.
The location of the critical line agrees remarkably well with
our infinite width calculations. Results are presented in Fig.
2. One fortunate outcome of both theory and experiment is
that when LayerNorm is applied to preactivations, ReLU
networks can still be initialized using He initialization (He
et al., 2015) which, in our convention, is (

p
2, 0).

At criticality, �?

J = 1 and the correlation length diverges;
indicating that gradients can propagate arbitrarily far. A
more careful analysis of non-linear corrections shows that
APJN can exhibit algebraic behaviour with depth and can
still vanish in the infinite depth limit, but much slower than
the ordered phase.

2.2. Scaling at a Critical Point

At criticality �l

J saturates to a fixed value �?

J = 1. If we
are interested in J

l0,l with l� l0 = O(L) then it is essential
to know how exactly �l

J approaches 1.
Theorem 2.7. Assume that deep neural network f(x) is
initialized critically. Then l ! 1 asymptotics of APJN is
given by

J
l0,l(x) = O(l�⇣) , (20)

where ⇣ is the critical exponent.

Critical exponents can be determined analytically in the
limit of infinite width. Note that �l

J , given by (13), depends
on K

l by virtue of (9). Consequently, Eqs. (11)-(13) are
coupled through non-linear (in K

l and J
l0,l) terms. These

non-linear corrections are absent for any scale-invariant
activation function, but appear for other activation functions.

We checked the scaling empirically by plotting J
0,l vs. l

in a log–log plot and fitting the slope. These results are
presented in Fig.1. The agreement with infinite width calcu-
lation is excellent.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Figure 1. log–log plot of the partial Jacobian J 0,l vs. l for erf,
ReLU and erf together with GELU (with LayerNorm applied to
preactivations and residual connections of strength 1) activation
functions. The critical exponents predicted from the infinite width
analysis are in agreement with the data. The fluctuations get larger
towards the output because the aspect ratio (i.e. L/Nl) approaches
1/4.

3. Layer Normalization

The fact that critical initialization is concentrated on a sin-
gle point (�?

w
,�?

b
) may appear unsettling because great

care must be taken to initialize the network critically. The
situation can be substantially improved by utilizing the
normalization techniques known as LayerNorm (Ba et al.,
2016) and GroupNorm (Wu & He, 2018). These techniques
are used as alternatives to BatchNorm (Ioffe & Szegedy,
2015) whenever the batch size may vary during training.
Infinite-width theory of BatchNorm was studied previously
(Yang et al., 2018), where it was shown that, similarly to
Dropout (Schoenholz et al., 2016), BatchNorm destroys
criticality and the ordered phase; leaving only the chaotic
phase. This renders very deep networks with BatchNorm
untrainable (Yang et al., 2018). Unlike BatchNorm, Layer-
Norm does not destroy criticality, and, in a certain sense,
enhances it. Our results apply to GroupNorm verbatim in
the case when the number of groups is much smaller than
the width. LayerNorm can act either on preactivations or on
activations (discussed in the Appendix). Depending on this
choice, criticality will occur on different critical lines in �b–
�w plane. When LayerNorm is applied to preactivations3

the correlation length is enhanced allowing to train much
deeper networks even far away from criticality.

3.1. LayerNorm on Preactivations

The LayerNorm applied to preactivations takes the following
form
Definition 3.1 (Normalized preactivations).

h̃l

i
=

hl

i
� E[hl]p

E[(hl)2]� E[hl]2
, (21)

where we introduced E[hl] = 1
Nl

P
Nl

i=1 h
l

i
.

3In the original work (Ba et al., 2016) the LayerNorm was
applied to activations.

Remark 3.2. Note that at finite width symbols E[O] and
E✓[O] perform different operations, while in the limit of
infinite width they are equal due to self-averaging.
Remark 3.3. In the limit of infinite width E[hl] = 0 and
the denominator in (21) is the NNGP kernel Kl, defined
according to (8).

h̃l

i
=

hl

ip
E[(hl)2]

=
1

p

Kl
hl

i
. (22)

Normalized preactivations, h̃l

i
, are distributed according to

N (0, 1) for all l,�w,�b. The norms are, therefore, always
finite and the condition �?

K = 1 is trivially satisfied resulting
in a critical line rather than a critical point.

The recurrence relations (11)-(13) for the NNGP kernel and
partial Jacobians are only slightly modified

K
l+1 = �2

w
E✓

"
1

Nl

NlX

i=1

�(h̃l

i
)2
#
+ �2

b
, (23)

�l

J
=

�2
w

Kl
E✓

"
1

Nl

NlX

i=1

�0(h̃l

i
)2
#
. (24)

Assuming that the value of �l

J at the fixed point is �?

J , the
network is critical when (15) holds.

The ratio (24) changes very slowly with l and is also bounded
from below, as elaborated in the next section. Thus, �?

J
remains close to 1 for a very wide range of hyperparameters.
Consequently, the correlation length is large even away
from criticality. This leads to much higher trainability of
deep networks with LayerNorm on preactivations even away
from criticality.

3.2. Vanishing of Critical Exponents

Critical exponent ⇣ vanishes when the LayerNorm is intro-
duced. This can be understood quantitatively in the limit of
infinite width. We do not find any empirical deviations from
this conclusion for finite width, large depth networks.

To see why this happens we examine (24). The expression
for �l

J contains the expectation values E✓[�(h̃l)�(h̃l)] and
E✓[�0(h̃l)�0(h̃l)], which, by the virtue of (23), combined
with (9), do not depend on l. At finite width we find (empir-
ically) that �l

J quickly saturates to its fixed point value and
does not cause algebraic correction to J

l0,l.

4. Residual (Skip) Connections

Adding residual connections between the network layers is
a widely used technique to facilitate the training of deep
networks. Originally introduced (He et al., 2016) in the con-
text of convolutional neural networks (LeCun et al., 1998)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Figure 2. �?
J phase diagrams for ReLU (first row), erf (second row) and GELU (third row); with residual connections of variable strengths

µ = {0.0, 0.5, 1.0}. Both cases: without LayerNorm (first three columns) and with LayerNorm (last three columns) are shown. The solid
lines indicate the critical lines obtained through infinite width limit calculations; while the stars indicate the critical points. The dotted
lines in the rightmost column correspond to the critical lines for µ < 1 case. For networks with LayerNorm and µ = 1, �?

J = 1 holds
on the entire �b–�w plane, for all activation functions that we considered. We also note that for erf activation, the case µ = 1 without
LayerNorm is subcritical and has a large correlation length.

(CNNs) for image recognition, residual connections have
since been used in a variety of networks architectures and
tasks.
Definition 4.1. In MLPs, residual connections are defined
by the following modification to the network recursion rela-
tion (1)

hl+1
i

=
�w
p
Nl

NlX

j=1

wl+1
ij

�(hl

j
) + �bb

l+1
i

+ µhl

i
, (25)

where the parameter µ controls the strength of the residual
connection.

The recurrence relations (11)-(13) for the NNGP kernel and
�l

J
are modified as follows

K
l+1 = �2

w
E✓

2

4 1

Nl

NlX

j=1

�(hl

j
)�(hl

j
)

3

5+ �2
b
+ µ2

K
l ,

(26)

�l

J = �2
w
E✓

"
1

Nl

NlX

k=1

�0(hl

k
)�0(hl

k
)

#
+ µ2 . (27)

Remark 4.2. When µ < 1, the fixed point value of NNGP
kernel is scaled by (1� µ2)�1. For µ = 1, the critical point
is formally at (0, 0).

Remark 4.3. For µ = 1, (27) implies that �l

J is strictly
greater than 1. Consequently, APJN exponentially diverges
as a function of depth l, on the entire �b–�w plane. This
case, as such, is untrainable for large depths.

When µ < 1, residual connections amplify the chaotic phase
and decrease the correlation length away from criticality for
unbounded activation functions.

Solving the recurrence relations (26) - (27) for the erf ac-
tivation (similar results should hold for tanh), we find an
effect observed in (Yang & Schoenholz, 2017). Namely,
they noted that tanh-like MLP networks with skip connec-
tions “hover over the edge of chaos”. We quantify their
observation as follows.
Theorem 4.4. Let f(x) be a deep MLP network with erf
activation function and residual connections of strength
µ = 1. Then in the limit Nl ! 1

• The NNGP kernel Kl linearly diverges with depth l

• �l

J approaches 1 from above (as can be seen from Fig.
2)

�l

J ⇡ 1 +
c̃
p
l
, (28)

where c̃ = 2�2
w

⇡

p
�2
w+�2

b

is a non-universal constant.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

• APJN diverges as a stretched exponential

J
l0,l = O(e

p
l
�), (29)

where � = 1
4c̃2 is the new length scale.

We will refer to this case as subcritical. Although �?

J
reaches 1, the APJN still diverges with depth faster than
any power law. The growth is controlled by the new scale �.
To control the gradient we would like to make � large, which
can be accomplished by decreasing �w. Similar results hold
for tanh activation function, however in that case there is
no explicit expression for c̃. In this case the trainability is
enhanced (see Fig. 3).

5. Residual Connections + LayerNorm

In practice, it is common to use a combination of residual
connections and LayerNorm. We consider a neural network
with the following forward pass recurrence relation

hl+1
i

=
�w
p
Nl

NlX

j=1

wl+1
ij

�(h̃l

j
) + �bb

l+1
i

+ µhl

i
, (30)

where h̃l

i
is given by (21).

In this case, the recurrence relations (11)-(13) for the NNGP
kernel and partial Jacobians are modified as follows

K
l+1 = �2

w

1

Nl

NlX

j=1

E✓

h
�(h̃l

j
)�(h̃l

j
)
i
+ �2

b
+ µ2

K
l ,

(31)

�l

J =
�2
w

Kl
E✓

"
1

Nl

NlX

k=1

�0(h̃l

k
)�0(h̃l

k
)

#
+ µ2 . (32)

Remark 5.1. For µ < 1, (31) implies that the fixed point
value of NNGP kernel is scaled by 1� µ2. Moreover, resid-
ual connections do not shift the phase boundary. The in-
terference between residual connections and LayerNorm
brings �l

J closer to 1 on the entire �b–�w plane (as can
be seen from Fig. 2). Therefore the correlation length ⇠ is
improved in both the phases, allowing for training of deeper
networks. At criticality, Jacobians linearly diverge with
depth.

As was mentioned before, the combination of LayerNorm
and residual connections dramatically enhances correlation
length, leading to a more stable architecture. This obser-
vation is formalized by theorem Theorem 1.3. The proof
leverages the properties of solutions of (31)-(32) close to
the fixed point, and is fleshed out in Appendix.
Remark 5.2. When µ = 1, the correlation length diverges
for any initialization.

Figure 3. Trainability of deep MLP networks featuring ReLU
with LayerNorm (first row), erf with LayerNorm (second row),
GELU with LayerNorm (third row) and erf without LayerNorm
(fourth row). Residual connections of variable strengths µ =
{0.0, 0.5, 0.9, 1.0} (first to fourth column) were used. µ = 1
trains at high values of �2

w and �2
b , in agreement with theory. The

networks had width Nl = 500, depth L = 50, and were trained
using CrossEntropy loss and SGD.

Remark 5.2 provides an alternative perspective on the ar-
chitecture design. On the one hand, given a neural network
architecture one can use (18) to initialize it critically. Alter-
natively, one can add extra layers, such as a combination of
residual connections and LayerNorm, to ensure that the net-
work is always critical and will train well no matter which
initialization scheme is used.

Remark 5.3. When µ = 1, the condition �?

J = 1 holds on
the entire �b��w and for any activation function � (see Fig.
2). NNGP kernel diverges linearly, while APJN diverges
algebraically with the critical exponent of ⇣ = O(1). The
exact value of the critical exponent depends on the activation
function and the ratio �b

�w
(see Fig. 1). The trainability is

dramatically enhanced as can be seen from Fig. 3.

6. MLP-Mixer

MLP-Mixer architecture is a recent (and rare) example of
MLP approach to computer vision (Tolstikhin et al., 2021b).
Its main ingredients are: patches, MLP layers, LayerNorm
and residual connections. As such it can be analyzed using
the tools and results presented above. The detailed summary
of the MLP-Mixer is presented in the Appendix, while here
we will state the results.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

(A2) (B2)

(A1) (B1)

Figure 4. (A1)(B1) µ = 0.5 and µ = 1.0 phase diagrams plotted
using �?

J from repeating Mixer Layers of the GELU MLP-Mixer.
Black line indicates the empirical phase boundary. Stars indicate
points we selected to train on CIFAR-10 (Krizhevsky et al., 2009).
�2
w = 10 and �2

b = 10 points are outside those phase diagrams;
(A2)(B2) µ = 0.5 and µ = 1.0 MLP-Mixer training curves.
Solid and dashed lines indicate training and validation accuracies,
respectively. All the networks are L = 100 blocks deep, except
for one, which is L = 32 blocks deep; all networks have 10
million parameters. The networks were trained using CSE together
with SGD, L2 regularization and multi-step schedulers. Data is
augmented with RandAugment (Cubuk et al., 2020), horizontal
flip and mixup (Zhang et al., 2018).

When µ = 1 the MLP-Mixer is everywhere critical due
to the interaction between LayerNorm and residual con-
nections. When µ < 1 we can identify a critical line by
numerically evaluating �?

J
using (18). The phase diagrams

are presented in Fig. 4.

To illustrate the importance of critical initialization we
trained MLP-Mixer at µ = 1 for various initializations, in-
cluding a highly unconventional �2

b
= 10,�2

w
= 10. While

the final performance varies by a few percent, the network
trains very well at a large depth of L = 100 mixer blocks.
We also trained MLP-Mixer at µ = 0.5. In this case, the
model trains well at L = 100 when initialized critically;
while far away from the critical line (�2

b
= 10,�2

w
= 10) it

does not train. The learning curves are presented in Fig. 4.
We emphasize that we were interested in trainability and,
consequently, did not tune the hyperparameters to achieve
the best generalization.

7. Conclusions

We have introduced partial Jacobians and their averaged
norms as a tool to analyze the propagation of gradients
through deep neural networks at initialization. Using APJN
evaluated close to the output, J L�2,L�1

⇡ �?

J , we have
introduced a very cheap and simple empirical test for crit-
icality. We have also shown that criticality formulated in
terms of partial Jacobians is equivalent to criticality studied
previously in literature (Poole et al., 2016; Roberts et al.,
2021; Martens et al., 2021). APJN will play an important
role in quantifying the criticality of inhomogeneous (i.e. no
periodic stacking of blocks) networks.

We have investigated homogeneous architectures that in-
clude fully-connected layers, normalization layers and resid-
ual connections. In the limit of infinite width, we showed
that (i) in the presence of LayerNorm, the critical point
generally becomes a critical line, making the initialization
problem much easier, (ii) LayerNorm applied to preacti-
vations enhances correlation length leading to improved
trainability, (iii) combination of µ = 1 residual connections
and erf activation function enhances correlation length driv-
ing the network to a subcritical phase with APJN growing
according to a stretched exponential law, (iv) combination
of residual connections and LayerNorm drastically increases
correlation length leading to improved trainability, (v) when
µ = 1 and LayerNorm is applied to preactivations the net-
work is critical on the entire �b–�w plane.

We have considered the example of a modern high perfor-
mance architecture — the MLP-Mixer. We showed that it
is critical everywhere and is not sensitive to initialization
at µ = 1 due to the interaction between LayerNorm and
residual connections. We have also studied MLP-Mixer
at µ = 0.5 and showed that it is critical along a line (as
expected for an architecture with LayerNorm). We demon-
strated empirically that deep (100 blocks) MLP-Mixer trains
for a variety of initializations at µ = 1 but only trains close
to the critical line for µ = 0.5.

Our work shows that an architecture can be designed to have
a large correlation length leading to a guaranteed trainability
for any initialization scheme.

Acknowledgements

We thank T. Can, G. Gur-Ari, B. Hanin, D. Roberts and
S. Yaida for comments on the manuscript. D.D., T.H. and
A.G. we supported, in part, by the NSF CAREER Award
DMR-2045181 and by the Salomon Award.

References

Aitken, K. and Gur-Ari, G. On the asymptotics of wide
networks with polynomial activations. arXiv preprint

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

arXiv:2006.06687, 2020.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for
deep learning via over-parameterization. In International
Conference on Machine Learning, pp. 242–252. PMLR,
2019.

Andreassen, A. and Dyer, E. Asymptotics of wide convolu-
tional neural networks. arXiv preprint arXiv:2008.08675,
2020.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R.,
and Wang, R. On exact computation with an infinitely
wide neural net. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems,
pp. 8141–8150, 2019a.

Arora, S., Du, S. S., Li, Z., Salakhutdinov, R., Wang, R.,
and Yu, D. Harnessing the power of infinitely wide deep
nets on small-data tasks. In International Conference on
Learning Representations, 2019b.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Can, T., Krishnamurthy, K., and Schwab, D. J. Gating
creates slow modes and controls phase-space complexity
in grus and lstms. In Mathematical and Scientific Machine
Learning, pp. 476–511. PMLR, 2020.

Cardy, J. Scaling and renormalization in statistical physics,
volume 5. Cambridge university press, 1996.

Chen, M., Pennington, J., and Schoenholz, S. Dynamical
isometry and a mean field theory of rnns: Gating enables
signal propagation in recurrent neural networks. In Inter-
national Conference on Machine Learning, pp. 873–882.
PMLR, 2018.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. Randaugment:
Practical automated data augmentation with a reduced
search space. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M. F., and Lin, H. (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 18613–
18624. Curran Associates, Inc., 2020.

Dyer, E. and Gur-Ari, G. Asymptotics of wide networks
from feynman diagrams. In International Conference on
Learning Representations, 2019.

Garriga-Alonso, A., Rasmussen, C. E., and Aitchison, L.
Deep convolutional networks as shallow gaussian pro-
cesses. arXiv preprint arXiv:1808.05587, 2018.

Geiger, M., Jacot, A., Spigler, S., Gabriel, F., Sagun, L.,
d’Ascoli, S., Biroli, G., Hongler, C., and Wyart, M. Scal-
ing description of generalization with number of param-
eters in deep learning. Journal of Statistical Mechanics:
Theory and Experiment, 2020(2):023401, 2020.

Hanin, B. Random neural networks in the infinite width limit
as gaussian processes. arXiv preprint arXiv:2107.01562,
2021.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Hoffman, J., Roberts, D. A., and Yaida, S. Robust
learning with jacobian regularization. arXiv preprint
arXiv:1908.02729, 2019.

Hron, J., Bahri, Y., Sohl-Dickstein, J., and Novak, R. Infinite
attention: Nngp and ntk for deep attention networks. In
International Conference on Machine Learning, pp. 4376–
4386. PMLR, 2020.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456. PMLR, 2015.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. arXiv
preprint arXiv:1806.07572, 2018.

Krizhevsky, A. et al. Learning multiple layers of features
from tiny images. 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington,
J., and Sohl-Dickstein, J. Deep neural networks as gaus-
sian processes. In International Conference on Learning
Representations, 2018.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-
Dickstein, J., and Pennington, J. Wide neural networks of
any depth evolve as linear models under gradient descent.
Advances in neural information processing systems, 32:
8572–8583, 2019.

Lee, J., Schoenholz, S. S., Pennington, J., Adlam, B., Xiao,
L., Novak, R., and Sohl-Dickstein, J. Finite versus infinite
neural networks: an empirical study. 2020.

Lewkowycz, A. and Gur-Ari, G. On the training dynamics
of deep networks with l 2 regularization. arXiv preprint
arXiv:2006.08643, 2020.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Martens, J., Ballard, A., Desjardins, G., Swirszcz, G., Dal-
ibard, V., Sohl-Dickstein, J., and Schoenholz, S. S. Rapid
training of deep neural networks without skip connections
or normalization layers using deep kernel shaping. arXiv
preprint arXiv:2110.01765, 2021.

Matthews, A. G. d. G., Hron, J., Rowland, M., Turner, R. E.,
and Ghahramani, Z. Gaussian process behaviour in wide
deep neural networks. In International Conference on
Learning Representations, 2018.

Molgedey, L., Schuchhardt, J., and Schuster, H. G. Sup-
pressing chaos in neural networks by noise. Physical
review letters, 69(26):3717, 1992.

Neal, R. M. Priors for infinite networks. In Bayesian
Learning for Neural Networks, pp. 29–53. Springer, 1996.

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J., and
Sohl-Dickstein, J. Sensitivity and generalization in neural
networks: an empirical study. In International Confer-
ence on Learning Representations, 2018a.

Novak, R., Xiao, L., Bahri, Y., Lee, J., Yang, G., Hron, J.,
Abolafia, D. A., Pennington, J., and Sohl-dickstein, J.
Bayesian deep convolutional networks with many chan-
nels are gaussian processes. In International Conference
on Learning Representations, 2018b.

Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A., Sohl-
Dickstein, J., and Schoenholz, S. S. Neural tangents:
Fast and easy infinite neural networks in python. In
International Conference on Learning Representations,
2019.

Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A., Sohl-
Dickstein, J., and Schoenholz, S. S. Neural tangents:
Fast and easy infinite neural networks in python. In
International Conference on Learning Representations,
2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and Gan-
guli, S. Exponential expressivity in deep neural networks
through transient chaos. Advances in neural information
processing systems, 29:3360–3368, 2016.

Roberts, D. A., Yaida, S., and Hanin, B. The principles of
deep learning theory. arXiv preprint arXiv:2106.10165,
2021.

Schoenholz, S. S., Gilmer, J., Ganguli, S., and Sohl-
Dickstein, J. Deep information propagation. 2016.

Shankar, V., Fang, A., Guo, W., Fridovich-Keil, S., Ragan-
Kelley, J., Schmidt, L., and Recht, B. Neural kernels
without tangents. In International Conference on Ma-
chine Learning, pp. 8614–8623. PMLR, 2020.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,
X., Unterthiner, T., Yung, J., Keysers, D., Uszkoreit, J.,
Lucic, M., et al. Mlp-mixer: An all-mlp architecture for
vision. arXiv preprint arXiv:2105.01601, 2021a.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,
X., Unterthiner, T., Yung, J., Steiner, A., Keysers, D.,
Uszkoreit, J., Lucic, M., and Dosovitskiy, A. Mlp-mixer:
An all-mlp architecture for vision, 2021b.

Tsuchida, R., Pearce, T., van der Heide, C., Roosta, F., and
Gallagher, M. Avoiding kernel fixed points: Computing
with elu and gelu infinite networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 9967–9977, 2021.

Williams, C. Computing with infinite networks. In Mozer,
M. C., Jordan, M., and Petsche, T. (eds.), Advances in
Neural Information Processing Systems, volume 9. MIT
Press, 1997.

Wu, Y. and He, K. Group normalization. In Proceedings of
the European conference on computer vision (ECCV), pp.
3–19, 2018.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S., and
Pennington, J. Dynamical isometry and a mean field
theory of cnns: How to train 10,000-layer vanilla convo-
lutional neural networks. In International Conference on
Machine Learning, pp. 5393–5402. PMLR, 2018.

Xiao, L., Pennington, J., and Schoenholz, S. Disentangling
trainability and generalization in deep learning, 2020.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer
normalization in the transformer architecture. In Inter-
national Conference on Machine Learning, pp. 10524–
10533. PMLR, 2020.

Xu, J., Sun, X., Zhang, Z., Zhao, G., and Lin, J. Understand-
ing and improving layer normalization. arXiv preprint
arXiv:1911.07013, 2019.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Yaida, S. Non-gaussian processes and neural networks at
finite widths. In Mathematical and Scientific Machine
Learning, pp. 165–192. PMLR, 2020.

Yang, G. Scaling limits of wide neural networks with
weight sharing: Gaussian process behavior, gradient in-
dependence, and neural tangent kernel derivation. arXiv
preprint arXiv:1902.04760, 2019a.

Yang, G. Wide feedforward or recurrent neural networks of
any architecture are gaussian processes. 2019b.

Yang, G. and Hu, E. J. Tensor programs iv: Feature learning
in infinite-width neural networks. In International Con-
ference on Machine Learning, pp. 11727–11737. PMLR,
2021.

Yang, G. and Schoenholz, S. S. Mean field residual
networks: On the edge of chaos. arXiv preprint
arXiv:1712.08969, 2017.

Yang, G., Pennington, J., Rao, V., Sohl-Dickstein, J., and
Schoenholz, S. S. A mean field theory of batch nor-
malization. In International Conference on Learning
Representations, 2018.

Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X., Feng,
J., and Yan, S. Metaformer is actually what you need for
vision. arXiv preprint arXiv:2111.11418, 2021.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. In Interna-
tional Conference on Learning Representations, 2018.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

A. Experimental Details

We are using PyTorch (Paszke et al., 2019) library for our experiments.

Figure 1: We generated MNIST-like inputs, where all elements are sampled from the Gaussian distribution N (0, 1). J 0,l

data was averaged over 100 different parameter-initializations. Networks were initialized width Nl = 1000. For erf plot we
initialized at critical point (�w,�b) = (

p
⇡

4 , 0), used depth L = 250 and the fitting was done with data points collected
at depth l > 100; for ReLU plot we initialized at critical point (�w,�b) = (

p
2, 0), used depth L = 100 and the fitting

was done with all data points; for the µ = 1 Pre-LN plot, we initialized both networks at (�w,�b) = (
p
2, 0), used depth

L = 250 and the fitting was done with l > 100 data points.

Figure 2: All the phase diagrams were plotted using �L�1
J generated from networks with L = 50 and Nl = 500. We

used hooks to obtain the gradients that go into calculating �L�1
J . �L�1

J data was averaged over 100 different parameter-
initializations. Inputs were generated from a normal Gaussian distribution and have dimension 28⇥ 28.

Figure 3: In all cases, networks are trained for 10 epochs using stochastic gradient descent with CrossEntropy loss. We used
the Fashion MNIST dataset (Xiao et al., 2017). All networks had depth L = 50 and width Nl = 500. The learning rates
were logarithmically sampled within (10�4, 10).

Figure 4: (a)(b)We made the phase diagram for MLP-Mixer with 30 blocks and averaged over 100 different parameter-
initializations. (c)(d)We used network with L = 100, patch size 4 ⇥ 4, hidden size C = 128, two MLP dimensions
Ntm = Ncm = 256. The L = 32 point has doubled widths. All networks have 10 million parameters. Notice that for all
Mixer Layers we used NTK initialization. We trained all cases on CIFAR-10 dataset using vanilla SGD paired with CSE.
Batch size bs = 256, weight decay � = 10�5 was selected from {10�6, 10�5, 10�4

}, mixup rate ↵ = 0.4 was selected
from {0.2, 0.4}. We also used RandAgument and horizontal flip with default settings in PyTorch. For µ = 1 cases we
searched learning rates within {2.1, 4.2, 6.3, 8.4}, all curves were trained with lr = 6.3. For µ = 0.5 cases we used lr = 1.5
for L = 100 networks, where we selected the optimal one from {0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2, 2.5, 4, 5, 6, 7, 8, 9, 10}; we
used lr = 4.8 for the L = 32 network, where we selected the optimal one from {2.4, 4.8, 7.2}. We also tried a linear
warm-up schedule for first 3000 iterations, but we did not see any improvement in performances.

B. Technical details for Jacobians and LayerNorm

We will drop the dependence of hl

i
(x) on x throughout the Appendices. It should not cause any confusion since we are

always considering a single input.

B.1. NNGP Kernel

First, we derive the recurrence relation for the NNGP kernel Eq.(11). As mentioned in main text, weights and biases are
initialized (independently) from standard normal distribution N (0, 1). We then have

E✓[w
l

ij
wl

mn
] = �im�jn and E✓[b

l

i
bl
j
] = �ij (B.1)

by definition.

We would like to prove Theorem 2.4, as a consequence of Lemma 2.2. The proof of Lemma 2.2 can be found in (Roberts
et al., 2021).

Proof of Theorem 2.4. One can prove this by definition with Lemma 2.2.

K
l+1

⌘
1

Nl+1

Nl+1X

i=1

E✓[h
l+1
i

hl+1
i

]

=
1

Nl+1

Nl+1X

i=1

E✓

2

4

0

@ �w
p
Nl

NlX

j=1

wl+1
ij

�(hl

j
) + �bb

l+1
i

1

A

�w
p
Nl

NlX

k=1

wl+1
ik

�(hl

k
) + �bb

l+1
i

!3

5

=
1

Nl+1

Nl+1X

i=1

E✓

2

4�
2
w

Nl

NlX

j=1

NlX

k=1

wl+1
ij

wl+1
ik

�(hl

j
)�(hl

k
) + �2

b
bl+1
i

bl+1
i

3

5

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

=
1

Nl+1

Nl+1X

i=1

E✓

2

4�
2
w

Nl

NlX

j=1

�(hl

j
)�(hl

j
) + �2

b

3

5

=
�2
w

Nl

NlX

j=1

E✓

⇥
�(hl

j
)�(hl

j
)
⇤
+ �2

b
. (B.2)

B.2. Jacobians

Next, we prove Theorem 2.5.

Proof of Theorem 2.5. We start from the definition of the partial Jacobian (l > l0)

J
l0,l+1

⌘
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

@hl+1
i

@hl0
j

@hl+1
i

@hl0
j

3

5

=
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

NlX

k=1

@hl+1
i

@hl

k

@hl

k

@hl0
j

!
NlX

m=1

@hl+1
i

@hl
m

@hl
m

@hl0
j

!3

5

=
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

NlX

k,m=1

✓
�w
p
Nl

wl+1
ik

�0(hl

k
)

◆✓
�w
p
Nl

wl+1
im

�0(hl

m
)

◆
@hl

k

@hl0
j

@hl
m

@hl0
j

!3

5

=
1

Nl+1
E✓

2

4�
2
w

Nl

Nl+1X

i=1

Nl0X

j=1

NlX

k,m=1

wl+1
ik

wl+1
im

�0(hl

k
)�0(hl

m
)
@hl

k

@hl0
j

@hl
m

@hl0
j

3

5

=
1

Nl+1

Nl+1X

i=1

Nl0X

j=1

NlX

k=1

�2
w

Nl

E✓

"
�0(hl

k
)�0(hl

k
)
@hl

k

@hl0
j

@hl

k

@hl0
j

#

=
�2
w

Nl

NlX

k=1

E✓

2

4�0(hl

k
)�0(hl

k
)

0

@
Nl0X

j=1

@hl

k

@hl0
j

@hl

k

@hl0
j

1

A

3

5 . (B.3)

In the infinite width limit, the sum over neurons in a layer self-averages due to the law of large numbers. This allows us
to represent the expectation value of a product as product of expectation values. (This holds for l0 6= 0. We will show
momentarily that the l0 = 0 case acquires corrections due to finite input width N0). Thus we have

J
l0,l+1 = �2

w
E✓[�

0(hl

k
)�0(hl

k
)]E✓

2

4 1

Nl

NlX

k=1

Nl0X

j=1

@hl

k

@hl0
j

@hl

k

@hl0
j

3

5

= �2
w
E✓

⇥
�0(hl

k
)�0(hl

k
)
⇤
J

l0,l

=) J
l0,l+1 = �l

JJ
l0,l , (B.4)

where �l

J is defined by Eq.(13).

The critical line is defined by requiring �?

J = 1, where critical points are reached by further requiring �?

K = 1.

As we mentioned in main text, l0 = 0 is subtle since the input dimension is fixed N0, which can not be assumed to be
infinity. Even though for dataset like MNIST, usually N0 is not significantly smaller than width Nl. We show how to take
finite O(N�1

0) correction into account by using one example.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Lemma B.1. Consider a one hidden layer network with a finite input dimension N0. In the infinite width limit, the Jacobian
is still deterministic

J
0,2 =

�1
J +

2�2
w

N0
�1
�

N0X

k

1

N0
h0
k
h0
k

!
J

0,1 , (B.5)

where J
0,1 = �2

w
.

Proof.

J
0,2 =

1

N2
E✓

2

4
N2X

i=1

N0X

j=1

@h2
i

@h0
j

@h2
i

@h0
j

3

5

=
1

N2
E✓

2

4�
2
w

N1

N2X

i=1

N0X

j=1

N1X

k,m=1

w2
ik
w2

im
�0(h1

k
)�0(h1

m
)
@h1

k

@h0
j

@h1
m

@h0
j

3

5

=
1

N2

N2X

i=1

N0X

j=1

N1X

k,m=1

�4
w

N0N1
E✓[w

2
ik
w2

im
w1

kj
w1

mj
�0(h1

k
)�0(h1

m
)]

=
N0X

j=1

N1X

k=1

�4
w

N0N1
E✓[w

1
kj
w1

kj
�0(h1

k
)�0(h1

k
)]

=�2
w

�1
J +

2�2
w

N0
�1
�

N0X

k

1

N0
h0
k
h0
k

!

=

�1
J +

2�2
w

N0
�1
�

N0X

k

1

N0
h0
k
h0
k

!
J

0,1 , (B.6)

where to get the result we used integrate by parts, then explicitly integrated over w1
ij

.

We defined a new quantity

Definition B.2 (Coefficient of Finite Width Corrections).

�l

� =
�2
w

Nl

NlX

i=1

E✓[�
00(hl

i
)�00(hl

i
) + �000(hl

i
)�0(hl

i
)] . (B.7)

Remark B.3. Notice that the correction to J
0,2 is order O(N�1

0). If one calculate the recurrence relation for deeper layers,
the correction to J

0,l will be O(
P

l

l0=0 N
�1
l0), which means the contribution from hidden layers can be ignored in infinite

width limit.

The J
0,2 example justified factorization of the integral when we go from the last line of Eq.(B.3) to Eq.(B.4).

Finally, the full Jacobian in infinite width limit can be written as

Theorem B.4 (Partial Jacobian). The partial Jacobian of a given network can be written as

J
0,l = �2

w

�1
J +

2�2
w

N0
�1
�

N0X

k

1

N0
h0
k
h0
k

!
l�1Y

l0=2

�l
0

J , (B.8)

where any partial Jacobian with l0 > 0 does not receive an O(N�1
0) correction.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

B.3. Neural Tangent Kernel (NTK)

Definition B.5 (Neural Tangent Kernel).

⇥l =
1

Nl

NlX

i=1

lX

l0=1

E✓

2

4
Nl0X

a=1

Nl0�1X

b=1

@hl

i

@wl0
ab

@hl

i

@wl0
ab

+

Nl0X

c=1

@hl

i

@bl0
c

@hl

i

@bl0
c

3

5 . (B.9)

Theorem B.6. In the infinite width limit, NTK has the following recurrence relation

⇥l = �l�1
J ⇥l�1 +K

l . (B.10)

Notice that the recurrence coefficient in Eq.(B.10) is the same as that in the recurrence relation for Jacobian.

Proof. To calculate the recurrence relation for NTK, we first isolate the l0 = l term in Eq.(B.9)

1

Nl

NlX

i=1

E✓

2

4
NlX

a=1

Nl�1X

b=1

@hl

i

@wl

ab

@hl

i

@wl

ab

+
NlX

c=1

@hl

i

@bl
c

@hl

i

@bl
c

3

5

=
1

Nl

NlX

i=1

E✓

2

4
NlX

a=1

Nl�1X

b=1

�2
w

Nl�1
�ia�(h

l�1
b

)�ia�(h
l�1
b

) +
NlX

c=1

�ic�ic�
2
b

3

5

=
1

Nl

NlX

i=1

E✓

2

4
Nl�1X

b=1

�2
w

Nl�1
�(hl�1

b
)�(hl�1

b
) + �2

b

3

5

=K
l .

(B.11)

l = 1 is a special case such that ⇥1 = K
1.

Next, consider all the terms with l0 < l

1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl0X

a=1

Nl0�1X

b=1

@hl

i

@wl0
ab

@hl

i

@wl0
ab

+

Nl0X

c=1

@hl

i

@bl0
c

@hl

i

@bl0
c

3

5

=
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl�1X

j=1

Nl�1X

k=1

�2
w

Nl

wl

ij
wl

ik

0

@
Nl0X

a=1

Nl0�1X

b=1

@�(hl�1
j

)

@wl0
ab

@�(hl�1
k

)

@wl0
ab

+

Nl0X

c=1

@�(hl�1
j

)

@bl0
c

@�(hl�1
k

)

@bl0
c

1

A

3

5

=
�2
w

Nl

l�1X

l0=1

E✓

2

4
Nl�1X

j=1

0

@
Nl0X

a=1

Nl0�1X

b=1

@�(hl�1
j

)

@wl0
ab

@�(hl�1
j

)

@wl0
ab

+

Nl0X

c=1

@�(hl�1
j

)

@bl0
c

@�(hl�1
j

)

@bl0
c

1

A

3

5

=
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

�0(hl�1
j

)�0(hl�1
j

)
l�1X

l0=1

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
j

@wl0
ab

+

Nl0X

c=1

@hl�1
j

@bl0
c

@hl�1
j

@bl0
c

1

A

3

5

!
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

�0(hl�1
j

)�0(hl�1
j

)

3

5E✓

2

4 1

Nl�1

Nl�1X

j=1

l�1X

l0=1

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
j

@wl0
ab

+

Nl0X

c=1

@hl�1
j

@bl0
c

@hl�1
j

@bl0
c

1

A

3

5

=�l�1
J ⇥l�1 , (B.12)

where to get the last two lines, we first use self-averaging when sum over b and c, which is guaranteed by the law of large
numbers. Then we just use definition of �l�1

J .

The recurrence relation for NTK in the infinite width limit is obtained by adding the two pieces in Eqs. (B.11),(B.12)
together.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

B.4. LayerNorm on Pre-activations

Definition B.7 (Layer Normalization).

h̃l

i
=

hl

i
� E[hl]p

E[(hl)2]� E[hl]2
�l

i
+ �l

i
, (B.13)

where �l

i
and �l

i
are learnable parameters.

Remark B.8. LayerNorm modifies the recurrence relation for preactivations (Eq.(1)) to

hl+1
i

=
�w
p
Nl

NlX

j=1

wl+1
ij

�(h̃l

j
) + �bb

l+1
i

. (B.14)

Remark B.9. In the limit of infinite width, using the law of large numbers, the average over neurons E[O] can be replaced by
the average of parameter-initializations E✓ [O]. Additionally, in this limit, the preactivations are i.i.d. Gaussian distributed :
hl

⇠ N (0,Kl).

E
⇥
hl
⇤
= E✓

⇥
hl
⇤
= 0 , (B.15)

E
h�
hl
�2i

= E✓

h�
hl
�2i

= K
l . (B.16)

The normalized preactivation then simplifies to the form of Eq.(22).
Remark B.10. At initialization, the parameters �l

i
and �l

i
take the values 1 and 0, respectively. This leads to the form in

equation (21). In infinite width limit it has the following form

h̃l

i
=

hl

i
� E✓[hl]p

E✓[(hl)2]� E✓[hl]2
. (B.17)

Lemma B.11. With LayerNorm on preactivations, the gaussian average is modified to

E✓

h
O(h̃l

i
)
i
=

1
p
2⇡

Z
dh̃l

i
O(h̃l

i
) e�

(h̃l
i)

2

2 . (B.18)

Proof. By definition h̃l

i
is sampled from a standard normal distribution N (0, 1), then use Lemma 2.2 to get the final

form.

Theorem B.12. In the infinite width limit the recurrence relation for the NNGP kernel with LayerNorm on preactivations is

K
l+1 =

�2
w

Nl

NlX

j=1

E✓

h
�(h̃l

j
)�(h̃l

j
)
i
+ �2

b
. (B.19)

Proof.

K
l+1 =

1

Nl+1

Nl+1X

i=1

E✓

⇥
hl+1
i

hl+1
i

⇤

=
1

Nl+1

Nl+1X

i=1

E✓

2

4

0

@ �w
p
Nl

NlX

j=1

wl+1
ij

�(h̃l

j
) + �bb

l+1
i

1

A

�w
p
Nl

NlX

k=1

wl+1
ik

�(h̃l

k
) + �bb

l+1
i

!3

5

=
�2
w

Nl

NlX

j=1

E✓

h
�(h̃l

j
)�(h̃l

j
)
i
+ �2

b
. (B.20)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Theorem B.13. In the infinite width limit the recurrence relation for partial Jacobian with LayerNorm on preactivations is

J
l0,l+1 = �l

JJ
l0,l , (B.21)

where �l

J
= �

2
w

NlKl

P
Nl

i=1 E✓

h
�0(h̃l

i
)2
i

as defined in Eq.(24).

Proof.

J
l0,l+1 =

1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

@hl+1
i

@hl0
j

@hl+1
i

@hl0
j

3

5

=
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

NlX

k=1

@hl+1
i

@h̃l

k

@h̃l

k

@hl

k

@hl

k

@hl0
j

!
NlX

m=1

@hl+1
i

@h̃l
m

@h̃l
m

@hl
m

@hl
m

@hl0
j

!3

5

=
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

NlX

k,m=1

✓
�w
p
Nl

wl+1
ik

�0(h̃l

k
)

1
p

Kl

◆✓
�w
p
Nl

wl+1
im

�0(h̃l

m
)

1
p

Kl

◆
@hl

k

@hl0
j

@hl
m

@hl0
j

!3

5

=
�2
w

NlK
l

NlX

k=1

E✓

2

4�0(h̃l

k
)�0(h̃l

k
)

0

@
Nl0X

j=1

@hl

k

@hl0
j

@hl

k

@hl0
j

1

A

3

5

=
�2
w

NlK
l

NlX

k=1

E✓

h
�0(h̃l

k
)�0(h̃l

k
)
i
J

l0,l

= �l

JJ
l0,l , (B.22)

If the learnable LayerNorm parameters �l

i
and �l

i
are switched on, then the NTK gets contributions from them in addition to

the terms in Eq.(B.9).

⇥l =
1

Nl

NlX

i=1

lX

l0=1

E✓

2

4
Nl0X

a=1

Nl0�1X

b=1

@hl

i

@wl0
ab

@hl

i

@wl0
ab

+

Nl0X

c=1

@hl

i

@bl0
c

@hl

i

@bl0
c

3

5+
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl0X

a=1

@hl

i

@�l0
a

@hl

i

@�l0
a

+

Nl0�1X

b=1

@hl

i

@�l0
b

@hl

i

@�l0
b

3

5

(B.23)

Theorem B.14. In the infinite width limit the recurrence relation for NTK with LayerNorm on preactivations is

⇥l = �l�1
J ⇥l�1 +K

l + 2�l�1
J + 2�l�1

� . (B.24)

Proof. To evaluate the NTK, we divide Eq.(B.23) into three pieces. From the terms involving gradients w.r.t the weights
wl

0

ab
and biases bl

0

c
, we isolate the term with l0 = l. From the terms involving gradients w.r.t the LayerNorm parameters �l

0

a

and �l
0

b
, we isolate the term with l0 = l � 1. All the rest of the terms are grouped together. Consider the isolated term with

l0 = l first.

1

Nl

NlX

i=1

E✓

2

4
NlX

a=1

Nl�1X

b=1

@hl

i

@wl

ab

@hl

i

@wl

ab

+
NlX

c=1

@hl

i

@bl
c

@hl

i

@bl
c

3

5

=
1

Nl

NlX

i=1

E✓

2

4
Nl�1X

b=1

�2
w

Nl�1
�(h̃l�1

b
)�(h̃l�1

b
) + �2

b

3

5

= K
l .

(B.25)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Next, consider the isolated term involving gradients w.r.t LayerNorm parameters, with l0 = l � 1.

1

Nl

NlX

i=1

E✓

2

4
Nl�1X

a=1

@hl

i

@�l�1
a

@hl

i

@�l�1
a

+

Nl�1X

b=1

@hl

i

@�l�1
b

@hl

i

@�l�1
b

3

5

=
1

Nl

NlX

i=1

E✓

2

4
Nl�1X

j=1

Nl�1X

k=1

�2
w

Nl

wl

ij
wl

ik

0

@
Nl�1X

a=1

@�(h̃l�1
j

)

@�l�1
a

@�(h̃l�1
k

)

@�l�1
a

+

Nl�1X

b=1

@�(h̃l�1
j

)

@�l�1
b

@�(h̃l�1
k

)

@�l�1
b

1

A

3

5

=
�2
w

Nl

l�1X

l0=1

E✓

2

4
Nl�1X

j=1

0

@
Nl�1X

a=1

@�(h̃l�1
j

)

@�l�1
a

@�(h̃l�1
j

)

@�l�1
a

+

Nl�1X

b=1

@�(h̃l�1
j

)

@�l�1
b

@�(h̃l�1
j

)

@�l�1
b

1

A

3

5

=
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

�0(h̃l�1
j

)�0(h̃l�1
j

)

0

@
Nl�1X

a=1

@h̃l�1
j

@�l�1
a

@h̃l�1
j

@�l�1
a

+

Nl�1X

b=1

@h̃l�1
j

@�l�1
b

@h̃l�1
j

@�l�1
b

1

A

3

5

=
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

�0(h̃l�1
j

)�0(h̃l�1
j

)

@h̃l�1

j

@�l�1
j

@h̃l�1
j

@�l�1
j

+
@h̃l�1

j

@�l�1
j

@h̃l�1
j

@�l�1
j

!3

5

=
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

�0(h̃l�1
j

)�0(h̃l�1
j

)
⇣
h̃l�1
j

h̃l�1
j

+ 1
⌘
3

5

= �l�1
J + �2

w
E✓

2

4 1

Nl�1

Nl�1X

j=1

�0(h̃l�1
j

)�0(h̃l�1
j

)h̃l�1
j

h̃l�1
j

3

5

= 2�l�1
J + �2

w
E✓

2

4 1

Nl�1

Nl�1X

j=1

�00(h̃l�1
j

)�00(h̃l�1
j

)

3

5+ �2
w
E✓

2

4 1

Nl�1

Nl�1X

j=1

�000(h̃l�1
j

)�0(h̃l�1
j

)

3

5

= 2�l�1
J + 2�l�1

� , (B.26)

where �l

� is defined as in Eq.(B.7).

Next, we consider all the remaining terms in Eq.(B.23).

1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl0X

a=1

Nl0�1X

b=1

@hl

i

@wl0
ab

@hl

i

@wl0
ab

+

Nl0X

c=1

@hl

i

@bl0
c

@hl

i

@bl0
c

3

5+
1

Nl

NlX

i=1

l�2X

l0=1

E✓

2

4
Nl0X

a=1

@hl

i

@�l0
a

@hl

i

@�l0
a

+

Nl0�1X

b=1

@hl

i

@�l0
b

@hl

i

@�l0
b

3

5

=
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl�1X

j=1

Nl�1X

k=1

�2
w

Nl

wl

ij
wl

ik

0

@
Nl0X

a=1

Nl0�1X

b=1

@�(h̃l�1
j

)

@wl0
ab

@�(h̃l�1
k

)

@wl0
ab

+

Nl0X

c=1

@�(h̃l�1
j

)

@bl0
c

@�(h̃l�1
k

)

@bl0
c

1

A

3

5

+
1

Nl

NlX

i=1

l�2X

l0=1

E✓

2

4
Nl�1X

j=1

Nl�1X

k=1

�2
w

Nl

wl

ij
wl

ik

0

@
Nl0X

a=1

@�(h̃l�1
j

)

@�l0
a

@�(h̃l�1
k

)

@�l0
a

+

Nl0�1X

b=1

@�(h̃l�1
j

)

@�l0
b

@�(h̃l�1
k

)

@�l0
b

1

A

3

5

=
�2
w

Nl

l�1X

l0=1

E✓

2

4
Nl�1X

j=1

0

@
Nl0X

a=1

Nl0�1X

b=1

@�(h̃l�1
j

)

@wl0
ab

@�(h̃l�1
j

)

@wl0
ab

+

Nl0X

c=1

@�(h̃l�1
j

)

@bl0
c

@�(h̃l�1
j

)

@bl0
c

1

A

3

5

+
�2
w

Nl

l�2X

l0=1

E✓

2

4
Nl�1X

j=1

0

@
Nl0X

a=1

@�(h̃l�1
j

)

@�l0
a

@�(h̃l�1
j

)

@�l0
a

+

Nl0�1X

b=1

@�(h̃l�1
j

)

@�l0
b

@�(h̃l�1
j

)

@�l0
b

1

A

3

5

=
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

�0(h̃l�1
j

)�0(h̃l�1
j

)
l�1X

l0=1

0

@
Nl0X

a=1

Nl0�1X

b=1

@h̃l�1
j

@wl0
ab

@h̃l�1
j

@wl0
ab

+

Nl0X

c=1

@h̃l�1
j

@bl0
c

@h̃l�1
j

@bl0
c

1

A

3

5

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

+
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

�0(h̃l�1
j

)�0(h̃l�1
j

)
l�2X

l0=1

0

@
Nl0X

a=1

@h̃l�1
j

@�l0
a

@h̃l�1
j

@�l0
a

+

Nl0�1X

b=1

@h̃l�1
j

@�l0
b

@h̃l�1
j

@�l0
b

1

A

3

5

=
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

�0(h̃l�1
j

)�0(h̃l�1
j

)
l�1X

l0=1

0

@
Nl0X

a=1

Nl0�1X

b=1

1

Kl�1

@hl�1
j

@wl0
ab

@hl�1
j

@wl0
ab

+

Nl0X

c=1

1

Kl�1

@h̃l�1
j

@bl0
c

@h̃l�1
j

@bl0
c

1

A

3

5

+
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

�0(h̃l�1
j

)�0(h̃l�1
j

)
l�2X

l0=1

0

@
Nl0X

a=1

1

Kl�1

@hl�1
j

@�l0
a

@hl�1
j

@�l0
a

+

Nl0�1X

b=1

1

Kl�1

@hl�1
j

@�l0
b

@hl�1
j

@�l0
b

1

A

3

5

=
�2
w
Nl�1

NlK
l�1

E✓

2

4 1

Nl�1

Nl�1X

j=1

�0(h̃l�1
j

)�0(h̃l�1
j

)

3

5

0

@E✓

2

4 1

Nl�1

Nl�1X

j=1

l�1X

l0=1

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
j

@wl0
ab

+

Nl0X

c=1

@hl�1
j

@bl0
c

@hl�1
j

@bl0
c

1

A

3

5

+ E✓

2

4 1

Nl�1

Nl�1X

j=1

l�2X

l0=1

0

@
Nl0X

a=1

@hl�1
j

@�l0
a

@hl�1
j

@�l0
a

+

Nl0�1X

b=1

@hl�1
j

@�l0
b

@hl�1
j

@�l0
b

1

A

3

5

1

A

=
�l�1
J

Kl�1
⇥l�1

= �l�1
J ⇥l�1 (B.27)

Now we finish the proof by combining the terms in Eqs. (B.25), (B.26) and (B.27).

B.5. LayerNorm on activations

The general definition of LayerNorm on activations is given as follows.

Definition B.15 (LayerNorm on Activations).

]�(hl

i
) =

�(hl

i
)� E[�(hl)]p

E[�(hl)2]� E[�(hl)]2
�l

i
+ �l

i
. (B.28)

Remark B.16. The recurrence relation for preactivations (Eq.(1)) gets modified to

hl+1
i

=
�w
p
Nl

NlX

j=1

wl+1
ij

�̂(hl

j
) + �bb

l+1
i

. (B.29)

Remark B.17. At initialization, the parameters �l

i
and �l

i
take the values 1 and 0, respectively. This leads to the form

]�(hl

i
) =

�(hl

i
)� E[�(hl)]p

E[�(hl)2]� E[�(hl)]2

=
�(hl

i
)� E✓

⇥
�(hl)

⇤
q
E✓ [�(hl)2]� E✓ [�(hl)]2

,
(B.30)

where the first line follows from the fact that at initialization, the parameters �l

i
and �l

i
take the values 1 and 0 respectively.

In the second line, we have invoked the infinite width limit.
Remark B.18. Evaluating Gaussian average in this case is similar to cases in previous section. The only difference being
that the averages are taking over the distribution hl�1

⇠ N (0,Kl�1 = �2
w
+ �2

b
). Again this can be summarized as

E✓

⇥
O(hl

i
)
⇤
=

1p
2⇡(�2

w
+ �2

b
)

Z
dhl

i
O(hl

i
) e

� (hl
i)

2

2(�2
w+�2

b
) . (B.31)

Next, we calculate the modifications to the recurrence relations for the NNGP kernel, Jacobians and NTK.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Theorem B.19. In the infinite width limit the recurrence relation for the NNGP kernel with LayerNorm on activations is

K
l+1 = �2

w
+ �2

b
. (B.32)

Proof.

K
l+1 =

1

Nl+1

Nl+1X

i=1

E✓

⇥
hl+1
i

hl+1
i

⇤

=
1

Nl+1

Nl+1X

i=1

E✓

2

4

0

@ �w
p
Nl

NlX

j=1

wl+1
ij

�̂(hl

j
) + �bb

l+1
i

1

A

�w
p
Nl

NlX

k=1

wl+1
ik

�̂(hl

k
) + �bb

l+1
i

!3

5

=
�2
w

Nl

NlX

j=1

E✓


�̂(hl

j
)
2
�
+ �2

b

=
�2
w

Nl

NlX

j=1

E✓

2

64

0

@ �(hl

j
)� E✓

⇥
�(hl)

⇤
q
E✓ [�(hl)2]� E✓ [�(hl)]2

1

A
2
3

75+ �2
b

=
�2
w

Nl

NlX

j=1

E✓

h�
�(hl

j
)� E✓

⇥
�(hl)

⇤�2i

E✓ [�(hl)2]� E✓ [�(hl)]2
+ �2

b

= �2
w
+ �2

b
. (B.33)

Theorem B.20. In the infinite width limit the recurrence relation for partial Jacobian with LayerNorm on activations is

J
l0,l+1 = �l

J
J

l0,l , (B.34)

where �l

J
⌘ �2

w

E✓[�0(hl)2)]
E✓[�(hl)2]�E✓[�(hl)]2

.

Proof.

J
l0,l+1 =

1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

@hl+1
i

@hl0
j

@hl+1
i

@hl0
j

3

5

=
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

NlX

k=1

@hl+1
i

@hl

k

@hl

k

@hl0
j

!
NlX

m=1

@hl+1
i

@hl
m

@hl
m

@hl0
j

!3

5

=
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

NlX

k,m=1

✓
�w
p
Nl

wl+1
ik

�̂0(hl

k
)

◆✓
�w
p
Nl

wl+1
im

�̂0(hl
m
)

◆
@hl

k

@hl0
j

@hl
m

@hl0
j

!3

5

=
�2
w

Nl

NlX

k=1

Nl0X

j=1

E✓

2

4�̂0(hl

k
)�̂0(hl

k
)

0

@
Nl0X

j=1

@hl

k

@hl0
j

@hl

k

@hl0
j

1

A

3

5

=
�2
w

Nl

NlX

k=1

E✓


�̂0(hl

k
)
2
�
J

l0,l

= �2
w

E✓

⇥
�0(hl)2

⇤

E✓ [�(hl)2]� E✓ [�(hl)]2
J

l0,l

= �l

J
J

l0,l , (B.35)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

NTK in this case also acquires an additional contribution from the LayerNorm parameters �l

i
and �l

i
.

⇥l =
1

Nl

NlX

i=1

lX

l0=1

E✓

2

4
Nl0X

a=1

Nl0�1X

b=1

@hl

i

@wl0
ab

@hl

i

@wl0
ab

+

Nl0X

c=1

@hl

i

@bl0
c

@hl

i

@bl0
c

3

5+
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl0X

a=1

@hl

i

@�l0
a

@hl

i

@�l0
a

+

Nl0�1X

b=1

@hl

i

@�l0
b

@hl

i

@�l0
b

3

5

(B.36)
Theorem B.21. In the infinite width limit the recurrence relation for NTK with LayerNorm on activations is

⇥l = �l�1
J ⇥l�1 +K

l + 2�2
w

(B.37)

Proof. We separate the therms into three pieces in the exact same manner as we did for Eq.(B.23).

1

Nl

NlX

i=1

E✓

2

4
NlX

a=1

Nl�1X

b=1

@hl

i

@wl

ab

@hl

i

@wl

ab

+
NlX

c=1

@hl

i

@bl
c

@hl

i

@bl
c

3

5

=
1

Nl

NlX

i=1

E✓

2

4
Nl�1X

b=1

�2
w

Nl�1
�̂(hl�1

b
)�̂(hl�1

b
) + �2

b

3

5

=K
l .

(B.38)

1

Nl

NlX

i=1

E✓

2

4
Nl�1X

a=1

@hl

i

@�l�1
a

@hl

i

@�l�1
a

+

Nl�1X

b=1

@hl

i

@�l�1
b

@hl

i

@�l�1
b

3

5

=
1

Nl

NlX

i=1

E✓

2

4
Nl�1X

j=1

Nl�1X

k=1

�2
w

Nl

wl

ij
wl

ik

0

@
Nl�1X

a=1

@�̂(hl�1
j

)

@�l�1
a

@�̂(hl�1
k

)

@�l�1
a

+

Nl�1X

b=1

@�̂(hl�1
j

)

@�l�1
b

@�̂(hl�1
k

)

@�l�1
b

1

A

3

5

=
�2
w

Nl

E✓

2

4
Nl�1X

j=1

0

@@�̂(hl�1
j

)

@�l�1
j

@�̂(hl�1
j

)

@�l�1
j

+
@�̂(hl�1

j
)

@�l�1
j

@�̂(hl�1
j

)

@�l�1
j

1

A

3

5

=
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

0

@@�̂(hl�1
j

)

@�l�1
j

@�̂(hl�1
j

)

@�l�1
j

+
@�̂(hl�1

j
)

@�l�1
j

@�̂(hl�1
j

)

@�l�1
j

1

A

3

5

=
�2
w
Nl�1

Nl

E✓

2

64
1

Nl�1

Nl�1X

j=1

0

B@

0

@ �(hl

j
)� E✓

⇥
�(hl�1)

⇤
q
E✓ [�(hl)2]� E✓ [�(hl)]2

1

A
2

+ 1

1

CA

3

75

=
�2
w
Nl�1

Nl

1

E✓ [�(hl�1)2]� E✓ [�(hl�1)]2
E✓

2

4 1

Nl�1

Nl�1X

j=1

�
�(hl�1

j
)� E✓

⇥
�(hl�1)

⇤�2
3

5+
�2
w
Nl�1

Nl

= 2�2
w

(B.39)

Thus, the NTK is given by

⇥l =
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl0X

a=1

Nl0�1X

b=1

@hl

i

@wl0
ab

@hl

i

@wl0
ab

+

Nl0X

c=1

@hl

i

@bl0
c

@hl

i

@bl0
c

3

5+
1

Nl

NlX

i=1

l�2X

l0=1

E✓

2

4
Nl0X

a=1

@hl

i

@�l0
a

@hl

i

@�l0
a

+

Nl0�1X

b=1

@hl

i

@�l0
b

@hl

i

@�l0
b

3

5

=
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl�1X

j=1

Nl�1X

k=1

�2
w

Nl

wl

ij
wl

ik

0

@
Nl0X

a=1

Nl0�1X

b=1

@�̂(hl�1
j

)

@wl0
ab

@�̂(hl�1
k

)

@wl0
ab

+

Nl0X

c=1

@�̂(hl�1
j

)

@bl0
c

@�̂(hl�1
k

)

@bl0
c

1

A

3

5

+
1

Nl

NlX

i=1

l�2X

l0=1

E✓

2

4
Nl�1X

j=1

Nl�1X

k=1

�2
w

Nl

wl

ij
wl

ik

0

@
Nl0X

a=1

@�̂(hl�1
j

)

@�l0
a

@�̂(hl�1
k

)

@�l0
a

+

Nl0�1X

b=1

@�̂(hl�1
j

)

@�l0
b

@�̂(hl�1
k

)

@�l0
b

1

A

3

5

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

=
�2
w

Nl

l�1X

l0=1

E✓

2

4
Nl�1X

j=1

0

@
Nl0X

a=1

Nl0�1X

b=1

@�̂(hl�1
j

)

@wl0
ab

@�̂(hl�1
j

)

@wl0
ab

+

Nl0X

c=1

@�̂(hl�1
j

)

@bl0
c

@�̂(hl�1
j

)

@bl0
c

1

A

3

5

+
�2
w

Nl

l�2X

l0=1

E✓

2

4
Nl�1X

j=1

0

@
Nl0X

a=1

@�̂(hl�1
j

)

@�l0
a

@�̂(hl�1
j

)

@�l0
a

+

Nl0�1X

b=1

@�̂(hl�1
j

)

@�l0
b

@�̂(hl�1
j

)

@�l0
b

1

A

3

5

=
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

^�0(hl�1
j

) ^�0(hl�1
j

)
@�̂(hl�1

j
)

@�(hl�1
j

)

@�̂(hl�1
j

)

@�(hl�1
j

)

l�1X

l0=1

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
j

@wl0
ab

+

Nl0X

c=1

@hl�1
j

@bl0
c

@hl�1
j

@bl0
c

1

A

3

5

+
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

^�0(hl�1
j

) ^�0(hl�1
j

)
@�̂(hl�1

j
)

@�(hl�1
j

)

@�̂(hl�1
j

)

@�(hl�1
j

)

l�2X

l0=1

0

@
Nl0X

a=1

@hl�1
j

@�l0
a

@hl�1
j

@�l0
a

+

Nl0�1X

b=1

@hl�1
j

@�l0
b

@hl�1
j

@�l0
b

1

A

3

5

=
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

^�0(hl�1
j

) ^�0(hl�1
j

)
1

E✓ [�(hl)2]� E✓ [�(hl)]2

l�1X

l0=1

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
j

@wl0
ab

+

Nl0X

c=1

@h̃l�1
j

@bl0
c

@h̃l�1
j

@bl0
c

1

A

3

5

+
�2
w
Nl�1

Nl

E✓

2

4 1

Nl�1

Nl�1X

j=1

^�0(hl�1
j

) ^�0(hl�1
j

)
1

E✓ [�(hl)2]� E✓ [�(hl)]2

l�2X

l0=1

0

@
Nl0X

a=1

@hl�1
j

@�l0
a

@hl�1
j

@�l0
a

+

Nl0�1X

b=1

@hl�1
j

@�l0
b

@hl�1
j

@�l0
b

1

A

3

5

=
�2
w
Nl�1

Nl

1

E✓ [�(hl)2]� E✓ [�(hl)]2
E✓

2

4 1

Nl�1

Nl�1X

j=1

^�0(hl�1
j

) ^�0(hl�1
j

)

3

5 ·

·

0

@E✓

2

4 1

Nl�1

Nl�1X

j=1

l�1X

l0=1

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
j

@wl0
ab

+

Nl0X

c=1

@hl�1
j

@bl0
c

@hl�1
j

@bl0
c

1

A

3

5

+E✓

2

4 1

Nl�1

Nl�1X

j=1

l�2X

l0=1

0

@
Nl0X

a=1

@hl�1
j

@�l0
a

@hl�1
j

@�l0
a

+

Nl0�1X

b=1

@hl�1
j

@�l0
b

@hl�1
j

@�l0
b

1

A

3

5

1

A

=
�l�1
J

E✓ [�(hl�1)2]� E✓ [�(hl�1)]2
⇥l�1

= �l�1
J ⇥l�1 (B.40)

Now we finish the proof by combining the terms in Eqs. (B.38), (B.39) and (B.40).

C. Critical Exponents

To prove Theorem 2.7, we first need to find the critical exponent of the NNGP kernel (Roberts et al., 2021).

Lemma C.1. In the infinite width limit, consider a critically initialized network with a activation function �. The scaling
behavior of the fluctuation �Kl

⌘ K
l
�K

? in non-exponential. If the recurrence relation can be expand to leading order
�Kl as �Kl+1

⇡ �Kl
� cn(�Kl)n for n � 2. The solution of �Kl is

�Kl =
1

cn(n� 1)
l�⇣K , (C.1)

where ⇣K = 1
n�1 .

Remark C.2. The constant cn and the order of first non-zero term n is determined by the choice of activation function.

Proof. We can expand the recurrence relation for the NNGP kernel (11) to second order of �Kl = K
l
�K

? on both side.

�Kl+1
⇡ �Kl

� cn(�K
l)n . (C.2)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Use power law ansatz �Kl = A l�⇣K then

(l + 1)�⇣K = l�⇣K � cnA l�n⇣K . (C.3)

Multiply l⇣K on both side then use Taylor expansion (l

l+1)
⇣K ⇡ 1� ⇣K

l

⇣K
l

= cnAl�(n�1)⇣K . (C.4)

For arbitrary l, the only non-trivial solution of the equation above is

A =
1

cn(n� 1)
and ⇣K =

1

n� 1
. (C.5)

Proof of Theorem 2.7. We will assume c2 6= 0. Then use Lemma C.1, we can expand �l

J in terms of �Kl. To leading order
l�1

�l

J ⇡1� d1�K
l

=1�
d1
c2

l�1 . (C.6)

Consider a sufficiently large l. In this case O(l�1) approximation is valid. We write recurrence relations of Jacobians as

J
l0,l =

l�1Y

l0=l0

✓
1�

d1
c2

l0�1

◆
J

l0,l0

⇡ cl0 · l
�⇣ . (C.7)

When cn = 0 for all n � 2, from Lemma C.1 we have �Kl = 0. Thus the Jacobian saturates to some constant.

D. Residual Connections

Definition D.1. We define residual connections by the modified the recurrence relation for preactivations (Eq.(1))

hl+1
i

=
�w
p
Nl

NlX

j=1

wl+1
ij

�(hl

j
) + �bb

l+1
i

+ µhl

i
, (D.1)

where the parameter µ controls the strength of the residual connection.
Remark D.2. Note that this definition requires Nl+1 = Nl. We ensure this by only adding residual connections to the hidden
layers, which are of the same width. More generally, one can introduce a tensor parameter µij .
Remark D.3. In general, the parameter µ could be layer-dependent (µl). But we suppress this dependence here since we are
discussing self-similar networks.
Theorem D.4. In the infinite width limit, the recurrence relation for the NNGP kernel with residual connections is changed
by an additional term controlled by µ

K
l+1 =

�2
w

Nl

NlX

j=1

E✓

⇥
�(hl

j
)�(hl

j
)
⇤
+ �2

b
+ µ2

K
l . (D.2)

Proof.

K
l+1 =

1

Nl+1

Nl+1X

i=1

E✓

⇥
hl+1
i

hl+1
i

⇤

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

=
1

Nl+1

Nl+1X

i=1

E✓

2

4

0

@ �w
p
Nl

NlX

j=1

wl+1
ij

�(hl

j
) + �bb

l+1
i

+ µhl

i

1

A

�w
p
Nl

NlX

k=1

wl+1
ik

�(hl

k
) + �bb

l+1
i

+ µhl

i

!3

5

=
1

Nl+1

Nl+1X

i=1

E✓

2

4�
2
w

Nl

NlX

j=1

NlX

k=1

wl+1
ij

wl+1
ik

�(hl

j
)�(hl

k
) + �2

b
bl+1
i

bl+1
i

+ µ2hl

i
hl

i

3

5

=
1

Nl+1

Nl+1X

i=1

E✓

2

4�
2
w

Nl

NlX

j=1

�(hl

j
)�(hl

j
) + �2

b

3

5+ µ2 1

Nl+1

Nl+1X

i=1

E✓

⇥
hl

i
hl

i

⇤

=
�2
w

Nl

NlX

j=1

E✓

⇥
�(hl

j
)�(hl

j
)
⇤
+ �2

b
+ µ2

K
l , (D.3)

where we used the fact Nl+1 = Nl to get the last line.

Theorem D.5. In the infinite width limit, the recurrence relation for partial Jacobians with residual connections has a
simple multiplicative form

J
l0,l+1 = �l

JJ
l0,l , (D.4)

where the recurrence coefficient is shifted to �l

J = �2
w
E✓

⇥
�0(hl

k
)�0(hl

k
)
⇤
+ µ2, as defined in Eq.(27).

Proof.

J
l0,l+1

⌘
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

@hl+1
i

@hl0
j

@hl+1
i

@hl0
j

3

5

=
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

NlX

k=1

@hl+1
i

@hl

k

@hl

k

@hl0
j

!
NlX

m=1

@hl+1
i

@hl
m

@hl
m

@hl0
j

!3

5

=
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

NlX

k,m=1

✓
�w
p
Nl

wl+1
ik

�0(hl

k
) + µ�ik

◆✓
�w
p
Nl

wl+1
im

�0(hl

m
) + µ�im

◆
@hl

k

@hl0
j

@hl
m

@hl0
j

!3

5

=
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

NlX

k,m=1

✓
�2
w

Nl

wl+1
ik

wl+1
im

�0(hl

k
)�0(hl

m
) + µ2�ik�im

◆
@hl

k

@hl0
j

@hl
m

@hl0
j

3

5

=
�2
w

Nl

NlX

k=1

E✓

2

4�0(hl

k
)�0(hl

k
)

0

@
Nl0X

j=1

@hl

k

@hl0
j

@hl

k

@hl0
j

1

A

3

5+
1

Nl

NlX

k=1

E✓

2

4µ2

0

@
Nl0X

j=1

@hl

k

@hl0
j

@hl

k

@hl0
j

1

A

3

5

=
�
�2
w
E✓

⇥
�0(hl

k
)�0(hl

k
)
⇤
+ µ2

�
E✓

2

4 1

Nl

NlX

k=1

Nl0X

j=1

@hl

k

@hl0
j

@hl

k

@hl0
j

3

5

=
�
�2
w
E✓

⇥
�0(hl

k
)�0(hl

k
)
⇤
+ µ2

�
J

l0,l

J
l0,l+1 = �l

JJ
l0,l . (D.5)

The NTK in this case is defined as

⇥l =
1

Nl

NlX

i=1

lX

l0=1

E✓

2

4
Nl0X

a=1

Nl0�1X

b=1

@hl

i

@wl0
ab

@hl

i

@wl0
ab

+

Nl0X

c=1

@hl

i

@bl0
c

@hl

i

@bl0
c

3

5 . (D.6)

Theorem D.6. In the infinite width limit, the recurrence relation for NTK with residual connections is modified by an
additional term controlled by µ

⇥l = �l�1
J ⇥l�1 +K

l
� µ2Kl�1 . (D.7)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Proof. To evaluate the NTK, we divide Eq.(D.6) into two pieces. From the terms involving gradients w.r.t the weights wl
0

ab

and biases bl
0

c
, we separate the terms with l0 = l and all the remaining terms. Let’s consider the terms with l0 = l first.

1

Nl

NlX

i=1

E✓

2

4
NlX

a=1

Nl�1X

b=1

@hl

i

@wl

ab

@hl

i

@wl

ab

+
NlX

c=1

@hl

i

@bl
c

@hl

i

@bl
c

3

5

=
1

Nl

NlX

i=1

E✓

2

4
NlX

a=1

Nl�1X

b=1

�2
w

Nl�1
�ia�(h

l�1
b

)�ia�(h
l�1
b

) +
NlX

c=1

�ic�ic�
2
b

3

5

=
1

Nl

NlX

i=1

E✓

2

4
Nl�1X

b=1

�2
w

Nl�1
�(hl�1

b
)�(hl�1

b
) + �2

b

3

5

= K
l
� µ2Kl�1 . (D.8)

Next, we consider all the terms with l0 < l

1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl0X

a=1

Nl0�1X

b=1

@hl

i

@wl0
ab

@hl

i

@wl0
ab

+

Nl0X

c=1

@hl

i

@bl0
c

@hl

i

@bl0
c

3

5

=
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl�1X

j,k=1

@hl

i

@hl�1
j

@hl

i

@hl�1
k

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
k

@wl0
ab

+

Nl0X

c=1

@hl�1
j

@bl0
c

@hl�1
k

@bl0
c

1

A

3

5

=
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl�1X

j,k=1

�wp
Nl�1

wl

ij
�0(hl�1

j
) + µ�ij

!
�wp
Nl�1

wl

ik
�0(hl�1

k
) + µ�ik

!

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
k

@wl0
ab

+

Nl0X

c=1

@hl�1
j

@bl0
c

@hl�1
k

@bl0
c

1

A

3

5

=
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl�1X

j=1

�2
w

Nl�1
�0(hl�1

j
)�0(hl�1

j
)

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
j

@wl0
ab

+

Nl0X

c=1

@hl�1
j

@bl0
c

@hl�1
j

@bl0
c

1

A

3

5

+
1

Nl

NlX

i=1

l�1X

l0=1

µ2E✓

2

4

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
i

@wl0
ab

@hl�1
i

@wl0
ab

+

Nl0X

c=1

@hl�1
i

@bl0
c

@hl�1
i

@bl0
c

1

A

3

5

=
�
�2
w
E✓

⇥
�0(hl�1)�0(hl�1)

⇤
+ µ2

�
⇥l�1

= �l�1
J ⇥l�1 (D.9)

E. Residual Connections with LayerNorm on Preactivations (Pre-LN)

The definition of LayerNorm on preactivations is the same as before. The recurrence relation for preactivations (Eq.(1)) gets
modified to

hl+1
i

=
�w
p
Nl

NlX

j=1

wl+1
ij

�(h̃l

j
) + �bb

l+1
i

+ µhl

i
. (E.1)

Theorem E.1. In the infinite width limit, the recurrence relation for the NNGP kernel is then modified to

K
l+1 =

�2
w

Nl

NlX

j=1

E✓

h
�(h̃l

j
)�(h̃l

j
)
i
+ �2

b
+ µ2

K
l . (E.2)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Proof.

K
l+1 =

1

Nl+1

Nl+1X

i=1

E✓

⇥
hl+1
i

hl+1
i

⇤

=
1

Nl+1

Nl+1X

i=1

E✓

2

4

0

@ �w
p
Nl

NlX

j=1

wl+1
ij

�(h̃l

j
) + �bb

l+1
i

+ µhl

i

1

A

�w
p
Nl

NlX

k=1

wl+1
ik

�(h̃l

k
) + �bb

l+1
i

+ µhl

i

!3

5

=
�2
w

Nl

NlX

j=1

E✓

h
�(h̃l

j
)�(h̃l

j
)
i
+ �2

b
+ µ2

K
l . (E.3)

Remark E.2. For µ < 1, the recursion relation has a fixed point

K
? =

�2
w

Nl?(1� µ2)

Nl?X

j=1

E✓

h
�(h̃l

?

j
)�(h̃l

?

j
)
i
+

�2
b

1� µ2
. (E.4)

where the average here is exactly the same as cases for LayerNorm applied to preactivations without residue connections. l?
labels some very large depth l.
Remark E.3. For µ = 1 case, the solution of (E.2) is

K
l = K

0 +
lX

l0=1

0

@�2
w

Nl

NlX

j=1

E✓

h
�(h̃l

0

j
)�(h̃l

0

j
)
i
+ �2

b

1

A . (E.5)

which is linearly growing since the expectation does not depend on depth. K0 is the NNGP kernel after the input layer.
Theorem E.4. In the infinite width limit, the recurrence relation for Jacobians changes by a constant shift in the recursion
coefficient.

J
l0,l+1 = �l

JJ
l0,l , (E.6)

where for this case

�l

J =
�2
w

NlK
l

NlX

k=1

E✓

h
�0(h̃l

k
)�0(h̃l

k
)
i
+ µ2 . (E.7)

Proof.

J
l0,l+1 =

1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

@hl+1
i

@hl0
j

@hl+1
i

@hl0
j

3

5

=
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

NlX

k=1

@hl+1
i

@h̃l

k

@h̃l

k

@hl

k

@hl

k

@hl0
j

!
NlX

m=1

@hl+1
i

@h̃l
m

@h̃l
m

@hl
m

@hl
m

@hl0
j

!3

5

=
1

Nl+1
E✓

2

4
Nl+1X

i=1

Nl0X

j=1

NlX

k,m=1

�w
p
Nl

wl+1
ik

�0(h̃l

k
)

p

Kl
+ µ�ik

!
�w
p
Nl

wl+1
im

�0(h̃l
m
)

p

Kl
+ µ�ik

!
@hl

k

@hl0
j

@hl
m

@hl0
j

!3

5

= E✓

2

4

�2
w

NlK
l

NlX

k=1

�0(h̃l

k
)�0(h̃l

k
) + µ2

!0

@
Nl0X

j=1

@hl

k

@hl0
j

@hl

k

@hl0
j

1

A

3

5

=

�2
w

NlK
l

NlX

k=1

E✓

h
�0(h̃l

k
)�0(h̃l

k
)
i
+ µ2

!
J

l0,l

= �l

JJ
l0,l , (E.8)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Remark E.5. One can directly use results from cases without residue connections. We will momentarily see that the phase
boundary does not change with residual connections when µ < 1. However, the correlation length decays way slower when
the network is initialized far from criticality.
Remark E.6. As we mentioned above µ = 1 needs extra care. Plug in the result (E.5) and µ = 1 we find out that

�l

J |
µ=1 =

�2
w

P
Nl

k=1 E✓

h
�0(h̃l

k
)�0(h̃l

k
)
i

NlK
0 +

P
l

l0=1

⇣
�2
w

P
Nl

j=1 E✓

h
�(h̃l

j
)�(h̃l

j
)
i
+Nl�2

b

⌘ + 1

⇠ 1 +O

✓
1

l

◆
, (E.9)

which leads to power law behaved Jacobians at large depth. Where the exponent ⇣ is not universal.

To calculate the NTK, we include the contributions from the learnable LayerNorm parameters �l

i
and �l

i
as well.

⇥l =
1

Nl

NlX

i=1

lX

l0=1

E✓

2

4
Nl0X

a=1

Nl0�1X

b=1

@hl

i

@wl0
ab

@hl

i

@wl0
ab

+

Nl0X

c=1

@hl

i

@bl0
c

@hl

i

@bl0
c

3

5 +
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl0X

a=1

@hl

i

@�l0
a

@hl

i

@�l0
a

+

Nl0�1X

b=1

@hl

i

@�l0
b

@hl

i

@�l0
b

3

5

(E.10)

Theorem E.7. In the infinite width limit, the recursion relation for NTK takes the following form

⇥l = �l�1
J ⇥l�1 +K

l
� µ2Kl�1 + �l�1

J + �l�1
� , (E.11)

where �l

� was defined in Eq.(B.7)

Proof. As before, we divide Eq.(E.10) into three pieces. From the terms involving gradients w.r.t the weights wl
0

ab
and biases

bl
0

c
, we isolate the term with l0 = l. From the terms involving gradients w.r.t the LayerNorm parameters �l

0

a
and �l

0

b
, we

isolate the term with l0 = l � 1. All the rest of the terms are grouped together.

1

Nl

NlX

i=1

E✓

2

4
NlX

a=1

Nl�1X

b=1

@hl

i

@wl

ab

@hl

i

@wl

ab

+
NlX

c=1

@hl

i

@bl
c

@hl

i

@bl
c

3

5

=
1

Nl

NlX

i=1

E✓

2

4
NlX

a=1

Nl�1X

b=1

�2
w

Nl�1
�ia�(h̃

l�1
b

)�ia�(h̃
l�1
b

) +
NlX

c=1

�ic�ic�
2
b

3

5

=
1

Nl

NlX

i=1

E✓

2

4
Nl�1X

b=1

�2
w

Nl�1
�(h̃l�1

b
)�(h̃l�1

b
) + �2

b

3

5

= K
l
� µ2Kl�1 . (E.12)

For the term involving gradients w.r.t LayerNorm parameters, with l0 = l� 1, the calculation as well as the result is identical
to Eqs.(B.26). We use the results without repeating the calculation here.

1

Nl

NlX

i=1

E✓

2

4
Nl�1X

a=1

@hl

i

@�l�1
a

@hl

i

@�l�1
a

+

Nl�1X

b=1

@hl

i

@�l�1
b

@hl

i

@�l�1
b

3

5 = 2�l�1
J + 2�l�1

� . (E.13)

Next, consider all the terms with l0 < l

1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl0X

a=1

Nl0�1X

b=1

@hl

i

@wl0
ab

@hl

i

@wl0
ab

+

Nl0X

c=1

@hl

i

@bl0
c

@hl

i

@bl0
c

3

5

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

=
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl�1X

j,k=1

@hl

i

@hl�1
j

@hl

i

@hl�1
k

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
k

@wl0
ab

+

Nl0X

c=1

@hl�1
j

@bl0
c

@hl�1
k

@bl0
c

1

A

3

5

=
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl�1X

j,k=1

@hl

i

@h̃l�1
j

@h̃l�1
j

@h̃l�1
j

@hl

i

@h̃l�1
k

@h̃l�1
i

@h̃l�1
k

!0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
k

@wl0
ab

+

Nl0X

c=1

@hl�1
j

@bl0
c

@hl�1
k

@bl0
c

1

A

3

5

=
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl�1X

j,k=1

�wp
Nl�1

wl

ij
�0(h̃l�1

j
)

p

Kl�1
+ µ�ij

!
�wp
Nl�1

wl

ik
�0(h̃l�1

k
)

p

Kl�1
+ µ�ik

!

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
k

@wl0
ab

+

Nl0X

c=1

@hl�1
j

@bl0
c

@hl�1
k

@bl0
c

1

A

3

5

=
1

Nl

NlX

i=1

l�1X

l0=1

E✓

2

4
Nl�1X

j=1

�2
w

Nl�1K
l�1

�0(hl�1
j

)�0(hl�1
j

)

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
j

@wl0
ab

@hl�1
j

@wl0
ab

+

Nl0X

c=1

@hl�1
j

@bl0
c

@hl�1
j

@bl0
c

1

A

3

5

+
1

Nl

NlX

i=1

l�1X

l0=1

µ2E✓

2

4

0

@
Nl0X

a=1

Nl0�1X

b=1

@hl�1
i

@wl0
ab

@hl�1
i

@wl0
ab

+

Nl0X

c=1

@hl�1
i

@bl0
c

@hl�1
i

@bl0
c

1

A

3

5

=

✓
�2
w

Kl�1
E✓

⇥
�0(hl�1)�0(hl�1)

⇤
+ µ2

◆
⇥l�1

= �l�1
J ⇥l�1 (E.14)

Putting together the three terms, we get the recursion relation in Eq.(E.11).

F. MLP-Mixer

In this section we would like to analyze an architecture called MLP-Mixer (Tolstikhin et al., 2021b), which is based on
multi-layer perceptrons (MLPs). A MLP-Mixer (i) chops images into patches, then applies affine transformations per patch,
(ii) applies several Mixer Layers, (iii) applies pre-head LayerNorm, Global Average Pooling, an output affine transformation.
We will explain the architecture by showing forward pass equations.

Suppose one has a single input with dimension (Cin, Hin,Win). We label it as xµi, where the Greek letter labels channels
and the Latin letter labels flattened pixels.

First of all the (i) is realized by a special convolutional layer, where kernel size f is equal to the stride s. Then first
convolution layer can be written as

h0
µi

=
f
2X

j=1

CinX

⌫=1

W 0
µ⌫;jx⌫,j+(i�1)s2 + b0

µi
, (F.1)

where f is the size of filter and s is the stride. In our example f = s. Notice in PyTorch both bias and weights are sampled
from a uniform distribution U(�

p
k,
p
k), where k = (Cinf2)�1.

E✓[W
0
µ⌫;iW

0
⇢�;j] =

1

3Cinf2
�µ⇢�⌫��ij , (F.2)

E✓[b
0
µi
b0
⌫j
] =

1

3Cinf2
�µ⌫�ij . (F.3)

Notice that the output of Conv2d: h0
µi

2 RC⇥Np , where C stands for channels and Np = HinWin/f2 stands for patches,
both of them will be mixed later by Mixer layers.

Next we stack l Mixer Layers. A Mixer Layer contains LayerNorms and two MLPs, where the first one mixed patches
i, j (token mixing) with a hidden dimension Ntm, the second one mixed channels µ, ⌫ (channel-mixing) with a hidden
dimension Ncm. Notice that for Mixer Layers we use the NTK initialization.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

• First LayerNorm. It acts on channels µ.

h̃6l
µi

=
h6l
µi

� EC [h6l
⇢i
]

q
VarC [h6l

⇢i
]
, (F.4)

where we defined a channel mean EC [h6l
⇢i
] ⌘ 1

C

P
C

⇢=1 h
6l
⇢i

and channel variance VarC ⌘ EC

h�
h6l
⇢i

�2i
�
�
EC [h6l

⇢i
]
�2.

• First MlpBlock. It mixes patches i, j, preactivations from different channels share the same weight and bias.

– 6l + 1: Linear Affine Layer.

h6l+1
µj

=
�wp
Np

NpX

k=1

w6l+1
jk

h̃6l
µk

+ �bb
6l+1
j

. (F.5)

– 6l + 2: Affine Layer.

h6l+2
µi

=
�w

p
Ntm

NtmX

j=1

w6l+2
ij

�(h6l+1
µj

) + �bb
6l+2
i

, (F.6)

where Ntm stands for hidden dimension of ”token mixing”.
– 6l + 3: Residue Connections.

h6l+3
µi

= h6l+2
µi

+ µh6l
µi
. (F.7)

• Second LayerNorm. It again acts on channels µ.

h̃6l+3
µi

=
h6l+3
µi

� EC [h
6l+3
⇢i

]
q

VarC [h
6l+3
⇢i

]
. (F.8)

• Second MlpBlock. It mixes channels µ, ⌫, preactivations from different patches share the same weight and bias.

– 6l + 4: Linear Affine Layer.

h6l+4
⌫i

=
�w
p
C

CX

⇢=1

w6l+4
⌫⇢

h̃6l+3
⇢i

+ �bb
6l+4
⌫

. (F.9)

– 6l + 5. Affine Layer.

h6l+5
µi

=
�w

p
Ncm

NcmX

⌫=1

w6l+5
µ⌫

�(h6l+4
⌫i

) + �bb
6l+5
µ

. (F.10)

– 6l + 6. Residue Connections.

h6l+6
µi

= h6l+5
µi

+ µh6l+3
µi

. (F.11)

Suppose the network has L Mixer layers. After those layers the network has a pre-head LayerNorm layer, a global average
pooling layer and a output layer. The pre-head LayerNorm normalizes over channels µ can be described as the following

h̃6L
µi

=
h6L
µi

� EC [h6L
⇢i
]

q
VarC [h6L

⇢i
]

. (F.12)

Global Average Pool over patches i.

hp

µ
=

1

Np

NpX

i=1

h̃6L
µi

. (F.13)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Output Layer

fµ =
�w
p
C

CX

⌫=1

wµ⌫h
p

⌫
+ �bbµ . (F.14)

We plotted phase diagram using the following quantity from repeating Mixer Layers:

�?

J = lim
L!1

0

@ 1

NpC

NpX

i=1

CX

µ=1

E✓

2

4
CX

⇢=1

NpX

k=1

@h6L
µi

@h6L�6
⇢k

@h6L
µi

@h6L�6
⇢k

3

5

1

A . (F.15)

G. Results for Scale Invariant Activation Functions

Definition G.1 (Scale invariant activation functions).

�(x) = a+ x⇥(x) + a� x⇥(�x) , (G.1)

where ⇥(x) is the Heaviside step function. ReLU is the special case with a+ = 1 and a� = 0.

G.1. NNGP Kernel

First evaluate the average using Lemma 2.2

E✓

⇥
�(hl

i
)�(hl

i
)
⇤
=

1
p

2⇡Kl

Z
dhl

i

�
a2+ + a2�

� �
hl

i

�2
e�

(hl
i)

2

2Kl

=
a2+ + a2�

2
K

l . (G.2)

Thus we obtain the recurrence relation for the NNGP kernel with scale invariant activation function.

K
l+1 =

�2
w
(a2+ + a2�)

2
K

l + �2
b
. (G.3)

Finite fixed point of the recurrence relation above exists only if

�?

K =
�2
w
(a2+ + a2�)

2
 1 . (G.4)

As a result
�2
w


2

a2+ + a2�
. (G.5)

For �2
w
= 2

a2
++a2

�
case, finite fixed point exists only if �2

b
= 0.

G.2. Jacobian(s)

The calculation is quite straight forward, by definition

�l

J =�2
w
E✓

⇥
�0(hl

i
)�0(hl

i
)
⇤

=
�2
w

p

2⇡Kl

Z
dhl

i

⇥
a+⇥(hl

i
)� a�⇥(hl

i
)
⇤2

e�
(hl

i)
2

2Kl

=
�2
w
(a2+ + a2�)

2
, (G.6)

where we used the property x�(x) = 0 for Dirac’s delta function to get the first line.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Thus the critical line is defined by

�w =

s
2

a2+ + a2�
. (G.7)

For ReLU with a+ = 1 and a� = 0, the network is at critical line when

�w =
p
2 , (G.8)

where the critical point is located at
(�w,�b) = (

p
2, 0) . (G.9)

G.3. Critical Exponents

Since the recurrence relations for the NNGP kernel and Jacobians are linear. Then from Lemma C.1 and Theorem 2.7

⇣K = 0 and ⇣ = 0 . (G.10)

G.4. LayerNorm on Pre-activations

Use Lemma B.11 and combine all known results for scale invariant functions

�l

J =
�2
w

NlK
l

NlX

k=1

E✓

h
�0(h̃l

k
)�0(h̃l

k
)
i�����

K̃l�1=1

=
�2
w
(a2+ + a2�)

�2
w
(a2+ + a2�) + 2�2

b

. (G.11)

For this case,
�l

J  1 (G.12)

is always true. The equality only holds at �b = 0 line.

G.5. LayerNorm on Activations

First we substitute K
l�1 = �2

w
+ �2

b
into known results

E✓

⇥
�0(hl

i
)�0(hl

i
)
⇤
=

a2+ + a2�
2

, (G.13)

E✓

⇥
�(hl

i
)�(hl

i
)
⇤
=

a2+ + a2�
2

(�2
w
+ �2

b
) . (G.14)

There is a new expectation value we need to show explicitly

E✓

⇥
�(hl

i
)
⇤
=

1p
2⇡(�2

w
+ �2

b
)

Z 1

�1
dhl

i
�(hl

i
)e�

1
2h

l
i(�

2
w+�

2
b)

�1
h
l
i

=
1p

2⇡(�2
w
+ �2

b
)

Z 1

0
dhl

i
(a+ � a�)h

l

i
e
� (hl

i)
2

2(�2
w+�2

b
)

= (a+ � a�)

r
�2
w
+ �2

b

2⇡
. (G.15)

Thus

�l

J =
�2
w

�2
w
+ �2

b

·
⇡(a2+ + a2�)

⇡(a2+ + a2�)� (a+ � a�)2
. (G.16)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

The critical line is defined by �?

J = 1, which can be solved as

�b =

s
(a+ � a�)2

⇡(a2+ + a2�)� (a+ � a�)2
�w . (G.17)

For ReLU with a+ = 1 and a� = 0

�b =

r
1

⇡ � 1
�w

⇡0.683�w . (G.18)

G.6. Residual Connections

The recurrence relation for the NNGP kernel can be evaluated to be

K
l+1 =

�2
w
(a2+ + a2�)

2
K

l + �2
b
+ µ2

K
l . (G.19)

The condition for the existence of fixed point

�?

K =
�2
w
(a2+ + a2�)

2
+ µ2

 1 (G.20)

leads us to

�2
w


2(1� µ2)

a2+ + a2�
. (G.21)

For �2
w
= 2(1�µ

2)
a2
++a2

�
, finite fixed point exists only if �2

b
= 0. (Diverges linearly otherwise)

The recurrence coefficient for Jacobian is evaluated to be

�?

J =
�2
w
(a2+ + a2�)

2
+ µ2 . (G.22)

The critical line is defined as

�w =

s
2(1� µ2)

a2+ + a2�
. (G.23)

The critical point is located at
⇣q

2(1�µ2)
a2
++a2

�
, 0
⌘

.

For ReLU, the critical point is at
⇣p

2(1� µ2), 0
⌘

.

G.7. Residual Connections with LayerNorm on Preactivations (Pre-LN)

Again use Lemma B.11 and combine all known results for scale invariant functions

�?

J = lim
l!1

�2
w

NlK
l

NlX

k=1

E✓

h
�0(h̃l

k
)�0(h̃l

k
)
i�����

K̃l�1=1

+ µ2

!

=
�2
w
(a2+ + a2�)(1� µ2)

�2
w
(a2+ + a2�) + 2�2

b

+ µ2

= 1�
2�2

b
(1� µ2)

�2
w
(a2+ + a2�) + 2�2

b

(G.24)

Similar to the case without residue connections
�l

J  1 (G.25)
is always true. The equality only holds at �b = 0 line for µ < 1.

Notice there is a very special case µ = 1, where the whole �b � �w plane is critical.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

H. Results for erf Activation Function

Definition H.1 (erf activation function).

�(x) =
2
p
⇡

Z
x

0
e�t

2

dt . (H.1)

H.1. NNGP Kernel

To evaluate Lemma 2.2 exactly, we introduce two dummy variables �1 and �2(Williams, 1997).

E✓

⇥
�(�1h

l

i
)�(�2h

l

i
)
⇤
=

Z
d�1

Z
d�2

d2

d�1d�2
E✓

⇥
�(�1h

l

i
)�(�2h

l

i
)
⇤

=

Z
d�1

Z
d�2

Z
dhl

i

4
p

2⇡3Kl

�
hl

i

�2
e�(�

2
1+�

2
2+

1
2Kl)(hl

i)
2

=

Z
d�1

Z
d�2

4Kl

⇡ (1 + 2Kl(�2
1 + �2

2))

=
2

⇡
arcsin

✓
2Kl�1�2

1 + 2Kl(�2
1 + �2

2)

◆
. (H.2)

We use the special case where �1 = �2 = 1.

Thus the recurrence relation for the NNGP kernel with erf activation function is

K
l+1 =

2�2
w

⇡
arcsin

✓
2Kl

1 + 2Kl

◆
+ �2

b
. (H.3)

As in scale invariant case, finite fixed point only exists when

�?

K =
4�2

w

⇡

1

(1 + 2K?)
p
1 + 4K?

 1 . (H.4)

Numerical results show the condition is satisfied everywhere in �b��w plane, where �?

K = 1 is only possible when K
? = 0.

H.2. Jacobians

Follow the definition

�l

J = �2
w
E✓

⇥
�0(hl

i
)�0(hl

i
)
⇤

=
4�2

w
p

2⇡3Kl

Z
dhl

i
e�2(hl

i)
2

e�
(hl

i)
2

2Kl

=
4�2

w

⇡

1
p
1 + 4Kl

. (H.5)

To find phase boundary �?

J = 1, we need to combine Eq.(H.3) and Eq.(H.5) and evaluate them at K?.

K
? =

2�2
w

⇡
arcsin

✓
2K?

1 + 2K?

◆
+ �2

b
, (H.6)

�?

J =
4�2

w

⇡

1
p
1 + 4K?

= 1 . (H.7)

One can solve equations above and find the critical line

�b =

s
16�4

w
� ⇡2

4⇡2
�

2�2
w

⇡
arcsin

✓
16�4

w
� ⇡2

16�4
w
+ ⇡2

◆
. (H.8)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Critical point is reached by further requiring �?

K = 1. Since �?

K  �?

J , the only possible case is K? = 0, which is located at

(�w,�b) =

✓r
⇡

4
, 0

◆
. (H.9)

H.3. Critical Exponents

We show how to extract critical exponents of the NNGP kernel and Jacobians of erf activation function.

Critical point for erf is at (�b,�w) = (0,
p

⇡

4), with K
? = 0. Now suppose l is large enough such that the deviation of Kl

from fixed point value K
? is small. Define �Kl

⌘ K
l
�K

?. Eq.(H.3) can be rewritten as

�Kl+1 =
1

2
arcsin

✓
2�Kl

1 + 2�Kl

◆

⇡�Kl
� 2(�Kl)2 .

(H.10)

From Lemma C.1
A =

1

2
and ⇣K = 1 . (H.11)

Next we analyze critical exponent of Jacobians by expanding (H.5) around K
? = 0 critical point (�b,�w) = (0,

p
⇡

4).

To leading order l�1 we have

�l

J ⇡1� 2�Kl

⇡1�
1

l
.

(H.12)

Thus the recurrence relation for partial Jacobian, at large l, takes form

J
l0,l+1 =

✓
1�

1

l

◆
J

l0,l . (H.13)

At large l
J

l0,l = cl0 l
�1 , (H.14)

with a non-universal constant cl0 .

The critical exponent is
⇣ = 1 , (H.15)

which is the same as ⇣K.

H.4. LayerNorm on Pre-activations

Use Lemma B.11, we have

�l

J =
�2
w

NlK
l

NlX

k=1

E✓

h
�0(h̃l

k
)�0(h̃l

k
)
i�����

K̃l�1=1

=
4�2

w
p
5
⇥
2�2

w
arcsin

�
2
3

�
+ ⇡�2

b

⇤ . (H.16)

The critical line is then defined by

�b =

s
2

⇡


2
p
5
� arcsin

✓
2

3

◆�
�w

⇡ 0.324�w . (H.17)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

H.5. LayerNorm on Activations

Due to the symmetry of erf activation function E✓

⇥
�(hl

i
)
⇤
= 0, we only need to modify our known results.

E✓

⇥
�0(hl

i
)�0(hl

i
)
⇤
=

4

⇡

1p
1 + 4(�2

w
+ �2

b
)
, (H.18)

E✓

⇥
�(hl

i
)�(hl

i
)
⇤
=

2

⇡
arcsin

✓
2(�2

w
+ �2

b
)

1 + 2(�2
w
+ �2

b
)

◆
. (H.19)

Thus

�l

J =
2�2

wp
1 + 4(�2

w
+ �2

b
)
·

1

arcsin
⇣

2(�2
w+�2

b)
1+2(�2

w+�2
b)

⌘ , (H.20)

where the phase boundary is defined by the transcendental equation �l

J = 1.

H.6. Residual Connections

The recurrence relation for the NNGP kernel can be evaluated to be

K
l+1 =

2�2
w

⇡
arcsin

✓
2Kl

1 + 2Kl

◆
+ �2

b
+ µ2

K
l . (H.21)

Finite fixed point only exists when

�?

K =
4�2

w

⇡

1

(1 + 2K?)
p
1 + 4K?

+ µ2
 1 . (H.22)

Notice that �?

K  �?

J still holds, where the equality holds only when K
? = 0.

The recurrence coefficient for Jacobian is evaluated to be

�?

J =
4�2

w

⇡

1
p
1 + 4K?

+ µ2 . (H.23)

The critical line is defined as

�b =

s
16�4

w
� ⇡2(1� µ2)2

4⇡2(1� µ2)2
�

2�2
w

⇡
arcsin

✓
16�4

w
� ⇡2(1� µ2)2

16�4
w
+ ⇡2(1� µ2)2

◆
. (H.24)

Critical point is reached by further requiring �?

K = 1. Since �?

K  �?

J , the only possible case is K? = 0, which is located at

(�w,�b) =

 r
⇡(1� µ2)

4
, 0

!
. (H.25)

Note that for µ = 1, one needs to put extra efforts into analyzing the scaling behavior. First we notice that Kl monotonically
increases with depth l – the recurrence relation for the NNGP kernel at large l (or large K

l) is

K
l+1

⇡ �2
w
+ �2

b
+K

l , (H.26)

which regulates the first term in (H.23).

For µ = 1 at large depth

�l

J ⇠ 1 +
4�2

w

⇡
p
C0 + 4(�2

w
+ �2

b
)l
. (H.27)

Here C0 is a constant that depends on the input.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

We can approximate the asymptotic form of logJ l0,l as follows

logJ l0,l = log

lY

l0=l0

�l
0

J

!

=
lX

l0=l0

log

1 +

4�2
w

⇡
p
C0 + 4(�2

w
+ �2

b
)l0

!

⇡

Z
l

l0

dl0 log

1 +

4�2
w

⇡
p
C0 + 4(�2

w
+ �2

b
)l0

!

⇠ 2c̃
p

l +O(log l) , (H.28)

where c̃ = 2�2
w

⇡

p
�2
w+�2

b

.

We conclude that at large depth, the APJN for µ = 1, erf networks can be written as

J
l0,l ⇠ O

⇣
e2c̃

p
l+O(log l)

⌘
. (H.29)

This result checks out empirically, as shown in Figure 5.

Figure 5. log(J l0,l)-
p
l for µ = 1, �2

b = 0, erf.

H.7. Residual Connections with LayerNorm on Preactivations (Pre-LN)

Use Lemma B.11 and results we had without residue connections for erf with LayerNorm on preactivations.

�⇤
J = lim

l!1

�2
w

NlK
l

NlX

k=1

E✓

h
�0(h̃l

k
)�0(h̃l

k
)
i�����

K̃l�1=1

+ µ2

!

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

=
4�2

w
(1� µ2)

p
5
⇥
2�2

w
arcsin

�
2
3

�
+ ⇡�2

b

⇤ + µ2 . (H.30)

The critical line is then defined by

�b =

s
2

⇡


2
p
5
� arcsin

✓
2

3

◆�
�w

⇡ 0.324�w .

(H.31)

I. Results for GELU Activation Function

Definition I.1 (GELU activation function).

�(x) =
x

2


1 + erf

✓
x
p
2

◆�

=
x

2

"
1 +

2
p
⇡

Z xp
2

0
e�t

2

dt

#
. (I.1)

I.1. NNGP Kernel

Use Lemma 2.2 for GELU

E✓

⇥
�(hl

i
)�(hl

i
)
⇤
=

1
p

2⇡Kl

Z
dhl

i

(hl

i
)2

4


1 + erf

✓
hl

i
p
2

◆�2
e�

(hl
i)

2

2Kl

=
1

p

2⇡Kl

Z
dhl

i

(hl

i
)2

4


1 + erf2

✓
hl

i
p
2

◆�
e�

(hl
i)

2

2Kl

=
K

l

4
+

1
p

32⇡Kl

Z
dhl

i
(hl

i
)2erf2

✓
hl

i
p
2

◆
e�

(hl
i)

2

2Kl

=
K

l

4
+

K
l

p

32⇡Kl

Z
dhl

i
erf2

✓
hl

i
p
2

◆
e�

(hl
i)

2

2Kl

+
(Kl)2

p

32⇡Kl

Z
dhl

i


erf0
✓

hl

i
p
2

◆
erf0
✓

hl

i
p
2

◆
+ erf

✓
hl

i
p
2

◆
erf00

✓
hl

i
p
2

◆�
e�

(hl
i)

2

2Kl

=
K

l

4
+

K
l

2⇡


arcsin

✓
K

l

1 +Kl

◆
+

2Kl

(1 +Kl)
p
1 + 2Kl

�
, (I.2)

where from the third line to the fourth line we used integrate by parts twice, and to get the last line we used results from erf
activations.

Thus the recurrence relation for the NNGP kernel is

K
l+1 =


K

l

4
+

K
l

2⇡
arcsin

✓
K

l

1 +Kl

◆
+

(Kl)2

⇡(1 +Kl)
p
1 + 2Kl

�
�2
w
+ �2

b
. (I.3)

As a result

�?

K =
�2
w

4
+

�2
w

2⇡


arcsin

✓
K

?

1 +K?

◆
+

4(K?)3 + 11(K?)2 + 5K?

(1 +K?)2(1 + 2K?)
3
2

�
. (I.4)

I.2. Jacobians

Follow the definition

�l

J =�2
w
E✓

⇥
�0(hl

i
)�0(hl

i
)
⇤

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

=
�2
w

p

2⇡Kl

Z
dhl

i

2

41
2
+

1

2
erf
✓

hl

i
p
2

◆
+

e�
(hl

i)
2

2 hl

i
p
2⇡

3

5
2

e�
(hl

i)
2

2Kl

=
�2
w

p

2⇡Kl

Z
dhl

i

2

64
1

4
+

1

4
erf
✓

hl

i
p
2

◆2

+
hl

i
erf
⇣

h
l
ip
2

⌘
e�

(hl
i)

2

2

p
2⇡

+
e�(hl

i)
2

(hl

i
)2

2⇡

3

75 e�
(hl

i)
2

2Kl

=
�2
w

4
+

�2
w

2⇡


arcsin

✓
K

l

1 +Kl

◆
+

K
l(3 + 5Kl)

(1 +Kl)(1 + 2Kl)
3
2

�
, (I.5)

where we dropped odd function terms to get the third line, and to get the last line we used known result for erf in the second
term, integrate by parts in the third term.

Here to get the critical line is harder. One can use the recurrence relation for the NNGP kernel at fixed point K? and �?

J = 1

K
? =

�2
w

4
K

? +
�2
w

2⇡


arcsin

✓
K

?

1 +K?

◆
+

�2
w
K

?

⇡(1 +K?)
p
1 + 2K?

�
K

? + �2
b
, (I.6)

�?

J =
�2
w

4
+

�2
w

2⇡


arcsin

✓
K

?

1 +K?

◆
+

K
?(3 + 5K?)

(1 +K?)(1 + 2K?)
3
2

�
= 1 . (I.7)

Cancel the arcsin term, �w and �b then can be written as a function of K?

�w = 2


1 +

2K?(3 + 5K?)

⇡(1 +K?)(1 + 2K?)
3
2

+
2

⇡
arcsin

✓
K

?

1 +K?

◆�� 1
2

, (I.8)

�b =
K

?

p
2⇡(1 + 2K?)

3
4

�w . (I.9)

One can then scan K
? to draw the critical line.

In order to locate critical point, we further require �?

K = 1. To locate the critical point, we solve �?

J � �?

K = 0 instead. We
have

�2
w
[(K?)3 � 3(K?)2 � 2K?]

2⇡(1 +K?)2(1 + 2K?)
3
2

= 0 , (I.10)

which has two non-negative solutions out of three

K
? = 0 and K

? =
3 +

p
17

2
. (I.11)

One can then solve �b and �w by plugging corresponding K? values.

(�w,�b) = (2, 0) , for K? = 0 , (I.12)

(�w,�b) ⇡ (1.408, 0.416) , for K? =
3 +

p
17

2
. (I.13)

I.3. Critical Exponents

GELU behaves in a different way compare to erf. First we discuss the K
? = 0 critical point, which is located at

(�b,�w) = (0, 2). We expand Eq.(I.3), and keep next to leading order �Kl = K
l
�K

?

�Kl+1
⇡ �Kl +

6

⇡
(�Kl)2 . (I.14)

From Lemma C.1
A = �

⇡

6
and ⇣K = 1 , (I.15)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

which is not possible since �Kl
� 0 for this case. This result means scaling analysis is not working here.

Next, we consider the other fixed point with K
? = 3+

p
17

2 at (�b,�w) = (0.416, 1.408). Expand the NNGP kernel
recurrence relation again.

�Kl+1
⇡ �Kl + 0.00014(�Kl)2 . (I.16)

Following the same analysis, we find
�Kl

⇡ �7142.9 l�1 . (I.17)

Looks like scaling analysis works for this case, since K? > 0. The solution shows that the critical point is half-stable(Roberts
et al., 2021). If Kl < K

?, the fixed point is repealing, while when K
l > K

?, the fixed point is attractive. However, the
extremely large coefficient in the scaling behavior of �Kl embarrasses the analysis. Since for any network with a reasonable
depth, the deviation �Kl is not small.

Now we can expand �l

J at some large depth, up to leading order l�1.

�l

J ⇡ 1�
66.668

l
. (I.18)

Then
�J l0,l ⇡ cl0 l

�66.668 , (I.19)

where cl0 is a positive non-universal constant.

Critical exponent

⇣ = 66.668 . (I.20)

Which in practice is not traceable.

I.4. LayerNorm on Pre-activations

Use Lemma B.11, we have

�l

J =
�2
w

NlK
l

NlX

k=1

E✓

h
�0(h̃l

k
)�0(h̃l

k
)
i�����

K̃l�1=1

=
�2
w
(6⇡ + 4

p
3)

�2
w
(6⇡ + 3

p
3) + 18⇡�2

b

. (I.21)

The critical line is then at

�b =
⇣
6
p
3⇡
⌘� 1

2
�w

⇡0.175�w . (I.22)

I.5. LayerNorm on Activations

First we need to evaluate a new expectation value

E✓

⇥
�(hl

i
)
⇤
=

1p
2⇡(�2

w
+ �2

b
)

Z
dhl

i

hl

i

2


1 + erf

✓
x
p
2

◆�
e
� (hl

i)
2

2(�2
w+�2

b
)

=
�2
w
+ �2

bp
2⇡(1 + �2

w
+ �2

b
)
, (I.23)

where we used integrate by parts to get the result.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

The other integrals are modified to

E✓

⇥
�0(hl

i
)�0(hl

i
)
⇤
=

1

4
+

1

2⇡

"
arcsin

✓
�2
w
+ �2

b

1 + �2
w
+ �2

b

◆
+

(�2
w
+ �2

b
)[3 + 5(�2

w
+ �2

b
)]

(1 + �2
w
+ �2

b
)[1 + 2(�2

w
+ �2

b
)]

3
2

#
, (I.24)

E✓

⇥
�(hl

i
)�(hl

i
)
⇤
=

�2
w
+ �2

b

4
+

�2
w
+ �2

b

2⇡
arcsin

✓
�2
w
+ �2

b

1 + �2
w
+ �2

b

◆
+

(�2
w
+ �2

b
)2

⇡(1 + �2
w
+ �2

b
)
p
1 + 2(�2

w
+ �2

b
)
. (I.25)

One can then combine those results to find �l

J

�l

J =

�2
w

�
1 + �2

w
+ �2

b

� 
⇡ + 2arcsin

⇣
�
2
w+�

2
b

1+�2
w+�2

b

⌘
+ 2(�2

w+�
2
b)(3+5(�2

w+�
2
b))

(1+�2
w+�2

b)(1+2(�2
w+�2

b))
3
2

�

⇡(�2
w
+ �2

b
)(1 + �2

w
+ �2

b
)� 2(�2

w
+ �2

b
)2 +

4(�2
w+�2

b)
2

p
1+2(�2

w+�2
b)

+ 2(�2
w
+ �2

b
)(1 + �2

w
+ �2

b
) arcsin

⇣
�2
w+�2

b

1+�2
w+�2

b

⌘ .

(I.26)

The critical line defined by �l

J = 1, one can numerically solve it by scanning over �b and �w.

I.6. Residual Connections

The recurrence relation for the NNGP kernel is

K
l+1 =


K

l

4
+

K
l

2⇡
arcsin

✓
K

l

1 +Kl

◆
+

(Kl)2

⇡(1 +Kl)
p
1 + 2Kl

�
�2
w
+ �2

b
+ µ2

K
l . (I.27)

Fixed point exists if

�?

K =
�2
w

4
+

�2
w

2⇡


arcsin

✓
K

?

1 +K?

◆
+

4(K?)3 + 11(K?)2 + 5K?

(1 +K?)2(1 + 2K?)
3
2

�
+ µ2

 1 . (I.28)

The recurrence coefficient for Jacobian is

�?

J =
�2
w

4
+

�2
w

2⇡


arcsin

✓
K

?

1 +K?

◆
+

K
?(3 + 5K?)

(1 +K?)(1 + 2K?)
3
2

�
+ µ2 . (I.29)

Phase boundary is shifted

�w = 2
p

1� µ2


1 +

2K?(3 + 5K?)

⇡(1 +K?)(1 + 2K?)
3
2

+
2

⇡
arcsin

✓
K

?

1 +K?

◆�� 1
2

, (I.30)

�b =
K

?

p
2⇡(1 + 2K?)

3
4

�w . (I.31)

One can again scan over K? to draw the critical line.

In order to locate critical point, we further require �?

K = 1. To locate the critical point, we solve �?

J � �?

K = 0 instead. We
have

�2
w
[(K?)3 � 3(K?)2 � 2K?]

2⇡(1 +K?)2(1 + 2K?)
3
2

= 0 , (I.32)

which has two non-negative solutions out of three

K
? = 0 and K

? =
3 +

p
17

2
. (I.33)

One can then solve �b and �w by plugging corresponding K? values.

(�w,�b) = (2
p
1� µ2, 0) , for K? = 0 , (I.34)

(�w,�b) ⇡ (1.408
p
1� µ2, 0.416

p
1� µ2) , for K? =

3 +
p
17

2
. (I.35)

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

I.7. Residual Connections with LayerNorm on Preactivations (Pre-LN)

Use Lemma B.11 and results we had without residue connections for GELU.

�⇤
J = lim

l!1

�2
w

NlK
l

NlX

k=1

E✓

h
�0(h̃l

k
)�0(h̃l

k
)
i�����

K̃l�1=1

+ µ2

!

=
�2
w
(6⇡ + 4

p
3)(1� µ2)

�2
w
(6⇡ + 3

p
3) + 18⇡�2

b

+ µ2

=1�
(
p
3�2

w
� 18⇡�2

b
)(1� µ2)

�2
w
(6⇡ + 3

p
3) + 18⇡�2

b

. (I.36)

The critical line is then at

�b =
⇣
6
p
3⇡
⌘� 1

2
�w

⇡0.175�w ,
(I.37)

just like without residue connections.

J. Additional Experimental Results

In figure 6, we compare the performance of deep MLP networks with and without LayerNorm. We note that the case with
LayerNorm applied to preactivations continues to train at very large value of �2

w
. In all cases, networks are trained using

stochastic gradient descent with MSE. We used the Fashion MNIST dataset(Xiao et al., 2017). All networks had depth
L = 50 and width Nl = 500. The learning rates were logarithmically sampled

• within (10�8, 106) for ReLU, (10�5, 10) for LN-ReLU and ReLU-LN;

• within (10�5, 1) for erf, LN-erf and erf-LN;

• within (10�8, 10) for GELU, (10�3, 10) for LN-GELU and GELU-LN, where �max is the largest eigenvalue of NTK
for each �w.

Figure 6. Performance of deep MLP networks at and away from criticality, with and without LayerNorm. The blue plateau, corresponding
to LayerNorm applied to preactivations, continues to train at very large values of �2

w without the need to tune the learning rate.

In figure 7, we showed empirically that the critical exponent of partial Jacobians are vanished for erf with LayerNorm.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Figure 7. log � log plot of partial Jacobian J 0,l vs. l for (A) LN-erf and (B) erf-LN.

In figure 8, we tested 6k samples from CIFAR-10 dataset(Krizhevsky et al., 2009) with kernel regression based on neural
tangents library (Novak et al., 2019) (Lee et al., 2019) (Novak et al., 2020). Test accuracy from kernel regression reflects the
trainability with SGD in ordered phase. We found that the trainable depth is be predicted by the correlation length c⇠ with
LayerNorm applied to preactivations, where the prefactor c = 28. The prefactor we had is the same as vanilla cases in (Xiao
et al., 2020). The difference is from the fact that they used log10 and we used loge.

Figure 8. Test accuracy for LayerNorm applied to preactivations. �2
b = 0.5 for all cases. Correlation lengths calculated using analytical

results of �l
J .

In figure 9, we explore the broad range in �2
w

of the performance of MLP network with erf activation function and LayerNorm
on preativations. The network has depth L = 50 and width Nl = 500; and is trained using SGD on Fashion MNIST. The
learning rates are chosen based on a logarithmic scan with a short training time.

Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

Figure 9. Training performance of MLP networks with erf activation function; and LayerNorm applied to preactivations. It continues to
train for several orders of magnitude of �2

w (with learning-rate tuning).

