2111.12143v3 [cs.LG] 27 Jan 2022

arxiv

Critical Initialization of Wide and Deep Neural Networks through Partial
Jacobians: General Theory and Applications

Darshil Doshi ! *

Abstract

Deep neural networks are notorious for defying
theoretical treatment. However, when the num-
ber of parameters in each layer tends to infinity
the network function is a Gaussian process (GP)
and quantitatively predictive description is possi-
ble. Gaussian approximation allows to formulate
criteria for selecting hyperparameters, such as
variances of weights and biases, as well as the
learning rate. These criteria rely on the notion of
criticality defined for deep neural networks. In
this work we describe a new practical way to di-
agnose criticality. We introduce partial Jacobians
of a network, defined as derivatives of preactiva-
tions in layer [ with respect to preactivations in
layer |y < [. We derive recurrence relations for
the norms of partial Jacobians and utilize these
relations to analyze criticality of deep fully con-
nected neural networks with LayerNorm and/or
residual connections. We derive and implement a
simple and cheap numerical test that allows to se-
lect optimal initialization for a broad class of deep
neural networks. Using these tools we show quan-
titatively that proper stacking of the LayerNorm
(applied to preactivations) and residual connec-
tions leads to an architecture that is critical for
any initialization. Finally, we apply our methods
to analyze the MLP-Mixer architecture and show
that it is everywhere critical.

1. Introduction

When the number of parameters in each becomes large the
functional space description of deep neural networks simpli-
fies dramatically. The network function, f(x), in this limit,
is a Gaussian process (Neal, 1996; Lee et al., 2018) with a
kernel — sometimes referred to as neural network Gaussian
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process (NNGP) kernel (Lee et al., 2018) — determined by
the network architecture and hyperparameters (e.g depth,
precise choice of layers and the activation functions, as well
as the distribution of weights and biases). Similar line of
reasoning was earlier developed for recurrent neural net-
works (Molgedey et al., 1992). Furthermore, for the MSE
loss function the training dynamics under gradient descent
can be solved exactly in terms of the neural tangent kernel
(NTK) (Jacot et al., 2018; Lee et al., 2019). A large body
of work was devoted to the calculation of the NNGP kernel
and NTK for different architectures, calculation of the finite
width corrections to these quantities, and empirical investi-
gation of the training dynamics of wide networks (Novak
et al., 2018b; Xiao et al., 2018; Hron et al., 2020; Dyer &
Gur-Ari, 2019; Andreassen & Dyer, 2020; Lewkowycz &
Gur-Ari, 2020; Aitken & Gur-Ari, 2020; Geiger et al., 2020;
Hanin, 2021; Roberts et al., 2021; Yaida, 2020; Shankar
et al., 2020; Arora et al., 2019b;a; Lee et al., 2020; Yang
et al., 2018; Yang & Hu, 2021; Yang, 2019b;a; Matthews
et al., 2018; Garriga-Alonso et al., 2018; Allen-Zhu et al.,
2019; Tsuchida et al., 2021; Martens et al., 2021).

One important result that arose from these works is that
the network architecture determines the most appropriate
initialization of the weights and biases (Poole et al., 2016;
Schoenholz et al., 2016; Lee et al., 2018). To state this result
we define the preactivations as follows

th Z
Here, wi;rl is the N; x N;;; matrix of weights, b, is

1 X N4 vector of biases in the (I 4 1)-th layer; and ¢ is the
activation function. We will sometimes denote weights and
biases collectively as 0! = {w! i) bt}. Both w - and b are
initialized from standard normal distribution N (0,1). Hy-
perparameters o, and o need to be tuned. This convention
is known as NTK parametrization (Jacot et al., 2018). Fi-
nally, x is the 1 x Ny vector of inputs. For results discussed
in this work, x can be sampled from either a realistic (i.e.
highly correlated) dataset or a high entropy distribution.

For a network of depth L, the network function is given
by f(z) = h™(z). Different network architectures, and,
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in particular, activation functions, ¢, lead to different “op-
timal” choices of (o, 03). The “optimal” choice can be
understood using the language of statistical mechanics as a
critical point (or manifold) in the o3—0c,, plane. The notion
of criticality becomes sharp as the network depth, L, be-
comes large. Criticality ensures that both NNGP and NTK
remain O(1) as the network gets deeper (Roberts et al.,
2021). Furthermore, at early stage of training after every
step of SGD the network function f(x) receives an O(1)
update (assuming that the learning rate is also O(1)). Very
deep networks will not train, unless initialized critically.

1.1. Results

We reformulate the criticality condition directly in the func-
tional space, i.e. in terms of preactivations. To state our
main results we introduce the notion of a partial Jacobian.
Definition 1.1. Let hl(x) be preactivations of a neural net-
work f(x). The partial Jacobian Jil;?’l is defined as derivative
of preactivations at layer [ with respect to preactivations at
layer [y <1
l
Tgte) = T
Oh (x)

2

The partial Jacobian is a random matrix with vanishing
mean. We introduce a deterministic measure of the mag-
nitude of Jil;’l — their Lo norm, averaged over parameter-
initializations, which is denoted as 7'+ ().

Definition 1.2. Let Jil;?’l be a partial Jacobian of a neural
network f(x). Averaged partial Jacobian norm (APJIN) is
defined as

N Do onl(z) ohl(x)

lez hloaz hlo(az)

j=11i=1

jlu’l(

)

where [y indicates averaging over initializations.

In what follows, we show that criticality, studied previ-
ously in literature, occurs when APJN either remains finite,
or varies algebraically as | becomes large. To prove this
we derive the recurrence relation for 70-!(z) in the limit
N; — oo and analyze it at large depth. Algebraic behaviour
of APJN with depth is characterized by an architecture-
dependent critical exponent, ¢, so that 7! () ~ [~¢. Such
behaviour is familiar from statistical mechanics when a sys-
tem is tuned to a critical point (Cardy, 1996). Away from
criticality, there are two phases: ordered and chaotic. In
the ordered phase APJN vanishes exponentially with depth,
whereas in the chaotic phase APJN grows exponentially

+1
jl"’l R ocpef . 4)

Here ¢ is the correlation length. It characterizes how fast
gradients explode or vanish during backpropagation. Net-
works with depth L ~ k&, where k is a number of order 10

can train and generalize'.
main result.

Theorem 1.3 (Main result). Let f(x) be a deep MLP net-
work with Lipschitz activation ¢(x). Assume that the Lay-
erNorm is applied to preactivations and there are residual
connections with strength | acting according to (30). In the
limit N] — oo the correlation length is bounded from below
for ag < 00

Now we are ready to state our

1
= Tog [ =)z ]| ®
where the non-negative constants A and B are given by
1 al PTUN AT
A=Ey ﬁl;d) (hi) (hk)] 7 6)
1o -
B=Ey |+ ; ¢<h2)¢(hi>] : (7

where iLﬁc is the normalized preactivation, defined in (21).

When p = 1 the correlation length diverges and the neural
network is critical for any initialization, with { = O(1).

In practice Theorem 1.3 means that different choices of
initialization bear no effect on trainability of the network
provided that LayerNorm and residual connections are ar-
ranged as stated.

1.2. Related Work

Some of our results were either surmised or obtained in a
different form in the literature. We find that LayerNorm
ensures that NNGP kernel remains finite at any depth as
suggested in the original work of (Ba et al., 2016). Lay-
erNorm also alters the criticality of J'o!(z) (and, equiva-
lently, NTK). It was noted in (Xu et al., 2019) that Layer-
Norm (applied to preactivations) regularizes the backward
pass. We formalize this observation by showing that Lay-
erNorm (applied to preactivations) dramatically enhances
correlation length (which is not the case for LayerNorm
applied to activations). This can be seen from Theorem 1.3
setting ¢+ = 0. When residual connections of strength 1 are
combined with erf (or any other tanh-like) activation, the
neural network enters a subcritical phase with enhanced
correlation length (see Theorem 4.4). A version of this re-
sult was discussed in (Yang & Schoenholz, 2017). When
residual connections are introduced on top of LayerNorm,
the correlation length ¢ is further increased. If residual
connections have strength 1 the network enters a critical
phase for any initialization. Importance of correct ordering
of LayerNorm, residual connections and attention layers
was discussed in (Xiong et al., 2020). Several architectures

!"This is an empirical result.



Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

with the same order of GroupNorm and residual connections
were investigated in (Yu et al., 2021).

The Jacobian norm (i.e. HJZQJ-’l ||?) of trained feed-forward
neural networks was studied in (Novak et al., 2018a), where
it was correlated with generalization. Partial Jacobians with
lo = | — 1 were studied in the context of RNNs (Chen
et al., 2018; Can et al., 2020), where they were referred to
as state-to-state Jacobians.

‘We combine all our results to show that the recently intro-
duced MLP-Mixer architecture (Tolstikhin et al., 2021a) is
critical for any initialization. Finally, we show that all our
theoretical results are in excellent agreement with empirical
tests performed at finite width.

2. Recurrence Relations

Here we derive the infinite width recurrence relations for
the APJN, as well as the norm of preactivations.

Definition 2.1. We define averaged preactivation norm as
follows

Kl (2, 7) = Eq [1 i h%x)h%x)} O ®
I’ Nl 1:1 7 7

Lemma 2.2. When N; — ocoforl =1,...,L—1, the aver-
aging over parameter initializations can be expressed as the
averaging over the Gaussian process h!(z) with covariance
K!(z,2"). An expectation value of a general function of
preactivations, O(h'(z)) can be represented as a Gaussian
integral over preactivations

(hl(@)?

Ey [O(hi(2))] = m / dh O(h!
)

This result has been established in (Lee et al., 2018). We
will refer to K!(z, z) as NNGP kernel.

Remark 2.3. In the infinite width limit the means appearing
in (11)-(13) are self-averaging and, therefore, deterministic.
Consequently, we can drop the averaging over parameters

N,

1 1
Eo lngdhé)Q] — EZsﬁ(hé)?. (10)

N;—o0 i=1

Alternatively, we can drop the summation over ¢ and take
the average using (9).

When preforming analytic calculations we use the infinite
width convention, while in our experiments we average over
initializations of 6.

Theorem 2.4. In the infinite width limit the NNGP kernel
Kl (x, ) is deterministic, and can determined recursively

(l-))e_ 2}Cl(z,z) .

via

N
K11 (@0) = 03B | 1 3 ol (@)o(hl(a) | + o
i=1
(11

Theorem 2.5. Let f(x) be an MLP network with a Lips-
chitz continuous activation function ¢(x). In the infinite
width limit, APJN J'"+1(2) is deterministic and satisfies
a recurrence relation

TN @) = XG T (@), (12)
where the factor Xfy is given by

2 M

b =B | 3 DS (@) @) - (a3

Theorem 2.4 is due to (Lee et al., 2018). Theorem 2.5 is
new and is valid only in the limit of infinite width. The
proof is similar to the proof of recurrence relation for NTK
discussed in (Jacot et al., 2018) and is fleshed out in the
Appendix. From here on we drop the explicit dependence
on x to improve readability.

The expectation values that appear in (11)-(13) are evaluated
using (9). When the integrals can be taken analytically, they
lead to explicit equations for the critical lines and/or the
critical points. Details of these calculations as well as the
derivation of (11)-(13) can be found in the Appendix. A
subtlety emerges in (12) when [y = 0, where a correction of
the order O(N;; ) arises for non-scale invariant activation
functions. This subtlety is discussed in the Appendix.

When the depth of the network becomes large, the [-
dependence of the expectation values that appear in (8),
(13) saturate to a (possibly infinite) constant value; which
means that ', 7' and x'; have reached a fixed point.
We denote the corresponding quantities as K*, J'0*, X7
The existence of a fixed point is not obvious and should be
checked on a case by case basis. Fixed point analysis for
K! was done in (Poole et al., 2016) for bounded activation
functions and in (Roberts et al., 2021) for the general case.
The stability is formulated in terms of

8/Cl+1

PR . 14
XK oKl Ixi=x= (4

The norm of preactivations remains finite (or behaves alge-
braically) when xk = 1.

Eq. (12) nicely expresses J'*!*1 as a linear function of
J:l The behaviour of Jl:+1 at large [ is determined by
Xfy~ When Xfy > 1 partial Jacobians diverge exponentially,
while for xlj < 1 partial Jacobians vanish exponentially.
Neural networks are trainable only up to a certain depth
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when initialized O(1) away from criticality, which is deter-
mined by the equation

X7 =1. (15)

Eq. (15) is an implicit equation on oy, 0, and generally
outputs a critical line in o307, plane. The parameter X7,
has to be calculated on a case-by-case basis using either (13)
or the method presented in the next section. Everywhere
on the critical line J'! saturates to a constant or behaves
algebraically.

When the condition xk- = 1 is added, we are left with a
critical point?. This analysis of criticality at infinite width
agrees with (Roberts et al., 2021), where x ; is to be iden-
tified with x%. In particular, condition (15) together with
Xk = 1 ensures that NTK is O(1) at initialization. Eq. (15)
is equivalent to the condition C’(1) = 1 of (Martens et al.,
2021).

2.1. Empirical Diagnostic of Criticality

APIN 7! provides a clear practical way to diagnose
whether the network is critical or not. Proper choice of
lo and [ allows us to minimize the non-universal effects and
cleanly extract x. This method can be straightforwardly
implemented in PyTorch (Paszke et al., 2019) using hooks
and an efficient Jacobian approximate algorithm (Hoffman
et al., 2019).

Recurrence relation (12), supplemented with the initial con-
dition J'-lo+! = y'¢can be formally solved as

-1
Jt= 115 (16)

=1,

We would like to obtain an estimate of x7; as accurately as
possible. To that end, imagine that for some I’ > [ the fixed
point has been essentially reached and Xl:7 ~ X77. Then the
APJN

l/
Tl =) TG (17)

l=ly

depends on the details of how the critical point is ap-
proached. These details are encoded in the last factor.

Proposition 2.6. Assume that the network f(x) is homoge-
neous, i.e. consists of a (possibly complex) block of layers
repeated periodically L times. Let ly,l index the blocks.
Then APJN computed next to the output provides an accu-
rate estimate of X7

L—-2,L—1 %
J =X7- (18)
L—o0

2Scale-invariant activation functions are more forgiving: away

from the critical point K scales algebraically with .

Proposition 2.6 is the central result of this section and will
be heavily used in the remainder of this work.

Note that for deep networks, away from criticality, APJN
takes form

!
|log x% |

|~

T~ et (19)
where ¢;, is a non-universal constant that depends on [y. If
the sign in (19) is positive (x*7 > 1) the network is in the
chaotic phase, while when the sign is negative (x%; < 1)
the network is in the ordered phase. £ has the meaning of
correlation length: on the depth scale of approximately k¢
the gradients remain appreciable, and hence the network
with the depth of ~ k& will train.

We used (18) to map out the o,—0,, phase diagrams of vari-
ous MLP architectures. The partial Jacobians are calculated
numerically with N; = 500, L = 50 and averaged over ini-
tializations. The details are further elaborated in Appendix.
The location of the critical line agrees remarkably well with
our infinite width calculations. Results are presented in Fig.
2. One fortunate outcome of both theory and experiment is
that when LayerNorm is applied to preactivations, ReLU
networks can still be initialized using He initialization (He
et al., 2015) which, in our convention, is (\/i, 0).

At criticality, x’; = 1 and the correlation length diverges;
indicating that gradients can propagate arbitrarily far. A
more careful analysis of non-linear corrections shows that
APIN can exhibit algebraic behaviour with depth and can
still vanish in the infinite depth limit, but much slower than
the ordered phase.

2.2. Scaling at a Critical Point

At criticality le saturates to a fixed value x% = 1. If we
are interested in 7'0'! with [ — Iy = O(L) then it is essential
to know how exactly Xf7 approaches 1.

Theorem 2.7. Assume that deep neural network f(x) is
initialized critically. Then | — oo asymptotics of APJN is
given by

Jolz)=0017%), (20)

where ( is the critical exponent.

Critical exponents can be determined analytically in the
limit of infinite width. Note that Xf77 given by (13), depends
on K! by virtue of (9). Consequently, Eqs. (11)-(13) are
coupled through non-linear (in ! and J'0'!) terms. These
non-linear corrections are absent for any scale-invariant
activation function, but appear for other activation functions.

We checked the scaling empirically by plotting 7% vs. [
in a log—log plot and fitting the slope. These results are
presented in Fig.1. The agreement with infinite width calcu-
lation is excellent.
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LN-GELU, Uh-erf; u=1.0

Figure 1. log—log plot of the partial Jacobian 7% vs. [ for erf,
ReLU and erf together with GELU (with LayerNorm applied to
preactivations and residual connections of strength 1) activation
functions. The critical exponents predicted from the infinite width
analysis are in agreement with the data. The fluctuations get larger
towards the output because the aspect ratio (i.e. L/N;) approaches
1/4.

3. Layer Normalization

The fact that critical initialization is concentrated on a sin-
gle point (o, ;) may appear unsettling because great
care must be taken to initialize the network critically. The
situation can be substantially improved by utilizing the
normalization techniques known as LayerNorm (Ba et al.,
2016) and GroupNorm (Wu & He, 2018). These techniques
are used as alternatives to BatchNorm (Ioffe & Szegedy,
2015) whenever the batch size may vary during training.
Infinite-width theory of BatchNorm was studied previously
(Yang et al., 2018), where it was shown that, similarly to
Dropout (Schoenholz et al., 2016), BatchNorm destroys
criticality and the ordered phase; leaving only the chaotic
phase. This renders very deep networks with BatchNorm
untrainable (Yang et al., 2018). Unlike BatchNorm, Layer-
Norm does not destroy criticality, and, in a certain sense,
enhances it. Our results apply to GroupNorm verbatim in
the case when the number of groups is much smaller than
the width. LayerNorm can act either on preactivations or on
activations (discussed in the Appendix). Depending on this
choice, criticality will occur on different critical lines in op,—
0w plane. When LayerNorm is applied to preactivations®
the correlation length is enhanced allowing to train much
deeper networks even far away from criticality.

3.1. LayerNorm on Preactivations

The LayerNorm applied to preactivations takes the following
form

Definition 3.1 (Normalized preactivations).

hl = i — E[h] (21)
Z E[(h)?] - E[A]?’

where we introduced E[h!] = N ZNZ hl.

3In the original work (Ba et al., 2016) the LayerNorm was
applied to activations.

Remark 3.2. Note that at finite width symbols E[O] and
Eg[O] perform different operations, while in the limit of
infinite width they are equal due to self-averaging.
Remark 3.3. In the limit of infinite width E[h!] = 0 and
the denominator in (21) is the NNGP kernel ', defined
according to (8).

bl = o _ 1 hl (22)
COVE[RD)? VKD

Normalized preactivations, Bﬁ, are distributed according to
N(0,1) for all [, 5, 0p. The norms are, therefore, always
finite and the condition k- = 1 is trivially satisfied resulting
in a critical line rather than a critical point.

The recurrence relations (11)-(13) for the NNGP kernel and
partial Jacobians are only slightly modified

1 X

71\2
EZM’)
Z¢ (}) ] (24)

K =62 Ey of, (23)

Xy = w]Ee

Assuming that the value of ij at the fixed point is x”;, the
network is critical when (15) holds.

The ratio (24) changes very slowly with [ and is also bounded
from below, as elaborated in the next section. Thus, X7
remains close to 1 for a very wide range of hyperparameters.
Consequently, the correlation length is large even away
from criticality. This leads to much higher trainability of
deep networks with LayerNorm on preactivations even away
from criticality.

3.2. Vanishing of Critical Exponents

Critical exponent ¢ vanishes when the LayerNorm is intro-
duced. This can be understood quantitatively in the limit of
infinite width. We do not find any empirical deviations from
this conclusion for finite width, large depth networks.

To see why this happens we examine (24). The expression
for Xf7~contai~ns the expectation values Eq[¢(h!)¢(h')] and
Eg[¢’(h')¢' (h')], which, by the virtue of (23), combined
with (9), do not depend on [. At finite width we find (empir-
ically) that Xf7 quickly saturates to its fixed point value and
does not cause algebraic correction to 70!

4. Residual (Skip) Connections

Adding residual connections between the network layers is
a widely used technique to facilitate the training of deep
networks. Originally introduced (He et al., 2016) in the con-
text of convolutional neural networks (LeCun et al., 1998)
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ReLU, p=1.0

LN-RelU, p=1.0

LN-ReLU, 4 =0.0

LN-RelU, 1 =0.5

2

GELU, =10

GELU, 4=0.5
|

LN-GELU, i = 1.0

LN-GELU, 1= 0.5

Figure 2. x’; phase diagrams for ReLU (first row), erf (second row) and GELU (third row); with residual connections of variable strengths

= {0.0,0.5,1.0}. Both cases: without LayerNorm (first three columns) and with LayerNorm (last three columns) are shown. The solid
lines indicate the critical lines obtained through infinite width limit calculations; while the stars indicate the critical points. The dotted
lines in the rightmost column correspond to the critical lines for ;1 < 1 case. For networks with LayerNorm and p» = 1, x* = 1 holds
on the entire o,—0, plane, for all activation functions that we considered. We also note that for erf activation, the case p = 1 without

LayerNorm is subcritical and has a large correlation length.

(CNNs) for image recognition, residual connections have
since been used in a variety of networks architectures and
tasks.

Definition 4.1. In MLPs, residual connections are defined
by the following modification to the network recursion rela-
tion (1)

l+l 1

o(hh) + bl + phl,  (29)
where the parameter . controls the strength of the residual
connection.

The recurrence relations (11)-(13) for the NNGP kernel and
X', are modified as follows

N;
1
K = ol B | 5 2 o(h)(hy) | +op + 1K
j=1
(26)
1
g =0uBs | - > ¢ (B (M) | + w® 27)
k=1

Remark 4.2. When p < 1, the fixed point value of NNGP
kernel is scaled by (1 — p?)~ 1. For = 1, the critical point
is formally at (0, 0).

Remark 4.3. For p = 1, (27) implies that Xf7 is strictly
greater than 1. Consequently, APJN exponentially diverges
as a function of depth [, on the entire o,—0,, plane. This
case, as such, is untrainable for large depths.

When p < 1, residual connections amplify the chaotic phase
and decrease the correlation length away from criticality for
unbounded activation functions.

Solving the recurrence relations (26) - (27) for the erf ac-
tivation (similar results should hold for tanh), we find an
effect observed in (Yang & Schoenholz, 2017). Namely,
they noted that tanh-like MLP networks with skip connec-
tions “hover over the edge of chaos”. We quantify their
observation as follows.

Theorem 4.4. Let f(x) be a deep MLP network with erf
activation function and residual connections of strength
w = 1. Then in the limit N; — co

* The NNGP kernel K' linearly diverges with depth |

d Xf7 approaches 1 from above (as can be seen from Fig.
2)

; (28)

<o

where ¢ = — is a non-universal constant.

2
T anrzrb
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* APJN diverges as a stretched exponential

Jhol = 0(eV3), (29)

where \ = ~2 is the new length scale.

We will refer to this case as subcritical. Although x*
reaches 1, the APJN still diverges with depth faster than
any power law. The growth is controlled by the new scale .
To control the gradient we would like to make \ large, which
can be accomplished by decreasing o,,. Similar results hold
for tanh activation function, however in that case there is
no explicit expression for ¢. In this case the trainability is
enhanced (see Fig. 3).

5. Residual Connections + LayerNorm

In practice, it is common to use a combination of residual
connections and LayerNorm. We consider a neural network
with the following forward pass recurrence relation

Wt = Zwl“ (RS) + o™ + phi,  (30)
where Al is given by (21).

In this case, the recurrence relations (11)-(13) for the NNGP
kernel and partial Jacobians are modified as follows

K = 02> By [6(R)8()] + of + 2K
L
(31
l oy 1o 1T (T 2
X7 = %rEo E;‘z’(h’“)d’ (h)| +4?. (32

Remark 5.1. For pn < 1, (31) implies that the fixed point
value of NNGP kernel is scaled by 1 — 1. Moreover, resid-
ual connections do not shift the phase boundary. The in-
terference between residual connections and LayerNorm
brings Xfy closer to 1 on the entire o,—0,, plane (as can
be seen from Fig. 2). Therefore the correlation length ¢ is
improved in both the phases, allowing for training of deeper
networks. At criticality, Jacobians linearly diverge with
depth.

As was mentioned before, the combination of LayerNorm
and residual connections dramatically enhances correlation
length, leading to a more stable architecture. This obser-
vation is formalized by theorem Theorem 1.3. The proof
leverages the properties of solutions of (31)-(32) close to
the fixed point, and is fleshed out in Appendix.

Remark 5.2. When p = 1, the correlation length diverges
for any initialization.

Figure 3. Trainability of deep MLP networks featuring ReLU
with LayerNorm (first row), erf with LayerNorm (second row),
GELU with LayerNorm (third row) and erf without LayerNorm
(fourth row). Residual connections of variable strengths p =
{0.0,0.5,0.9,1.0} (first to fourth column) were used. p = 1
trains at high values of o2 and o7, in agreement with theory. The
networks had width N; = 500, depth L = 50, and were trained
using CrossEntropy loss and SGD.

Remark 5.2 provides an alternative perspective on the ar-
chitecture design. On the one hand, given a neural network
architecture one can use (18) to initialize it critically. Alter-
natively, one can add extra layers, such as a combination of
residual connections and LayerNorm, to ensure that the net-
work is always critical and will train well no matter which
initialization scheme is used.

Remark 5.3. When p = 1, the condition X} =1 holds on
the entire o}, — 0, and for any activation function ¢ (see Fig.
2). NNGP kernel diverges linearly, while APJN diverges
algebraically with the critical exponent of ( = O(1). The
exact value of the critical exponent depends on the activation
function and the ratio 7> (see Fig. 1). The trainability is
dramatically enhanced as can be seen from Fig. 3.

6. MLP-Mixer

MLP-Mixer architecture is a recent (and rare) example of
MLP approach to computer vision (Tolstikhin et al., 2021b).
Its main ingredients are: patches, MLP layers, LayerNorm
and residual connections. As such it can be analyzed using
the tools and results presented above. The detailed summary
of the MLP-Mixer is presented in the Appendix, while here
we will state the results.
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(B1)

0 100 200 300 400 500 600 0 00 200 300 400 500 600
Epochs Epochs

Figure 4. (A1)(B1) p = 0.5 and ¢ = 1.0 phase diagrams plotted
using x*; from repeating Mixer Layers of the GELU MLP-Mixer.
Black line indicates the empirical phase boundary. Stars indicate
points we selected to train on CIFAR-10 (Krizhevsky et al., 2009).
02, = 10 and o7 = 10 points are outside those phase diagrams;
(A2)(B2) p = 0.5 and p = 1.0 MLP-Mixer training curves.
Solid and dashed lines indicate training and validation accuracies,
respectively. All the networks are L = 100 blocks deep, except
for one, which is L = 32 blocks deep; all networks have 10
million parameters. The networks were trained using CSE together
with SGD, L? regularization and multi-step schedulers. Data is
augmented with RandAugment (Cubuk et al., 2020), horizontal
flip and mixup (Zhang et al., 2018).

When p = 1 the MLP-Mixer is everywhere critical due
to the interaction between LayerNorm and residual con-
nections. When 1 < 1 we can identify a critical line by
numerically evaluating x7% using (18). The phase diagrams
are presented in Fig. 4.

To illustrate the importance of critical initialization we
trained MLP-Mixer at ;x = 1 for various initializations, in-
cluding a highly unconventional 07 = 10,02 = 10. While
the final performance varies by a few percent, the network
trains very well at a large depth of L = 100 mixer blocks.
We also trained MLP-Mixer at ;. = 0.5. In this case, the
model trains well at L = 100 when initialized critically;
while far away from the critical line (UZ =10, U?U =10) it
does not train. The learning curves are presented in Fig. 4.
We emphasize that we were interested in trainability and,
consequently, did not tune the hyperparameters to achieve
the best generalization.

7. Conclusions

We have introduced partial Jacobians and their averaged
norms as a tool to analyze the propagation of gradients
through deep neural networks at initialization. Using APJN
evaluated close to the output, J-=L71 ~ x| we have
introduced a very cheap and simple empirical test for crit-
icality. We have also shown that criticality formulated in
terms of partial Jacobians is equivalent to criticality studied
previously in literature (Poole et al., 2016; Roberts et al.,
2021; Martens et al., 2021). APJN will play an important
role in quantifying the criticality of inhomogeneous (i.e. no
periodic stacking of blocks) networks.

We have investigated homogeneous architectures that in-
clude fully-connected layers, normalization layers and resid-
ual connections. In the limit of infinite width, we showed
that (i) in the presence of LayerNorm, the critical point
generally becomes a critical line, making the initialization
problem much easier, (ii) LayerNorm applied to preacti-
vations enhances correlation length leading to improved
trainability, (iii) combination of i+ = 1 residual connections
and erf activation function enhances correlation length driv-
ing the network to a subcritical phase with APJN growing
according to a stretched exponential law, (iv) combination
of residual connections and LayerNorm drastically increases
correlation length leading to improved trainability, (v) when
1 = 1 and LayerNorm is applied to preactivations the net-
work is critical on the entire o,—0,, plane.

We have considered the example of a modern high perfor-
mance architecture — the MLP-Mixer. We showed that it
is critical everywhere and is not sensitive to initialization
at 4 = 1 due to the interaction between LayerNorm and
residual connections. We have also studied MLP-Mixer
at 4 = 0.5 and showed that it is critical along a line (as
expected for an architecture with LayerNorm). We demon-
strated empirically that deep (100 blocks) MLP-Mixer trains
for a variety of initializations at ;. = 1 but only trains close
to the critical line for p = 0.5.

Our work shows that an architecture can be designed to have
a large correlation length leading to a guaranteed trainability
for any initialization scheme.
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A. Experimental Details
We are using PyTorch (Paszke et al., 2019) library for our experiments.

Figure 1: We generated MNIST-like inputs, where all elements are sampled from the Gaussian distribution A'(0,1). J°!
data was averaged over 100 different parameter—initializations Networks were initialized width N; = 1000. For erf plot we
initialized at critical point (o, o) \/Z ,0), used depth L = 250 and the fitting was done with data points collected
at depth [ > 100; for ReLU plot we initialized at critical point (¢, 03) = (v/2,0), used depth L = 100 and the fitting
was done with all data points; for the ;1 = 1 Pre-LN plot, we initialized both networks at (o, o) (\f 0), used depth
L = 250 and the fitting was done with [ > 100 data points.

Figure 2: All the phase diagrams were plotted using Xé_l generated from networks with L = 50 and N; = 500. We

used hooks to obtain the gradients that go into calculating X‘Lfl. X‘Lfl data was averaged over 100 different parameter-
initializations. Inputs were generated from a normal Gaussian distribution and have dimension 28 x 28.

Figure 3: In all cases, networks are trained for 10 epochs using stochastic gradient descent with CrossEntropy loss. We used
the Fashion MNIST dataset (Xiao et al., 2017). All networks had depth L = 50 and width N; = 500. The learning rates
were logarithmically sampled within (1074, 10).

Figure 4: (a)(b)We made the phase diagram for MLP-Mixer with 30 blocks and averaged over 100 different parameter-
initializations. (c)(d)We used network with L = 100, patch size 4 x 4, hidden size C' = 128, two MLP dimensions
Ny = Ny, = 256. The L = 32 point has doubled widths. All networks have 10 million parameters. Notice that for all
Mixer Layers we used NTK initialization. We trained all cases on CIFAR-10 dataset using vanilla SGD paired with CSE.
Batch size bs = 256, weight decay A\ = 10~° was selected from {107¢,1075,10~*}, mixup rate a = 0.4 was selected
from {0.2,0.4}. We also used RandAgument and horizontal flip with default settings in PyTorch. For 1 = 1 cases we
searched learning rates within {2.1, 4.2, 6.3, 8.4}, all curves were trained with I = 6.3. For u = 0.5 cases we used I = 1.5
for L = 100 networks, where we selected the optimal one from {0.01, 0.05,0.1,0.5,1.0,1.5,2,2.5,4,5,6,7,8,9,10}; we
used I = 4.8 for the L = 32 network, where we selected the optimal one from {2.4,4.8,7.2}. We also tried a linear
warm-up schedule for first 3000 iterations, but we did not see any improvement in performances.

B. Technical details for Jacobians and LayerNorm

We will drop the dependence of h!(z) on z throughout the Appendices. It should not cause any confusion since we are
always considering a single input.

B.1. NNGP Kernel

First, we derive the recurrence relation for the NNGP kernel Eq.(11). As mentioned in main text, weights and biases are
initialized (independently) from standard normal distribution A/ (0, 1). We then have

Eo[w};wh,,,] = 8im0jn and Eg[bib}] = 6;; (B.1)
by definition.

We would like to prove Theorem 2.4, as a consequence of Lemma 2.2. The proof of Lemma 2.2 can be found in (Roberts
etal., 2021).

Proof of Theorem 2.4. One can prove this by definition with Lemma 2.2.
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Nl+1 2 N

:Nl+1 Z Eqg ?\}0 Z¢(h§>¢(hé) +0§

[

g,
- > Eg [¢(hh)(hY)] + o7 - (B.2)
j=1
O]
B.2. Jacobians
Next, we prove Theorem 2.5.
Proof of Theorem 2.5. We start from the definition of the partial Jacobian (I > )
Jlod+l = 1 E, _NzH:l all ORI onltt
Ny == ahéo ahéo
- Lg, NZNZ Z O om ) (g8 O Om,
N ™ 3 3\ 8hl on'e | \ &= Ohi, on'
NH»l ng N; 1 1
1 Ow l 1 1 ) ( Ow I+1 1 ) 8h ah
= Eq o' (h —wttle (b b m
— Z > 3 (Futrooh) (Frelnow) (55
z J m=1 J J
Nl+1 Nl() N;
1 o2 Oht. Oh!
— E Z Z Z wl-i—l l+1 hl)¢) (h ) / ';n
Nl+1 Nl =1 j=1km=1 ahjo ahjo
N1+1 Ny, N, l l
Ohy, Ohy,
-+ ZZZ hio )¢/ (hie) — =
l+121]1k1 8h 8h
2 & <% Ohl, Oh
- ZEG "(hL) ¢ (hk) Z k __k . (B.3)

1o a1l
‘=1 Ohy Ohp

In the infinite width limit, the sum over neurons in a layer self-averages due to the law of large numbers. This allows us
to represent the expectation value of a product as product of expectation values. (This holds for Iy # 0. We will show
momentarily that the [ = 0 case acquires corrections due to finite input width Vo). Thus we have

jlo,l-i-l _ U?UEO[(ZS (hl )(b 6 N ZZ 8hll0 8hllz
Lo i ahj ahj

- 011)E9 [Qsl(h;f)(b/(hif)] jlo,l
= JlH =gt (B.4)

where x'; is defined by Eq.(13). O

The critical line is defined by requiring x*; = 1, where critical points are reached by further requiring xjx = 1.

As we mentioned in main text, [ = 0 is subtle since the input dimension is fixed Ny, which can not be assumed to be
infinity. Even though for dataset like MNIST, usually /Vj is not significantly smaller than width /V;. We show how to take
finite O(N; ') correction into account by using one example.
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Lemma B.1. Consider a one hidden layer network with a finite input dimension Ny. In the infinite width limit, the Jacobian
is still deterministic

202 1
02 _ [,1 07,0 0,1 B.
J (Xj"’ XAE Nhh)J (B.5)
where J%1 = o2,

Proof.
1 i Oh? Oh?
8h0 8h0
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<Xj + — XA Z hoho)
(xj + =2 XA Z h°h0> VA (B.6)

1
NO ]E9 szmwkjwmj (hk)¢ (h‘ )]

where to get the result we used integrate by parts, then explicitly integrated over w}] [
We defined a new quantity
Definition B.2 (Coefficient of Finite Width Corrections).

2Nl

XA Nl ZE // // hl) Jrqb”/(hl)(b/(hé)] ) (B.7)

Remark B.3. Notice that the correction to 72 is order O(N, 1). If one calculate the recurrence relation for deeper layers,

the correction to 7! will be O(Zﬁ,zo N, l,_l), which means the contribution from hidden layers can be ignored in infinite
width limit.

The 792 example justified factorization of the integral when we go from the last line of Eq.(B.3) to Eq.(B.4).
Finally, the full Jacobian in infinite width limit can be written as

Theorem B.4 (Partial Jacobian). The partial Jacobian of a given network can be written as
-1
T (xg + 7XA Z hoho) I 5. (B.8)

I'=2

where any partial Jacobian with ly > 0 does not receive an O(N; 1) correction.
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B.3. Neural Tangent Kernel (NTK)
Definition B.5 (Neural Tangent Kernel).

B33 ) o i il

i=11'=1

Nl’ Nl/ 1 Nl’

Ohi Oni < oMt oh!

— Ol ObY/

a=1 b=1

Theorem B.6. In the infinite width limit, NTK has the following recurrence relation

Notice that the recurrence coefficient in Eq.(B.10) is the same as that in the recurrence relation for Jacobian.

o' =x, et + Kl

Proof. To calculate the recurrence relation for NTK, we first isolate the I’ = [ term in Eq.(B.9)
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I = 1is a special case such that ©! = 1.

Next, consider all the terms with I’ < [
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(B.10)

(B.11)

NL’ (‘9hl 18hl 1
8bl' 8bl’

(B.12)

where to get the last two lines, we first use self-averaging when sum over b and ¢, which is guaranteed by the law of large
numbers. Then we just use definition of le_l.

The recurrence relation for NTK in the infinite width limit is obtained by adding the two pieces in Eqgs. (B.11),(B.12)

together.

O
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B.4. LayerNorm on Pre-activations

Definition B.7 (Layer Normalization).

L WE)
S o >

where 7! and 3! are learnable parameters.

Remark B.8. LayerNorm modifies the recurrence relation for preactivations (Eq.(1)) to

l+1 Ow l+1 hl l+1
E )+ owb; B.14

Remark B.9. In the limit of infinite width, using the law of large numbers, the average over neurons E[O] can be replaced by
the average of parameter-initializations Ey [O]. Additionally, in this limit, the preactivations are i.i.d. Gaussian distributed :

Rl ~ N(0,KY).
E [n'] =Ey [h'] =0, (B.15)
E|(n)°] =B [(0)°] =K. (B.16)

The normalized preactivation then simplifies to the form of Eq.(22).

Remark B.10. At initialization, the parameters 4/ and 3! take the values 1 and 0, respectively. This leads to the form in
equation (21). In infinite width limit it has the following form

~ ht — Eg[R!
Bl = i~ Eolf] (B.17)
VEo[(h)?] — Eg[l]2
Lemma B.11. With LayerNorm on preactivations, the gaussian average is modified to
- 1 - ~ (r1)2
0h4}:—/dh40h4 e B.18
o [0t = 7= [ dhi o) (B.18)

Proof. By definition izi is sampled from a standard normal distribution N (0, 1), then use Lemma 2.2 to get the final
form. O

Theorem B.12. In the infinite width limit the recurrence relation for the NNGP kernel with LayerNorm on preactivations is
02 ~ ~

K = 22 S By [o(h)o(hh)] + o B.19

Nl; o |0(hy)e(h;)| + 0y (B.19)

Proof.

Nyt
K:l—‘,—l E hl+lhl+1
Nit1 Z ]

Nyt
1
- = E wl-‘rl hl —|—O' bl+1 H—l hl _|_ ob bl-‘rl
e[y o) (G St
Ty Eo [¢(RL)o(RY 2 B.20
_ﬁlz 0|:¢( )d)( )}"_Ub' (B.20)
j=1
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Theorem B.13. [n the infinite width limit the recurrence relation for partial Jacobian with LayerNorm on preactivations is

Jlolt+1 — ijjlo,l , (B.21)

where X', = 7% Ez 1 Eg [(b’(ﬁi)z} as defined in Eq.(24).

Proof.

[Nigr Nig o141 4,041

1 Oh;"" Oh;

jlo,lJrl — E 7 7
N1 0 Z Z ahép ahép

| i=1 j=1

_ g Ni% Z ORI ORL ARt iahﬁﬂ OhL OhL
- N Ohl. O, 8hé«0 4= Ohl, Ohl, 8h§°

z 1 j=1 \k=1
[Ny 1 Ny, l l
1 o 1 o ~ 1 Ohy, Oh
— E w l+1 hl ) ( w w4+1¢/ hl,n > m
N ZZ;( o0 T ) om0 i ) \ Gt
o2 Yo ol ol
Bl k k
=Nk Z () ; Oh!® OBl

2

O al 1T /(7 0,
= N 2 [/ (b)) (R 7™

— gt (B.22)

O

If the learnable LayerNorm parameters ~ and 3! are switched on, then the NTK gets contributions from them in addition to
the terms in Eq.(B.9).

B35 300) 3 DL KUNS S CLUIRE 35 3 DXLy EL
E@ l' l' 711/ ll/ iG G 71/7;/
lell’l a5 b OWap Ow o= 0be Obe Vicir= 1 0% e i OBy OB,
(B.23)
Theorem B.14. [n the infinite width limit the recurrence relation for NTK with LayerNorm on preactivations is
Ol =x 7t Kot . (B.24)

Proof To evaluate the NTK, we divide Eq.(B.23) into three pieces. From the terms involving gradients w.r.t the welghts
ab and biases b we isolate the term with [’ = [. From the terms involving gradients w.r.t the LayerNorm parameters W’a

and ﬁb , we isolate the term with I’ = [ — 1. All the rest of the terms are grouped together. Consider the isolated term with
I =1 first.

Nl Nll

8h ah Z ohl On!
b, ObL.

N, - ZE@

a=1 b=1

N LR (B.25)
E -1 -1
=W - Z 0 Z Nz 1 o(hy " p(hy ™) + of

=K'
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Next, consider the isolated term involving gradients w.r.t LayerNorm parameters, with I’ = — 1.

N1 Ni—a

N
1 — Oht  Oht Oht  Ont
N ’ a—1 e Ova ! b=1 aﬂzl;_l aﬁll;_l
N, N1 N1 Ni—1 71—1 Tl Ni—1 71—1 1
1 2 9o (Rl -1 ab(ht jl-1
S DD DR b gl BRI I g RELI
L =1 k=1 ¢ =1 O Ma = 9B, B,

o? lizaa w NZ 96(h") 0(hy ") +NZ (k") 9p(hy™")
1—1 -1 -1 1—1
=1 o \ao 9 a o 0B, 9B,

N | 1 NZ ) pe lahl L onl! +Nf ORLt oRL
N, Niet a% Lonh = — g, opy"
ANy | NZ S OhL DL ok o
Ny Nier 3’yl Loy l ! ag;-laﬂ;—l
2 [ N1
_ wVi—1 1 Pepl=1y 1 7l=1\ (71-171-1
= T E | > ¢ (A6 (R (R 1)

N1 =
1 Nl—l 1 Nl—l
-9 -1 «I»vaE 1" iLl—l " hl—l +O—121)]F‘ " hl 1 hl—l
X7 A j:1¢>< )¢ () 0 NHZ; (RS (™)
=27t st (B.26)
where x' is defined as in Eq.(B.7).
Next, we consider all the remaining terms in Eq.(B.23).
— ’ Nl’ 1 ’ _ ’ Nl/71
]EVL:ZE %’: > on, oht S oht Ol gl:z L OhL O s ont o
6 l/ l’ G G a1 iG 7 G
isir= alblaw Ow, 1ab08bc Lisir= 6%8% =1 9B, 98y
1 ili]E R 0% S N 9g(Rl) ag(Rlt . Jy 8¢(/~1§-‘1)3¢(ﬁ§;1)
=N 6 ij Wik Iz v Iz I
N = J=1 k=1 " oo Owg Owgy = ok b
N, 1-2 Ni—i Niei Ny 711 -1 Ny _y T1—-1 11
1 o 3¢ h )3¢(h ) 0¢(h; ") g (hy ")
+ Z Z EG W w; 1k Z + Z ]/ k/
L4 |:j—1 k=1 1 J a=1 9 = 95 9B,
— 1—1 ’ Nl/—l g T]— 7 T]— Tl—
A NZ NZ 00 () 00(S™) | S 09(R) 0(R )
- X7 0 a I 1 1
N, praet = \ao o ow, ow,, gt ob!, ob’,
— 1—1 ’ P 71— Ny 71— 71—
+ﬁ§E NZ S 09U 90(hi) | S 06(hy ") d(hy ")
N ' j=1 \a=1 0%a 074 o o8y o8,

— vaNzAE 1 Nl_lé/(ilz‘_l) lzl %Nﬂzl 3hl 18hl ! N“ hl 18hl !
N N 4 g Z Jul, ul, T

a=1 b=1
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Ny, 7 7
o2 N4 1 Ni—1 _ B -2 [ Ny 3hl 1 8hl 1 -1 8hl~_1 6hl._1
4 w ]EO ¢/ hl_fl QS/ h/l_fl . + J . J .
el D DLAC RS IR D D DI = ol ol Dl
oaNioig |1 Nlil(;s'(iﬁ*l)ay(ﬁl*l)f M1 onk Tt onk! . 1 OhiTtonlt
TN | N = I e\ KT gull, dull, e KO0 bt
N/
0',[21)le1 1 Ni—1 . o -2 Ny 1 ahl'—l ahl_—l -1 1 8hl-_1 8hl-_1
A Z¢/(hl~ D' (RS i1 8]1/ 3jz' + Z K1 aél’ 5/;/
! =155 r=1 \a=1 Yo 9a b=1 b b
_ — — 7 Ny Ny -1 -1
o2 Ni_, 1 Ni—1 _ ~ 1 Ni—11-1 Ny Ny—q 8hl 1 8hl 1 v Oh 8/1
_ Yw ]E /hl,il /hl'fl ]E . .
N KT NH; ()@ (h;) | | B Nl_lj;l; azlbzl awl al Z&bl’ bl'

[ 1 Ni—11-2 Ny hl 1 ahl 1 Ny 8hl-_1 ahl_—l
+ Eq

P NS o5 o

j=11=1 \a=1 b=1
XJ -1
- K-t r®
_ Xf7 lgi-1 (B.27)
Now we finish the proof by combining the terms in Egs. (B.25), (B.26) and (B.27). O]

B.5. LayerNorm on activations

The general definition of LayerNorm on activations is given as follows.

Definition B.15 (LayerNorm on Activations).

e ¢(hl) —E[p(h")] ! 1
o(hl) = Y+ Bi - B.2
() VE[#(R)2] — E[¢(h!)]2 ' ! (B.28)

Remark B.16. The recurrence relation for preactivations (Eq.(1)) gets modified to

hitt = Z 1 hl + bt (B.29)

Remark B.17. At initialization, the parameters ~/ and 3! take the values 1 and 0, respectively. This leads to the form

o L 0(hl) —Elp(h!)]
VE[G(R)2] — E[p(h1)]2
¢(ht) —Eg [¢(h!)] (B.30)

R TG

where the first line follows from the fact that at initialization, the parameters ! and (3! take the values 1 and 0 respectively.
In the second line, we have invoked the infinite width limit.

Remark B.18. Evaluating Gaussian average in this case is similar to cases in previous section. The only difference being
that the averages are taking over the distribution h'~! ~ N/(0, K'~! = 02 + 02). Again this can be summarized as

(n})?

S 20E o) (B.31)

Ey [O(h)] =

/dhl
V2 02 +0?)

Next, we calculate the modifications to the recurrence relations for the NNGP kernel, Jacobians and NTK.
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Theorem B.19. In the infinite width limit the recurrence relation for the NNGP kernel with LayerNorm on activations is

’Cl+1 — 0.720 + Uz% . (B32)
Proof.
1 Nita
i+ = E, hl+1hl+1
Nit1 ; ]
1 Nyt o o
—  N'E 1y hl )+ opb ] | =) Wl S(hL) + b+t
Niy1 ; ’ Z " m; o)
o2 (72 2
- S [s) |+t
N [ l ! ’
2 1 ht) — E h
=N 2B #(hy) — Eo o) + o}
A\ Bl (2] — o fonn)?
- 2
o2 & Eo [(o0) ~Bo[o)))]

:E; B[]~ Eo [o(B)F "

=02 +of. (B.33)
O

Theorem B.20. In the infinite width limit the recurrence relation for partial Jacobian with LayerNorm on activations is
Jlol+l = 5L gloid (B.34)

s Eglo'(nH?)]
W Ey[p(hl)2]—Eg [p(R))]%"

where X] =0

Proof.
[Niwr Nig 00141 4041
1 Oh, 7" Oh;
Flod+l — E i i
s | 0
~ L g, NZNZ Zahlﬂ on \ (- on™! om,
Nl+1 | i=1 j=1 ahf’f 8}7’;0 m=1 (Q)hin 6h§0

1 Nz+1 Ny N

- s Y% ( Tw Wkl (i) )) (j%wéﬁ@)) (W M”)

lo lo
z 1 j=1km=1 8hj 6h]

2 Nl Nl(] ng

-5 e | W0 | 3. ok

l(] l(]

N, P =3 Ohy Oh;
o2

_ 9w ZEG |:¢/ hl :|jlo,l

_ .2 Eg [¢'(h')?] il
YKo [p(h1)2] — Eg [p(h1)]
— gl (B.35)
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NTK in this case also acquires an additional contribution from the LayerNorm parameters ! and 3.

Nl/ Nl/ 1

OhL Ol ont ot | 1 SNIL [ gt ol ST onl onl
E — —
; lzl ’ z; bz; aul, owl, Zabg ol | TN, ;lzl Zawl' R Z g By
(B.36)
Theorem B.21. In the infinite width limit the recurrence relation for NTK with LayerNorm on activations is
o' =x7'e !t + Kl + 202, (B.37)
Proof. We separate the therms into three pieces in the exact same manner as we did for Eq.(B.23).
N, [N Ny 1 1 N; l l
1 Oh; Oh; Oh; Oh;
N, ZE9 Z Z T e
Rt = owt, ouw', — Oby, OV,
| N [Ny g2 —— —— (B.38)
_— E w hl71 hl71 + 0_2
N, ; 0 ; 7Nl—1¢( b )o( b ) b
=K'. _
N, Ni—1 1 1 Ni—a l l
1 oh:  Oh; oh;  Oh;
ﬁZEe Z T -1 T Z =T 721
Lz a=1 Ova Ova = 9B, OB,
ZE NZ NZ NZ 00(hy”") 09 (i) | NZ 0p(hy ") 0 (k")
= 0 w; 1k — _ _ _
N j=1 k=1 Nl 5 = 0wt ow! = st ot
i NZ 06( 1) 06(H ) D0 ) d0(hi )
=N -1 -1 -1 -1
Ni i=1 9; 97; 9B; 9B;
_ N | LN (200D 005 Y | 00 000y )
= 0 -1 -1 -1 -1
Ni _Nl—l = 9v; 9v; 9B; 0B;
I N _
aaNi-1 1« ¢(hl) —Eg [¢(h' )]
- Nl Eg Nl 1 2 +1
13\ \Eo [6(t)2) — Eq [6(h)
0'2 Nl,1 1 1 Ry 1 2 O’2 Nl,1
= v E h-_l —E hlfl + CwliVi—1
Ni g [o(h=1)?] — Eg [o(h- )2 | Nica ; (B850~ B [0 N
=202 (B.39)
Thus, the NTK is given by
N; 1-1 _Nl/ Nyr_y 1 Nl’ 1 1 N, -2 Ny, ! l Ny_q I I
1 Ohl Oht Oh: Oh; 1 Oh; Oh; Oh; Oh;
@l = 37 E 7 7 7; ’i AT E 7 7 7
Nl;l; ’ Zl ; Dul, Bl T 2 OB Ol +Nl;lg ’ ;ayl oL Z a8y 95!
1 %l—zlIE Ni_1 Ni—1 U%U %]\71’21 (9(25 hl 1) 8¢(hl 1) . Ny 8¢(h2_1) a¢(h§€—1)
= 37 (4 N7 1, 7 7 7 7
N = J=1 k=1 't J a=1 b=1 wlb Owgy, =1 b, b
1 iliE PN % ! %% (W) dp(h) +NZ dp(h,") dg(hl )
NT 0 NT 7 7
N J=1 k=1 Nl a=1 Oa = 96 9B,
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N (L ap( ) a6 T4 as(hl ) dp(ni )

Nl ZEG > (X dul,  oul, 2 T

=1 =1 \a=1 b=1
— 1 I Ny_q — _
+@§M%:iwmwwﬂ+iwwwww
N j=1 \a=1 Ova 04 = B o8y
_ oiNig %jﬁﬁiwwww< Wﬂmlifﬁfﬁﬁwl%“ o ol ond!
N = (Z)( )8¢ Vo \ao o owl', owl, 8bl’ abl/
New e e Ny Mo
N GiNl—lE i: ¢, hl . ¢/(hl 1)a¢(hl 1) 8¢( l 1 -2 Z ahl 1 8hl 1 Lz: ahl 1 ahl 1
Ni a¢(h§71) aqs( j l/ 1 \a=1 a’y ’ya a/gbl 661),
0'121)Nl—1 Nie—w o~ -1 Ny Ny 1ahl 1ahl 1 Nz/ hl 1ahl 1

_ (Rl (Bt
i b R R P mrrse 3 PIP I i kD e

I'=1 \a=1 b=1

N, o -2 [ Ny -1 qp1—1 Ny -1 q71-1
UiNl—lE i:l ¢/ hl 1 ¢/(hl 1) Z zl: h ah il ah 6}7’
N, Eo [¢(h')?] — Eo [6(h))” {5 \ o=t O o T
o2 Ni_1 1 1 N
=Zw Eq ¢'(hy™ )/ (1)
N By [p(h)?] — Eq [p(h)]* | Niea ; ’ !
Ni—ii—1 [Ny Ny_1 g70-1 q;1—1 Nu gpl=1 gpl-1
1 8h Bh h 8h
Eo | 5 Z Z Z Z 8wl’ 8wl/ Z abl’ bl’
=1 523 =1 \a=1 =1 =1
Ni—a1— Ny -1 921—-1  Nu_1 a701-1 971-1
\E, 1 Z Z Z@h 8h Z 8hj, o"'hj/
Ni1 J=1 1=1 oy ol = 9By 9By
_ e -1
Eo [¢(h'=1)2] — Eo [6(h' )]
= X?1@z—1 (B.40)
Now we finish the proof by combining the terms in Eqgs. (B.38), (B.39) and (B.40). O

C. Critical Exponents

To prove Theorem 2.7, we first need to find the critical exponent of the NNGP kernel (Roberts et al., 2021).

Lemma C.1. In the infinite width limit, consider a critically initialized network with a activation function ¢. The scaling
behavior of the fluctuation 5K' = K' — KC* in non-exponential. If the recurrence relation can be expand to leading order
SK' as 6K ~ 6K — ¢, (SKY™ for n > 2. The solution of §KC! is

1 |6k

K= ——
K cn(n—1) ’

(C.1)

1

where (k. = .

Remark C.2. The constant ¢,, and the order of first non-zero term n is determined by the choice of activation function.

Proof. We can expand the recurrence relation for the NNGP kernel (11) to second order of §K! = K! — IC* on both side.

S = 6K — ¢, (6KH™. (C2)
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Use power law ansatz 6KC! = A[~¢< then
(14+1)"% = 7% — ¢, A7, (C.3)

Multiply [°% on both side then use Taylor expansion (H_Ll)c’C ~1— CT’C

CT’C = c, AIm ("D (C4)

For arbitrary [, the only non-trivial solution of the equation above is

1 1

O
Proof of Theorem 2.7. We will assume ¢ # 0. Then use Lemma C.1, we can expand Xf7 in terms of 6KC'. To leading order
lfl
o l
dy

=1 g1—1. (C.6)

Consider a sufficiently large [. In this case O(I~!) approximation is valid. We write recurrence relations of Jacobians as

-1

d1
jlo,l — H (1 ) jlo o
V=lo 02
~cp, 176 (C.7)
When ¢,, = 0 for all n > 2, from Lemma C.1 we have §K' = 0. Thus the Jacobian saturates to some constant. O

D. Residual Connections

Definition D.1. We define residual connections by the modified the recurrence relation for preactivations (Eq.(1))

i+1 Z I+14 hl +Ubbl+1 uht (D.1)
where the parameter 1 controls the strength of the residual connection.

Remark D.2. Note that this definition requires /N;1 1 = N;. We ensure this by only adding residual connections to the hidden
layers, which are of the same width. More generally, one can introduce a tensor parameter /i;;.

Remark D.3. In general, the parameter 1 could be layer-dependent (12'). But we suppress this dependence here since we are
discussing self-similar networks.

Theorem D.4. In the infinite width limit, the recurrence relation for the NNGP kernel with residual connections is changed
by an additional term controlled by 1

= -2 "By [p(h}) ()] + of + 1K (D.2)
j=1

Proof.

Niq1
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1 Nita1
=¥ ; Ey
1 Nij1 121) N,
- N1 ; o le
1 Nij1 o2 N,
" Nint ; Fo ﬁwg
o
= ﬁ;ﬂie [p(hs)p(R

where we used the fact N;

= N to get the last line.

Z l+1 hl +Jbbl+1 +,Ufhl < Z l+1 hl +0bbl+1 "’_Nhl)

Ny

§ :lerl l+1

(h5)p(hy,) + o b0l + P hihl

k=1
Niy1
o(h)p(hh) +ap | + Eo [hih
b v Niya ; o it
+of + p2Kt, (D.3)
O

Theorem D.5. In the infinite width limit, the recurrence relation for partial Jacobians with residual connections has a

simple multiplicative form

Jlod+1 — nglo,l7 D.4)
where the recurrence coefficient is shifted to x'; = c2Eq [¢'(h})¢'(h},)] + p?, as defined in Eq.(27).
Proof.
(N1 Ny 1+1 a71+1
1 Oh;"* Oh;
jlo,lﬂ = ¥ 0 Z Zizloillo
1+1 == th th
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= 0 ] 1 ARl Al
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52 N, Ni, onl ohl 1 N, Nig OhL Ohl
_ %w Ey | o' (hL)o' (B E 9N L E 2 kOl
Z o 2 ; Ohl® ORle N, ,; " ; Oy Ohy
Nl NLO 1
Ohk. Ohl
= (02Eg [¢'(hi)d' (h})] + n ZZ hlo hz’Z
k 175=1
= (0o [¢(hk)' (hy)] + 1) T
Jlot+1 — nglo,l' D.5)
O]
The NTK in this case is defined as
Nl’ Nl/ 1 Nl’ 1 1
oht  onl Oh Oh;
E 7 ’ ’i 7; D6
z;lzf’zzawlal bl L. 0.6)
3 =1 a=1 b=1 =1

Theorem D.6. In the infinite width limit, the recurrence relation for NTK with residual connections is modified by an

additional term controlled by

ol — X?l@l—l K- 2K (D.7)
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Proof. To evaluate the NTK, we divide Eq.(D.6) into two pieces. From the terms involving gradients w.r.t the weights wgb
and biases bfj, we separate the terms with I’ = [ and all the remaining terms. Let’s consider the terms with [’ = [ first.

N[ N; N1

g [ Z ahl ahl Nt oht on!
G

p e — Obl. b,

1 N [N, Ny N,
=2 B (D> N“’ Biad(hy VGiad(hls 1)+ G010

! i=1 | o= 1 b=1 - =1

1 N, (N4 02
=3 B0 | Do o Yol ) + i

i=1 b=1

=K' - 2K (D.8)

Next, we consider all the terms with I’ < [

N -1 N Nvv 1 N oo
Oht  onl Oh; Oh;
N ZZE" > D awl’ awl' b Dbl
i=11'=1 a=1 b=1 =1
S NZ on, _ont NZNZ Ot oniTt MO onl !
= — ] -1 -1 l’ l' 1 l'
Ny~ i~ = ohtomTt \ S = Owy, Ow, 8b bl
1 N; 1-1 [Ny o o
= —ZZEG Z < w wi_ /(hl'_1)+lﬂ$ij> < 1k¢ (hl 1)+,U51k>
M= = VN VN1

Ny Ny —y (9hl 1 ohi-1 Ny ahl 1 ohi-1

22 awl’ azfg o azflg

a=1 b=1
Ny -1 Ni—1 Ny Ny 16hl lahl 1 Ny hl lahl 1
- N, ;;Ee jzl le hl ) hl ) ; ; 3wl' ﬁwl' Cz: bl bl'
%iu% %N’Z On ot SN oni! ol
i=11'=1 a=1 b=1 3wl' awleb c=1 b b
= (00E [¢'(h™1e' (h'TH] + p?) 07
Cleit (D.9)
O

E. Residual Connections with LayerNorm on Preactivations (Pre-LN)
The definition of LayerNorm on preactivations is the same as before. The recurrence relation for preactivations (Eq.(1)) gets
modified to

N,

1
hé+1 _ U]u\;[ Zwl+l¢(hl) —l—Ubel —|—,uhl (E.1)
VIV £
=

Theorem E.1. In the infinite width limit, the recurrence relation for the NNGP kernel is then modified to

2 M . ~
K = S8 DB [6(5)6(H)| + of + 17K (E2)
j=1
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Proof.

Niya
il — Nl ZE (R LRH]
I+1

Nyt Ny
1 Ow 11, (71 I+1 1 Ow w7 I+1 !
= E FL(hY) + opbl ™ + phl FLo(hL) + opb Tt + bl
Nz+1; 0 Z b I ﬁle o(hy,) + op Iz

k=1
o2
=5 Do Bo [0()o(R)] + ot + K E3)
j=1
O
Remark E.2. For p < 1, the recursion relation has a fixed point
02 Nix * * Jg
- v Eo [o(h}) )o())] . E.4
K Nl*(l—,u)z::l 0¢(])¢( )+1—,U2 ( )

where the average here is exactly the same as cases for LayerNorm applied to preactivations without residue connections. [*
labels some very large depth .

Remark E.3. For p = 1 case, the solution of (E.2) is

2Nl

l
K=Kk"+3 (% ZEG { h”)} o2 . (E.5)
r=1
which is linearly growing since the expectation does not depend on depth. K is the NNGP kernel after the input layer.

Theorem E.4. In the infinite width limit, the recurrence relation for Jacobians changes by a constant shift in the recursion
coefficient.

Jlob+1 :ijjlo»l, (E.6)
where for this case
2 M
[ Ow 771 /7l 2
K=y ;Ee [0/ ()9 ()| + u?. ET)
Proof.
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Remark E.5. One can directly use results from cases without residue connections. We will momentarily see that the phase
boundary does not change with residual connections when p < 1. However, the correlation length decays way slower when
the network is initialized far from criticality.

Remark E.6. As we mentioned above . = 1 needs extra care. Plug in the result (E.5) and i = 1 we find out that
0% Nty Ea [0/ (L)' (AS)]
N, KO + Zl, 1 (0—2 POl z Ey [¢(}}§)¢(ﬁ§.)] +Nm§)
1
~140 (l> , (E9)

+1

l
Xj |M:1 -

which leads to power law behaved Jacobians at large depth. Where the exponent ( is not universal.
To calculate the NTK, we include the contributions from the learnable LayerNorm parameters +} and 3! as well.

Nl’ Nl' 1 Nl’ N; -1 N[/ Nl’*l

Ohl Oh! Ohl Oh! Ohl Ohl Oht Onl
]:E 1 3 3 3
Nl Z Z o Z Z 6‘wl' ow l’ obl obY Z Z Z 37l' 67” Z 0B ! 3[31’
i=11=1 a=1 b=1 =1 ¢ e i=11'=1 b=1 b Y
(E.10)
Theorem E.7. In the infinite width limit, the recursion relation for NTK takes the following form
@l — X?l@l—l + Kl _ MQKl—l + Xf7—1 + XZA—I , (Ell)

where X'\ was defined in Eq.(B.7)

Proof. As before, we divide Eq.(E.10) into three pieces. From the terms involving gradients w.r.t the weights wfllb and biases

blcl, we isolate the term with I’ = [. From the terms involving gradients w.r.t the LayerNorm parameters 'yfl/ and ﬂél, we
isolate the term with I’ = [ — 1. All the rest of the terms are grouped together.

N, N; Nj—1

Z Sy ahl ahl N ot on
! !
a=1 b=1 =1 abc abc
1 Nl Nl NI 1
:EZEG Z Z Nw 5za¢ hl 1 za¢ hl 1 +Zazcdzcab
=1 |a= 1 b=1
1 Nz Nl 1 B
SORID o gl () + of
=1
=K - ;ﬁKl_l ) (E.12)

For the term involving gradients w.r.t LayerNorm parameters, with I’ = [ — 1, the calculation as well as the result is identical
to Egs.(B.26). We use the results without repeating the calculation here.

N; N1 1 1 Ni—1 1 1
1 Oht  Oh! Oht  Ohl
LTl D D LU LU N R E.13)
N ; Ot O 17:21 85;7 ' aﬂll) ' 7
Next, consider all the terms with I’ < {
AN S R N“ OhL Ol

RIS Bul, Bl * 2 H 1L

i=11'=1 a=1 b=1
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N; -1 Nl—l 8hl 8hl Ny Ny lahl 1 hl 1 Nl/ hl 1ahl_1

zll’l a=1 b=1

L 171E [N oh! aﬁl—l ont o Ny Ny lahl 18}12—1 Ny 8hl 18h§€_1
_EZZ 0 Z 3hl 1ahl L bl 1ahl 1 Z Z 6w" 5w5 (%l/ bV

i=11=1 jk=1 a=1 b=1

N, 1-1 [ Ni_, - L
- = El: ZEG Z ow wéjqb/(hj D + pdij ow  whe'(h ) + [l
== = A

Ny Ny lahl 16hl‘1 Ny hl 13hl 1

2 2 awl’ aufgb Z ol ol

a=1 b=1
N; -1 Ny, 2 Ny Ny -1 -1 NL/ -1 -1
1 o 8h (9/1 h 8h
_ E w /hl» 1 hl 1
N2 2B | 2 e () 2 2 o gl Y
1=110'=1 j=1 a=1 b=1 c=1
Ny I-1 Ny Novca g1 ap0-1 Nuogr1-1 o711
1 , Ohl=1 oR! ohl—1 oh!
]E ! z/ /L/
TNE |\ L a4 or o

2
(’Clw EG |:¢/(h,l_1)¢l(hl_1):| + MQ) @l—l
= ySleit (E.14)

Putting together the three terms, we get the recursion relation in Eq.(E.11). [

F. MLP-Mixer

In this section we would like to analyze an architecture called MLP-Mixer (Tolstikhin et al., 2021b), which is based on
multi-layer perceptrons (MLPs). A MLP-Mixer (i) chops images into patches, then applies affine transformations per patch,
(ii) applies several Mixer Layers, (iii) applies pre-head LayerNorm, Global Average Pooling, an output affine transformation.
We will explain the architecture by showing forward pass equations.

Suppose one has a single input with dimension (C,,, H;r,, Wiy, ). We label it as x,,;, where the Greek letter labels channels
and the Latin letter labels flattened pixels.

First of all the (i) is realized by a special convolutional layer, where kernel size f is equal to the stride s. Then first
convolution layer can be written as

Z Z i, Gi-1)s2 Ui s (F.1)

j=1lv=1

where f is the size of filter and s is the stride. In our example f = s. Notice in PyTorch both bias and weights are sampled
from a uniform distribution U (—/k, v'k), where k = (Cj,, f?) ™"

1

[W/?D i pn,]} Wéupauaéij ) (FZ)
0 10
Eplb,;by,] = 30 N 5 0 0ij - (F3)

Notice that the output of Conv2d: h?”- € RE*No where C stands for channels and N, = H;, W,/ f? stands for patches,
both of them will be mixed later by Mixer layers.

Next we stack [ Mixer Layers. A Mixer Layer contains LayerNorms and two MLPs, where the first one mixed patches
1, 7 (token mixing) with a hidden dimension Ny,,, the second one mixed channels u, v (channel-mixing) with a hidden
dimension N,,,. Notice that for Mixer Layers we use the NTK initialization.
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* First LayerNorm. It acts on channels .
- hSL — B[RS
po, = e —Zeltp (F4)
Varc[h/ﬁ)li]

where we defined a channel mean Ec[hS.] = & Y=, hS: and channel variance Varc = E¢ [(hﬁi)ﬂ — (Ec [h%])z.

* First MlpBlock. It mixes patches ¢, j, preactivations from different channels share the same weight and bias.

— 60 + 1: Linear Affine Layer.

hilj_l Uw Z 6l+1h6l + oy b6l+1 (FS)
— 61 + 2: Affine Layer.
Ntm
h61+2 Z w61+2 hGZjFl) + o b0HH2 (F.6)
wi v ’
m p

where Ny, stands for hidden dimension of ”token mixing”.
— 61 + 3: Residue Connections.

6l+3 __ 1 6l+2 61
RSLTS = RSF2 4 ppll (F7)

i

» Second LayerNorm. It again acts on channels .
6143 61+3
o RIS — Ec[f;pi I (F.8)
6143
Vare [hm+ ]

» Second MlpBlock. It mixes channels , v, preactivations from different patches share the same weight and bias.

— 6l + 4: Linear Affine Layer.

h‘iﬂ*“ Ow. Zwbl+4h6l+3 + oy bGl+4 (F.9)
— 60 + 5. Affine Layer.
Ncm
h61+5 Ow Z 6l+5¢(h6l4+4) + O_bbﬁl-‘rf) . (FlO)
i N Vi o
Ncm v=1
— 6/ + 6. Residue Connections.
h61+6 h6l+5 uhﬁlj‘:ﬂ (Fll)

Suppose the network has L Mixer layers. After those layers the network has a pre-head LayerNorm layer, a global average
pooling layer and a output layer. The pre-head LayerNorm normalizes over channels x4 can be described as the following

. hSk —EclhSF]

hoy = P (E.12)
Varc[hﬁf]
Global Average Pool over patches i.
L
— 7 6L
hf, = Fp hyi - (F.13)

i=1
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Output Layer

C
Tw
fu = TG > wunh? + opby, (F.14)

v=1
We plotted phase diagram using the following quantity from repeating Mixer Layers:

1 & O onsk onsk
x E i pi
X7 Lgr;o Npc Z Z 0 Z Z 6h;6)i/—6 6h§£_6

i=1 p=1 p=1k=1

(F.15)

G. Results for Scale Invariant Activation Functions

Definition G.1 (Scale invariant activation functions).
o) =arx20(x) +a_xzO0(—2x), (G.1)

where O(z) is the Heaviside step function. ReLU is the special case with a;. = 1 and a_ = 0.

G.1. NNGP Kernel
First evaluate the average using Lemma 2.2

1 _mh?
Eg [o(hl)¢(hl)] :W/dhli (a +a?) (hﬁ)ze 2K
2 2
e
- K. (G.2)

Thus we obtain the recurrence relation for the NNGP kernel with scale invariant activation function.

va a% +a%
Kt = %id ey (G.3)

Finite fixed point of the recurrence relation above exists only if

2 2 2
+aZ
o= ) oy (G4)

As a result

2
- (G.5)

2
Tw = a? +a*

For 02, = 7z icﬂ case, finite fixed point exists only if o7 = 0.

G.2. Jacobian(s)

The calculation is quite straight forward, by definition

X7 =o0Eo [¢/(h})¢' (h})]

_ 7 (G.6)

where we used the property zd(x) = 0 for Dirac’s delta function to get the first line.



Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications

/ 2
w = —_—_— G.7
g 03,_ I CL2_ ( )

For ReLU with a4 = 1 and a_ = 0, the network is at critical line when

Thus the critical line is defined by

0w = V2, (G.8)
where the critical point is located at
(0w, 08) = (V2,0). (G.9)
G.3. Critical Exponents

Since the recurrence relations for the NNGP kernel and Jacobians are linear. Then from Lemma C.1 and Theorem 2.7

(c=0and(=0. (G.10)

G.4. LayerNorm on Pre-activations
Use Lemma B.11 and combine all known results for scale invariant functions
o2 ol ~ ~
Xy = s 2 Bo [0/ (i)o/ (8}
k=1

Ki-1=1

_ ol +a?) (G.11)

02,(a3 + a*) + 20
For this case,
Xy <1 (G.12)
is always true. The equality only holds at o, = 0 line.
G.5. LayerNorm on Activations
First we substitute K'~! = 02 + o7 into known results
2 2
+aZ
By [¢/(h})/ ()] = == (G.13)
a% + a2
Eq [¢(h)o(h)] = ——— (o7, +07). (G.14)

There is a new expectation value we need to show explicitly

1 > 131 2 2\—1g1
E hi = —/ dhi hi e_§hi(0w+0b) h;
9[¢( )] om0 08 e o(h;)
1 o0 __mh?
= —/ dhi(ay —a_)hle 2Catod
27(‘75‘“&3) 0
o2 + o2
= (a4 — a—)\/?- (G.15)
Thus
2 2 2
+aZ
Xy = =2 mlos + o) (G.16)

0% +of m(a} +a2)—(ay —a-)?’
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The critical line is defined by x; = 1, which can be solved as

Ub\/ (ay —a_)? -
w(aZ +a2) — (ay —a_)? "

/1
op = Ow
b T—1

~0.6830, .

For ReLU withay =1landa_ =0

G.6. Residual Connections

The recurrence relation for the NNGP kernel can be evaluated to be
o3+ a?)

’Cl—'rl _
2

K"+ of + pKh.

The condition for the existence of fixed point

Xk = 5 +u’ <1
leads us to )
o2 < 2(1 — p)
Y= a} +a?
For ‘7121; = 2;21;5 z ), finite fixed point exists only if Ug = 0. (Diverges linearly otherwise)
2 +a?

The recurrence coefficient for Jacobian is evaluated to be

R +a)

X7 = 5 e

The critical line is defined as
21— p?)
af +a?

The critical point is located at ( Za(%i — 2_ ) 0).

For ReLU, the critical point is at (\/2(1 — u?), O).

G.7. Residual Connections with LayerNorm on Preactivations (Pre-LN)

Again use Lemma B.11 and combine all known results for scale invariant functions

+ u2>
Ki-1=1

2 M . -
Xy = lim <J\Z7Jd > Eo ¢/ (hh)6 (hh)]
k=1

l—o0

0120 a2 +a2)(1 - p?

_d@r)a-p)

Uu;(a+ + CL_) + 20b

_ 203(1-p?)
02(a? +a?) + 20}

Similar to the case without residue connections
l
x7 <1
is always true. The equality only holds at o, = 0 line for p < 1.

Notice there is a very special case i = 1, where the whole ¢}, — 7, plane is critical.

(G.17)

(G.18)

(G.19)

(G.20)

(G.21)

(G.22)

(G.23)

(G.24)

(G.25)
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H. Results for erf Activation Function

Definition H.1 (erf activation function).

d(x) = — /j e”dt. (H.1)

H.1. NNGP Kernel

To evaluate Lemma 2.2 exactly, we introduce two dummy variables A\; and Ay(Williams, 1997).

d2

Eo [¢(\hi)é(Ahi)] = / dh / g
L (1) (b g ) (W)?
_ L= (p DRSS E
_/d)\l/dAQ bt () =

4K
= [ax [ dr
/ 1/ 27 (142K (A2 + A2))

9 2 A Ag
— 2 aresi , H.2
x resin <1 2K + A%)) (H2)

Eg [¢(A1hi)d(Azhs)]

We use the special case where A\ = Ao = 1.

Thus the recurrence relation for the NNGP kernel with erf activation function is

202 2/C
ol — - arcsin (HQICZ) + ag . (H.3)

As in scale invariant case, finite fixed point only exists when

402 1
X’I(C _ 0w <1. (H.4)

T (1+2K)V1+4K* —

Numerical results show the condition is satisfied everywhere in oy, — 0, plane, where x% = 1 is only possible when * = 0.

H.2. Jacobians
Follow the definition
X7 = ouBo [¢/ (h})' (h})]

12
()
2K!

40’2 1\2
=——w [ dple 2 ¢
V23K / !

402 1
= (H.5)
T V144K
To find phase boundary x”; = 1, we need to combine Eq.(H.3) and Eq.(H.5) and evaluate them at K*.
202 2KC*
I — % arcsin (HQ’C*) + 0'13 , (H.6)
402 1
O 1. (H.7)

NS T Arak

One can solve equations above and find the critical line

1604 — 72 202 1604 — 2
— ¢ 160y — 7 205 o (H) . (H.8)
i

472 1608 + m2
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Critical point is reached by further requiring xx- = 1. Since xx- < x7;, the only possible case is £* = 0, which is located at

(0w, 0p) = (\/j 0> : (H.9)

We show how to extract critical exponents of the NNGP kernel and Jacobians of erf activation function.

H.3. Critical Exponents

Critical point for erf is at (4, 00 ) = (0, /7 ), with K* = 0. Now suppose [ is large enough such that the deviation of Kt
from fixed point value C* is small. Define 6K! = K! — K*. Eq.(H.3) can be rewritten as

1 26K
I+1 _* :
oK =3 arcsin <1 m 25/@)
~OK! — 2(6KH)?.

(H.10)

From Lemma C.1 ]
Aziandg}gzl. (H.11)

Next we analyze critical exponent of Jacobians by expanding (H.5) around K* = 0 critical point (03, 04,) = (0, /7).

To leading order I~! we have

ij ~1 — 20K
1 (H.12)

Thus the recurrence relation for partial Jacobian, at large [, takes form

Sl _ (1 B ;) Jlod (H.13)
Atlarge [
Jolt =¢ 171, (H.14)
with a non-universal constant ¢, .
The critical exponent is
(=1, (H.15)

which is the same as (k.

H.4. LayerNorm on Pre-activations
Use Lemma B.11, we have
2

X = N/ClZ]E‘)[ hl)}

- 4o, (H.16)
V5 [20121) arcsin (%) + Wog] ' '

-2 lfacs‘ 2
oy = p \/5 ICSin 3 Ow

~ 0.3240,, . (H.17)

The critical line is then defined by
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H.5. LayerNorm on Activations

4 1
By [¢'(h})e' ()] = — et (H.18)
w b

Due to the symmetry of erf activation function Eg [gb(hﬁ)] = 0, we only need to modify our known results.

2 2(02 + 0?)
E MYo(hh)] = = in (—w b/ H.19
0 [¢( 1)¢( 7)} T arcsi <1 + 2(030 + O_g) ( )
Thus )
20 1
l w
Xy = : ., (H.20)
1+ 4(02 + Ug) arcsin (ﬁﬂii;:z)g))
where the phase boundary is defined by the transcendental equation Xf7 =1
H.6. Residual Connections
The recurrence relation for the NNGP kernel can be evaluated to be
202 2K
Ko — % arcsin (1_’_2’0> + ag + M2IC1 ) (H.21)
Finite fixed point only exists when
402 1
* — Zw +u?<1. H.22
R DY W i (122
Notice that xi < x7 still holds, where the equality holds only when K* = 0.
The recurrence coefficient for Jacobian is evaluated to be
_ dou, ! 2 (H.23)

x -4 )
X7 T 14+ 4K* a

The critical line is defined as

1604 — 12(1 — u2)2 202 1604 — 72(1 — 42)2
O’b:\/ T — 7 ") —Uwarcsin( T = 7 ) ) (H.24)
T

Ar2(1 — p2)2 1604 + 72(1 — pi2)2

Critical point is reached by further requiring xk = 1. Since x5 < X7, the only possible case is * = 0, which is located at

(0w, 0p) = < W,O) . (H.25)

Note that for 2 = 1, one needs to put extra efforts into analyzing the scaling behavior. First we notice that X! monotonically
increases with depth  — the recurrence relation for the NNGP kernel at large [ (or large K!) is

Kt~ o2 +02 + K, (H.26)

which regulates the first term in (H.23).

For ;4 = 1 at large depth
402

m/Co + 4(02 + o)l

Xy ~ 1+ (H.27)

Here C is a constant that depends on the input.
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We can approximate the asymptotic form of log 70! as follows

l
lo,l _ v
log 7" =log (H m)

I'=lo

l 402
= log [ 1+ *
Z 5 7/Co + 4(c2 + a2)l!

I'=lo

l 2
4o
~ [ dl'log |1+ &
/10 ( m\/Co + 4(c2 + o)l

~2&V1+ O(logl),

where ¢ = 2
7\'\/0’31-‘1-0'? :

We conclude that at large depth, the APJN for p# = 1, erf networks can be written as
Tl 0 (ezaﬂ+0(1ogz)> _

This result checks out empirically, as shown in Figure 5.

© Experiment, 02 =5.00
10%° | Theory, &=1.424
——- Fitting, ¢ =1.414

10| o Experiment, 02 =2.00
—— Theory, ¢ =0.900
104 - —~. Fitting, ¢=0.851

© Experiment, 02 =0.79
10! - —— Theory, ¢=0.564

S - Fitting, ¢ =0.548

108 |

105 L

102 L

10—1 L

25 50 75 10.0 125 150 17.5 20.0
Vi

Figure 5. log(J'Y)-V/l for p = 1, 02 = 0, erf.

H.7. Residual Connections with LayerNorm on Preactivations (Pre-LN)

Use Lemma B.11 and results we had without residue connections for erf with LayerNorm on preactivations.

l—o0

+ u2>
Ki-t=1

2 M ~ ~
& = I ( oS B [ )]
k=1

(H.28)

(H.29)
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40,1 ( M2) 2
_ ) H.30
V5 [202 arcsm( ) + 7T0'b] th ( )

The critical line is then defined by

202 (2
oy = 7TL/g—arcsm(gﬂaw (H.31)

~ 0.3240,, .

I. Results for GELU Activation Function

Definition I.1 (GELU activation function).

ca-gfoea(3)

(1.1)

—_
+
e
S—
Sk
9]
L
&‘N
[

I.1. NNGP Kernel
Use Lemma 2.2 for GELU

Eo [6(h})(h)] = W o [t (he) [1+erf(hi

hl,
= dhl- i) 1+ erf?
vV 27T’Cl / ! [ (

ICl <
) <h >2
L l nh?
o (5) o on(24) o ()]

’Cl l 2’Cl
— + —— |arcsi + : 12
~1 T on [amm<1+m> (1+IC1)\/1+QICZ] 12

where from the third line to the fourth line we used integrate by parts twice, and to get the last line we used results from erf
activations.

dhl (hl)2erf?
\/3277/Cl /

l l
’C K dhl erf? (

\/3277 V327KL

(KhH? ! [ ) <
+ —— [ dh; |etf
V327Kl “

Thus the recurrence relation for the NNGP kernel is

Kt = [’Cl + —l arcsin ( K ) + (K1)? ] o2 + o? (1.3)
“ 11 T on 1+K) " rQ+k)virekr] v '
As a result ) ) () ()2
o o K* 4(KC*)° + 11(K*)* + 5K*
k=24 2 |arcsin + = . L4
=T T oy [ (1+IC*> (1+K*)2(142K*)2 } -

1.2. Jacobians

Follow the definition

X7 =02 Eq [¢/(h})¢' (h1)]
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2 [ ! D ? 12
Sy A e L L
VorKCl b2 2 \/5 V2T
2 [ 1\N2 A rf(hl' ) = (B1)2 (11Y2
(s )e 2 —(h)” (Bl )2
— w /dhli 1 + 1erf< by ) + V2 + € (hs) e~ (;;c)t
V2rK! 4 4 V2 V2r 21
2 2 ) ICl K:l 3 5]cl
=Tw 4 Tw [arcsin( l) + (3+5K7) 3} : 15)
4 2m 1+ K (1+KH(1+2Kh)2

where we dropped odd function terms to get the third line, and to get the last line we used known result for erf in the second
term, integrate by parts in the third term.

Here to get the critical line is harder. One can use the recurrence relation for the NNGP kernel at fixed point £* and x = 1

o2 o2 K o2 K* 9
* W g w : w * 1.6
K v K +—27T [ar081n(1+IC*>+7r(1+’C*) 1+2IC*}IC + o0, (1.6)
o o2 K* K*(3 + 5K*)
* = —w —w 1 = ]_ . I.7
Xg=—4 t5, {ammn<1+l€*>+(1+]C*)(1+21C*)3] @L.7)

Cancel the arcsin term, o,, and o, then can be written as a function of *

Ow =2 [1 + 2K7(3 + 5K7) = + z arcsin < K )} , (I.8)
T(1+K*)(1+2K9)2 7 1+ K*
IC*
O0p = ———5 0y - 1.9
P Var(1+ 2kt -

One can then scan K* to draw the critical line.

In order to locate critical point, we further require xx. = 1. To locate the critical point, we solve x*; — xj = 0 instead. We

have
o [(K*)? = 3(K*)? — 2K*]

— =0, (1.10)
2n(1+ K*)2(1 4 2K*)2
which has two non-negative solutions out of three
3+ V17
IC*:Oand/c*:JrT. 1.11)
One can then solve o, and o, by plugging corresponding K™* values.
(0w, o) = (2,0), for K* =0, (I1.12)
3+ V17
(0w, 0p) == (1.408,0.416) , for K* = % (1.13)
1.3. Critical Exponents
GELU behaves in a different way compare to erf. First we discuss the K* = 0 critical point, which is located at

(0, 04) = (0,2). We expand Eq.(I.3), and keep next to leading order 6K! = K! — K*

S ~ oK + §(5ICZ)2 . (1.14)
Y

From Lemma C.1 -
A:—E and (x =1, (1.15)
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which is not possible since §KC! > 0 for this case. This result means scaling analysis is not working here.

Next, we consider the other fixed point with £* = ‘HT‘/ﬁ at (op,04) = (0.416,1.408). Expand the NNGP kernel
recurrence relation again.
S = 6K 4 0.00014 (512 . (1.16)
Following the same analysis, we find
OK! ~ —7142.9171 . (L.17)

Looks like scaling analysis works for this case, since * > 0. The solution shows that the critical point is half-stable(Roberts
etal., 2021). If K! < K*, the fixed point is repealing, while when X! > KC*, the fixed point is attractive. However, the
extremely large coefficient in the scaling behavior of §K! embarrasses the analysis. Since for any network with a reasonable
depth, the deviation 5Kt is not small.

Now we can expand ij at some large depth, up to leading order [ 1.

66.668
szlff. (1.18)
Then
sl clol—66.668’ (1.19)
where ¢, is a positive non-universal constant.
Critical exponent
¢ = 66.668.. (1.20)
Which in practice is not traceable.
1.4. LayerNorm on Pre-activations
Use Lemma B.11, we have
7l
X = N ICl [ (h )} )
Ki-1=1
4
_ "w<6” +4v3) 121)
02, (67 + 3v/3) + 1870}
The critical line is then at
%
(6\[ 71') Ow
~0.1750,, . (1.22)
L.5. LayerNorm on Activations
First we need to evaluate a new expectation value
z b2
Eg [6(hl)] =——ex /dhl {1 +erf()] e 2Chted)
‘ [(b( )] 27 02 + O’b V2
9w+ 95 (1.23)

2n(1+ 02 + ag) ’

where we used integrate by parts to get the result.
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The other integrals are modified to

By [¢/ (b)) ()] = = + o

2 2 2 2)3 1 5( g2 2
=4 — arcsin( Uw;’_ab 2>+ (0w+0b)[ + (Uw+ab)] . ’ (124)
42 L+ou+oy) (1403 +0p)[1+2(07 +0})]2
02 +02 o2 402 02 + o2 o2 + g2)2
Eg [¢(h})p(h})] = ~2—b + ~“——L arcsin ( w b 2> + ( B 1) =. (129
4 2 L+ o3 + 03 (1402 +0p)v/1+2(02 +07)
One can then combine those results to find Xf7
2 2 2 (ot ) 2(02 +03)(3+5(0% +03))
. 0w (1 + o, + Jb) |:7T + 2 arcsin <1+aﬁ,+a§ + (1+ai+a§)(1+2(aﬁ,+a§))%
X (02 +02)(1+ 02 +02) —2(02 + 02)% + _Aohtop)? 2(02 + 02)(1 + 02 + 02) arcsin ( UE’+U§2) .
w b w b w b \/m w b w b 1402 +of
(1.26)
The critical line defined by Xf7 = 1, one can numerically solve it by scanning over o, and o,.
I1.6. Residual Connections
The recurrence relation for the NNGP kernel is

! l !
KAt = [IC + £ arcsin ( K ) +
4 2 7(

(£h)? 2 2 241
Oy + o, +u K" 1.27
14 K! 1+ KYV1 + 2K b h (127
Fixed point exists if
o2 o2 K* 4(K*)2 + 11(K*)? + 5K~ 9
k=24 2 |arcsin + +p <1 1.28
R R [ <1+IC*> 1+ 2(1t+2cn: | (128
The recurrence coefficient for Jacobian is
o2 g2 [ ( Kc* ) K*(3 + 5K%) ,
= -2 4+ Y |arcsin = | +u”. (1.29)
Xa=7 tor 1+K) T rKkn(1+2kni] !
Phase boundary is shifted
1
2K*(3 4+ 5K%) 2 . K* 2
Ow=21—p2 |1+ —|—arcsm( >} , 1.30
: [ T+ K91 +2K9)% 7@ 1+ K (1.30)
,C*
=—0y- 1.31
V2r(1 4 2K%) 3 (13D
One can again scan over C* to draw the critical line.
In order to locate critical point, we further require x- = 1. To locate the critical point, we solve x*; — xj = 0 instead. We
have
2 JC* 3_3[C* 2_21(:*
o [(K*)? = 3(K*) : I _o, (1.32)
2r(1+ K*)2(1 4 2K*)2
which has two non-negative solutions out of three
V17
K*=0and £* = 5 +2 (1.33)
One can then solve o, and o, by plugging corresponding K* values.
(0w, o) = (24/1 — p2,0), for K* =0, (1.34)
3+V17
(Ow, op) = (1.408y/1 — p2,0.416+/1 — p?), for £* = s+ VAT

5 (1.35)
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L.7. Residual Connections with LayerNorm on Preactivations (Pre-LN)

Use Lemma B.11 and results we had without residue connections for GELU.

X7 = fim, (NICl > % [/ Ble ()] . +“2>

| oen VD) L
02 (67 + 3v/3) + 18707
(V32 — 1870)(1 - )
- o2 (6 + 3v/3) + 18707

(1.36)

The critical line is then at

(6\[7r> : Ow
~0.1750,, ,

(137)

just like without residue connections.

J. Additional Experimental Results

In figure 6, we compare the performance of deep MLP networks with and without LayerNorm. We note that the case with
LayerNorm applied to preactivations continues to train at very large value of 2. In all cases, networks are trained using
stochastic gradient descent with MSE. We used the Fashion MNIST dataset(Xiao et al., 2017). All networks had depth
L = 50 and width N; = 500. The learning rates were logarithmically sampled

* within (1078, 106) for ReLU, (10~5, 10) for LN-ReLU and ReLU-LN;
* within (1075, 1) for erf, LN-erf and erf-LN;

* within (1078, 10) for GELU, (10~3, 10) for LN-GELU and GELU-LN, where Ay is the largest eigenvalue of NTK
for each o,.

ReLU, 02 = 0.0 00 Erf, 02 =0.1 GELU, 02 =0.173

80
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Figure 6. Performance of deep MLP networks at and away from criticality, with and without LayerNorm. The blue plateau, corresponding
to LayerNorm applied to preactivations, continues to train at very large values of o2, without the need to tune the learning rate.

In figure 7, we showed empirically that the critical exponent of partial Jacobians are vanished for erf with LayerNorm.
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Figure 7. log — log plot of partial Jacobian 7! vs. [ for (A) LN-erf and (B) erf-LN.

In figure 8, we tested 6k samples from CIFAR-10 dataset(Krizhevsky et al., 2009) with kernel regression based on neural
tangents library (Novak et al., 2019) (Lee et al., 2019) (Novak et al., 2020). Test accuracy from kernel regression reflects the
trainability with SGD in ordered phase. We found that the trainable depth is be predicted by the correlation length c& with
LayerNorm applied to preactivations, where the prefactor ¢ = 28. The prefactor we had is the same as vanilla cases in (Xiao
et al., 2020). The difference is from the fact that they used log;, and we used log,.
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Figure 8. Test accuracy for LayerNorm applied to preactivations. o = 0.5 for all cases. Correlation lengths calculated using analytical
results of x';.

In figure 9, we explore the broad range in o2 of the performance of MLP network with erf activation function and LayerNorm
on preativations. The network has depth L = 50 and width /N; = 500; and is trained using SGD on Fashion MNIST. The
learning rates are chosen based on a logarithmic scan with a short training time.
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Figure 9. Training performance of MLP networks with erf activation function; and LayerNorm applied to preactivations. It continues to
train for several orders of magnitude of o2, (with learning-rate tuning).



