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ARTICLE INFO ABSTRACT

Keywords: Human-technology interaction is concerned with trust as an inevitable user acceptance requirement. As the
Artificial intelligence applications of artificial intelligence (AI) and robotics emerge in the architecture, engineering, and construction
robotics

(AEC) industry, there is an immediate need to study trust in such systems. This paper presents the results of a
systematic review of the literature published in the last two decades on (1) trust in Al and Al-powered robotics
and (2) Al and robotics applications in the AEC industry. Through a thorough analysis, common trust dimensions
are identified and the connections to the existing AEC applications are determined and discussed. Furthermore,
major future directions on trustworthy AI and robotics in AEC research and practice are outlined. Findings
indicate that although AEC researchers and industry professionals increasingly study and deploy AI and robotics,
there is a lack of systematic research that studies key trust dimensions such as explainability, reliability,
robustness, performance, and safety in the AEC context

AEC industry
trust
technology adoption

1. Introduction

The growing sociotechnical influence of Artificial Intelligence (AI)
and Al-powered robotics is nowadays realized in various industrial and
organizational processes. As the role of Al in our lives becomes more
prominent, and with the emergence of autonomous and intelligent
agents in industrial settings, the need to build trust towards these agents
by their human counterparts is becoming ever more apparent [1].

A report published by the National Academies of Science, Engi-
neering, and Medicine together with the Royal Society identified trust,
transparency, and interpretability as some of the key sociotechnical
challenges in designing, evaluating, and deploying AI systems [2].
Research has consistently shown that an explainable and transparent
decision-making process can help users gain an appropriate level of trust
in intelligent agents [3]. However, the algorithmic complexity and
abstraction of Al-based processes makes it challenging to provide
straightforward and comprehensible explanations for such decisions [4].
Additionally, while transparency is one of the key factors, it is not the
only element that affects trust in Al and robotics [5]. For example, in the
context of Al-enabled robots, it was shown that new technology is more
trusted when it functions reliably and safely as we expect other humans
to do [6].

Over the past two decades, the architecture, engineering, and con-
struction (AEC) industry has shown significant potential to widely
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deploy robotics and AI technologies. However, the industry practi-
tioners are generally reluctant to trust new technologies, and the use of
antiquated work processes is prevalent [7-10]. Small businesses
comprise the vast majority of the industry with a share of 82.3%
(compared to 44.4% for manufacturing and 35.1% for retail) [11] and
smaller companies are known to be often the “late majority” and “lag-
gards” in technology adoption [12]. Additionally, a typically very small
profit margin (i.e., 3-5%) makes AEC practitioners more hesitant to
adopt new technologies with unproven cost-saving prospects and
expensive ownership cost for programming and maintenance. Research
has shown that building a culture of trust in the potential and reliability
of Al-powered systems and robotics can play a key role in enhancing
adoption levels within the AEC industry [13].

In this study, a thorough systematic review of the literature on (1)
trustworthy AI and Al-powered robotics, and (2) AI and Al-powered
robotic applications in the AEC is presented to prime this area of
research for future studies. It is important to note the twofold scope of
this research project as illustrated in Fig. 1.

2. Research background
2.1. Definitions

Trust is defined as “the attitude that an agent will help achieve an
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Fig. 1. The two-fold focus of this study and interconnection of the scopes

individual’s goals in a situation characterized by uncertainty and vulnera-
bility” [14], and as “the reliance by an agent that actions prejudicial to their
well-being will not be undertaken by influential others” [15]. Al and Al-
powered robotics belong to interdisciplinary fields that include com-
puter science, engineering, mathematics and statistics, and psychology
that enable learning from existing data and past experience to perform
tasks that typically require humans’ intellectual processes [4,16,17]. AL
and Al-powered robotics applications studied in this research include
embodied intelligence (e.g., a robot) and software or hardware that can
be used stand-alone or distributed through computer networks.

2.2. Previous systematic reviews in this area

Trustworthy Al and Al-powered robotics, have been previously the
subject of systematic literature review articles [18,19]. Such studies
often describe the factors that increase the acceptability and reliability
of these technologies [18] and define trust in the context of those factors
[19]. A widely acknowledged fact in studies of trust in AI and Al-
powered robotics is the importance of contextualized research with a
special focus on the culture of the environment in which the technology
is adopted [20]. Similarly, the technology acceptance behavior and
technical background of the end users have shown to be highly conse-
quential on the level of trust in Al and Al-powered robotics [9]. Trust
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factors often have different interpretations in different contexts (or in-
dustries). For example, security or reliability in the banking industry are
among critical trust dimensions with clear definitions [21] that are
different from what they mean in a construction project or architectural
design task. In the AEC industry, with a considerable heterogeneity of
work conditions and stakeholders in a typical project, such contextual-
ization considerations deserve even more attention. Nevertheless, to the
best of the authors’ knowledge, there has been no systematics review
effort to identify AI and robotics trust factors in the AEC industry and
consolidate publication records in this area. A limited number of papers
that studied AI and robotics in AEC have only discussed the challenges,
limitations, and benefits of using these technologies in this industry,
without offering practical solutions to address trust issues. This paper
consolidates the records of research published on the topics of trust in Al
and Al-powered robotics as well as Al and Al-powered robotics in AEC to
create a comprehensive picture of trust requirements and dimensions
conducive to this industry.

3. Systematic review methodology

In this study, a systematic literature review (SLR) approach devel-
oped by Lockwood and Oh (2017) is used to illustrate a comprehensive
picture of the literature and review the most relevant publications. Fig. 2
presents a schematic overview of the review approach adopted in this
research.

3.1. Establishing a research question

The first step in the SLR is to set up its focus through framing clear
research questions to be addressed in the review. Well-formulated
questions can guide the direction of the review by determining what
studies should be included/excluded in the research, how these studies
should be identified, and what information should be extracted from
them [22,23]. The research questions in this study follow the same
twofold structure of “trust in Al and Al-powered robotics” and “Al and
Al-powered robotics in the AEC industry”. Specifically, this study seeks
to answer two questions: (1) What are the key and common drivers (i.e.,

Literature = Research questions formulation
Search = Establishing keywords
= Databasesearch l
r—r " a
I Number of acquired papers: :
: 650 |
. * Duplicate eliminaton | T ——————— B
Literature = Defining inclusion and exclusion J¢———————— |
Selection criteria
= Title and abstract screening 1
[_ _______________ al
I Number of selected papers:
: 584 |
———————— T ——————— -
Literature = Quantitative analysis: VOSviewer |
Analysis = Categorization e J
= Full-text review l
rr———"""—=—=""="==—""="=—/—+— al
: Number of papers directly I
< i = |nterpretation of findings | relevant to the orga-nization of |
DIS(EIIS'SIOH * Applicability of results discussion | _' thistsiady: :
OfFindings| . Recommendations for future {_______1_83 _______ |
research

Fig. 2. Schematic overview of the SLR approach used in this research study
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dimensions) of human trust in Al and Al-powered robotics? (2) What are
the connections, similarities, and differences between the identified
dimensions and the existing/potential applications of Al and Al-
powered robotics in AEC?

3.2. Database search

A comprehensive literature search was conducted in Scopus, Google
Scholar, Web of Science, and PsycInfo databases to find articles, pri-
marily published in peer-reviewed journals and conference proceedings.
The first three databases were selected because they are among the most
comprehensive and up-to-date sources of publications [24]. PsyInfo was
also selected because human trust is in essence a psychology topic and
this database is the primary reference source in the psychology research
disciplinary area. Therefore, the selected four databases collectively
form a comprehensive resource of the pertinent studies in this research.
After a preliminary analysis of the literature [25], a list of search key-
words was created, which was further refined as the searching process
progressed. Particularly, the keywords were selected to cover all three
main areas of Purpose, Process, and Performance during the two stages
of “building initial trust” and “continuous trust development” as iden-
tified in previous research in this area [26]. The set of keywords and key
phrases used to search in titles, abstracts and keywords included “Trust
in AI”, “Trustworthy AI”, “Acceptance modeling for AI”, “Ethical AI”,
“Transparent and explainable AI”, “Interpretable AI”, “Reliable AI”,
“Safe AI”, “Privacy in Al systems” and “Human-robot interaction”, to
find papers on trust in Al and robotics domain. To collect papers related
to the use of Al and robotics in AEC, keywords and key phrases including
“Artificial Intelligence in construction management”, “Al in construc-
tion management”, “Al-enabled systems in construction management”,
“Robotics in construction management”, and “Construction automation”
were used. Furthermore, single words of these phrases were combined
using the + operator (for example: "Al+construction+trust’ or
"Al+intrepretability") to expand the search results. In total, the search
resulted in 650 preliminary publications including journal and confer-
ence papers, theses, and book chapters that were collected for review
and imported to a reference managing software EndNote [27].

3.3. Literature selection

At this stage of the SLR, abstracts, highlights, and key words were
retrieved, analyzed, and reviewed, and those studies that met the in-
clusion criteria were selected for a full review. The inclusion criteria
were: (1) papers must be peer-reviewed and published after 2000 (pa-
pers published prior to 2000 were not included due to the fast pace of Al
and robotics research advancement in the last two decades); (2) papers
must be written in English language; and (3) the study subject of the
papers must be either on trust (or its dimensions) in Al and robotics, or
the applications of Al and robotics in the AEC industry, or both. This
literature selection and screening process reduced the total number of
articles to 584.

3.4. Literature analysis

This stage involved creating a metadata spreadsheet describing these
papers (i.e., title, authors, publication year, and keywords) and a
detailed review of the content. Among the total of 584 selected publi-
cations, 361 papers were written by authors affiliated with the United
States institutions, 47 papers were written by authors affiliated with
institutions in China, and 29 papers were written authors affiliated with
European institutions, as the top three geographical regions producing
75% of the publications in this field. The top 10 sources in this review
with the highest number of published articles in the field of trustworthy
Al and robotics or Al and robotics in AEC are presented in Table 1. Also,
Table 2 shows the vast majority of these articles were published as
journal papers.
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Table 1

The top 10 publication venues with the highest number of publications reviewed
Venue Name Number of

Publications
Automation in Construction 56
arXiv Preprint 28
Journal of Construction Engineering and Management 14
Journal of Computing in Civil Engineering 12
International Symposium on Automation and Robotics in
Construction (ISARC) 11

International Journal of Social Robotics 8
Nature Machine Intelligence 7
Energy and Buildings 7
Artificial Intelligence 7
Computers in Human Behavior 6

Table 2
Distribution of publication source types

Source Number of Publications
Peer-Reviewed Journals 407

Conference Proceedings 131

Book Chapters 39

Theses 11

Online Articles/Reports 4

Furthermore, the result of a temporal bibliographic analysis is shown
in Fig. 3. In this Figure, a publication date histogram of the articles
reviewed in this study is presented in two categories; those discussing
trust in Al and the ones focused on developing or adopting Al models for
AEC applications. Fig. 3 shows that the number of articles published in
these two areas of research has grown significantly since 2016. It is also
noteworthy that this growth has been slower in the AEC industry.
Additionally, the histogram is heavily skewed to the right which in-
dicates the significant traction that has been gained by these two topics
in the past five years. As the Al and robotics research community’s in-
terest grow in the area of trust, research in Al and AI-powered robotics in
AEC is also growing by a considerable margin. This observation em-
phasizes the necessity and significance of research on trustworthy Al and
robotics in the context of AEC applications.

Finally, an analysis of keyword co-occurrences has been conducted
to create a concise grouping of trust dimensions that is used to organize
this literature review. This analysis was conducted using VOSviewer
software [28] and the map of the co-occurrences is shown in Fig. 4.

The size of the nodes is proportionate with the frequency of the
keyword occurrence and the distance between each two nodes is
inversely proportionate with the number of the keywords co-
occurrences in the literature analyzed. This Figure serves two pur-
poses. First, it clearly depicts the trust dimensions (identified in Section
4) in the context of Al-enabled systems and robotics in the literature.
They stand out as larger nodes, in the close proximity of the words “AI”,
“machine learning”, and “trust” nodes. Second, it elaborates on these
dimensions by showing the related factors (or sub-dimensions) that
affect trust in Al and Al-powered robotics systems. Fig. 4 implies that
factors such as explainability or security have been frequently cited in
the literature as they demonstrate a relatively larger node size compared
to other nodes (not considering Al, trust, and robotics, as they are the
subject keywords). However, some factors, such as cyber security, have
not been subject to as many studies. A preliminary conjecture solely
based on such analysis could be that factors such as explainability have a
much greater impact on the level of trust in Al and Al-powered robotics,
even though such arguments must be evaluated through much rigorous
analysis. It is equally likely that smaller nodes belong to trust factors that
are as important as the larger ones in the AEC context, but they have not
been yet studied sufficiently. This highlights the synergistic effect of all
these dimensions and subdimensions and the fact that a comprehensive
investigation must take all these dimensions and sub-dimensions into
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considerations. Thus, Fig. 4 as a whole, can help in developing a road-
map for trust in Al and robotics research in the AEC industry. The next
Section describes a framework of trust dimensions based on the co-
occurrence analysis here, which in turn provides an organization for
further discussion.

4. Trust dimensions

State-of-the-art research has used different taxonomic categoriza-
tions to classify factors influencing trust in Al and robotics [4,29-33]. A
notable study in this area suggests that different trust dimensions affect
human trust regardless of whether AI is deployed as a robot, virtual

assistant, or embedded in a software [4]. Therefore, an integrated but
compartmentalized review approach can provide a comprehensive view
of trust in AI within a specific disciplinary field. To identify the key trust
dimensions most applicable to AEC projects and applications, the au-
thors have initially conducted a thematic analysis to identify the key
relevant trust dimensions [25]. Inspired by the findings of that study and
the literature on trustworthy Al and robotics, in this research common
trust dimensions are used to organize a comprehensive and systematic
review of the literature. The eight dimensions identified are Explain-
ability, Interpretability, Reliability, Safety, Performance, Robustness,
Privacy, and Security. Considering semantic similarities and in order to
create a more focused discussion for AEC applications, the eight
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dimensions are presented in four pairs for the purpose of this review.
Each pair is formed by grouping two dimensions that according to the
authors’ analysis, have appeared more frequently, studied together in
trust in AI and robotics research, and are related in the context of AEC
research [25]. Therefore, a total of four key trust dimension pairs are
used to review empirical research on trustworthy AI and robotics and
implications for AEC research. Fig. 5 illustrates the four trust dimensions
used to organize this paper and a brief description of each dimension is
provided in the following subsections.

4.1. Explainability and interpretability

In AI and robotics applications, explainability is often related to the
concept of interpretability, where the operations of a system can be
understood by a human through introspection or explanation [34,35]. In
computer science, explainable Al (XAI) is a trending research topic [36].
In AEC, it is especially important since technologies are often not
developed in-house. Therefore, the end-users may need to understand
workflow between the input and output (i.e., explainability) and the
output should be understandable and meaningful to them (i.e.,
interpretability).

4.2. Reliability and safety

Reliability is concerned with the capacity of the models to avoid
failures or malfunctions and exhibit the same and expected behavior
over time [37]. It can be seen from both technical and cognitive/psy-
chological (e.g., affect) perspectives [38]. As a related dimension, and in
the context of adopting Al and robotics in AEC, safety also has to be
studied from both technical (i.e., avoiding accidents with heavy-duty
construction robots) and psychological (i.e., Al and robotics applica-
tions seen as job companions, not competitors) viewpoints [39,40].

4.3. Performance and robustness

Ability, accuracy, or competence are similar concepts used in the Al
and robotics literature to refer to the importance of performance in-
dicators in gaining human trust [26,29,41]. These indicators (collec-
tively referred to as performance in this study) play a key role in trust
trajectories. Research has shown that humans have some preliminary
performance expectations toward Al-enabled robots and failing to
satisfy that expectation (or exceeding it) after interaction with the sys-
tem has a major effect on trust [4,42]. A related concept in this realm is
robustness. Robustness refers to performance consistency in different
situations where the AI model or the robotic system is deployed [29].
This is particularly important in AEC applications as the environment
and workflows are ever-changing within and between projects and

Explainability and
Interpretability

Performance and
Robustness

Review of
Trustworthy Al

and Al-Powered
Robotics

Reliability and
Research

Safety

Privacy and
Security

Fig. 5. Trust dimensions selected for a systematic review of trust in Al and Al-
powered robotics in the AEC industry
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failure to adapt to the new setting would result in reduced levels of trust.
4.4. Privacy and security

Humans’ trust in technology is highly influenced by the levels of
privacy and security involved in technology implementation [38]. Both
dimensions fall under the category of ethical or responsible Al where the
protection of human identity and sensitive data as well as the vulnera-
bility (i.e., security) of the system against attacks that breach privacy are
known as leading trust (or distrust) drivers [43]. In the AEC literature,
workers and clients’ sensitive data vulnerable to privacy leaks [44] as
well as cybersecurity issues pertaining to the use of cameras, drones, and
other sensing devices have been widely regarded as barriers to tech-
nology adoption [44,45]. Privacy and security issues in AEC are prone to
be exacerbated by the growth of automated and intelligent agents and
have to be addressed in the context of Al-based systems and robotics.

5. AI and robotics adoption in the AEC industry

Notwithstanding the recent surge in industrial technology advance-
ments and innovations, technical processes and workflows in the AEC
industry have been long criticized for inefficiency, safety hazards, and
workforce issues [9,46-49]. In other industries such as automotive,
health care, and manufacturing, Al-enabled systems and robots helped
alleviate such challenges [50,51]. Similarly, digital transformation is set
to revolutionize the AEC industry and Al and robotics play a critical role
in this major transformation [52]. Many researchers have studied and
explained the potential improvements made by Al-based technologies
and robots for different phases of construction projects [9,20,53-58].
Nevertheless, a one-size-fits-all study of Al and robotics adoption does
not do justice in the AEC field due to the multifaceted nature of con-
struction projects involving multiple stakeholders, decentralized pro-
duction, extensive use of subcontractors in different trades, lack of
standard workflows, and various project types. Therefore, researchers
have used various classification schemes to categorize technology
adoption approaches, drivers, or barriers in the AEC fields. For example,
Hatami et al. (2019) focused on construction manufacturing systems and
categorized the use of Al in this area into four main applications of
planning and design, safety of autonomous equipment, and monitoring
and maintenance [59]. In another study, a systems-framework was
presented by Pan et al. (2020) to identify key factors influencing the
future implementation of construction robotics in Hong Kong. They
identified eleven interrelated factors, critical for shaping the future
trajectory of construction robotic applications, including construction
costs, government support, and the scale of prefabrication, and sug-
gested that implementation of robots in construction suffers from lack of
interdisciplinary and non-technical studies [60]. The four main factors
hindering the adoption and acceptance of robotics and automated sys-
tems in the construction industry were identified in another study as (1)
contractor-based financial factors, (2) client-based financial factors, (3)
technical and work-culture factors, and (4) weak business case factors
[9]. In another scientometric study and using a science-mapping
method, it was concluded that genetic algorithms, neural networks,
fuzzy logic, fuzzy sets, and clustering have been the most widely used Al
methods in AEC to address topics and issues such as optimization,
simulation, uncertainty, project management, and cash flow analysis
[52,61]. Sacks et al. (2020) described Al fields such as machine learning,
deep learning, and computer vision as top AEC-supporting technologies
besides more established technologies such as BIM, 3D printing, and
Simultaneous Localization and Mapping (SLAM). With respect to
adoption driver and barriers, research has identified three key param-
eters of (1) promotion and support of research and evolution of sup-
porting technologies, (2) simultaneous or non-simultaneous
developments in various fields of application, and (3) interdisciplinary
collaboration between AEC industry and technology companies as key
drivers of Research and Development (R&D) in construction robotics
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[62]. Additionally, Sacks et al (2020) indicated that lack of complete
and accessible information in models is a major hindrance to broad
adoption of BIM and Al technologies in the construction industry that
prevents effective exploitation of the information they provide [63].

6. Discussion of trust dimensions and implications for the AEC
Industry

As stated in Section 4, a thorough scrutiny of the collected papers
reveals that a series of factors contribute to the “attitude” or “reliance”
(see the definition of trust in Section 2) in a multi-dimensional space.
These factors or dimensions have been presented with different names,
manifested in different characteristics of the human-technology system,
and categorized based on their semantics and functionality towards trust
building. The dimensions identified in Section 4 are used in this section
to present a review of their characteristics, applications in different
disciplinary research fields, and implications for the AEC industry. A
wide variety of other factors pertinent to these four (as shown by con-
nected nodes in Fig. 4) are also considered here to depict a complete
picture of trust as a multi-dimensional space.

6.1. Explainability and interpretability

As suggested by the panel on the One Hundred Year Study on Arti-
ficial Intelligence: Artificial Intelligence and Life in 2030 [64]: “well-
deployed artificial intelligence prediction tools have the potential to
provide new kinds of transparency about data and inferences, and may
be applied to detect, remove, or reduce human bias, rather than rein-
forcing it.” Technologies that involve obscure processes between the
input fed to the system and the generated output are generally less
trustworthy than those with transparent and interpretable inner-
workings [65]. The lack of a common language is a key barrier to
achieving transparency in Al as varying dentitions exist across disci-
plines [2]. “Openness” and “explainability” are two neighboring terms
that are commonly used in the literature to refer to the transparency and
interpretability concept in Al systems and address the notions implied by
“black box” terminology [66]. In particular, the concept of XAI has
recently gained tremendous momentum in computer science research
[34,67,68]. This research trend is motivated by intriguing results of
deep learning (e.g., mistakenly labeling a tomato as a dog [69]) to
provide an overview on transparency and interpretability of data-driven
algorithms [34,70-73].

XAl is in essence an initiative to transform black-box to white-box AI,
where the process by which the algorithms and models arrive at an
output could be intuitively interpreted by humans. A white-box model is
explainable by design and does not require additional processes to be
explained. In other words, XAI allows Al systems to operate in a glass
box, enabling computers to understand the context in their operational
environment while keeping humans in their decision loop [74]. Simi-
larly, knowledge representation and reasoning are the types of Al
models that develop knowledge-based systems using a symbolic repre-
sentation of domain knowledge and pre-defined rules rather than
complicated algorithms or statistics [75]. As a result, computers can
reasonably comprehend the knowledge, facts, and beliefs that exist in
the actual world, and then use them to derive accurate conclusions and
promote logic inference in a clear and efficient manner. Pan and Zhang
(2021) identify structural equation modeling (SEM) and Bayesian net-
works, as two easy and useful tools for establishing measurement models
for knowledge representation.

Particularly in robotics, explainable agents (e.g., autonomous robots)
are capable of providing explanations about their actions and the
rationale behind their decisions [76]. Understanding the behaviors of
robots that result in perceiving their actions is known as mentalizing or
mindreading which is derived from the Theory of Mind (ToM). Ac-
cording to the ToM, humans estimate the actions of other humans by
observing their behavior and attributing mental states thereby
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attempting to understand their own perspective [77,78]. Research
studies in the field of human-robot interaction (HRI) have confirmed
that humans show a similar to non-human objects and robots [77,79].
More generally, and to gauge humans’ trust in applied Al, it is important
to account for how ordinary users understand explanations and assess
their interactions with the system (e.g., tool, service) [80]. Developing
higher extents of explainability and interpretability equips users with
higher levels of understanding of and thereby trusting in the intelligent
agents or Al models [81-83].

In industrial applications, explainability and interpretability can be
viewed as the most important factor in determining the level of trust in
Al and robotics given the fact that such systems are often designed and
developed by companies external to the end-user organization [84]. This
is particularly true for AEC companies where technologies are not al-
ways developed in-house, and they are sometimes purchased or licensed
from outside developers. In such cases, the obscure nature of decisions
made by Al-based systems and robots make practitioners even more
hesitant to trust them [85]. From an HRI standpoint, transparency and
interpretability in construction robotics can be achieved if the robot is
flexible in the type and extent of help it offers. The level of collaboration
may differ as some tasks are structured and specified to be completely
performed by a robot, while some other tasks may require human
engagement (i.e., human-in-the-loop) [86]. In construction, human-in-
the-loop applications comprise the majority of the current applica-
tions. In one example, Follini et al. (2020) proposed a collaborative
robotic platform focused on human-in-the-loop applications considering
the unstructured, dynamic job site environment. Their proposed plat-
form is programmed to follow the operator while it carries heavy ma-
terials and equipment and stops when its sensors detect the close
distance to the operator or any obstacles. Additionally, the robot can
navigate through the site based on known geometric and semantic in-
formation of the building project by connecting the Robot Operating
System (ROS) the BIM [87].

Very little research has been explicitly devoted to the role of
explainability and interpretability in Al-based AEC applications. Re-
searchers have examined the potential of Blockchain technology to in-
crease transparency and simplify interpretably in different phases of
construction [88,89]. Blockchain technology promotes peer-to-peer
digital transaction management which can be used as a secure and
transparent method among users. In simple words, Blockchain can add
value to Al by explaining Al decisions, mitigating Al risks, increasing Al
efficiency, and improving data accessibility and decentralization [90].
In one study, a framework was proposed based on Blockchain technol-
ogy to facilitate the use of BIM, and improve data transparency and
security in construction projects [91]. In another study of the use of
Blockchain in AEC industry, researchers proposed 3 Blockchain-based
applications for construction projects, namely Blockchain-based con-
tract management, Blockchain-based supply chain management, and
Blockchain-based equipment leasing which can be utilized by AEC
professionals [92].

In the context of knowledge representation, construction safety
management is an area of application for SEM which is frequently
combined with exploratory factor analysis (EFA). Zaira and Hadikusumo
[93], for example, used SEM to identify the most effective intervention-
related safety practices for improving workers’ safety behavior. Simi-
larly, Liu et al. used a combination of SEM and EFA to identify the
critical risk factors and advise safety control in a complex metro con-
struction project [94]. Zhang et al. created a SEM-based strategy to
determine dynamic safety leadership roles during different phases of a
construction project, which enabled stakeholders to better assign re-
sponsibility for safety management [95]. There is also a different strat-
egy that can be used for reasoning. The fuzzy cognitive map (FCM) is
constructed using data or expert opinions. This type of fuzzy graph
structure interprets complex relationships and allows systematic causal
propagation using a combination of fuzzy logic and cognitive map,
which can provide immediate understanding and identification of root
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causes of a risk event even under complicated, uncertain, and subjective
conditions [96].

The aforementioned examples and applications highlight the
importance of explainability and interpretability to generate trust in Al
and Al-powered robotics in any field including AEC. The term
“comprehensibility” (which includes transparency, explainability,
traceability, and consequently interpretability aspects) with regards to
Al's decisions has emerged recently in the literature to cover a wide
range of important concepts in this context. With the fast pace of tech-
nology advancements in the areas of Al and robotics, the social science
literature emphasizes the need for research related to the interconnec-
tion between trust and the transparency of AI's decision. Moreover,
since explainability and interpretability are qualitative phenomena and
can be subjectively interpreted, concepts such as the limits of inter-
pretability in Al and robotics and relative transparency of Al and ro-
botics in the AEC industry are yet to be better investigated.

6.2. Reliability and safety

Reliability and safety are two cornerstones of trust in Al-powered
systems [97]. Both concepts are related to trust from a performance
(rather than a moral) angle [98] and are interconnected paradigms in
the context of trust between the human user and a robot agent. On the
one hand, safe interaction with robots make them more reliable and thus
trustworthy [99]. On the other hand, increased reliability may lead to
overtrust and higher potential complacency when the robots act
unsafely [100,101]. This tradeoff highlights the importance of a process
called trust calibration within a human-robot team to achieve an
appropriate level of trust given both human and robot capabilities. Trust
calibration process enables a human to accurately recognize the risks
associated with trusting a person or machine [14]. In this process, the
human user learns the abilities, reliability, and failure modes of the
agent to avoid overtrust and undertrust [102]. If the user undertrusts the
intelligent agent, trust calibration helps them to gradually build trust in
the system with experience and iterative interactions [103]. Whereas in
an overtrust situation, the user accepts too much risks as they believe
that the system will mitigate those risks [104].

Another tradeoff that affects trust from a reliability and safety
perspective, is the amount of human effort versus robot autonomy.
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Reliability is an HRI variable that needs to be evaluated as a function of
robot autonomy. Beer et al. (2014) discussed this concept by proposing
levels of robot autonomy (LORA) for HRI [105]. Their proposed LORA
classification starts at a stage where the human is in full control and the
process is Manual and continues with similar approximations of a ro-
bot’s autonomy along a continuum that ends with Full Autonomy as
illustrated in Fig. 6.

All these classifications are analyzed based on the engagement of the
human, robot, or both in sensing, planning, and acting. Besides LORA,
there are other similar widely influential taxonomies of automation
levels such as the classic Sheridan-Verplank levels of automation [106]
and recent classification schemes for self-driving cars levels of autonomy
[107,108]. However, a common criticism of all these taxonomies is the
fact that they only represent situations in which boosted levels of
automation will certainly result in restricted and limited human control
(i.e., one-dimensional levels of automation). In an effort to address these
constraints, Shneiderman (2020) proposed the Human-Centered Artifi-
cial Intelligence (HCAI) framework to produce designs that are reliable,
safe, and trustworthy and not a zero-sum game in terms of the robot and
human levels of control. HCAI indicates that despite what one-
dimensional taxonomies suggest, achieving high levels of human con-
trol, and at the same time, high levels of automation (i.e., two-
dimensional HCAI) is possible and in fact, leads to increased human
performance levels [109]. This two-dimensional HCAI toward reliable,
safe, and trustworthy Al is shown in Fig. 7.

The construction industry deals with major safety and health prob-
lems, and many technology tools have been developed to alleviate this
grand challenge [110]. As such, addressing safety issues using Al is a
popular research topic in construction [111-113]. Construction tasks
that should be carried out at a high altitude, over extended periods of
overtime work, or under any hazardous condition are desired to be
delegated to Al-controlled systems or robots to increase efficiency and
eliminate accidents [86]. Systems that use hazard proximity monitoring
are among the most common applications of Al for construction safety.
For example, researchers have implemented a system which sends im-
ages from trucks, cranes, and other construction machinery to a data-
base via 5G wireless networks and utilizes Al to evaluate the interactions
between workers and equipment [114]. Al can also be used to predict
safety measures such as injury severity, injury type, body part impacted,

Level

Description

Full Autonomy

Robot performs all aspects of a task autonomously

Supervisory Control

Robot does all aspects of task, but human continuously
monitors the process. Human can override and set new goals

Executive Control

Human sets an abstract high-level goal. Robot autonomously senses
environment, sets the plan, and takes action.

Robot Initiative

Shared Control with |Robot does all aspects of the task and can ask human for assistance in
setting new goals and plans, if there are difficulties and ahcllenges.

Shared Control with
Human Initiative

Robot autonomously senses the environment, develops plans and
goals, and takes actions. Human monitors the process and may intervene
and set new goals and plans if the robot is facing challenges.

Decision Support

Both the human and robot sense the environment and generate a task

plan. Human makes the final choice and commands robot to execute tasks.

Batch Processing

Both the human and robot monitor and sense the environment. Only human
sets the goals and plans for the task. Robot executes the assigned tasks.

Assisted
Teleoperation

Robot senses the environment and chooses to intervene with task that
human assist with all aspects of it.

Teleoperation

Human is responsible for sensing and planning. Robot assists the human
with task execution.

Manual

Human does all aspects of the task with no involvement of robot.

Fig. 6. One-Dimensional levels of robot involvement in operations (modified from Beer 2014)




N. Emaminejad and R. Akhavian

Human

Control

Computer

Low High

Automation
Fig. 7. Two-dimensional framework for HCAI (modified from Shneider-
man 2020).

and incident type in a construction project [115]. In building con-
struction, a dynamic BIM can provide AEC project teams with insights
for better planning and more efficient design, construction, and opera-
tion/maintenance. This can be improved by BIM and Al-based software
packages that use machine learning algorithms to analyze all aspects of a
proposed design (or an altered design) to ensure it does not interfere
with other systems in the building, thus enhancing the reliability of
design [10]. As an example, the usefulness of Al in designing smart
homes has been extensively discussed by Augusto and Nugent [116].
However, regardless of whether the ultimate goal is to address a
safety challenge or not, newly introduced Al-enabled systems and ro-
botics will be less trusted if they pose new safety threats. Research has
shown that any technologically advanced system must exhibit reliability

-
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and safety to be acceptable in construction [117]. Human safety while
working with intelligent robots in industrial applications is an important
consideration since the type of robot hardware is usually rugged, large,
or manipulation-enabled and humans often feel unsafe working around
such robots [118,119]. Fig. 8 shows a few examples of using such ro-
botics systems in building construction.

The study of reliability and safety in human-robot interaction in
construction is often conducted with two validation approaches. In one
approach, robot prototypes operate in physically simulated working
environments to identify robot weaknesses in reliability and safety and
enhance its functionality. Another approach is to develop predictive
models to explicate the perceived reliability and safety of robots and
their influence on humans [124,125]. Models such as the Robot
Acceptance Safety Model (RASM) have been developed using the second
approach in the construction robotics literature. RASM is a model that
integrates Immersive Virtual Environments (IVEs) to analyze the
perceived safety of collaborative work between humans and robots. This
was done by inviting participants to a laboratory to collaborate and
work with a 3D simulated robot regarding a construction-related task
using a head-mounted display. According to the IVE results, segregation
of human and robot working areas leads to accelerated perceived safety
as it facilitates team identification and fosters trusting robots gradually.
Moreover, it was deduced that the improved safety feeling and comfort
of simulation attendees while working with robots signifies their will-
ingness to work with robots in the future [126]. Collaboration and ef-
ficiency of human and robot work in industrial settings can be hindered
by collisions and other types of accidents [127]. Active vision-based
safety systems have been reported to be one of the best solutions to
mitigate collisions and consequently, boost trust in humans to work
alongside robots and automation systems. Recent methodologies and
advances in vision-based technologies and alarming systems including
various methods, sensor types, safety functions, and static/dynamic
action of robots to work in their zones have been reviewed and analyzed
technically in the literature [128].

The literature reviewed in this research suggests that the applications
of Al and its subfields (e.g., machine learning, computer vision,

m m\-\\Lm it
||\

/ \ \\ \‘_‘

Fig. 8. Examples of application of robotics in building construction: (a) Architecture-related, facade installation [120]; (b) Structure-related, shotcrete for shear walls
[121]; (c) Interior layout-related, BIM-enabled mobile ceiling-drilling robot [122]; (d) Demolition of buildings and existing structures [123]
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knowledge-based systems, and natural language processing) as well as
Al-powered robotics in construction often aim at promoting health and
safety which can in turn improve reliability and trust. However,
regardless of the end goal, the role of reliability and safety of Al systems
and Al-powered robots in developing cognitive trust is crucial and de-
serves further explorations.

6.3. Performance and robustness

Machine competence, which manifests itself in technical perfor-
mance and ability, is a leading driver of trust in human-machine teaming
literature [14,15,129]. To assess the performance of an Al system,
measures such as accuracy are commonly used. Accuracy is a gold
standard of machine learning models that contributes to the trustwor-
thiness of the Al system [29]. Also, Al robustness refers to the ability of
Al developed in one context to be transferred to a wide range of prob-
lems (within and outside that context) in a systematic way while
demonstrating a similar level of performance [130]. Theoretically, the
two concepts of performance and robustness can be at odds with each
other since imperceptible perturbations of the test data (i.e., adversarial
examples) may result in incorrect misclassification with high confidence
[131-134]. However, they are both commonly used to describe the
technical reliability of Al systems in the context of trustworthiness. For
example, the Ethics Guidelines for Trustworthy Al prepared by the Eu-
ropean Commission in 2018 defines robustness as “resilience, accuracy,
reliability of Al systems” and lists it as one of the seven broad key re-
quirements that contribute to trustworthiness [38,135]. Explicit training
against known adversarial examples, as well as techniques such as reg-
ularization and robust inference are methods to produce robust machine
learning models with acceptable accuracy [136,137]. One way that
laypeople trust AI models is based on performance metrics such as ac-
curacy. Such accuracy-based trust can be achieved by knowing the
stated performance of the system or direct observation or perception of
the model’s performance in practice. However, if a model’s observed
accuracy is low, the effect size of the stated accuracy on people’s trust is
very low, meaning that people’s trust in a model is significantly affected
by its observed accuracy regardless of its stated accuracy [138].

Regardless of the source of where the performance accuracy comes
from, people stop trusting an algorithm as soon as they observe it makes
a mistake [139,140]. Laypeople stabilize their trust to a level correlated
with the perceived accuracy [141], although system failures have a
stronger impact on trust than system successes [142]. While perfor-
mance and robustness have shown to have a significant effect on user’s
trust in an Al system, there are other machine learning performance
metrics such as precision and recall that have been shown to be effective
in terms of trust-building. For example, users tend to put more weight on
a classifiers’ recall rather than its precision when deciding whether the
classifiers’ performance is acceptable, although the application can
make a difference in terms of the weight [143].

AEC use cases are not different from other applications in that the
performance of the technology tool plays a key role in trusting and ul-
timately adopting it. Almost all performance measures in construction
ultimately target a metric related to the cost or schedule of the project
[88,144,145]. However, immediate gains represented by factors such as
quality, safety records, sustainability measures, productivity metrics,
and inspection outcomes are as important as ultimate cost and schedule
benefits in adopting innovations and trusting new technologies in con-
struction [146-148]. Regarding performance optimization and assess-
ment in construction projects, there is a huge advantage in using BIM,
big visual data, and modeling construction performance analytics [149]
in conjunction with AI systems. Digitizing construction site layout
planning process in BIM and training models to be used in future pro-
jects, can enable project teams to significantly increase their perfor-
mance and efficiency. As suggested by [150], a holistic real-time site
analytics tool using Al as well as cloud-based data analytics of the data
collected on the site can be developed to facilitate reaching performance
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targets and quality standards. For example, the project management
team can take advantage of an Al chatbot which can be utilized on the
job site to receive, process, and share activities and updates.

Construction is a multi-sector, project-based industry where in a
typical project, multiple specialty trade contractors are involved. Het-
erogeneity in projects means that the applications and algorithms of Al
and machine learning systems can vary widely from one project type to
the other or even within one project [151]. Thus, robustness in con-
struction Al translates to the ability to successfully transfer models be-
tween different projects, sectors, trades, and even geographic locations
considering the uniqueness of any given project without compromising
the user’s trust in the system’s ability. For example, a 334 meter-wide
dam construction work in Japan used robots for tasks such as pouring
concrete, brushing uneven layers, and dismantling forms [152]. Also,
within tunnel construction projects, applications such as inspection,
maintenance, and health monitoring benefit from AI [153-155]. Robust
Al models developed for these tasks in the dam construction project
should be effectively transferred and reused in the tunneling project if
certain project-specific risk, quality, and inspection considerations are
programmed into the design of the model. It is also important to note
that performance and robustness must manifest themselves in both the
technical construction work and the business aspects. In other words,
trust cannot be generated if the models have acceptable technical abil-
ities in performing trade work but ignore variables related to business
and management processes [156].

6.4. Privacy and security

Privacy and security are among the most important socio-technical
considerations pertinent to the use of Al and robotic technologies. Pri-
vacy is defined as the right not to be observed. Nevertheless, the nature
of Al necessitates observing various phenomenon to learn and improve
where human is involved [157]. Ethical Al (a.k.a. responsible AI) is an
enabler of engendering trust and scaling AI with confidence [158]. Data
security is the most basic and common requirement of responsible Al
Although AI privacy and security are interconnected in most cases, they
should not be confused with each other or used interchangeably. Secu-
rity in Al can be associated with ensuring the confidentiality of data,
preserving information integrity, and guaranteeing immediate data
availability when desired. However, privacy is often tied to acquiring,
processing, and using personal data. Preventing data breaches by acci-
dent and/or improper system engineering and design, ensuring un-
planned data corruption, and obstructing outsider’s intention to hinder
or limit user’s access to the system or portal are undoubtedly essential to
make sure a designed Al-based system or product cannot be hacked or
breached (Wu 2020). The majority of the recent topics regarding ethical
Al in the literature are focused on opacity of Al systems, privacy and
surveillance, machine ethics (or machine morality), ethical decision-
making effect of automation on employment, manipulation of
behavior, human-robot interaction, bias in decision-makings, control of
autonomous systems, artificial moral agents, and singularity [159,160].

In the context of human-robot interaction, privacy and security have
also been identified as a relevant risks to trust [161]. Privacy depends on
the protection of cybersecurity systems and is directly related to
engendering trust in robots [162]. There are two types of risks to trust
from privacy and security perspective. “Privacy situational risk” is the
belief that a human-robot task or activity will likely expose personal
information about the user or their surroundings. “Privacy relational
risk” is the belief that a human-robot task will expose the team or their
environment to unauthorized observation or disturbance. “Security
situational risk” is the belief that a human-robot task or situation could
make the team vulnerable to crime, sabotage, attack, or some other
threat to safety. “Security relational risk” is the belief that a human-
robot could be vulnerable to being misused for crime, sabotage,
attack, or some other threat to safety [161].

There are limited studies on the ethical challenges caused by using AI
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and robotics in the AEC industry. Al and robotics applications require
monitoring construction tasks in order to collect data using telecom-
munications devices, wearable devices (such as VRs, smart hard hat
cameras, and sensors), GPS, CCTV cameras, drones, or smartphones
[163-165]. While applications vary from worker safety [166] to
equipment emission monitoring [167], worker performance and
contextual information are involved in one way or the other regardless
of the application. Some researchers believe that worker monitoring
methodologies that are often used to train machine learning models fail
to consider the worker’s natural consciousness, intentionality, and free
will [168]. Another pervasive technology in the AEC domain that en-
ables AI and robotics applications is cloud computing [169]. Industrial
applications of cloud computing involve privacy and security challenges
for data security, access control, and intrusion prevention [170,171],
but specific solutions for data security in construction projects should be
further studied and analyzed [169]. Data security is particularly
important for projects related to the construction of buildings and in-
frastructures associated with the military, government, public sector and
public service. AEC project data including contracts information, blue-
prints, photos, and project personnel data, are considered confidential
and careful attention must be paid to prevent data leaks.

7. Future research

With the observations outlined in the comprehensive review of the
literature on trust in Al presented in Section 6, the authors have iden-
tified the following future directions for the AEC research in this area.

7.1. Integrated and interdisciplinary studies

There are various lenses through which the trust dimensions iden-
tified in this paper can be seen. For example, the explainability and
interpretability concept is sometimes seen as a technical issue and
sometimes as a legal or social issue [2]. Dimensions such as reliability
and safety can be studied from both the cognitive and emotional per-
spectives, and humans trust phenomena that do not require social or
emotional intelligence [4]. Therefore, regardless of the application area
and technology implementation, it is important to study trust in AI and
robotics as an interdisciplinary field of research involving researchers
with a variety of related backgrounds. In AEC, various engineering and
management aspects of the projects also affect this conglomerate of
fields. Depending on the project phase (e.g., pre-construction, con-
struction, post-construction), project type (e.g., building construction,
horizontal construction), application objective (e.g., safety, productiv-
ity, sustainability, scheduling), and specific technology being leveraged
(e.g., BIM, teleoperated robots, mobile computing, blockchain),
different trust elements can hinder or drive adoption of Al in AEC pro-
jects. A previous study by the authors indicated that regardless of the
project phase, type, application, and technology, all the identified trust
dimensions in this study (i.e., Explainability and interpretability, Reli-
ability and safety, Performance and robustness, and Privacy and secu-
rity) are key in generating trust in Al and robotics for AEC applications
[25].

7.2. Trust calibration

Adjusting human trust levels with the actual abilities of the AI and
robotics is a key process to eliminate overtrust and undertrust [14,172].
Research has shown that creating transparency about an Al or a robot’s
abilities significantly increases the likelihood of building calibrated trust
and increasing adoption levels [173]. However, similar to the dearth of
research in trusting and adopting Al-enabled systems and robotics in the
AEC industry, determining the adequate level of trust that is justified
and can be adjusted based on real technical capabilities (i.e., trust
calibration) has received very little attention. Also, as Desai et al. (2009)
mentioned in their study, research should be conducted to develop trust
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models that are particularly aimed at human-robot systems since trust
calibration is a critical topic in human-centered robotics. As such, trust
calibration analysis through empirical studies, particularly relating to
factors unique to robotics (and not general Al or automation), deserve
further investigations [174].

7.3. Human-centered Al and robotics

In AEC, it is vital to promote research that focuses on AI and robotics
as an enabler for transitioning workers’ role to higher-level tasks as
opposed to eliminating large segments of the workforce. Research has
shown that to initiate trust between humans and Al, Al systems should
prove human-centered and a means to serve humankind, upskill
workers, and promote human values [175,176]. Another concept in
human-centered research towards trust in Al and robotics that received
major attention in fields other than AEC, is the importance of anthro-
pomorphism. Anthropomorphism refers to human-likeness and the
perception of technology or an object as having human qualities, such as
feelings [177,178]. For an industry that still relies on labor as the pri-
mary production source, designing tools and approaches without the
human as a centerpiece is doomed to failure in many fronts including
trust. Therefore, future research should recognize the importance of
human-centered design for AI- enabled systems and robots in AEC
adoption studies.

7.4. Enhancing explainability and interpretability on value and
mechanism

In order to secure management buy-in and establish trust among end-
users, the value of adopting Al and robotics should be clearly identified
[179]. In addition, the mechanism by which Al enhances the workflows
should be clear to those who make adoption decisions as well as the end-
users [180]. Addressing these two issues can address the explainability
and interpretability requirement identified in this research in a sub-
stantial way. Previous research has demonstrated the significance of
presenting benefits in terms of key performance indicators (KPIs) such as
time, cost, safety, and sustainability added values [181]. In construction,
many studies have shown that perceived added value of new technolo-
gies in terms of safety, efficiency, and gains in cost or time saving have a
substantial impact on adoption levels of those technologies [182-185].
The important role of workforce training and education in establishing
the “what” (i.e., value) and “how” (i.e., mechanism) of introducing new
technologies have also been highlighted in the literature [186]. Further
research can determine what approaches best demonstrate the added
values and adequately explain the inner-workings of AI and robotic
technology to construction professionals.

7.5. Intuitiveness and familiarity

A recent survey on human-robot collaboration emphasizes the fact
that intuitive interfaces drive adoption levels [187]. In the AEC appli-
cations, this translates to human-technology interaction mechanisms
that do not entail sophisticated programming or require complex com-
puter skills. For example, advances in natural language processing (NLP)
[188], learning from demonstration (LfD) [189], and active learning
[190] have emerged in computer science to simplify the ways humans
interact with Al-enabled applications or robots, thus making them easier
to adopt. By the same token, a familiar interface results in a more
welcoming appearance for the end-user and thus increased levels of trust
and adoption [191]. In AEC applications, it is vital to design Al and
robotic technologies that are compatible with the traditional workflows
and reinforce best practices as opposed to replacing them. Furthermore,
leveraging technologies such as BIM that have become industry standard
as a familiar interface can create the intuitiveness and familiarity effects.
Future research can explore possibilities that NLP, L{D, active learning,
and familiar technologies such as BIM can offer to further grow the
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adoption levels of Al and robotics applications.
8. Conclusion

In this paper, a comprehensive review of research on (1) human trust
in Al and Al-powered robotics as well as (2) the role of these technol-
ogies in the AEC research and industry practice was presented. The
concept of trust was broken down into four main dimensions (i.e.,
explainability and interpretability, reliability and safety, performance
and robustness, and privacy and security) to organize the presentation of
the review. For each dimension, the literature published between years
2000 and 2021 in two categories of trust in “Al and Al-powered ro-
botics”, and “Al and Al-powered robotics applications in AEC”, totaling
584 peer-reviewed scholarly papers, were thoroughly reviewed. A
thorough analysis of the literature in this study indicates that although
the AEC research and practice increasingly study and deploy AI and
robotics, no systematic effort is focused on investigating trust in these
technologies. This is while the literature in fields such as computer
science and psychology emphasize on building appropriate levels of
trust and acceptance between the Al systems and the end-user as a first
step to increase adoption and utilization. This study also found that
explainable and transparent Al systems that are built to have under-
standable operations and outputs are more trustworthy. Also, the level
of privacy involved in technology implementation was shown to have a
big impact on human’s trust in it. It was confirmed that Al systems must
also be safe, reliable, and secure against unauthorized actions in order to
be trusted. While embodied intelligence (e.g., intelligent robots) may
require presenting more indications of safe behavior in the presence of
human users, software and computer networks will be distrusted as well
if they show indications of safety and security hazards. Additionally, the
ability of Al and Al-powered robots to prevent malfunctions or harm the
user is directly linked to their reliability. Performance inaccuracies and
flaws can result in distrust, and technological or behavioral in-
terventions must be considered by design to ensure that autonomous
systems that show instances of inaccuracy of malfunction can regain
user’s trust. Finally, based on presented literature analysis, five di-
rections for the future of research in trust in AI and robotics for AEC
applications were proposed. The authors believe that the collection and
critical reviews presented in this paper can guide the work of re-
searchers, scholars, and practitioners in this area to contextualize their
methods within the state-of-the-art.

The presented study has three limitations. While the four dimensions
presented in this research are the main trust paradigms identified in the
literature, other dimensions such as fairness [192], tangibility [4], and
availability [29] can be included in future reviews. Second, the litera-
ture prior to 2000 was not reviewed, thus a more comprehensive review
can also include those publications. Third, the proposed framework for
the literature review only considered robots that are powered by AL A
standalone review on trusting robots in AEC may also include robotic
systems that are not intelligent or do not use Al to function.
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