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A B S T R A C T   

Human-technology interaction is concerned with trust as an inevitable user acceptance requirement. As the 
applications of artificial intelligence (AI) and robotics emerge in the architecture, engineering, and construction 
(AEC) industry, there is an immediate need to study trust in such systems. This paper presents the results of a 
systematic review of the literature published in the last two decades on (1) trust in AI and AI-powered robotics 
and (2) AI and robotics applications in the AEC industry. Through a thorough analysis, common trust dimensions 
are identified and the connections to the existing AEC applications are determined and discussed. Furthermore, 
major future directions on trustworthy AI and robotics in AEC research and practice are outlined. Findings 
indicate that although AEC researchers and industry professionals increasingly study and deploy AI and robotics, 
there is a lack of systematic research that studies key trust dimensions such as explainability, reliability, 
robustness, performance, and safety in the AEC context   

1. Introduction 

The growing sociotechnical influence of Artificial Intelligence (AI) 
and AI-powered robotics is nowadays realized in various industrial and 
organizational processes. As the role of AI in our lives becomes more 
prominent, and with the emergence of autonomous and intelligent 
agents in industrial settings, the need to build trust towards these agents 
by their human counterparts is becoming ever more apparent [1]. 

A report published by the National Academies of Science, Engi
neering, and Medicine together with the Royal Society identified trust, 
transparency, and interpretability as some of the key sociotechnical 
challenges in designing, evaluating, and deploying AI systems [2]. 
Research has consistently shown that an explainable and transparent 
decision-making process can help users gain an appropriate level of trust 
in intelligent agents [3]. However, the algorithmic complexity and 
abstraction of AI-based processes makes it challenging to provide 
straightforward and comprehensible explanations for such decisions [4]. 
Additionally, while transparency is one of the key factors, it is not the 
only element that affects trust in AI and robotics [5]. For example, in the 
context of AI-enabled robots, it was shown that new technology is more 
trusted when it functions reliably and safely as we expect other humans 
to do [6]. 

Over the past two decades, the architecture, engineering, and con
struction (AEC) industry has shown significant potential to widely 

deploy robotics and AI technologies. However, the industry practi
tioners are generally reluctant to trust new technologies, and the use of 
antiquated work processes is prevalent [7–10]. Small businesses 
comprise the vast majority of the industry with a share of 82.3% 
(compared to 44.4% for manufacturing and 35.1% for retail) [11] and 
smaller companies are known to be often the “late majority” and “lag
gards” in technology adoption [12]. Additionally, a typically very small 
profit margin (i.e., 3-5%) makes AEC practitioners more hesitant to 
adopt new technologies with unproven cost-saving prospects and 
expensive ownership cost for programming and maintenance. Research 
has shown that building a culture of trust in the potential and reliability 
of AI-powered systems and robotics can play a key role in enhancing 
adoption levels within the AEC industry [13]. 

In this study, a thorough systematic review of the literature on (1) 
trustworthy AI and AI-powered robotics, and (2) AI and AI-powered 
robotic applications in the AEC is presented to prime this area of 
research for future studies. It is important to note the twofold scope of 
this research project as illustrated in Fig. 1. 

2. Research background 

2.1. Definitions 

Trust is defined as “the attitude that an agent will help achieve an 
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individual’s goals in a situation characterized by uncertainty and vulnera
bility” [14], and as “the reliance by an agent that actions prejudicial to their 
well-being will not be undertaken by influential others” [15]. AI and AI- 
powered robotics belong to interdisciplinary fields that include com
puter science, engineering, mathematics and statistics, and psychology 
that enable learning from existing data and past experience to perform 
tasks that typically require humans’ intellectual processes [4,16,17]. AI 
and AI-powered robotics applications studied in this research include 
embodied intelligence (e.g., a robot) and software or hardware that can 
be used stand-alone or distributed through computer networks. 

2.2. Previous systematic reviews in this area 

Trustworthy AI and AI-powered robotics, have been previously the 
subject of systematic literature review articles [18,19]. Such studies 
often describe the factors that increase the acceptability and reliability 
of these technologies [18] and define trust in the context of those factors 
[19]. A widely acknowledged fact in studies of trust in AI and AI- 
powered robotics is the importance of contextualized research with a 
special focus on the culture of the environment in which the technology 
is adopted [20]. Similarly, the technology acceptance behavior and 
technical background of the end users have shown to be highly conse
quential on the level of trust in AI and AI-powered robotics [9]. Trust 

factors often have different interpretations in different contexts (or in
dustries). For example, security or reliability in the banking industry are 
among critical trust dimensions with clear definitions [21] that are 
different from what they mean in a construction project or architectural 
design task. In the AEC industry, with a considerable heterogeneity of 
work conditions and stakeholders in a typical project, such contextual
ization considerations deserve even more attention. Nevertheless, to the 
best of the authors’ knowledge, there has been no systematics review 
effort to identify AI and robotics trust factors in the AEC industry and 
consolidate publication records in this area. A limited number of papers 
that studied AI and robotics in AEC have only discussed the challenges, 
limitations, and benefits of using these technologies in this industry, 
without offering practical solutions to address trust issues. This paper 
consolidates the records of research published on the topics of trust in AI 
and AI-powered robotics as well as AI and AI-powered robotics in AEC to 
create a comprehensive picture of trust requirements and dimensions 
conducive to this industry. 

3. Systematic review methodology 

In this study, a systematic literature review (SLR) approach devel
oped by Lockwood and Oh (2017) is used to illustrate a comprehensive 
picture of the literature and review the most relevant publications. Fig. 2 
presents a schematic overview of the review approach adopted in this 
research. 

3.1. Establishing a research question 

The first step in the SLR is to set up its focus through framing clear 
research questions to be addressed in the review. Well-formulated 
questions can guide the direction of the review by determining what 
studies should be included/excluded in the research, how these studies 
should be identified, and what information should be extracted from 
them [22,23]. The research questions in this study follow the same 
twofold structure of “trust in AI and AI-powered robotics” and “AI and 
AI-powered robotics in the AEC industry”. Specifically, this study seeks 
to answer two questions: (1) What are the key and common drivers (i.e., 

Fig. 1. The two-fold focus of this study and interconnection of the scopes  

Fig. 2. Schematic overview of the SLR approach used in this research study  
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dimensions) of human trust in AI and AI-powered robotics? (2) What are 
the connections, similarities, and differences between the identified 
dimensions and the existing/potential applications of AI and AI- 
powered robotics in AEC? 

3.2. Database search 

A comprehensive literature search was conducted in Scopus, Google 
Scholar, Web of Science, and PsycInfo databases to find articles, pri
marily published in peer-reviewed journals and conference proceedings. 
The first three databases were selected because they are among the most 
comprehensive and up-to-date sources of publications [24]. PsyInfo was 
also selected because human trust is in essence a psychology topic and 
this database is the primary reference source in the psychology research 
disciplinary area. Therefore, the selected four databases collectively 
form a comprehensive resource of the pertinent studies in this research. 
After a preliminary analysis of the literature [25], a list of search key
words was created, which was further refined as the searching process 
progressed. Particularly, the keywords were selected to cover all three 
main areas of Purpose, Process, and Performance during the two stages 
of “building initial trust” and “continuous trust development” as iden
tified in previous research in this area [26]. The set of keywords and key 
phrases used to search in titles, abstracts and keywords included “Trust 
in AI”, “Trustworthy AI”, “Acceptance modeling for AI”, “Ethical AI”, 
“Transparent and explainable AI”, “Interpretable AI”, “Reliable AI”, 
“Safe AI”, “Privacy in AI systems” and “Human-robot interaction”, to 
find papers on trust in AI and robotics domain. To collect papers related 
to the use of AI and robotics in AEC, keywords and key phrases including 
“Artificial Intelligence in construction management”, “AI in construc
tion management”, “AI-enabled systems in construction management”, 
“Robotics in construction management”, and “Construction automation” 
were used. Furthermore, single words of these phrases were combined 
using the + operator (for example: "AI+construction+trust" or 
"AI+intrepretability") to expand the search results. In total, the search 
resulted in 650 preliminary publications including journal and confer
ence papers, theses, and book chapters that were collected for review 
and imported to a reference managing software EndNote [27]. 

3.3. Literature selection 

At this stage of the SLR, abstracts, highlights, and key words were 
retrieved, analyzed, and reviewed, and those studies that met the in
clusion criteria were selected for a full review. The inclusion criteria 
were: (1) papers must be peer-reviewed and published after 2000 (pa
pers published prior to 2000 were not included due to the fast pace of AI 
and robotics research advancement in the last two decades); (2) papers 
must be written in English language; and (3) the study subject of the 
papers must be either on trust (or its dimensions) in AI and robotics, or 
the applications of AI and robotics in the AEC industry, or both. This 
literature selection and screening process reduced the total number of 
articles to 584. 

3.4. Literature analysis 

This stage involved creating a metadata spreadsheet describing these 
papers (i.e., title, authors, publication year, and keywords) and a 
detailed review of the content. Among the total of 584 selected publi
cations, 361 papers were written by authors affiliated with the United 
States institutions, 47 papers were written by authors affiliated with 
institutions in China, and 29 papers were written authors affiliated with 
European institutions, as the top three geographical regions producing 
75% of the publications in this field. The top 10 sources in this review 
with the highest number of published articles in the field of trustworthy 
AI and robotics or AI and robotics in AEC are presented in Table 1. Also, 
Table 2 shows the vast majority of these articles were published as 
journal papers. 

Furthermore, the result of a temporal bibliographic analysis is shown 
in Fig. 3. In this Figure, a publication date histogram of the articles 
reviewed in this study is presented in two categories; those discussing 
trust in AI, and the ones focused on developing or adopting AI models for 
AEC applications. Fig. 3 shows that the number of articles published in 
these two areas of research has grown significantly since 2016. It is also 
noteworthy that this growth has been slower in the AEC industry. 
Additionally, the histogram is heavily skewed to the right which in
dicates the significant traction that has been gained by these two topics 
in the past five years. As the AI and robotics research community’s in
terest grow in the area of trust, research in AI and AI-powered robotics in 
AEC is also growing by a considerable margin. This observation em
phasizes the necessity and significance of research on trustworthy AI and 
robotics in the context of AEC applications. 

Finally, an analysis of keyword co-occurrences has been conducted 
to create a concise grouping of trust dimensions that is used to organize 
this literature review. This analysis was conducted using VOSviewer 
software [28] and the map of the co-occurrences is shown in Fig. 4. 

The size of the nodes is proportionate with the frequency of the 
keyword occurrence and the distance between each two nodes is 
inversely proportionate with the number of the keywords co- 
occurrences in the literature analyzed. This Figure serves two pur
poses. First, it clearly depicts the trust dimensions (identified in Section 
4) in the context of AI-enabled systems and robotics in the literature. 
They stand out as larger nodes, in the close proximity of the words “AI”, 
“machine learning”, and “trust” nodes. Second, it elaborates on these 
dimensions by showing the related factors (or sub-dimensions) that 
affect trust in AI and AI-powered robotics systems. Fig. 4 implies that 
factors such as explainability or security have been frequently cited in 
the literature as they demonstrate a relatively larger node size compared 
to other nodes (not considering AI, trust, and robotics, as they are the 
subject keywords). However, some factors, such as cyber security, have 
not been subject to as many studies. A preliminary conjecture solely 
based on such analysis could be that factors such as explainability have a 
much greater impact on the level of trust in AI and AI-powered robotics, 
even though such arguments must be evaluated through much rigorous 
analysis. It is equally likely that smaller nodes belong to trust factors that 
are as important as the larger ones in the AEC context, but they have not 
been yet studied sufficiently. This highlights the synergistic effect of all 
these dimensions and subdimensions and the fact that a comprehensive 
investigation must take all these dimensions and sub-dimensions into 

Table 1 
The top 10 publication venues with the highest number of publications reviewed  

Venue Name Number of 
Publications 

Automation in Construction 56 
arXiv Preprint 28 
Journal of Construction Engineering and Management 14 
Journal of Computing in Civil Engineering 12 
International Symposium on Automation and Robotics in 

Construction (ISARC) 11 
International Journal of Social Robotics 8 
Nature Machine Intelligence 7 
Energy and Buildings 7 
Artificial Intelligence 7 
Computers in Human Behavior 6  

Table 2 
Distribution of publication source types  

Source Number of Publications 

Peer-Reviewed Journals 407 
Conference Proceedings 131 
Book Chapters 39 
Theses 11 
Online Articles/Reports 4  
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considerations. Thus, Fig. 4 as a whole, can help in developing a road
map for trust in AI and robotics research in the AEC industry. The next 
Section describes a framework of trust dimensions based on the co- 
occurrence analysis here, which in turn provides an organization for 
further discussion. 

4. Trust dimensions 

State-of-the-art research has used different taxonomic categoriza
tions to classify factors influencing trust in AI and robotics [4,29–33]. A 
notable study in this area suggests that different trust dimensions affect 
human trust regardless of whether AI is deployed as a robot, virtual 

assistant, or embedded in a software [4]. Therefore, an integrated but 
compartmentalized review approach can provide a comprehensive view 
of trust in AI within a specific disciplinary field. To identify the key trust 
dimensions most applicable to AEC projects and applications, the au
thors have initially conducted a thematic analysis to identify the key 
relevant trust dimensions [25]. Inspired by the findings of that study and 
the literature on trustworthy AI and robotics, in this research common 
trust dimensions are used to organize a comprehensive and systematic 
review of the literature. The eight dimensions identified are Explain
ability, Interpretability, Reliability, Safety, Performance, Robustness, 
Privacy, and Security. Considering semantic similarities and in order to 
create a more focused discussion for AEC applications, the eight 
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dimensions are presented in four pairs for the purpose of this review. 
Each pair is formed by grouping two dimensions that according to the 
authors’ analysis, have appeared more frequently, studied together in 
trust in AI and robotics research, and are related in the context of AEC 
research [25]. Therefore, a total of four key trust dimension pairs are 
used to review empirical research on trustworthy AI and robotics and 
implications for AEC research. Fig. 5 illustrates the four trust dimensions 
used to organize this paper and a brief description of each dimension is 
provided in the following subsections. 

4.1. Explainability and interpretability 

In AI and robotics applications, explainability is often related to the 
concept of interpretability, where the operations of a system can be 
understood by a human through introspection or explanation [34,35]. In 
computer science, explainable AI (XAI) is a trending research topic [36]. 
In AEC, it is especially important since technologies are often not 
developed in-house. Therefore, the end-users may need to understand 
workflow between the input and output (i.e., explainability) and the 
output should be understandable and meaningful to them (i.e., 
interpretability). 

4.2. Reliability and safety 

Reliability is concerned with the capacity of the models to avoid 
failures or malfunctions and exhibit the same and expected behavior 
over time [37]. It can be seen from both technical and cognitive/psy
chological (e.g., affect) perspectives [38]. As a related dimension, and in 
the context of adopting AI and robotics in AEC, safety also has to be 
studied from both technical (i.e., avoiding accidents with heavy-duty 
construction robots) and psychological (i.e., AI and robotics applica
tions seen as job companions, not competitors) viewpoints [39,40]. 

4.3. Performance and robustness 

Ability, accuracy, or competence are similar concepts used in the AI 
and robotics literature to refer to the importance of performance in
dicators in gaining human trust [26,29,41]. These indicators (collec
tively referred to as performance in this study) play a key role in trust 
trajectories. Research has shown that humans have some preliminary 
performance expectations toward AI-enabled robots and failing to 
satisfy that expectation (or exceeding it) after interaction with the sys
tem has a major effect on trust [4,42]. A related concept in this realm is 
robustness. Robustness refers to performance consistency in different 
situations where the AI model or the robotic system is deployed [29]. 
This is particularly important in AEC applications as the environment 
and workflows are ever-changing within and between projects and 

failure to adapt to the new setting would result in reduced levels of trust. 

4.4. Privacy and security 

Humans’ trust in technology is highly influenced by the levels of 
privacy and security involved in technology implementation [38]. Both 
dimensions fall under the category of ethical or responsible AI where the 
protection of human identity and sensitive data as well as the vulnera
bility (i.e., security) of the system against attacks that breach privacy are 
known as leading trust (or distrust) drivers [43]. In the AEC literature, 
workers and clients’ sensitive data vulnerable to privacy leaks [44] as 
well as cybersecurity issues pertaining to the use of cameras, drones, and 
other sensing devices have been widely regarded as barriers to tech
nology adoption [44,45]. Privacy and security issues in AEC are prone to 
be exacerbated by the growth of automated and intelligent agents and 
have to be addressed in the context of AI-based systems and robotics. 

5. AI and robotics adoption in the AEC industry 

Notwithstanding the recent surge in industrial technology advance
ments and innovations, technical processes and workflows in the AEC 
industry have been long criticized for inefficiency, safety hazards, and 
workforce issues [9,46–49]. In other industries such as automotive, 
health care, and manufacturing, AI-enabled systems and robots helped 
alleviate such challenges [50,51]. Similarly, digital transformation is set 
to revolutionize the AEC industry and AI and robotics play a critical role 
in this major transformation [52]. Many researchers have studied and 
explained the potential improvements made by AI-based technologies 
and robots for different phases of construction projects [9,20,53–58]. 
Nevertheless, a one-size-fits-all study of AI and robotics adoption does 
not do justice in the AEC field due to the multifaceted nature of con
struction projects involving multiple stakeholders, decentralized pro
duction, extensive use of subcontractors in different trades, lack of 
standard workflows, and various project types. Therefore, researchers 
have used various classification schemes to categorize technology 
adoption approaches, drivers, or barriers in the AEC fields. For example, 
Hatami et al. (2019) focused on construction manufacturing systems and 
categorized the use of AI in this area into four main applications of 
planning and design, safety of autonomous equipment, and monitoring 
and maintenance [59]. In another study, a systems-framework was 
presented by Pan et al. (2020) to identify key factors influencing the 
future implementation of construction robotics in Hong Kong. They 
identified eleven interrelated factors, critical for shaping the future 
trajectory of construction robotic applications, including construction 
costs, government support, and the scale of prefabrication, and sug
gested that implementation of robots in construction suffers from lack of 
interdisciplinary and non-technical studies [60]. The four main factors 
hindering the adoption and acceptance of robotics and automated sys
tems in the construction industry were identified in another study as (1) 
contractor-based financial factors, (2) client-based financial factors, (3) 
technical and work-culture factors, and (4) weak business case factors 
[9]. In another scientometric study and using a science-mapping 
method, it was concluded that genetic algorithms, neural networks, 
fuzzy logic, fuzzy sets, and clustering have been the most widely used AI 
methods in AEC to address topics and issues such as optimization, 
simulation, uncertainty, project management, and cash flow analysis 
[52,61]. Sacks et al. (2020) described AI fields such as machine learning, 
deep learning, and computer vision as top AEC-supporting technologies 
besides more established technologies such as BIM, 3D printing, and 
Simultaneous Localization and Mapping (SLAM). With respect to 
adoption driver and barriers, research has identified three key param
eters of (1) promotion and support of research and evolution of sup
porting technologies, (2) simultaneous or non-simultaneous 
developments in various fields of application, and (3) interdisciplinary 
collaboration between AEC industry and technology companies as key 
drivers of Research and Development (R&D) in construction robotics 

Fig. 5. Trust dimensions selected for a systematic review of trust in AI and AI- 
powered robotics in the AEC industry 
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[62]. Additionally, Sacks et al (2020) indicated that lack of complete 
and accessible information in models is a major hindrance to broad 
adoption of BIM and AI technologies in the construction industry that 
prevents effective exploitation of the information they provide [63]. 

6. Discussion of trust dimensions and implications for the AEC 
Industry 

As stated in Section 4, a thorough scrutiny of the collected papers 
reveals that a series of factors contribute to the “attitude” or “reliance” 
(see the definition of trust in Section 2) in a multi-dimensional space. 
These factors or dimensions have been presented with different names, 
manifested in different characteristics of the human-technology system, 
and categorized based on their semantics and functionality towards trust 
building. The dimensions identified in Section 4 are used in this section 
to present a review of their characteristics, applications in different 
disciplinary research fields, and implications for the AEC industry. A 
wide variety of other factors pertinent to these four (as shown by con
nected nodes in Fig. 4) are also considered here to depict a complete 
picture of trust as a multi-dimensional space. 

6.1. Explainability and interpretability 

As suggested by the panel on the One Hundred Year Study on Arti
ficial Intelligence: Artificial Intelligence and Life in 2030 [64]: “well- 
deployed artificial intelligence prediction tools have the potential to 
provide new kinds of transparency about data and inferences, and may 
be applied to detect, remove, or reduce human bias, rather than rein
forcing it.” Technologies that involve obscure processes between the 
input fed to the system and the generated output are generally less 
trustworthy than those with transparent and interpretable inner- 
workings [65]. The lack of a common language is a key barrier to 
achieving transparency in AI as varying dentitions exist across disci
plines [2]. “Openness” and “explainability” are two neighboring terms 
that are commonly used in the literature to refer to the transparency and 
interpretability concept in AI systems and address the notions implied by 
“black box” terminology [66]. In particular, the concept of XAI has 
recently gained tremendous momentum in computer science research 
[34,67,68]. This research trend is motivated by intriguing results of 
deep learning (e.g., mistakenly labeling a tomato as a dog [69]) to 
provide an overview on transparency and interpretability of data-driven 
algorithms [34,70–73]. 

XAI is in essence an initiative to transform black-box to white-box AI, 
where the process by which the algorithms and models arrive at an 
output could be intuitively interpreted by humans. A white-box model is 
explainable by design and does not require additional processes to be 
explained. In other words, XAI allows AI systems to operate in a glass 
box, enabling computers to understand the context in their operational 
environment while keeping humans in their decision loop [74]. Simi
larly, knowledge representation and reasoning are the types of AI 
models that develop knowledge-based systems using a symbolic repre
sentation of domain knowledge and pre-defined rules rather than 
complicated algorithms or statistics [75]. As a result, computers can 
reasonably comprehend the knowledge, facts, and beliefs that exist in 
the actual world, and then use them to derive accurate conclusions and 
promote logic inference in a clear and efficient manner. Pan and Zhang 
(2021) identify structural equation modeling (SEM) and Bayesian net
works, as two easy and useful tools for establishing measurement models 
for knowledge representation. 

Particularly in robotics, explainable agents (e.g., autonomous robots) 
are capable of providing explanations about their actions and the 
rationale behind their decisions [76]. Understanding the behaviors of 
robots that result in perceiving their actions is known as mentalizing or 
mindreading which is derived from the Theory of Mind (ToM). Ac
cording to the ToM, humans estimate the actions of other humans by 
observing their behavior and attributing mental states thereby 

attempting to understand their own perspective [77,78]. Research 
studies in the field of human-robot interaction (HRI) have confirmed 
that humans show a similar to non-human objects and robots [77,79]. 
More generally, and to gauge humans’ trust in applied AI, it is important 
to account for how ordinary users understand explanations and assess 
their interactions with the system (e.g., tool, service) [80]. Developing 
higher extents of explainability and interpretability equips users with 
higher levels of understanding of and thereby trusting in the intelligent 
agents or AI models [81–83]. 

In industrial applications, explainability and interpretability can be 
viewed as the most important factor in determining the level of trust in 
AI and robotics given the fact that such systems are often designed and 
developed by companies external to the end-user organization [84]. This 
is particularly true for AEC companies where technologies are not al
ways developed in-house, and they are sometimes purchased or licensed 
from outside developers. In such cases, the obscure nature of decisions 
made by AI-based systems and robots make practitioners even more 
hesitant to trust them [85]. From an HRI standpoint, transparency and 
interpretability in construction robotics can be achieved if the robot is 
flexible in the type and extent of help it offers. The level of collaboration 
may differ as some tasks are structured and specified to be completely 
performed by a robot, while some other tasks may require human 
engagement (i.e., human-in-the-loop) [86]. In construction, human-in- 
the-loop applications comprise the majority of the current applica
tions. In one example, Follini et al. (2020) proposed a collaborative 
robotic platform focused on human-in-the-loop applications considering 
the unstructured, dynamic job site environment. Their proposed plat
form is programmed to follow the operator while it carries heavy ma
terials and equipment and stops when its sensors detect the close 
distance to the operator or any obstacles. Additionally, the robot can 
navigate through the site based on known geometric and semantic in
formation of the building project by connecting the Robot Operating 
System (ROS) the BIM [87]. 

Very little research has been explicitly devoted to the role of 
explainability and interpretability in AI-based AEC applications. Re
searchers have examined the potential of Blockchain technology to in
crease transparency and simplify interpretably in different phases of 
construction [88,89]. Blockchain technology promotes peer-to-peer 
digital transaction management which can be used as a secure and 
transparent method among users. In simple words, Blockchain can add 
value to AI by explaining AI decisions, mitigating AI risks, increasing AI 
efficiency, and improving data accessibility and decentralization [90]. 
In one study, a framework was proposed based on Blockchain technol
ogy to facilitate the use of BIM, and improve data transparency and 
security in construction projects [91]. In another study of the use of 
Blockchain in AEC industry, researchers proposed 3 Blockchain-based 
applications for construction projects, namely Blockchain-based con
tract management, Blockchain-based supply chain management, and 
Blockchain-based equipment leasing which can be utilized by AEC 
professionals [92]. 

In the context of knowledge representation, construction safety 
management is an area of application for SEM which is frequently 
combined with exploratory factor analysis (EFA). Zaira and Hadikusumo 
[93], for example, used SEM to identify the most effective intervention- 
related safety practices for improving workers’ safety behavior. Simi
larly, Liu et al. used a combination of SEM and EFA to identify the 
critical risk factors and advise safety control in a complex metro con
struction project [94]. Zhang et al. created a SEM-based strategy to 
determine dynamic safety leadership roles during different phases of a 
construction project, which enabled stakeholders to better assign re
sponsibility for safety management [95]. There is also a different strat
egy that can be used for reasoning. The fuzzy cognitive map (FCM) is 
constructed using data or expert opinions. This type of fuzzy graph 
structure interprets complex relationships and allows systematic causal 
propagation using a combination of fuzzy logic and cognitive map, 
which can provide immediate understanding and identification of root 
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causes of a risk event even under complicated, uncertain, and subjective 
conditions [96]. 

The aforementioned examples and applications highlight the 
importance of explainability and interpretability to generate trust in AI 
and AI-powered robotics in any field including AEC. The term 
“comprehensibility” (which includes transparency, explainability, 
traceability, and consequently interpretability aspects) with regards to 
AI’s decisions has emerged recently in the literature to cover a wide 
range of important concepts in this context. With the fast pace of tech
nology advancements in the areas of AI and robotics, the social science 
literature emphasizes the need for research related to the interconnec
tion between trust and the transparency of AI’s decision. Moreover, 
since explainability and interpretability are qualitative phenomena and 
can be subjectively interpreted, concepts such as the limits of inter
pretability in AI and robotics and relative transparency of AI and ro
botics in the AEC industry are yet to be better investigated. 

6.2. Reliability and safety 

Reliability and safety are two cornerstones of trust in AI-powered 
systems [97]. Both concepts are related to trust from a performance 
(rather than a moral) angle [98] and are interconnected paradigms in 
the context of trust between the human user and a robot agent. On the 
one hand, safe interaction with robots make them more reliable and thus 
trustworthy [99]. On the other hand, increased reliability may lead to 
overtrust and higher potential complacency when the robots act 
unsafely [100,101]. This tradeoff highlights the importance of a process 
called trust calibration within a human-robot team to achieve an 
appropriate level of trust given both human and robot capabilities. Trust 
calibration process enables a human to accurately recognize the risks 
associated with trusting a person or machine [14]. In this process, the 
human user learns the abilities, reliability, and failure modes of the 
agent to avoid overtrust and undertrust [102]. If the user undertrusts the 
intelligent agent, trust calibration helps them to gradually build trust in 
the system with experience and iterative interactions [103]. Whereas in 
an overtrust situation, the user accepts too much risks as they believe 
that the system will mitigate those risks [104]. 

Another tradeoff that affects trust from a reliability and safety 
perspective, is the amount of human effort versus robot autonomy. 

Reliability is an HRI variable that needs to be evaluated as a function of 
robot autonomy. Beer et al. (2014) discussed this concept by proposing 
levels of robot autonomy (LORA) for HRI [105]. Their proposed LORA 
classification starts at a stage where the human is in full control and the 
process is Manual and continues with similar approximations of a ro
bot’s autonomy along a continuum that ends with Full Autonomy as 
illustrated in Fig. 6. 

All these classifications are analyzed based on the engagement of the 
human, robot, or both in sensing, planning, and acting. Besides LORA, 
there are other similar widely influential taxonomies of automation 
levels such as the classic Sheridan-Verplank levels of automation [106] 
and recent classification schemes for self-driving cars levels of autonomy 
[107,108]. However, a common criticism of all these taxonomies is the 
fact that they only represent situations in which boosted levels of 
automation will certainly result in restricted and limited human control 
(i.e., one-dimensional levels of automation). In an effort to address these 
constraints, Shneiderman (2020) proposed the Human-Centered Artifi
cial Intelligence (HCAI) framework to produce designs that are reliable, 
safe, and trustworthy and not a zero-sum game in terms of the robot and 
human levels of control. HCAI indicates that despite what one- 
dimensional taxonomies suggest, achieving high levels of human con
trol, and at the same time, high levels of automation (i.e., two- 
dimensional HCAI) is possible and in fact, leads to increased human 
performance levels [109]. This two-dimensional HCAI toward reliable, 
safe, and trustworthy AI is shown in Fig. 7. 

The construction industry deals with major safety and health prob
lems, and many technology tools have been developed to alleviate this 
grand challenge [110]. As such, addressing safety issues using AI is a 
popular research topic in construction [111–113]. Construction tasks 
that should be carried out at a high altitude, over extended periods of 
overtime work, or under any hazardous condition are desired to be 
delegated to AI-controlled systems or robots to increase efficiency and 
eliminate accidents [86]. Systems that use hazard proximity monitoring 
are among the most common applications of AI for construction safety. 
For example, researchers have implemented a system which sends im
ages from trucks, cranes, and other construction machinery to a data
base via 5G wireless networks and utilizes AI to evaluate the interactions 
between workers and equipment [114]. AI can also be used to predict 
safety measures such as injury severity, injury type, body part impacted, 

Fig. 6. One-Dimensional levels of robot involvement in operations (modified from Beer 2014)  
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and incident type in a construction project [115]. In building con
struction, a dynamic BIM can provide AEC project teams with insights 
for better planning and more efficient design, construction, and opera
tion/maintenance. This can be improved by BIM and AI-based software 
packages that use machine learning algorithms to analyze all aspects of a 
proposed design (or an altered design) to ensure it does not interfere 
with other systems in the building, thus enhancing the reliability of 
design [10]. As an example, the usefulness of AI in designing smart 
homes has been extensively discussed by Augusto and Nugent [116]. 

However, regardless of whether the ultimate goal is to address a 
safety challenge or not, newly introduced AI-enabled systems and ro
botics will be less trusted if they pose new safety threats. Research has 
shown that any technologically advanced system must exhibit reliability 

and safety to be acceptable in construction [117]. Human safety while 
working with intelligent robots in industrial applications is an important 
consideration since the type of robot hardware is usually rugged, large, 
or manipulation-enabled and humans often feel unsafe working around 
such robots [118,119]. Fig. 8 shows a few examples of using such ro
botics systems in building construction. 

The study of reliability and safety in human-robot interaction in 
construction is often conducted with two validation approaches. In one 
approach, robot prototypes operate in physically simulated working 
environments to identify robot weaknesses in reliability and safety and 
enhance its functionality. Another approach is to develop predictive 
models to explicate the perceived reliability and safety of robots and 
their influence on humans [124,125]. Models such as the Robot 
Acceptance Safety Model (RASM) have been developed using the second 
approach in the construction robotics literature. RASM is a model that 
integrates Immersive Virtual Environments (IVEs) to analyze the 
perceived safety of collaborative work between humans and robots. This 
was done by inviting participants to a laboratory to collaborate and 
work with a 3D simulated robot regarding a construction-related task 
using a head-mounted display. According to the IVE results, segregation 
of human and robot working areas leads to accelerated perceived safety 
as it facilitates team identification and fosters trusting robots gradually. 
Moreover, it was deduced that the improved safety feeling and comfort 
of simulation attendees while working with robots signifies their will
ingness to work with robots in the future [126]. Collaboration and ef
ficiency of human and robot work in industrial settings can be hindered 
by collisions and other types of accidents [127]. Active vision-based 
safety systems have been reported to be one of the best solutions to 
mitigate collisions and consequently, boost trust in humans to work 
alongside robots and automation systems. Recent methodologies and 
advances in vision-based technologies and alarming systems including 
various methods, sensor types, safety functions, and static/dynamic 
action of robots to work in their zones have been reviewed and analyzed 
technically in the literature [128]. 

The literature reviewed in this research suggests that the applications 
of AI and its subfields (e.g., machine learning, computer vision, 

Fig. 7. Two-dimensional framework for HCAI (modified from Shneider
man 2020). 

Fig. 8. Examples of application of robotics in building construction: (a) Architecture-related, façade installation [120]; (b) Structure-related, shotcrete for shear walls 
[121]; (c) Interior layout-related, BIM-enabled mobile ceiling-drilling robot [122]; (d) Demolition of buildings and existing structures [123] 
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knowledge-based systems, and natural language processing) as well as 
AI-powered robotics in construction often aim at promoting health and 
safety which can in turn improve reliability and trust. However, 
regardless of the end goal, the role of reliability and safety of AI systems 
and AI-powered robots in developing cognitive trust is crucial and de
serves further explorations. 

6.3. Performance and robustness 

Machine competence, which manifests itself in technical perfor
mance and ability, is a leading driver of trust in human-machine teaming 
literature [14,15,129]. To assess the performance of an AI system, 
measures such as accuracy are commonly used. Accuracy is a gold 
standard of machine learning models that contributes to the trustwor
thiness of the AI system [29]. Also, AI robustness refers to the ability of 
AI developed in one context to be transferred to a wide range of prob
lems (within and outside that context) in a systematic way while 
demonstrating a similar level of performance [130]. Theoretically, the 
two concepts of performance and robustness can be at odds with each 
other since imperceptible perturbations of the test data (i.e., adversarial 
examples) may result in incorrect misclassification with high confidence 
[131–134]. However, they are both commonly used to describe the 
technical reliability of AI systems in the context of trustworthiness. For 
example, the Ethics Guidelines for Trustworthy AI prepared by the Eu
ropean Commission in 2018 defines robustness as “resilience, accuracy, 
reliability of AI systems” and lists it as one of the seven broad key re
quirements that contribute to trustworthiness [38,135]. Explicit training 
against known adversarial examples, as well as techniques such as reg
ularization and robust inference are methods to produce robust machine 
learning models with acceptable accuracy [136,137]. One way that 
laypeople trust AI models is based on performance metrics such as ac
curacy. Such accuracy-based trust can be achieved by knowing the 
stated performance of the system or direct observation or perception of 
the model’s performance in practice. However, if a model’s observed 
accuracy is low, the effect size of the stated accuracy on people’s trust is 
very low, meaning that people’s trust in a model is significantly affected 
by its observed accuracy regardless of its stated accuracy [138]. 

Regardless of the source of where the performance accuracy comes 
from, people stop trusting an algorithm as soon as they observe it makes 
a mistake [139,140]. Laypeople stabilize their trust to a level correlated 
with the perceived accuracy [141], although system failures have a 
stronger impact on trust than system successes [142]. While perfor
mance and robustness have shown to have a significant effect on user’s 
trust in an AI system, there are other machine learning performance 
metrics such as precision and recall that have been shown to be effective 
in terms of trust-building. For example, users tend to put more weight on 
a classifiers’ recall rather than its precision when deciding whether the 
classifiers’ performance is acceptable, although the application can 
make a difference in terms of the weight [143]. 

AEC use cases are not different from other applications in that the 
performance of the technology tool plays a key role in trusting and ul
timately adopting it. Almost all performance measures in construction 
ultimately target a metric related to the cost or schedule of the project 
[88,144,145]. However, immediate gains represented by factors such as 
quality, safety records, sustainability measures, productivity metrics, 
and inspection outcomes are as important as ultimate cost and schedule 
benefits in adopting innovations and trusting new technologies in con
struction [146–148]. Regarding performance optimization and assess
ment in construction projects, there is a huge advantage in using BIM, 
big visual data, and modeling construction performance analytics [149] 
in conjunction with AI systems. Digitizing construction site layout 
planning process in BIM and training models to be used in future pro
jects, can enable project teams to significantly increase their perfor
mance and efficiency. As suggested by [150], a holistic real-time site 
analytics tool using AI as well as cloud-based data analytics of the data 
collected on the site can be developed to facilitate reaching performance 

targets and quality standards. For example, the project management 
team can take advantage of an AI chatbot which can be utilized on the 
job site to receive, process, and share activities and updates. 

Construction is a multi-sector, project-based industry where in a 
typical project, multiple specialty trade contractors are involved. Het
erogeneity in projects means that the applications and algorithms of AI 
and machine learning systems can vary widely from one project type to 
the other or even within one project [151]. Thus, robustness in con
struction AI translates to the ability to successfully transfer models be
tween different projects, sectors, trades, and even geographic locations 
considering the uniqueness of any given project without compromising 
the user’s trust in the system’s ability. For example, a 334 meter-wide 
dam construction work in Japan used robots for tasks such as pouring 
concrete, brushing uneven layers, and dismantling forms [152]. Also, 
within tunnel construction projects, applications such as inspection, 
maintenance, and health monitoring benefit from AI [153–155]. Robust 
AI models developed for these tasks in the dam construction project 
should be effectively transferred and reused in the tunneling project if 
certain project-specific risk, quality, and inspection considerations are 
programmed into the design of the model. It is also important to note 
that performance and robustness must manifest themselves in both the 
technical construction work and the business aspects. In other words, 
trust cannot be generated if the models have acceptable technical abil
ities in performing trade work but ignore variables related to business 
and management processes [156]. 

6.4. Privacy and security 

Privacy and security are among the most important socio-technical 
considerations pertinent to the use of AI and robotic technologies. Pri
vacy is defined as the right not to be observed. Nevertheless, the nature 
of AI necessitates observing various phenomenon to learn and improve 
where human is involved [157]. Ethical AI (a.k.a. responsible AI) is an 
enabler of engendering trust and scaling AI with confidence [158]. Data 
security is the most basic and common requirement of responsible AI. 
Although AI privacy and security are interconnected in most cases, they 
should not be confused with each other or used interchangeably. Secu
rity in AI can be associated with ensuring the confidentiality of data, 
preserving information integrity, and guaranteeing immediate data 
availability when desired. However, privacy is often tied to acquiring, 
processing, and using personal data. Preventing data breaches by acci
dent and/or improper system engineering and design, ensuring un
planned data corruption, and obstructing outsider’s intention to hinder 
or limit user’s access to the system or portal are undoubtedly essential to 
make sure a designed AI-based system or product cannot be hacked or 
breached (Wu 2020). The majority of the recent topics regarding ethical 
AI in the literature are focused on opacity of AI systems, privacy and 
surveillance, machine ethics (or machine morality), ethical decision- 
making effect of automation on employment, manipulation of 
behavior, human-robot interaction, bias in decision-makings, control of 
autonomous systems, artificial moral agents, and singularity [159,160]. 

In the context of human-robot interaction, privacy and security have 
also been identified as a relevant risks to trust [161]. Privacy depends on 
the protection of cybersecurity systems and is directly related to 
engendering trust in robots [162]. There are two types of risks to trust 
from privacy and security perspective. “Privacy situational risk” is the 
belief that a human-robot task or activity will likely expose personal 
information about the user or their surroundings. “Privacy relational 
risk” is the belief that a human-robot task will expose the team or their 
environment to unauthorized observation or disturbance. “Security 
situational risk” is the belief that a human-robot task or situation could 
make the team vulnerable to crime, sabotage, attack, or some other 
threat to safety. “Security relational risk” is the belief that a human- 
robot could be vulnerable to being misused for crime, sabotage, 
attack, or some other threat to safety [161]. 

There are limited studies on the ethical challenges caused by using AI 
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and robotics in the AEC industry. AI and robotics applications require 
monitoring construction tasks in order to collect data using telecom
munications devices, wearable devices (such as VRs, smart hard hat 
cameras, and sensors), GPS, CCTV cameras, drones, or smartphones 
[163–165]. While applications vary from worker safety [166] to 
equipment emission monitoring [167], worker performance and 
contextual information are involved in one way or the other regardless 
of the application. Some researchers believe that worker monitoring 
methodologies that are often used to train machine learning models fail 
to consider the worker’s natural consciousness, intentionality, and free 
will [168]. Another pervasive technology in the AEC domain that en
ables AI and robotics applications is cloud computing [169]. Industrial 
applications of cloud computing involve privacy and security challenges 
for data security, access control, and intrusion prevention [170,171], 
but specific solutions for data security in construction projects should be 
further studied and analyzed [169]. Data security is particularly 
important for projects related to the construction of buildings and in
frastructures associated with the military, government, public sector and 
public service. AEC project data including contracts information, blue
prints, photos, and project personnel data, are considered confidential 
and careful attention must be paid to prevent data leaks. 

7. Future research 

With the observations outlined in the comprehensive review of the 
literature on trust in AI presented in Section 6, the authors have iden
tified the following future directions for the AEC research in this area. 

7.1. Integrated and interdisciplinary studies 

There are various lenses through which the trust dimensions iden
tified in this paper can be seen. For example, the explainability and 
interpretability concept is sometimes seen as a technical issue and 
sometimes as a legal or social issue [2]. Dimensions such as reliability 
and safety can be studied from both the cognitive and emotional per
spectives, and humans trust phenomena that do not require social or 
emotional intelligence [4]. Therefore, regardless of the application area 
and technology implementation, it is important to study trust in AI and 
robotics as an interdisciplinary field of research involving researchers 
with a variety of related backgrounds. In AEC, various engineering and 
management aspects of the projects also affect this conglomerate of 
fields. Depending on the project phase (e.g., pre-construction, con
struction, post-construction), project type (e.g., building construction, 
horizontal construction), application objective (e.g., safety, productiv
ity, sustainability, scheduling), and specific technology being leveraged 
(e.g., BIM, teleoperated robots, mobile computing, blockchain), 
different trust elements can hinder or drive adoption of AI in AEC pro
jects. A previous study by the authors indicated that regardless of the 
project phase, type, application, and technology, all the identified trust 
dimensions in this study (i.e., Explainability and interpretability, Reli
ability and safety, Performance and robustness, and Privacy and secu
rity) are key in generating trust in AI and robotics for AEC applications 
[25]. 

7.2. Trust calibration 

Adjusting human trust levels with the actual abilities of the AI and 
robotics is a key process to eliminate overtrust and undertrust [14,172]. 
Research has shown that creating transparency about an AI or a robot’s 
abilities significantly increases the likelihood of building calibrated trust 
and increasing adoption levels [173]. However, similar to the dearth of 
research in trusting and adopting AI-enabled systems and robotics in the 
AEC industry, determining the adequate level of trust that is justified 
and can be adjusted based on real technical capabilities (i.e., trust 
calibration) has received very little attention. Also, as Desai et al. (2009) 
mentioned in their study, research should be conducted to develop trust 

models that are particularly aimed at human-robot systems since trust 
calibration is a critical topic in human-centered robotics. As such, trust 
calibration analysis through empirical studies, particularly relating to 
factors unique to robotics (and not general AI or automation), deserve 
further investigations [174]. 

7.3. Human-centered AI and robotics 

In AEC, it is vital to promote research that focuses on AI and robotics 
as an enabler for transitioning workers’ role to higher-level tasks as 
opposed to eliminating large segments of the workforce. Research has 
shown that to initiate trust between humans and AI, AI systems should 
prove human-centered and a means to serve humankind, upskill 
workers, and promote human values [175,176]. Another concept in 
human-centered research towards trust in AI and robotics that received 
major attention in fields other than AEC, is the importance of anthro
pomorphism. Anthropomorphism refers to human-likeness and the 
perception of technology or an object as having human qualities, such as 
feelings [177,178]. For an industry that still relies on labor as the pri
mary production source, designing tools and approaches without the 
human as a centerpiece is doomed to failure in many fronts including 
trust. Therefore, future research should recognize the importance of 
human-centered design for AI- enabled systems and robots in AEC 
adoption studies. 

7.4. Enhancing explainability and interpretability on value and 
mechanism 

In order to secure management buy-in and establish trust among end- 
users, the value of adopting AI and robotics should be clearly identified 
[179]. In addition, the mechanism by which AI enhances the workflows 
should be clear to those who make adoption decisions as well as the end- 
users [180]. Addressing these two issues can address the explainability 
and interpretability requirement identified in this research in a sub
stantial way. Previous research has demonstrated the significance of 
presenting benefits in terms of key performance indicators (KPIs) such as 
time, cost, safety, and sustainability added values [181]. In construction, 
many studies have shown that perceived added value of new technolo
gies in terms of safety, efficiency, and gains in cost or time saving have a 
substantial impact on adoption levels of those technologies [182–185]. 
The important role of workforce training and education in establishing 
the “what” (i.e., value) and “how” (i.e., mechanism) of introducing new 
technologies have also been highlighted in the literature [186]. Further 
research can determine what approaches best demonstrate the added 
values and adequately explain the inner-workings of AI and robotic 
technology to construction professionals. 

7.5. Intuitiveness and familiarity 

A recent survey on human-robot collaboration emphasizes the fact 
that intuitive interfaces drive adoption levels [187]. In the AEC appli
cations, this translates to human-technology interaction mechanisms 
that do not entail sophisticated programming or require complex com
puter skills. For example, advances in natural language processing (NLP) 
[188], learning from demonstration (LfD) [189], and active learning 
[190] have emerged in computer science to simplify the ways humans 
interact with AI-enabled applications or robots, thus making them easier 
to adopt. By the same token, a familiar interface results in a more 
welcoming appearance for the end-user and thus increased levels of trust 
and adoption [191]. In AEC applications, it is vital to design AI and 
robotic technologies that are compatible with the traditional workflows 
and reinforce best practices as opposed to replacing them. Furthermore, 
leveraging technologies such as BIM that have become industry standard 
as a familiar interface can create the intuitiveness and familiarity effects. 
Future research can explore possibilities that NLP, LfD, active learning, 
and familiar technologies such as BIM can offer to further grow the 
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adoption levels of AI and robotics applications. 

8. Conclusion 

In this paper, a comprehensive review of research on (1) human trust 
in AI and AI-powered robotics as well as (2) the role of these technol
ogies in the AEC research and industry practice was presented. The 
concept of trust was broken down into four main dimensions (i.e., 
explainability and interpretability, reliability and safety, performance 
and robustness, and privacy and security) to organize the presentation of 
the review. For each dimension, the literature published between years 
2000 and 2021 in two categories of trust in “AI and AI-powered ro
botics”, and “AI and AI-powered robotics applications in AEC”, totaling 
584 peer-reviewed scholarly papers, were thoroughly reviewed. A 
thorough analysis of the literature in this study indicates that although 
the AEC research and practice increasingly study and deploy AI and 
robotics, no systematic effort is focused on investigating trust in these 
technologies. This is while the literature in fields such as computer 
science and psychology emphasize on building appropriate levels of 
trust and acceptance between the AI systems and the end-user as a first 
step to increase adoption and utilization. This study also found that 
explainable and transparent AI systems that are built to have under
standable operations and outputs are more trustworthy. Also, the level 
of privacy involved in technology implementation was shown to have a 
big impact on human’s trust in it. It was confirmed that AI systems must 
also be safe, reliable, and secure against unauthorized actions in order to 
be trusted. While embodied intelligence (e.g., intelligent robots) may 
require presenting more indications of safe behavior in the presence of 
human users, software and computer networks will be distrusted as well 
if they show indications of safety and security hazards. Additionally, the 
ability of AI and AI-powered robots to prevent malfunctions or harm the 
user is directly linked to their reliability. Performance inaccuracies and 
flaws can result in distrust, and technological or behavioral in
terventions must be considered by design to ensure that autonomous 
systems that show instances of inaccuracy of malfunction can regain 
user’s trust. Finally, based on presented literature analysis, five di
rections for the future of research in trust in AI and robotics for AEC 
applications were proposed. The authors believe that the collection and 
critical reviews presented in this paper can guide the work of re
searchers, scholars, and practitioners in this area to contextualize their 
methods within the state-of-the-art. 

The presented study has three limitations. While the four dimensions 
presented in this research are the main trust paradigms identified in the 
literature, other dimensions such as fairness [192], tangibility [4], and 
availability [29] can be included in future reviews. Second, the litera
ture prior to 2000 was not reviewed, thus a more comprehensive review 
can also include those publications. Third, the proposed framework for 
the literature review only considered robots that are powered by AI. A 
standalone review on trusting robots in AEC may also include robotic 
systems that are not intelligent or do not use AI to function. 
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