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The properties of topological systems are inherently tied to their
dimensionality. Indeed, higher-dimensional periodic systems exhibit to-
pological phases not shared by their lower-dimensional counterparts.
On the other hand, aperiodic arrays in lower-dimensional systems (e.g.,
the Harper model) have been successfully employed to emulate higher-
dimensional physics. This raises a general question on the possibility of
extended topological classification in lower dimensions, and whether
the topological invariants of higher-dimensional periodic systems may
assume a different meaning in their lower-dimensional aperiodic coun-
terparts. Here, we demonstrate that, indeed, for a topological system in
higher dimensions one can construct a one-dimensional (1D) determin-
istic aperiodic counterpart which retains its spectrum and topological
characteristics. We consider a four-dimensional (4D) quantized hexade-
capole higher-order topological insulator (HOTI) which supports topo-
logical corner modes. We apply the Lanczos transformation and map it
onto an equivalent deterministic aperiodic 1D array (DAA) emulating
4D HOTI in 1D. We observe topological zero-energy zero-dimensional
(0D) states of the DAA—the direct counterparts of corner states in 4D
HOTI and the hallmark of the multipole topological phase, which is
meaningless in lower dimensions. To explain this paradox, we show
that higher-dimension invariant, the multipole polarization, retains its
quantization in the DAA, yet changes its meaning by becoming a non-
local correlator in the 1D system. By introducing nonlocal topological
phases of DAAs, our discovery opens a direction in topological physics.
It also unveils opportunities to engineer topological states in aperiodic
systems and paves the path to application of resonances associates
with such states protected by nonlocal symmetries.
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The dimensionality of a topological system plays a determining
role in defining its symmetry classification and, therefore, the

topological invariants that identify the topological phase specific
to such a system (1–3). For instance, four-dimensional (4D) quan-
tum Hall systems can exhibit a nonvanishing second-class Chern
number that is not shared by systems with three or fewer dimen-
sions, and hence it cannot be implemented in three physical di-
mensions without mapping to a lower-dimensional analog (4).
However, already 3D topological materials imply challenging fab-
rication demands due to the complex structures of the lattices (5–9).
This quest has been approached in two ways: 1) introducing syn-
thetic dimensions or 2) mapping a higher-dimensional system onto
its lower-dimensional counterpart. The first approach implements
lattices with dimensions higher than the spatial dimensions by
exploiting internal degrees of freedom, which could be spectral
(10–18), temporal, or spatial in nature (19–23). The second ap-
proach, based on dimensional reduction and mapping onto a lower-
dimensional system, has been proven quite fruitful too; as an ex-
ample, the celebrated Harper–Hofstadter Hamiltonian has been
recently emulated in reconfigurable quasi-periodic 1D resonant
acoustic lattices (24, 25). The topological properties of quasiperi-
odic models via dimensional reduction have also been studied
(26–28). In addition, the existence of boundary modes stemming

from the second Chern class topological phase has been reported in
photonics (4) and in an angled optical superlattice of ultracold
bosonic atoms (29).
As we show here, the second approach, in addition to the

possibility to emulate higher-dimensional physics in lower dimen-
sions, establishes an approach to engineer novel nonlocal topological
phases supporting localized topological states. We focus here on the
recently introduced class of higher-order topological insulators (30,
31) and show that their lower-dimensional analogs are characterized
by nonlocal symmetries which ensure the presence and protect the
localized topological states. In recent years higher-order topological
insulators (HOTIs) were successfully realized in 2D (32–39), and
more recently 3D octupole topological states were implemented in
3D acoustic metamaterials (40, 41). The choice of HOTIs as an
exemplary system is justified by the fact that their dimensionality
defines the multiplicity of hosted topological boundary modes
protected by higher-dimensional reflection and chiral symmetries.
In this work we apply dimensionality reduction and experi-

mentally realize a 1D counterpart of 4D hexadecapolar HOTI
(h-HOTI) in the form of a deterministic aperiodic array (DAA).
To this aim, we apply Lanczos tridiagonalization introduced re-
cently by Maczewsky et al. (42) which allows mapping of any
multidimensional system onto aperiodic 1D tight-binding system
with nearest-neighbor coupling. In their original work Maczewsky
et al. introduced the mapping of a periodic higher-dimensional
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system onto a 1D tight-binding model (TBM) based on Lanczos
transformation, and they demonstrated how introduction of a
point defect leads to the localization in systems of different di-
mensionalities. Here, we apply Lanczos transformation to inves-
tigate topological systems, where, due to the bulk-boundary
correspondence, the localization of topological boundary modes is
caused by the nontrivial bulk topology of a higher-dimensional
system. By this approach we map a prototypical 4D h-HOTI
tight-binding system onto a 1D DAA with strictly local aperiodic
coupling distribution. We note that the obtained aperiodic system
is not and should not be confused with quasiperiodic systems
which can exhibit rich topological physics on their own (26–28).
The transformation of topological invariant of the original 4D
system—the quadrupole polarization—yields a new 1D invariant,
a topological correlator, with the same value as its 4D analogs,
which ensures the presence of 16 zero-energy topological states
localized in the bulk of DAA. By the special choice of the Lanczos
transformation (42–45) we obtain one topological state localized
the edge of our sample. Other corner states are distributed in the
bulk of the array. All the states preserve their topological char-
acteristics, being protected by nonlocal symmetries of 1D DAA
originating in higher-dimensional symmetries of 4D h-HOTI.
The designed 1D DAA with nonlocal topological phase is then

realized in an array of coupled acoustic resonators. The presence
of localized topological states is directly observed by measuring
local acoustic pressure field distribution in the array.

Results
We start with the prototypical 4D h-HOTI described by a tight-
binding Hamiltonian with nearest-neighbor coupling in 4D
hypercubic unit cell, as schematically shown in Fig. 1A. In Bloch
representation, the Hamiltonian can be expressed as

Ĥ4D(k) = t2 sin(kx) Γ̂3 + [t1 + t2 cos(kx)]Γ̂4 + t2sin(ky) Γ̂1

+[t1 + t2 cos(ky)]Γ̂2 + t2sin(kz) Γ̂5 + [t1 + t2 cos(kz)]Γ̂6

+t2 sin(kw)Γ̂7 + [t1 + t2 cos(kw)]Γ̂8, [1]

where t1 and t2 are the nearest-neighbor intracell and intercell
hopping amplitudes, respectively. In Eq. 1, the matrices
Γ̂i = −σ3 ⊗ σ3 ⊗ σ2 ⊗ σi for i = 1,2,3, Γ̂4 = σ3 ⊗ σ3 ⊗ σ1 ⊗ σ0,
Γ̂5 = σ3 ⊗ σ2 ⊗ σ0 ⊗ σ0, Γ̂6 = σ3 ⊗ σ1 ⊗ σ0 ⊗ σ0, Γ̂7 = σ1 ⊗ σ0 ⊗
σ0 ⊗ σ0, andΓ̂8 = σ2 ⊗ σ0 ⊗ σ0 ⊗ σ0, σi=1,2,3 are Pauli matrices;
σ0 is the identity matrix and k is the Bloch wave number.
The energy spectrum found from the 4D TBM of a finite (3 ×

3 × 3 × 3 × 16) h-HOTI lattice with π-flux through each 2D
plaquette of the unit cell is shown in Fig. 1B. The blue points in
Fig. 1B correspond to the energy spectrum of a topologically
trivial phase, with intracell hopping amplitude exceeding the
intercell hopping t2 < t1, while the red dots show the energy
spectrum of a topologically nontrivial HOTI phase, with t2 > t1.

Fig. 1. Unit cell, band spectra, and corner modes of 4D h-HOTI. (A) Schematic of the unit cell of a 4D higher-order topological insulator. The blue lines
indicate positive hopping (zero phase) and the red lines indicate negative hopping (π phase), so that each hypersurface has net flux of π. The black dashed
lines indicate intercell connections to the lattice (with phases of 0 and π). (B) Band spectra for the trivial (blue dots) hyperlattice corresponding to intracell
hopping amplitude t1 larger than intercell hopping t2 (t1=t2 = 10). Band spectra for topologically nontrivial (red dots) higher-order phase with t1 < t2
(t2=t1 = 10), δ = 0.2t1. (Inset) A zoom-in confirming the presence of 16 corner modes. Colored regions indicate topological bandgaps of different order. The
first-order gap is the gap between 4D bulk spectrum and 3D bulk spectrum, the second-order gap is the gap between 3D bulk spectrum and surface spectrum,
the third-order gap is the gap between surface spectrum and edge spectrum, and the fourth-order gap is the gap between edge spectrum and corner
spectrum. (C) Intensity distribution of corner mode across the lattice, showing the field decay and localization in all four dimensions. Each subplot shows the
field distribution projected on the xyz-coordinate frame for specific values of w = 1 and w = 3 corresponding to the same sublattice. The corner mode shown
corresponds to the energy eigenvalue indicated by the enlarged (hexagon-shaped) red point in B, Inset.
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In the latter case, the system of finite size in all four dimensions
hosts 16 fourth-order topological corner states, due to the
higher-order bulk-boundary correspondence (30, 31) (see more
detailed discussion in SI Appendix, sections S1and S2). The in-
tensity distribution of one of the corner modes within the
h-HOTI, obtained from TBM, is shown in Fig. 1C, which con-
firms that this is the fourth-order state localized to the corner of
the hyperlattice in all four (x, y, z,w) directions. In order to make
the selected corner state better noticeable, we added a small on-
site potential to the respective corner site (δ = 0.2t1) to split this
state from the rest of the corner modes.
We now map this finite 4D h-HOTI onto a 1D DAA of coupled

resonators with aperiodic hopping amplitudes using the Lanczos
transformation (42). The Lanczos transforms a general Hermitian
matrix into a tridiagonal form and, therefore, allows for an im-
mediate mapping onto a 1D TBM with an only-nearest-neighbor
hopping distribution characterized by an inhomogeneous (aperi-
odic) profile. The Lanczos transformation is unitary, which en-
sures preserving spectrum and eigenstate orthogonality of the
original Hamiltonian. This property guarantees that the final
(tridiagonal) effective 1D Hamiltonian will still be Hermitian

Ĥ
eff
1D = ÛLĤ4DÛ

−1
L = ∑

i
eiC+

i Ci +∑
i
τiC+

i Ci+1 + c. c, where ÛL is

the Lanczos transformation operator and ei and τi are the effective
on-site energy and hopping amplitudes in the 1D array, and that
the number of degrees of freedom of the 4D Hamiltonian is
preserved.
For convenience, we also use the fact that the Lanczos

transformation can be performed with a specific site of choice
(i.e., a component of the eigenvector) being fixed, known as an
anchor site (42). Thus, any chosen site of the 1D array will have a
one-to-one correspondence with one of the sites of the original
higher-dimensional lattice, implying that a component of the
eigenstate at a chosen site is fully preserved. This property can be
used to make sure that at least one corner site in 4D is pinned
(“anchored”) to the edge site (or any chosen bulk site, if needed)
of the 1D array, implying that the corresponding corner state
confined to this site in 4D will remain localized at the physical
boundary of our aperiodic 1D lattice.
The results of Lanczos transformation applied to the 4D

Hamiltonian (Fig. 1A) are shown in Fig. 2A, where the first 100
hopping amplitudes τn and on-site energies en of the effective
aperiodic 1D model are plotted. The real-valued character of the
4D Hamiltonian (only phase of 0 and π for hopping τn) ensures
that the Lanczos operator ÛL is an orthogonal matrix, yielding real
values for onsite energies and real positive hopping amplitudes in

the dimensionally reduced 1D DAA system. We numerically
confirmed that the mapped 1D Hamiltonian has a spectrum
identical to the one of the 4D HOTI, as expected, and that the
anchored corner state appears pinned to the edge of the 1D system.
Moreover, we confirmed that the inverse transformation of a 1D
boundary state maps it onto corner states localized at the anchor
site in 4D HOTI. It is worth mentioning that the unitary character
of the transformation was enforced by implementing Lanczos bio-
rthogonalization algorithm (45), which ensured numerical stability
and one-to-one correspondence between the spectrum and eigen-
states in 4D and 1D systems.
Interestingly, as the used transformation preserves only the

anchor site, all other zero-energy 4D corner states appear in the
bulk of the 1D lattice, but they have to remain spatially localized
and topologically protected (a proof can be found in SI Appendix,
section S3). However, since the number of higher-order boundary
states (16 for the 4D case considered here) exceeds the number of
boundaries of the projected 1D system (only two), most of the
projected topological corner modes localize in the bulk of the 1D
array. The proposed procedure thus not only offers an emulation
of higher-order topological states in lower-dimensional systems
but also unveils a new class of localized bulk resonances topo-
logically protected by higher-dimensional symmetries of HOTIs.
Indeed, the inspection of the eigenstates of the effective 1D sys-
tem confirms that all other corner states of the original h-HOTI
are zero-energy states which localize in the bulk of the DAA (see
amplitude distribution of these corner modes in SI Appendix,
section S4).
It is worth noting that the final Hamiltonian of the DAA

obtained by the Lanczos transformation depends on the choice
of the “trial” vector (which also fixes the anchor site), and thus
there exists a family of different DAAs all corresponding to the
same 4D HOTI. Member Hamiltonians of this family of DAAs,
however, are topologically equivalent to one another and to the
original higher-dimensional system as they all are characterized by
the same topological invariant (see discussion and calculations
below). Similarly, if an alternative tridiagonalization transforma-
tion is chosen, e.g., Householder transformation, it will produce
another topologically equivalent DAA. A clear advantage of the
Lanczos transformation, however, is in the possibility to pin the
position of one of the topological corner states by choosing any
desirable anchor site.
The emergence of a quantized multipole moment and corner

states in the 4D h-HOTI is deeply related to the symmetries of
the system, i.e., the presence of anticommuting reflection sym-
metries. Similarly, the “zero energy” of the corner states is

Fig. 2. Band spectra and boundary mode of the truncated 1D resonator array mapped from 4D h-HOTI. (A) Hopping amplitudes and onsite energies (in the
unit of t1) of the effective 1D model. (B) Band spectra of the effective 1D model truncated to 20 sites obtained using the TBM. The colored regions separate
modes of different order and represent topological band gaps inherited from 4D h-HOTI. (C) Intensity distributions corresponding to the projected fourth-
order topological corner mode in the 1D array, as found from tight-binding calculations.

Chen et al. PNAS | 3 of 8
Nonlocal topological insulators: Deterministic aperiodic arrays supporting localized
topological states protected by nonlocal symmetries

https://doi.org/10.1073/pnas.2100691118

PH
YS

IC
S

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
U

N
Y

 C
IT

Y
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 P
E

R
IO

D
IC

A
L

S 
on

 A
ug

us
t 8

, 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
13

4.
74

.1
5.

24
0.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100691118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100691118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100691118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100691118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100691118/-/DCSupplemental
https://doi.org/10.1073/pnas.2100691118


ensured by the chiral symmetry Γ̂Ĥ4D Γ̂−1 = −Ĥ4D, which stems
from the fact that in the h-HOTI the sites that belong to the
same sublattice do not couple with each other. It is therefore
clear that DAA must inherit the topological nature of its higher-
dimensional prototype, while the emergence of the localized
zero-energy states in 1D DAA further evidences the nontrivial
topology of the system.
To prove this conjecture, we will consider the role of original

symmetries of h-HOTI in the projected 1D DAA. We first
consider the chiral symmetry of the system, which has matrix
representation Γ̂ = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ0, and ensures the overall
symmetry of the spectrum with respect to zero energy and “zero
energy” of the topological corner states. The fact that this
property is retained during the dimensional reduction implies
that the chiral symmetry is retained as well, but in a new form

expressed as ÛLΓ̂Û
−1
L .

Due to its local nature (i.e., imposing constraint on the unit
cell length scale), the chiral symmetry can be written in the
diagonal form as Γ̂finite = IN×N ⊗ Γ̂, where IN×N is the N by N
identity matrix and N is the number of degrees of freedom
(unit cells). The Lanczos transformation changes this local
character of the chiral symmetry by mixing different sites

Γ̂eff
1D = ÛLΓ̂finiteÛ

−1
L , thus producing the new nonlocal form of

chiral symmetry Γ̂eff
1DĤ

eff
1D Γ̂eff−1 = −Ĥeff

1D in the 1D DAA (see SI
Appendix, section S5 for details). This nonlocal chiral symmetry
of the 1D Hamiltonian plays the same role as the original chiral
symmetry for 4D h-HOTI and it ensures spectral symmetry of
the modes of aperiodic 1D array with respect to zero energy.
Such a nonlocal character of the symmetry operator Γ̂eff

1D of
DAA reflects the presence of correlations of parameters within
the array (hopping amplitudes and on-site energies), which, in
analogy with the conventional “local” chiral symmetry, will pin
down the zero-dimensional (0D) topological states to the
zero energy.
Similarly, the h-HOTI Hamiltonian (1) possesses reflection

symmetries that anticommute with each other due to the flux of π
in each of the plaquettes of the hypercubic lattice. The reflection
symmetries result in a nonvanishing topological invariant, the
quantized multipole moment of the bulk bands. Similar to the
case of boundless periodic systems, when analysis is performed in
Bloch (momentum) space (30, 31), in the case of finite systems,
the topological invariant can be extracted from the respective
eigenfunctions calculated in the real-space representation (46),
the procedure which is customarily used in analysis of disordered
and quasiperiodic systems (27, 28, 47–50). Nonetheless, even if
the evaluation of multipole polarization is possible in the DAA,
from a geometric point of view it is a meaningless quantity in 1D,
and thus it should be understood and interpreted differently.
To confirm that the topological invariant retains its value in

DAA, we evaluated its value for the finite system by applying a
generalized theory which was developed for amorphous systems
in Agarwala et al. (46). With the use of the eigenstates |αn > and
eigenenergies En of the finite 4D h-HOTI system we define
matrix P̂ = {

⃒⃒
α1 > ,

⃒⃒
α2 > , . . . ,

⃒⃒
αN0cc > } of size N × Nocc, where

Nocc indicates the number of occupied (or negative energy for
half-filling) states. We then introduce a diagonal matrix operator

D̂ = diag{exp[i2π f (r1)
N ], exp [i2π f (r2)

N ], . . . exp[i2π f (rN )
N ]}, where

for the h-HOTI f (rk)= xkykzkwk and the diagonal form indicates the
local character of the hexadecapole moment and of the respective
antireflection symmetry. The hexadecapole moment, the quantity
capturing the topological properties of 4D h-HOTI, is then expressed

as hxyzw = ( 1
2π ImTr [ln(P̂+D̂P̂)] − nf

N Tr[E])modulo 1, where nf = 1
2

is the filling in the system and E = diag{f (r1→), f (r2→), . . . f ( rN̅→)} .

We confirmed that for both open and periodic boundary condi-
tions calculation of hxyzw yields the value 1/2.
Application of the Lanczos transformation to the above definition

of a topological invariant allows us to obtain a 1D equivalent for the

DAA system hDAA = ( 1
2π ImTr [ln (~P+

D̃~P)] − nf
N Tr[E])modulo 1,

where the matrix ~P = {
⃒⃒
α̃1 > ,

⃒⃒
α̃2 > , . . . ,

⃒⃒
α̃Nocc > } is constructed

using occupied states of the 1D aperiodic array and ~D = ÛLD̂ÛL
+

is the transformed symmetry operator which acquires a non-
diagonal form. In contrast to the case of diagonal from of the local
symmetry operator D̂, the presence of off-diagonal components in
~D emphasizes the nonlocal character of correlations within DAA.
These correlations, however, do originate from the local reflection
symmetry in the original 4D h-HOTI and the resultant nonvan-
ishing hexadecapole moment.
Even though the topological invariant loses its original geo-

metric meaning, our calculations applied to the eigenstates of
DAA confirm that it retains its quantized value of 1/2 due to the
presence of such nonlocal correlations (SI Appendix, section S6).
The same calculations for the trivial case show vanishing hex-
adecapole moment and lack of localized zero-energy states in
both 4D HOTI and 1D DAA systems.
It is worth noting that the procedure of evaluation of the to-

pological invariant based on real-space data used above can also
be applied in experiments, which, however, would require com-
plete information about amplitudes and phases in all the sites of
experimental structure, which must be gathered for all low-
frequency (with the frequencies below the topological bandgap)
bulk states. On the other hand, an experimental observation of
localized zero-energy states, and of the symmetric spectrum of all
other modes with respect to zero energy, would already represent
a direct evidence of nonlocal symmetries and of the topological
nature of DAA.
To summarize, despite its low-dimensional character, the

effective 1D system inherits the topological properties of
higher-dimensional h-HOTI, including its topological invariant.
Therefore, the projected corner states, localized either in the
bulk or on the edge of the 1D array, are induced and protected
by the symmetries of the original 4D system. We can therefore
conclude that the dimensional reduction can be used to engi-
neer new kinds of topological phases characterized by the
nonlocal topological invariants, which ensure the presence of
topological states protected by the nonlocal symmetries, which
are ensured by long-range correlations of parameters within the
array.

Experimental Realization
As the next step we performed experimental testing of our the-
oretical predictions and designed a 1D DAA supporting local-
ized topological zero-energy states. The dimensional reduction
allows for one more simplification of significant relevance for the
experimental realization of D-dimensional HOTIs, whose num-
ber of sites increases rapidly as (2N)D, where N is the number of
unit cells along one edge of the finite (hyper-) cubic array: The
size of the system can be dramatically reduced by cutting the
array at any of the weak bonds (τn ≈ 0) in the projected 1D DAA
lattice without affecting the topological states due to their strong
localization, provided that the truncation is far enough from
their localization site. The simulated results for the truncated 1D
lattice with only 20 sites (out of 1,296 original sites in 4D) are
shown in Fig. 2 B and C, and its spectrum is seen to retain a
gapped character with two fourth-order corner states pinned to
zero energy (anchored-site corner mode slightly moves away
from zero energy due to the intentional weak on-site perturba-
tion). Note that we intentionally cut the chain after 20th site to
demonstrate stability of the corner modes against cutting not at
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exactly vanishing bond (e.g., 30th site). Inspection of the prob-
ability distribution |ψ |2 (Fig. 2C) confirms that one of the “zero-
energy” states is localized at the boundary (the anchor site) and
the other one is localized in the bulk at the 10th site.
To confirm that the topological modes of 1D DAA are not

affected by the truncation, we performed an inverse Lanczos
transformation and mapped the eigenstates of the truncated
DAA back to 4D. To this aim, we assigned zero intensities to the
missing sites of the truncated 1D lattice to restore the number of
degrees of freedom. The comparison of the field distribution on
the xyz hyperplane for the boundary modes of different order
(indicated by numbers in Fig. 2B) is shown in Fig. 3, where the
results for the lattice truncated to 20 sites (Fig. 3 E–H) is plotted
alongside selected (geometrically closes) eigenmodes of the ex-
act (nontruncated) model (Fig. 3 A–D). The comparison reveals
no difference in the field distributions not only for 4D corner
states but even for selected lower-order hinge and surface states,
and only the hypersurface states are clearly affected. Thus, the
modes, in general, recover their field profiles in the projected
DAA system, and they still appear separated by the reminiscent
of the bandgaps indicated by colored regions in Fig. 2B. This
further proves the stability of the localized topological modes in
the DAA to truncations, which makes fabrication of systems
supporting such designer topological states practically feasible
even for the original higher-dimensional systems with very large
number of degrees of freedom.
Clearly, after the truncation of the array due to reduction in

the number of degrees of freedom only some of the modes are
retained. Since some of these states have an extended distribu-
tion in the 1D array, it is not surprising that their spectrum is
slightly perturbed (due to weak coupling with the rest of the
array). The rest of the states, which are primarily localized in the
removed part of the lattice, are lost during the cutting procedure
(see SI Appendix, section S7 for more detailed discussion).

To confirm the experimental feasibility of the dimensional
reduction for the h-HOTI, we designed an acoustic analog of DAA
of resonators emulating the 1D TBM using the finite-element
method (FEM) software COMSOL Multiphysics (Acoustic Mod-
ule). The individual resonators have the same height of 3.0 cm, so
that the lowest-frequency resonance, corresponding to an odd
pressure profile in the vertical (axial) direction (with a single node
at the center), arises at f ∼ 5,720 Hz. Coupling is introduced by
adding narrow channel waveguides connecting the resonators in the
array. The coupling strength between resonators (the hopping in the
TBM) is modulated aperiodically in accordance with the mapping
by vertically shifting the position of the connectors with respect to
the node of the resonant mode. The simulation results for the
system of 20 coupled resonators are presented in Fig. 4.
Fig. 4 B and D shows the acoustic field intensity of the topo-

logical modes localized at the anchor site and in the bulk, both
stemming from the two corner states of the original 4D h-HOTI.
Fig. 4A confirms that the spectral positions of these modes are indeed
localized in the midgap (with a small deliberate shift for the edge
state), while the extended bulk modes of the 1D array are gapped,
which agrees with the results of the TBM in Fig. 2B (the experimental
data on coupling strength can be found in SI Appendix, section S8).
The designed DAA of 20 coupled acoustic resonators was

fabricated with the use of a high-resolution stereolithographic
3D printing (Methods). The resonators with connectors attached
to them were printed and snapped together using interlocking
features deliberately introduced in the design, thus allowing for
the assembly of a rigid and stable array. The assembled structure
of 20 resonators is shown in Fig. 4E. The modes were probed
with a local excitation in each resonator by placing a speaker at
holes introduced on the bottom of every resonator. The strength
of the local response was measured using a directional micro-
phone attached to the second hole on the top of the resonators.
The holes were small enough not to introduce excessive loss, but

0.0 1.0x

z
y

A B C D

E F G H

Fig. 3. The effect of truncation of effective 1D lattice. (A–D) The intensity distributions for four different eigenstates of the 1D array of 30 sites, indicated by
numbers 1 to 4 in Fig. 2B, projected back to 4D by the inverse Lanczos transformation. The modes clearly represent corner states, as well as reminiscent of
hinge, surface, and hypersurface states in 4D, respectively. (E–H) The same, but for the case of 1D array truncated to 20 sites. The projections on the xyz
hyperplane only are shown.
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sufficiently large to probe the acoustic pressure field inside the
resonators.
The frequency-response spectra for selected groups of reso-

nators - the anchor boundary site (red band), the 10th resonator
in the bulk (blue band), and the average over all other bulk sites
(yellow bands), are shown in Fig. 4C by color-coded bands, and
clearly reveal two distinct types of states (see Methods for de-
tailed measurement and data analysis). The one type is repre-
sented by two midgap states localized to the boundary and in the
bulk at the 10th resonator, respectively. These modes correspond
to the topological zero-energy states protected by nonlocal
symmetries in the DAA. Direct measurement of the field profiles
corresponding to the excitation at the terminal anchor site with
the frequency close to the single-resonator (“zero-energy”) fre-
quency confirms that the state is highly localized at the boundary
of the array (Fig. 4B). Similarly, the second 4D corner state was
directly excited by driving the 10th resonator at the “zero-
energy” frequency, and it was found to strongly localize in the
bulk near the respective site (Fig. 4D).
The other type of states (yellow bands in Fig. 4C) represents

delocalized states of the 1D array, which are spectrally gapped

and corresponding to hinge states of the 4D system adjacent to
the anchor site. Despite the finite bandwidth of the resonances,
of about 50 Hz, primarily due to losses induced by the leakage of
sound through the probe holes and absorption in the resin, the
localized topological states clearly retain their properties, i.e., a
strong localization in the array and well-defined spectral position
centered at “zero energy.” The resultant experimentally measured
quality factors of the individual resonators are within the range of
50 to 60, and therefore the corresponding finite lifetimes of the
modes of the structure are long enough not to alter their topological
nature, making them clearly observable in our 1D array (see the
discussion about the quality factor in SI Appendix, section S9).

Discussion
In this work we have introduced a class of topological systems,
DAAs, which support localized topological states protected by
nonlocal symmetries and whose topology is inherited from
higher dimensions. As an example, we considered the 1D DAA
emulating 4D HOTI with quantized hexadecapolar multipole
moment. We have theoretically mapped the 4D h-HOTI system
onto DAA described by 1D TBM with the use of Lanczos

Fig. 4. Band spectra and “zero-energy”modes of the truncated 1D DAA of acoustic resonators mapped from 4D h-HOTI. (A) Band spectra of the effective 1D
model truncated to 20 sites obtained using first-principle FEM calculations. (B) Intensity distributions corresponding to the projected fourth-order topological
corner mode localized at the edge of the array, as found from first-principle simulations (green line), experimental measurements (red dots), and tight-
binding calculations (blue circles), respectively. (C) Experimentally measured density of states in the array. Yellow, blue, and red regions are color-coded to
represent extended bulk, localized bulk, and localized edge modes. (D) Intensity distributions corresponding to the projected fourth-order topological corner
mode localized in the bulk of the 1D array as found from first-principle simulations (green line), experimental measurements (red dots), and tight-binding
calculations (blue circles), respectively. (E) (Upper) The 1D array fabricated using 3D printing. (Lower) The hopping amplitudes τn as a function of site position.
The amplitudes are normalized to the maximal hopping amplitude 102.3Hz, and the onsite energy of the array is ω0'5,720Hz.
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tridiagonalization, which was then experimentally realized in an
array of coupled acoustic resonators. We have proven that
higher-dimensional topological corner states arise in the resul-
tant projected 1D DAA in the form of localized resonant modes
confined to the edge of the system and in the bulk. More im-
portantly, we have shown that these modes retain their spectral
features protected by chiral symmetry and reflection symmetries,
which assume a nonlocal character in the DAA and establish a
correlation of parameters within the array. Thus, the symmetries
inherited from the original 4D system are mapped into 1D and
ensure the very existence and spectral stability of the localized
topological modes in 1D DAA.
The possibility to engineer multiple localized resonances via

dimensional reduction and their unique features, such as precise
spectral properties and topological robustness, open remarkable
opportunities for practical applications, from robust resonators to
sensors and aperiodic topological lasers. Even wider opportunities
can be uncovered once similar mapping procedures are developed
to produce 2D and 3D DAAs, which can provide more degrees of
freedom to manipulate projected topological states propagating
along edges and hinges of such the systems. More broadly, our
work shows how higher-dimension topological physics may be
mapped into easily realizable devices using dimensionality reduc-
tion, opening unique opportunities to implement and verify the
exotic features of higher-dimension topological physics in quantum
and classical systems. More importantly, our work reveals a class of
topological systems where nonlocal symmetries give rise to non-
vanishing topological invariants inherited from higher dimensions
and having a completely different meaning with similar implications.

Methods
Structure Design, 3D Printing, and Generic Measurements. The unit cell designs
of the topological expanded lattice are shown in Fig. 4Ewith lattice constant
a0 = 33 mm, height H0 = 30.00 mm, and radius r0 = 10 mm. The connectors
between the cylinders are radial channels with diameter dγ = 5 mm. The unit
cells and boundary cells were fabricated using the B9Creator v1.2 3D printer.
All cells were made with acrylic-based light-activated resin, a type of plastic
that hardens when exposed to ultraviolet light. Each cell was printed with a
sufficient thickness to ensure a hard wall boundary condition and narrow
probe channels were intentionally introduced on the top and bottom of
each cylinder to excite and measure local pressure intensity at each site. The
diameter of each port is 2.50 mmwith a height of 2.20 mm. When not in use,
the probe channels were sealed with plumber’s putty. Each unit cell and
boundary cell were printed one at a time and the models were designed
specifically to interlock tightly with each other. The expanded structure
shown in Fig. 4E contains 20 unit cells. For all measurements, a frequency
generator and fast Fourier transform spectrum analyzer scripted in LabVIEW
were used.

Numerical Method. Finite element solver COMSOL Multiphysics 5.2a with the
Acoustic Module was used to perform full-wave simulation. In the acoustic
propagation wave equation, the speed of sound was set as 343.2 m/s and
density of air as 1.225 kg/m3. Other dimensional parameters of the structure
are the same as the fabricated parameters.

Data Availability.All study data are included in the article and/or SI Appendix.
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