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Non-Hermitian CNH = 2 Chern insulator protected by generalized rotational symmetry
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We propose a non-Hermitian topological system protected by the generalized rotational symmetry which
invokes rotation in space and Hermitian conjugation. The system, described by the tight-binding model with re-
ciprocal imaginary next-nearest-neighbor hopping, is found to host two pairs of in-gap edge modes in the gapped
topological phase, and is characterized by the non-Hermitian (NH) Chern number CNH = 2. The quantization of
the NH Chern number is shown to be protected by the generalized rotational symmetry Ĥ+(g�k) = ÛgĤ (�k)Û +

g of
the system. Our finding paves the way towards non-Hermitian topological systems characterized by large values
of topological invariants and hosting multiple in-gap edge states, which can be used for topologically resilient
multiplexing.
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I. INTRODUCTION

Topological phases represent a new state of matter which
extends beyond the conventional symmetry-based Landau
paradigm [1,2]. The first, and perhaps the most recognized,
topological phase in modern physics is the integer quantum
Hall insulator (IQHI) [3,4]. IQHI is characterized by an in-
teger number of edge states at the interface between the
quantum Hall insulator and a trivial insulator, with the number
of edge states and the quantized edge conductance determined
by the Chern number, the topological invariant which is totally
defined by the bulk band topology of the system [5]. Since
the discovery of the IQHI, the topological concepts started
to play an increasingly important role in our understanding
and classification of materials [6,7], blossoming into a new
research field of condensed-matter physics, and even spilling
into classical domains of topological acoustics, mechanics,
and photonics [8–11].

The celebrated Altland-Zirnbauer (AZ) “tenfold way”
[12] allows to discern any topological quantum system by
its pattern of nonspatial symmetries, i.e., chiral symmetry,
particle-hole symmetry, and time-reversal symmetry. Taking
into consideration spatial symmetries allowed introducing the
concept of topological crystalline phases [13] characterized
by gapped ground states that are not adiabatically connected
to an atomic limit as long as certain spatial symmetries,
which include mirror and rotational symmetries, are pre-
served. While originally limited to purely Hermitian systems,
in the recent years, the non-Hermitian models has brought new
flavors to topological physics [14–23]. The non-Hermitian
systems were found to host novel phenomena, including
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without direct Hermitian analogs. One example is the gen-
eralized bulk-edge correspondence [24–28], which represents
a guiding principle of Hermitian topological matter, and can
break down in the non-Hermitian settings. For instance, a
system with open boundary conditions cannot be understood
by studying the band topology of the system with periodic
boundary condition [29]. Other examples include new class
of “skin” boundary states [30–32] and non-Hermitian ex-
ceptional points [33–35] unique to non-Hermitian systems,
and even totally new topological phases enabled by the addi-
tional imaginary dimension of the energy spectrum [36,37].
The tenfold AZ symmetry classification in Hermitian sys-
tems has been recently extended to a 38-fold classification in
non-Hermitian systems to encompass the distinction between
complex conjugation and transposition for non-Hermitian
Hamiltonian [23]. We note, however, that the generalized ro-
tational symmetry proposed here, Ĥ+(g�k)= ÛgĤ (�k)Û +

g , does
not belong to this extended 38-fold symmetry classification.
This is due to the fact that the respective 38-fold symmetry
classification only considers nonspatial symmetries. Introduc-
tion of additional spatial symmetries would require a further
expansion of the topological classification [22], a direction
worth of a separate rigorous study.

While some non-Hermitian generalizations of the IQHI
have been reported in literature [38,39], the systems con-
sidered so far were characterized by a non-Hermitian (NH)
Chern number CNH = ±1 and thus could only allow exis-
tence of a single edge state (or a pair of edge states for the
case of domain-wall geometry) in the topologically nontrivial
gap. On the other hand, higher values of topological invari-
ants can be of interest and may also be highly desirable for
numerous practical applications due to the possibility of mul-
tiplexing via several boundary modes [40]. Thus, it is worth
exploring the physics and the possibility of a non-Hermitian
Chern insulator with higher non-Hermitian Chern number
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FIG. 1. (a) Schematic of the proposed non-Hermitian tight-binding model. (b) The first BZ and high-symmetric points of the model.
(c) The non-Hermitian Chern number CNH as a function of parameter m0 with γz = 0.5, and tx = ty = tz = 1. (d), (e) Imaginary part of the
Berry curvature distribution over the first BZ for the occupied band for (d) m0 = 1 and (e) m0 = 3.95, close to topological transition.

|CNH| � 2, which, to the best of our knowledge, have not yet
been discovered.

In this work, we build upon prior work on Hermitian model
[41] characterized by higher Chern number values, and we
propose a non-Hermitian system with higher non-Hermitian
topological invariant, the Chern number CNH = 2. The system
is described by a non-Hermitian tight-binding model which
is shown to host two unidirectional edge states at a single
boundary within a topological gap. We prove that the reported
topological phase and the edge states are protected by a gener-
alized rotational symmetry which invokes both spatial rotation
and Hermitian conjugation. Specifically, we find that the gen-
eralized rotation symmetry for our proposed non-Hermitian
Hamiltonian ensures quantization of the non-Hermitian Chern
number, which, in turn, defines the net number of edge modes,
thus establishing a generalized non-Hermitian bulk bound-
ary correspondence. Similar to the case of Hermitian Chern
insulators, the non-Hermitian Chern number does not allow
predicting the boundary behavior of the finite-size model for
the case of gapless bulk bands, because the Berry connection
is not well defined.

II. THE TIGHT-BINDING MODEL AND AN ELEVATED
NON-HERMITIAN CHERN NUMBER

In what follows, we consider a non-Hermitian tight-
binding model with complex next-nearest-neighbor (NNN)
coupling as depicted in Fig. 1(a). This model is found to
exhibit two distinct gapped phases, topological and trivial
gapped phases, which are separated by the gapless phase.
The topological gapped phase hosts two pairs of in-gap edge
modes. As detailed below, the topological phase and the edge

states are protected by the generalized rotational symmetry

for the non-Hermitian Hamiltonian Ûg Ĥ (g
⇀

k )Û +
g = Ĥ+(

⇀

k ),
where Ûg is the unitary representation of the generator g ≡
Rz( π

2 ) of the fourfold rotational group C4. In our model it is
the unitary matrix Ûg ≡ e−(iπ/2)σ̂z .

The generalized rotational symmetry quantizes the non-
Hermitian Chern number (see Supplemental Material for
details [42]), which assumes value CNH = 2 in topological
gapped phase, which explains the emergence of a pairs of
in-gap edge states at each boundary of the system. The non-
Hermitian Chern number used here represents a direct analog
of the Hermitian Chern number and can be expressed in the

form CNH ≡ 1
2π i

∫∫
BZ

�Bn(
⇀

k ) dk2, where �Bn(
⇀

k ) = ∇⇀

k
× �An(

⇀

k )
is the non-Hermitian Berry curvature. The difference with
the Hermitian version lies in the fact that the non-Hermitian
Berry connection should be evaluated with the use of the
left and right eigenstates of the non-Hermitian Hamiltonian,

i.e., �An(
⇀

k ) ≡ 〈φn(
⇀

k )|∇⇀

k
|ψn(

⇀

k )〉, where the vector 〈φn(
⇀

k )|
(|ψn(

⇀

k )〉) is the left (right) eigenstate of the non-Hermitian

Hamiltonian Ĥ (
⇀

k ), i.e., 〈φn(
⇀

k )| Ĥ (
⇀

k ) = εn(
⇀

k )〈φn(
⇀

k )| and

Ĥ (
⇀

k )|ψn(
⇀

k )〉 = εn(
⇀

k )|ψn(
⇀

k )〉, and where n is the band index.
We would like to emphasize one important property of the
non-Hermitian matrix, that its left (right) eigenstates corre-
sponding to different eigenvalues may not be orthogonal with
each other; however, the left eigenstate with eigenvalue ε1 and
the right eigenstate with eigenvalue ε2 are orthogonal as long
as ε1 �= ε2.

The tight-binding Hamiltonian of the proposed system
[Fig. 1(a)] in real space is defined as

Ĥ = m0

∑
m,n

(a+
m,nam,n − b+

m,n bm,n) + tx
∑
m,n

[(a+
m,nbm+1,n + a+

m+1,nbm,n − a+
m,nbm,n+1 − a+

m,n+1bm,n) + H.c.]

+ ty
∑
m,n

[
i

2
(b+

m,nam+1,n−1 + b+
m,nam−1,n+1 − b+

m,nam+1,n+1 − b+
m,nam−1,n−1) + H.c.

]
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FIG. 2. (a), (b) Real and imaginary parts of the bulk energy spectra for m0 = 1 (topological phase), and (c) respective complex energy
spectra of two bulk bands (red and blue regions) in the complex energy plane for m0 = 1. (d), (e) Real and imaginary parts of the bulk energy
spectra for m0 = 4 (gapless phase) and (f) respective complex energy spectra of two bulk bands for m0 = 4. (g), (h) Real and imaginary parts
of bulk energy spectra for m0 = 6 (trivial phase), and (i) respective complex energy spectra of two bulk bands for m0 = 6.

+ tz
∑
m,n

[(a+
m,nam+1,n + a+

m,nam,n+1 − b+
m,nbm+1,n − b+

m,nbm,n+1) + H.c.]

− iγz

2

∑
m,n

(a+
m,nam+1,n+1 + a+

m,nam−1,n−1 − a+
m,nam+1,n−1 − a+

m,nam−1,n+1

+ b+
m,nbm+1,n−1 + b+

m,nbm−1,n+1 − b+
m,nbm+1,n+1 − b+

m,nbm−1,n−1). (1)

In the tight-binding model described by Eq. (1) we as-
sumed that there are two degrees of freedom (represented by
states A and B) at each site, with am,n (bm,n) and a+

m,n (b+
m,n)

representing annihilation and creation operators for the state A
(B). States A and B can be of different energy m0 and −m0, and
tx is the nearest-neighbor (NN) hopping amplitude between
the states A (states B) of the neighboring unit cells, ty is the
NNN hopping amplitude between state A and state B, tz is
the NN hopping amplitude between state A (B) and itself.
The −i γz (i γz ) represent complex NNN hopping between A
states (and B states), which introduces non-Hermicity into our
tight-binding model. In this paper, we set tx = ty = tz = 1

without loss of generality. The Hamiltonian equation (1) can
be expressed in the momentum space as

Ĥ (kx, ky) = 2tx(cos kx − cos ky)σ̂x + ty[cos (kx − ky)

− cos (kx + ky)]σ̂y

+ [m0 + 2tz(cos kx + cos ky)

+ i2γz sin kx sin ky)]σ̂z, (2)

where {σ̂x, σ̂y, σ̂z} are Pauli matrices acting in the Hilbert
space spanned by the states A and B, and the momen-

tum
⇀

k = (kx, ky) is mapped to (gkx, gky) ≡ Rz( π
2 )(kx, ky) =
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FIG. 3. (a), (b) The complex energy spectrum for different values of m0 for the supercell with periodic boundary conditions in the y
direction. (c)–(f) The wave-function amplitude of the edge states indicated by the numbers 1 to 4 in (a). The number of sites along x direction
is nx = 50, the amplitude of the wave function at state A (B) shown by the red (blue) histogram.

(ky, − kx ) under counterclockwise π
2 rotation around the z

axis. It is not hard to see for the Hamiltonian in the mo-
mentum space that it possesses the generalized rotational
symmetry defined as Ĥ+(gkx, gky) = ÛgĤ (kx, ky)Û +

g with
Ûg = e−(iπ/2)σ̂z , and one can also show that the Hamiltonian

with opposite momentum
⇀

k can be obtained by applying the
operator twice, e.g., Û 2

g .
We would like to emphasize that the systems described

by the Hamiltonian equations (1) and (2) can be brought to
gapless phase by properly tuning the parameters γz and m0;
however, in this work, we are interested in the gapped phase
of non-Hermitian Chern insulator with higher non-Hermitian
Chern number and multiple edge modes, and the case of the
Chern number CNH = 2 specifically. Therefore, we focus on
the values of parameters that ensure the existence of a line
gap in the complex energy plane.

In our model, due to the form of the symmetry operator
Ûg, the non-Hermitian Chern number can be calculated by
evaluating the expectation value of σ̂z with respect to the right
eigenstates at the high-symmetry points in the first Brillouin
zone:

CNH = 2

π
Im

∮
γ

�An(�k)d�k

= 2

π
[2θg(X ) − 3θg(
) + θg(M )] (mod 4), (3)

where γ represent the loop in the first Brillouin zone, as shown

in Fig. 1(b), θg(
⇀

K ) = π
2 〈ψn(g

⇀

K )|σ̂z|ψn(
⇀

K )〉, ⇀

K ∈ {
, X, M},
and |ψn(

⇀

K )〉 is the right eigenstate corresponding to eigen-
value with the negative real part.

We first calculate the non-Hermitian Chern number as
function of m0 with γz = 0.5. As shown in Fig. 1(c), for m0 ∈
(−4, 4), the system is in the topological gapped phase with
the non-Hermitian Chern number CNH = 2, and for other val-
ues of m0, the non-Hermitian Chern number vanishes, CNH =
0, bringing the system to the trivial phase. At m0 = ±4, the
gap closes and the system transitions from the topological
gapped phase to the trivial gapped phase, as shown in Fig. 2.

The generalized rotation symmetry of our non-Hermitian
model restricts the Berry connection in the first Brillouin zone
(BZ) to satisfy the following equation:

�An(gl
⇀

k ) =
⎧⎨
⎩

gl [ �An(
⇀

k ) + i l ∇⇀

k
θg(

⇀

k )] for l ∈ 2Z

gl [− �A∗
n(

⇀

k ) + i l ∇⇀

k
θg(

⇀

k )] for l ∈ 2Z + 1
.

(4)

For a non-Hermitian system, the respective non-Hermitian

Berry curvature �Bn(
⇀

k ) = ∇⇀

k
× �An(

⇀

k ) assumes complex val-
ues in general; therefore, the non-Hermitian Chern number

Cn ≡ 1
2π i

∫∫
BZ

�Bn(
⇀

k ) d�k2 is complex. However, according to
Eq. (4), the real part of the non-Hermitian Berry curvature
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at
⇀

k cancels with the real part of the non-Hermitian Berry

curvature at Rz( π
2 )

⇀

k, leading to the net zero value of the
imaginary part of the non-Hermitian Chern number.

Inspection of the imaginary part of the non-Hermitian
Berry curvature in the BZ for the topological gapped phase re-
veals four peaks, shown in Figs. 1(d) and 1(e), with each peak
contributing 1/2 to the real part of the non-Hermitian Chern
number. At the same time, Eq. (4) ensures that there exist four
equivalent peaks in the imaginary part of the non-Hermitian
Berry curvature, as shown in Figs. 1(d) and 1(e), thus yielding
total non-Hermitian Chern number of 2 in the topological
gapped phase. Figures 1(d) and 1(e) reveal how the position
of the imaginary part of the non-Hermitian Berry curvature
changes with the parameter m0, indicating that there always
exist four equivalent peaks in the first Brillouin zone for the
topological gapped phase. This evolution clearly shows that
the higher value of the Chern number originates from the four
corners of the Brillouin zone, which are not equivalent due
to the non-Hermitian character of the system, thus allowing
these corners to manifest as four effective valleys (regions in
the momentum space) each contributing equal value of 1/2 to
the net non-Hermitian Chern number.

The Chern number in the Hermitian IQHI predicts number
of unidirectional boundary states supported at an interface—
-the principle known as the bulk-boundary correspondence
[43,44]. Similarly, the non-Hermitian Chern number is related
to the net number of unidirectional edge states localized at the
interface between topological and trivial system. To confirm
the bulk-edge correspondence in our non-Hermitian model,
we study a system with periodic boundary condition in the
y direction and open boundary condition in the x direction,
thus forming a cylindrical (supercell) geometry. The energy
spectrum for this geometry (as function of ky) is shown in
Figs. 3(a) and 3(b). For m0 = 1, the system is in the topologi-
cally nontrivial phase with CNH = 2, and there exist two pairs
of edge states in the gap which, as shown in Figs. 3(c)–3(f),
are both localized to the edges of the cylinder. The spectrum
of these states is a purely real number, which implies that the
edge modes of our non-Hermitian model are dissipationless.
Inspection of the wave functions of the edge states reveals that
for the states shown in Figs. 3(c) and 3(f) the phase difference
between A and B components at each site is zero (A and B

are in phase), while for the edge states in Figs. 3(d) and 3(e)
the phase difference is π (A and B are out of phase). As
expected, no edge states are found in Fig. 3(b) corresponding
to the topologically trivial phase, when non-Hermitian Chern
number CNH = 0. The band structure and edge states for
cylinder geometry with periodic boundary in the x direction
and open boundary condition in the y direction are similar
(see Supplemental Material, Sec. II [42]). In the Supplemental
Material [42], we also calculate the non-Hermitian Chern
number based on the open-bulk Chern number [45] with open
boundaries in both x and y directions. The open-bulk Chern
number’s predictions agree with the predictions calculated by
our non-Hermitian Chern number, Eq. (3). These observations
confirm the bulk-edge correspondence of our non-Hermitian
model.

III. CONCLUSIONS

In this work, we proposed a two-band model of a non-
Hermitian topological insulator supporting a higher-valued
non-Hermitian Chern number CNH = 2, which, as the result,
hosts two edge states with purely real spectrum in the topo-
logically nontrivial band gap. More importantly, we develop a
mathematical formalism and prove that the quantization of the
non-Hermitian Chern number is protected by the generalized
C4 rotational symmetry present in our system and invoking
the π

2 rotation along with the Hermitian conjugation operation
(exchange of gain and loss). Our work shows the possibil-
ity to generalize the rotational symmetry, commonly used
to describe Hermitian systems, and employ non-Hermitian
character of systems to induce higher values of the topolog-
ical invariants, such as the non-Hermitian Chern number. Our
work thus outlines an approach to engineer physical systems
supporting elevated number of edge states at the boundaries of
non-Hermitian topological systems by judicious introduction
of gain and loss, which may enable applications with robust
guiding and multiplexing over multiple boundary states.
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