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a b s t r a c t

We consider a distributed estimation method in a setting with heterogeneous streams of correlated
data distributed across nodes in a network. In the considered approach, linear models are estimated
locally (i.e., with only local data) subject to a network regularization term that penalizes a local
model that differs from neighboring models. We analyze computation dynamics (associated with
stochastic gradient updates) and information exchange (associated with exchanging current models
with neighboring nodes). We provide a finite-time characterization of convergence of the weighted
ensemble average estimate and compare this result to federated learning, an alternative approach to
estimation wherein a single model is updated by locally generated gradient updates. This comparison
highlights the trade-off between speed vs precision: while model updates take place at a faster
rate in federated learning, the proposed networked approach to estimation enables the identification
of models with higher precision. We illustrate the method’s general applicability in two examples:
estimating a Markov random field using wireless sensor networks and modeling prey escape behavior
of flocking birds based on a publicly available dataset.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The ever-growing size and complexity of data create scalabil-
ity challenges for storage and processing. In certain application
domains, data cannot be stored or processed in a single loca-
tion due to geographical constraints or limited bandwidth. When
data coming in heterogeneous and correlated streams, a model
estimated based exclusively on local data may be of arbitrarily
low precision. In this paper, we consider a distributed networked
estimation that successfully addresses these concerns.

In the proposed approach, locally estimated linear models are
updated in response to new gradient estimates for either a local
loss measure (generalized least squares) or a network regulariza-
tion function. Here, we analyze computation dynamics (associ-
ated with stochastic gradient updates) and information exchange
(associated with exchange of current models with neighboring
nodes to compute the gradient of network regularization). To
undertake the analysis, we use a continuous-time approximation
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of the underlying stochastic difference equations, which allows
the use of Ito’s calculus.

In Theorem 3, we provide a finite-time characterization of
convergence of the weighted ensemble average estimate and
using an upper bound on a regularity (or dispersion) measure of
the local models. Such upper bound is influenced by the local
model exchanging rate and the network connectivity degree.
The regularity measure can be made arbitrarily small for a large
enough value of a network regularization parameter. In this case,
the weighted ensemble average model is also arbitrarily close to
any locally estimated model.

In Theorem 4, we provide a finite-time characterization of
convergence of the weighted ensemble average model error. We
show the rate of convergence is determined by smallest strong
convexity parameter across all nodes (i.e. κ > 0) and the slowest

data rate (i.e. µ > 0). The asymptotic error is increasing in the
worst case condition number η

κ
> 1 where η > 0 is the maximum

value of the Lipschitz (gradient smoothness) constants associated
with each node. The asymptotic error is also increasing in data

rate imbalance, i.e., µ′
µ

> 1 where µ′ > 0 is the fastest data

rate across all nodes. This characterization has no dependence on
the dimension of the models. Hence, the characterization remains
valid for higher-dimensional models as long as the worst-case
condition number is bounded (i.e., κ > 0 and η < ∞).

We compare this performance characterization with that of
an alternative approach known as federated learning (FL) (see,
e.g., Li, Sahu, Talwalkar, and Smith (2020) and Yang, Liu, Chen,
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and Tong (2019)). In FL, a single model stored in a shared (central-
ized) parameter server is updated with locally generated gradient
updates. While model updates take place at a faster rate in
FL, the proposed networked approach to estimation enables the
identification of models with higher precision. This is formalized
in two corollaries to Theorem 8.

In the first corollary, a large enough network, i.e., one with

at least N >

√

µ′η
µκ

nodes in a connected topology, is shown

to asymptotically exhibit higher average model precision. A net-
worked estimation approach is also more robust to heterogeneity
in noise distribution. With increasing disparities in noise variance,
the FL approach is more vulnerable to noise. For example, if
nodes with faster data rates are also noisier, the identified model
estimate will inevitably be noisy. In the second corollary we
show that the networked approach is guaranteed to outperform
FL estimates when a measure of heterogeneity in noise variance

across nodes (i.e. σ̄2

min σ2
k

) exceeds the threshold

√

µ′η
µκ

. These corol-

laries highlight a trade-off between speed vs precision: while
model updates take place at a faster rate in federated learn-
ing, the proposed networked approach to estimation enables the
identification of models with higher precision.1

This paper is related to several strands of the literature. In
a ‘‘divide and conquer’’ approach to distributed data (see, e.g.,
Predd, Kulkarni, and Poor (2009) and Zhang, Duchi, and Wain-
wright (2013, 2015)), individual nodes implement a particular
learning algorithm to fit a model for their assigned data set and
upon each machine identifying a model, an ensemble (or global)
model is obtained by averaging individual models. This is similar
to ensemble learning (see, e.g., Mendes-Moreira, Soares, Jorge, and
Freire de Sousa (2012)), which refers to methods that combine
different models into a single predictive model. For example,
bootstrap aggregation (also referred to as ‘‘bagging’’) is a popular
technique for combining regression models from homogeneously
distributed data.2 While a ‘‘divide and conquer’’ approaches cou-
pled with a model averaging step can significantly reduce com-
puting time and lower single-machine memory requirements, it
relies on a single synchronized step (i.e., computing the ensemble
average), which is executed after all machines have identified a
model. In contrast, the approach considered in this paper deals
with asynchronous real-time estimation and regularization for
heterogeneous and correlated data streams.

The considered scheme is related to the literature on con-
sensus optimization (see, e.g., Lian, Huang, Li, and Liu (2015),
Nedic and Ozdaglar (2009) and Shi, Ling, Wu, and Yin (2015))
and the recent work on finding the best common linear model
in convex machine learning problems (He, Bian, & Jaggi, 2018).
However, the proposed approach cannot be interpreted as being
based upon averaging local models as in consensus-based opti-
mization. The algorithms proposed in Lian et al. (2015) and Shi
et al. (2015) are designed for batch data while our approach deals
with streaming data. For example, in Lian et al. (2015), gradi-
ent estimation noise is assumed independent and homogeneous,
while in our approach, gradient estimation noise is correlated
and heterogeneous. In addition, the algorithms proposed in Lian
et al. (2015) and Shi et al. (2015), every node is equally likely

1 We note that the preliminary version of this study appeared as a conference
publication (Hong, Garcia, & Eksin, 2020). The model described here incorporates
heterogeneity in the speed of data processing across nodes and does not
commit to a particular choice of regularization weights, unlike the preliminary
model (Hong et al., 2020). We present convergence results (Theorems 3 and
4) similar to Hong et al. (2020) with these generalizations. These generaliza-
tions provide additional insights into the implications of data rate imbalance
combined with the heterogeneity of data. In addition, we provide an analytical
comparison of the method’s performance with FL (Theorem 8, and Corollaries 9
and 10).
2 A careful selection of weights for computing the average model ensures

a reduction of estimation variance along with other desirable properties, see,
e.g., Hansen (2007) and Liu, Okui, and Yoshimura (2016).

to be selected at each iteration to update its local model. In
contrast, in our approach, data streams are heterogeneous so
that certain nodes have faster data streams and thus are more
likely to update their models at any point in time. A network
regularization penalty for networked learning has been analyzed
in a series of papers by Chen, Richard, and Sayed (2014), Garcia,
Wang, Huang, and Hong (2020), Marelli and Fu (2015), Nassif,
Richard, Ferrari, and Sayed (2016) and Nassif, Vlaski, Richard, and
Sayed (2020a, 2020b). In contrast, we consider a setting with
heterogeneous nodes with correlated data streams asynchronously
updating their respective models at different rates over time.

Finally, the paper is related to the literature of distributed
algorithms to solve linear algebraic equations (such as those asso-
ciated with generalized least squares) over multi-agent networks
(see, e.g., Liu, Mou, and Morse (2015), Mou, Liu, and Morse (2015)
and Wang, Zhou, Mou, and Corless (2019)). However, unlike these
papers, we examine the consequences of heterogeneous and cor-
related noise in distributed generalized least squares estimation
in the present paper.

The contributions of this paper are as follows. We develop a
distributed estimation scheme that accounts for heterogeneous
and correlated distributed datasets and heterogeneity in data
processing speed by the nodes. We provide a finite-time char-
acterization of convergence of the weighted ensemble average
that captures the performance gap between the centralized and
weighted average ensemble models as a function of the data het-
erogeneity and speed imbalance (Sections 3.1–3.3). Via a similar
finite-time characterization of the FL performance, we show that
the distributed estimation with network regularization outper-
forms FL when the number of nodes or noise variance across
nodes is large (Section 3.4). We demonstrate the relative poor
performance of FL when some sensors have access to highly
noisy data in wireless sensor network (WSN) estimation of a
Gaussian Markov random field (MRF) (Section 4.1). We also show
the method’s performance on a real dataset using weights pro-
portional to the inverse of the locally estimated noise for local
models (Section 4.2).

2. Data and processing model

2.1. Data model

We consider a set of nodes V = {1, . . . ,N} with the ability to
collect and process data streams yi = {yi,k ∈ R

m|k ∈ N
+} of the

form:

yi,k = Xiw
∗ + εi,k + Λiξk, i ∈ V (1)

where Xi ∈ R
m×p, w

∗ ∈ R
p is the ground truth vector of

coefficients, {εi,k ∈ R
m×1|k ∈ N

+} are independent and identically
distributed random noise variables, and {ξk ∈ R

m×1|k ∈ N
+} are

independent realizations of a common noise which affects nodes
differently according to the matrix Λi ∈ R

m×m. We consider Λi as
a diagonal matrix with diagonal entries that are possibly different.

We assume individual noise random variables are zero-mean
E[εi,k] = 0m×1 and independent across different subsets, i.e.,
E[εi,kε⊺

j,k] = 0m×m for all i and j ̸= i, and E



εi,kε
⊺
i,k



 = σ 2
i Im.

Also, the common noise vectors are i.i.d. with E[ξk] = 0m and
E∥ξk∥2 = Im. It follows the covariance matrix of the error term
for yi,k as

Ωi := E[(εi,k + Λiξk)(εi,k + Λiξk)
⊺] = σ 2

i I + Λ2
i ∈ R

m×m,

with X = [X⊺
1, . . . ,X

⊺
N ]⊺ and yk = [y⊺1,k, . . . , y

⊺
N,k]⊺. We can

combine data streams as follows:

yk = Xw
∗ + εk + Λξk, (2)

where Λ = [Λ1, . . . , ΛN ]⊺ and εk = [ε⊺
1,k, . . . , ε

⊺
N,k]⊺. The

covariance matrix for the error terms is:

Ω := E[(εk + Λξk)(εk + Λξk)
⊺] = Σ + ΛΛ⊺ ∈ R

m×m,

2
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where Σ is a block-diagonal matrix with the ith block equal to
σ 2
i Im and hence the noise across subsets is correlated. A central-

ized formulation of the generalized least squares (GLS) consists
of minimizing the following loss function over w:

Lc ≜
1

2
E[(yk − Xw)

⊺
Ω−1(yk − Xw)]. (3)

2.2. A network of ‘‘Local’’ learners

For distributed data-processing we consider an undirected
network structure G = (V, E) where an edge (i, j) ∈ E represents
the ability to exchange information between nodes i and j. This is
also represented by the adjacency matrix A ∈ R

N×N with ai,j = 1
if (i, j) ∈ E , and ai,j = 0 otherwise.

In a distributed and networked estimation approach, each
node i solves the following ‘‘localized’’ convex optimization prob-
lem,

min
wi

{

fi(wi) + δρi(w)
}

, (4)

where

fi(wi) = 1

2
E[(yi,k − Xiwi)

TΩ−1
i (yi,k − Xiwi)] (5)

is a local loss function or measure of model fit, and ρi(w) ≥ 0 is
a measure of similarity of identified models in the neighborhood
of node i so that the term δρi(w) in (4) can be seen as a network
regularization penalty. Here we consider L2 norm regularization:

ρi(w) = 1

2

∑

j̸=i

α̂jai,j




wi − wj





2
, (6)

where we have ρi(w) = 0 if and only if wj = wi for all nodes
j ̸= i with ai,j = 1. Here α̂j > 0 is the weight associated to the jth
neighbor. We shall return to the choice of these weights in the
corollaries to the main result (Theorem 4) and in our numerical
illustrations. For example, the literature on the optimal combina-
tion of forecasts (see Bates and Granger (1969) and Granger and
Ramanathan (1984)) suggest a choice of weights of the form α̂i =

1
tr(Ωi)

. We note that these weights, i.e., the local data covariance

matrices, are not available in a real dataset. Thus, they need
to be estimated in practice, as we show in numerical examples
(Section 4.2).

The choice of network regularization parameter δ > 0 also
plays an important role. When δ = 0, node i ignores the neigh-
boring models and finds the model that minimizes local loss.
For large values of δ > 0, node i will favor a model closer to
neighboring models, possibly at the expense of increased local
loss. A similar network regularization term has been successfully
used in a networked approach to multi-task learning (see Chen
et al. (2014) and Nassif et al. (2016, 2020a, 2020b)).

2.3. Stochastic gradient with network regularization

In what follows, we introduce a real-time model of the compu-
tation and communication processes involved in a distributed and
networked estimation approach based upon individual solutions
of problem (4). Specifically, we assume each node implements
stochastic gradient updates subject to an additive network reg-
ularization penalty (SGN) based upon a noisy gradient estimate.
Namely, upon collecting data point yi,k, node i is able to compute
the following gradient estimate:

∇fi,k =X
⊺
i Ω

−1
i (Xiwi,k − yi,k) = gi,k + X

⊺
i Ω

−1
i (εi,k + Λiξk), (7)

where gi,k := ∇wi
fi(wi,k) = X

⊺
i Ω

−1
i Xi(wi,k − w∗). Hence, the basic

iteration of SGN takes the form:

wi,k+1 = wi,k − γ [∇fi,k + δ∇ρi,k], (8)

Fig. 1. By time t > 0, node i has executed two gradient updates and three

network regularization updates (Ng,i(t) = 2 and Nr,i(t) = 3).

where ∇ρi,k is the gradient of the network regularization penalty
ρi(wk) and γ > 0 is the step size.

Remark 1. The basic iteration in (8) is related to the literature
on consensus optimization (see e.g. Lian et al. (2015), Nedic and
Ozdaglar (2009) and Shi et al. (2015)). However, the proposed
approach cannot be interpreted as being based upon averaging

over local models as in consensus-based optimization. In that
literature, the basic iteration is of the form:

wi,k+1 =
∑

j

W i,jwj,k − γ∇fi,k, (9)

where W k ∈ R
N×N is doubly stochastic. Indeed one can rewrite

(8) as the form of (9) with W i,i = 1 − γ δ
∑

j α̂jai,j and W i,j =
γ δα̂jai,j. However, the resulting matrix W is not necessarily dou-

bly stochastic in general. Thus, the basic iteration in (8) cannot be
interpreted as being based upon averaging over local models as in
consensus-optimization.

2.4. Real-time implementation and continuous time approximation

The implementation of (8) requires that at every k ∈ N
+, node

i has access to the current estimates of its neighbors {wj,k}(i,j)∈E .
Therefore to account for the real-time implementation of such
updates we must model the random times required for (i) com-
puting gradient estimates ∇fi,k, (ii) collect updated model param-
eters from neighboring nodes in order to compute the gradient

of network penalty ∇ρi,k. For the dynamic (i), define ∆t
g

i,k as the

random time for node i to compute ∇fi,k and t
g

i,k =
∑k

l ∆t
g

i,l as
the time-point to obtain ∇fi,k. For the dynamic (ii), t ri,k marks the
time at which the kth penalty gradient update is executed by
node i and ∆t ri,k = t ri,k − t ri,k−1 is the time required by node i to
collect updated models from neighbors and compute the penalty
gradient (see Fig. 1 for illustration).

We assume ∆t
g

i,k’s are i.i.d. with E[∆t
g

i,k] = ∆t
g

i and ∆t ri,k’s are
i.i.d with E[∆t ri,k] = ∆t r (i.e. all nodes execute penalty updates
at the same rate). We define the counting processes Ng,i(t) =
max{k ∈ N

+|tgi,k < t} and Nr,i(t) = max{k ∈ N
+|t ri,k < t}, then

w.p.1,

lim
t→∞

Nr,i(t)

t
= 1

∆t r
:= β̂, lim

t→∞

Ng,i(t)

t
= 1

∆t
g

i

:= µi.

A continuous-time embedding of wi,t is obtained as:

wi,t =wi,0 − γ

Ng,i(t)
∑

k=1

∇fi,k − γ δ

Nr,i(t)
∑

k=1

∇ρi,k (10)

Define a re-scaled process wi,t := wi,t/γ , and by Donsker theo-
rem (Donsker, 1951), the rescaled noise terms can be

3
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approximated by a Wiener processes as γ → 0. We show that
the dynamics ofwi,t can be modeled via the stochastic differential
equation (see Appendix A.1):

dwi,t = − (µigi,t + δβ̂∇ρi,t )dt + τiX
⊺
i Ω

−1
i dBi,t + ςiX

⊺
i Ω

−1
i ΛidBt ,

(11)

where τi = σi
√

γµi, and ςi = √
γµi.

3 Here Bi,t and Bt are
the standard m dimensional Brownian Motion approximating
the individual noise associated with node i and the common
noise, respectively. In the following, we characterize the conver-
gence of the SGN scheme defined in (8) via the continuous-time
approximation (11).

3. Convergence analysis

The processes {wi,t : t > 0} converge weakly (i.e. in distribu-
tion) (see Appendix A.2). To characterize convergence we will use
measures of consistency and regularity. Let ŵt denote a weighted
average solution at time t , i.e.,

ŵt =
N

∑

i=1

αiwi,t , (12)

where αi := α̂i

c
∈ (0, 1) are normalized weights with c :=

∑N

i=1 α̂i.

Let Vi,t =


ei,t




2
/2, where ei,t := wi,t − ŵt . To measure regu-

larity, we will use the weighted average difference between the
solutions obtained from a single node and that of the ensemble
(weighted) average:

V̄t =
N

∑

i=1

αi



wi,t − ŵt





2

2
=

N
∑

i=1

αiVi,t . (13)

To measure consistency we will examine the distance between
the average and the ground truth,

Ut = 1

2



ŵt − w∗


2
. (14)

3.1. Preliminaries

We will make use of the following definitions and results in
the convergence analysis. Let the Laplacian matrix of G be L = D−
A, where D is the degree matrix, and A is the adjacency matrix. We
define the generalized Laplacian matrix as L̂ = D̂− Â, where D̂ is a
diagonal matrix whose ith diagonal entry is equal to

∑

j∈V α̂iα̂jai,j,

and Â is the weighted adjacent matrix with Ai,j = α̂iα̂jai,j. Let

λ2 (respectively, λ̂2) denote the second smallest eigenvalue of L
(respectively, L̂).

The continuous-time gradient gi,t defined above is a function
of wi,t , which we do not explicitly specify to simplify notation.
In our analyses, we denote gi,t (ŵt ) = X

⊺
i Ω

−1
i Xi(ŵt − w∗) and

gi,t (w
∗) = X

⊺
i Ω

−1
i Xi(w

∗ −w∗). Note that gi,t (w
∗) = 0 for all i ∈ V

and t , to simplify notation we will write g(w∗) instead. Similarly,
when a property holds for all t , we drop t and write gi,t as gi.

We note that gi’s are Lipschitz continuous and the correspond-
ing loss function (noise-free version of fi) is strongly convex with
parameter κi. Let wi,1 and wi,2 be two input vectors taken from
the function domain, then



gi(wi,1) − gi(wi,2)


 =


X
⊺
i Ω

−1
i Xi(wi,1 − wi,2)





≤ ηi



wi,1 − wi,2



 ≤ η


wi,1 − wi,2



 ,
(15)

3 The algorithm described in this section differs from the preliminary version
studied in Hong et al. (2020) in two major ways: (i) we allow heterogeneity in
processing of data across nodes, and (ii) we do not consider a specific set of
averaging weights.

where ∥·∥F is the Frobenius norm and ηi :=


X
⊺
i Ω

−1
i Xi



, η :=
maxi



X
⊺
i Ω

−1
i Xi



. Furthermore,

(gi(wi,1) − gi(wi,2))
⊺(wi,1 − wi,2) ≥ κ



wi,1 − wi,2





2
, (16)

where κ := min κi with κi := 2λmin(X
⊺
i Ω

−1
i Xi), and λmin(·) is the

smallest eigenvalue.
The ratio

ηi
κi

> 1 is referred to as the condition number of the

deterministic optimization problem minw fi(w). In the analysis
below, the worst-case condition number, i.e. η

κ
> 1, plays an

important role in characterizing performance.

3.2. Regularity

The following result establishes that the sum of regularity and
consistency measures is equivalent to the weighted sum of the
distances between individual solutions wi,t and the ground truth
w∗.

Lemma 2. Consider V̄t in (13) and Ut in (14). We have

1

2

N
∑

i=1

αi



wi,t − w∗


2 = V̄t + Ut . (17)

Proof. We expand the sum on the left-hand side of (17) as
follows,

1

2

N
∑

i=1

αi



wi,t − w∗


2 = 1

2

N
∑

i=1

αi

[



wi,t − ŵt





2 +



ŵt − w∗


2 + 2⟨ei,t , ŵt − w∗⟩
]

.

(18)

Note that
N

∑

i=1

αiei,t =
N

∑

i=1

αiwi,t − ŵt = 0. (19)

Hence, (17) follows by the fact that the summation of the cross-
product (last) term inside the brackets in (18) is zero. □

In what follows, we obtain upper bounds on the expectations
of regularity V̄t and consistency Ut processes in Theorems 3 and 4,
respectively. Given the relation in Lemma 2, these bounds provide
a bound on the average error of individual estimates generated by
the SGN algorithmwith respect to the ground truth. The following
result provides an upper bound on the expected regularity of the
estimates at a given time.

Theorem 3. Let wi,t evolve according to continuous time dynamics
(11). Then

E[V̄t ] ≤ e−2(µκ+δβλ̂2)t V̄0 + C1

2(µκ + δβλ̂2)
(1 − e−2(µκ+δβλ̂2)t ),

where β := β̂

c
and C1 > 0 is defined as follows:

C1 := 1

2

N
∑

i=1

αiC1,i, (20)

with C1,i for i ∈ V defined as,

C1,i :=τ 2
i

(

1 − 2αi

)



X
⊺
i Ω

−1
i





2

F
+ ς2

i



XiΩ
−1
i Λi





2

F

− 2

N
∑

k=1

αkAi,k + D1 + D2,

where the constants D1 =
∑N

k=1 α2
kτ

2
k



X
⊺
kΩ

−1
k





2

F
and D2 =

∑N

k=1

∑N

k=1 αkαjAk,j with Ai,k := ςiςk1
⊺(X

⊺
i Ω

−1
i Λi ◦ X

⊺
kΩ

−1
k Λk)1

and ‘‘◦’’ denoting the Hadamard product. In the long run,

4
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lim
t→∞

E[V̄t ] ≤ C1

2(µκ + δβλ̂2)
.

Proof. See Appendix A.3. □

It is not surprising that the expected difference in estimates

decreases with growing δ, which penalizes disagreement with

neighbors. Similarly, the larger the algebraic connectivity of the
network λ̂2 or the strong convexity constant κ is, the smaller is

the expected V̄t .

Finally, the constant term C1 is determined by Xi, i ∈ V and

the covariance matrices of the common noise Λi, i ∈ V . Note that

the quadratic variation of ei,t is:

⟨ei,t⟩t = E

∫ t

0

1

2
C1,ids → Var(ei,t ).

Hence, t
2
Ci,t describes the variation of ei,t , and C1 is a weighted

measure of variation. C1 is small when we have nodes that are

less affected by the common noise.

3.3. Consistency

The consistency measure {Ut , t ≥ 0} captures the perfor-

mance of the average solution ŵ. The following result provides

a characterization of the average solution.

Theorem 4. Let wi,t evolve according to continuous time dynamics

(10). Then

E[Ut ] ≤ e−2µκtU0 + 1

2κµ

(ηµ′ − κµ

δβλ̂2

C1 + C2

)(

1 − e−2µκt
)

,

where β := β̂

c
and C1 is defined in (20), µ′ = maxi µ, and µ =

mini µi, and

C2 = 1

2
(D1 + D2). (21)

In the long run,

lim
t→∞

E[Ut ] ≤ 1

2µκ

(ηµ′ − κµ

δβλ̂2

C1 + C2

)

. (22)

Proof. See Appendix A.4. □

Similar to the regularity measure bound, the penalty constant
δ > 0 and the algebraic connectivity λ̂2 reduce the bound on the

expected consistency. However, the long-run expected difference

between the ensemble average estimate and the ground truth
does not reduce to zero as δλ̂2 → ∞. The constant C2, determined

by the data Xi and matrices Λi, captures the performance gap

in the long run due to available data. Note that the quadratic

variation of ŵt − w∗ is as follows,

⟨ŵt − w∗⟩t = E

∫ t

0

C2ds → Var(ŵt − w∗).

Hence tC2 describes the variation of ŵt −w∗. In the following re-

sult, we examine asymptotic performance as the network grows

in size.

Remark 5. The bounds obtained in Theorems 3 and 4 also serve

to bound the performance of individual estimators wi,t . Since for

node i we have:


wi,t − w∗
 ≤



wi,t − ŵt



 +


ŵt − w∗
 <

√
2(

√

V̄t
αi

+
√
Ut ).

3.4. Asymptotic network performance

Lemma 6 (Asymptotic Performance). Assume the network of local
learners (with associated data sets) grows as follows:

• Each new node (say n > N, N = 1, 2, . . . ) is associated with
a new dataset Xn and yn,k given by (1) with

∥Xn∥F < L0, tr(Ωn) ≤ M, and ϵ ≤ σ 2
n ,

where L0 < ∞, and 0 < ϵ < M < ∞. We assume all entries of
the weight matrix Λi’s are bounded above by ω2, the maximum
entry of all weight matrices.

• The network connectivity is preserved.

If we have δλ̂2 ∼ N, and γ ∼ ϵ3, then

lim
t→∞

lim
N→∞

E[


ŵt − w∗


2] <
S2µ

′γmω2

κµϵ2
= O(γ 1/3),

where S2 = maxk,j maxi x
⊺
i,kxi,j with xi,k being the kth column of X

⊺
i .

Proof. See Hong, Garcia, and Eksin (2021) section 5.6 for
details. □

The proof follows by constructing an upper bound for (22) in
Theorem 4 by considering constants C1 and C2. We first show

that all terms of C2 can be bounded by
S2µ′γmω2

ϵ2
by using the

assumptions on each new dataset available to each new node.
This bound on C2 increases with the noise term that affects the
nodes, inputs magnitude, and step size. Second, show that C1/N
goes to zero as N → ∞. Combining the limiting properties of
the two constants with the bound in (22) and selecting δ such
that δλ̂2 ∼ N , we obtain the bound above. This bound can be
controlled by the selection of the step size γ . Note that we can
make δλ̂2 ∼ N by adjusting the penalty parameter when the
network retains connectivity as the number of nodes grows.

Remark 7. Lemma 6 provides an upper bound of the difference
between the ensemble average estimate and the ground truth,
which is O(γ 1/3) as N → ∞. The bound is subject to the influence
of the data: smaller in magnitude (smaller S2) leads to a tighter
bound. We observe that the bound is tighter when the objective
function is smoother (larger κ). Since we require γ ∼ ϵ3 (or
even smaller γ ), the effect of having small ϵ is offset by choosing
smaller γ . Thus the bound can be controlled as small as needed
by choosing the stepsize γ .

3.5. Comparison with federated learning (FL)

In this section, we firstly present the convergence property of
FL, and then compare its performance with SGN.

3.5.1. Federated learning
For the federated learning, the gradient samples are sent to

a central server for computing, we define the FL approximation
at t as wt =

∑

i wi,t , and the continuous time embedding of FL
updates is as follows:

wt = w0 − γ

N
∑

i=1

Ni,g (t)
∑

k=1

∇fi,k. (23)

Define a rescaled variable wt := wt/r , the continuous time
dynamics of wt can be approximated by:

dwt =
N

∑

i=1

[

−µigi,tdt + τiX
⊺
i Ω

−1
i dBi,t + ςiX

⊺
i Ω

−1
i ΛidBt

]

.

Now we define the measure Ft to examine the distance between
the FL estimates and the ground truth and present the bounds on
the expectation of Ft = 1

2
∥wt − w∗∥2 in the following theorem:

5
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Theorem 8. Let wt evolve according to continuous time dynamics
(23), then

dFt = −
N

∑

i=1

µig
⊺
i,t (wt − w∗)dt + K3dB̃f ,t + C3dt,

where K3dB̃f ,t is the summation of the Ito terms,

K3dB̃f ,t =
N

∑

i=1

τi(wt − w∗)⊺X⊺
i Ω

−1
i dBi,t

+
N

∑

i=1

ςi(wt − w∗)⊺X⊺
i Ω

−1
i ΛidBt ,

(24)

and C3 is the summation of the constant terms,

C3 =1

2

(

N
∑

i=1

τ 2
i



X
⊺
i Ω

−1
i





2

F
+

N
∑

k=1

N
∑

j=1

Ak,j

)

. (25)

Moreover,

E[Ft ] ≥ e−2ηµ′tF0 + 1

2ηµ′ C3(1 − e−2ηµ′t ), (26)

E[Ft ] ≤ e−2κµtF0 + 1

2κµ
C3(1 − e−2κµt ), (27)

so that in the long run,

C3

2ηµ′ ≤ lim
t→∞

E[Ft ] ≤ C3

2κµ
.

Proof. See Appendix A.5. □

In this theorem, we provide both upper and lower bounds of
Ft . The strong convexity parameter κ and the Lipschitz constant
η influence the bounds. The constant C3, determined by the data
Xi and matrices Λi determines the quality of the asymptotic
estimator derived by federated learning, and tC3 describes the
variation of wt − w∗.

3.5.2. Comparison with federated learning
In this section, we compare the long run performance of the

SGN scheme and FL scheme with streaming data. Specifically, we
compare the upper bound in Theorem 4 and the lower bound in
Theorem 8. This is tantamount to comparing

C2
µκ

and
C3
µ′η for large

enough values of δ > 0.

Corollary 9. Assume α̂i = 1, i ∈ V , so that αi = 1
N
, (i.e. simple

average) and N >

√

µ′η
µκ

. There exists δ̄ < ∞ such that for all δ > δ̄

it holds that:

lim
t→∞

E[Ut ] < lim
t→∞

E[Ft ].

Proof. If the weights are of the form αi = 1
N
(i.e. simple average)

then

C2 = 1

2N2

⎛

⎝

N
∑

k=1

τ 2
k



X
⊺
kΩ

−1
k





2

F
+

N
∑

k=1

N
∑

j=1

Ak,j

⎞

⎠ = C3

N2
.

It follows that for N >

√

µ′η
µκ

, we have
C2
µκ

<
C3
µ′η , and the lower

bound in Theorem 8 exceeds the upper bound in Theorem 4
whenever:

C2

µκ
+ 1

µκ
(
µ′η − µκ

δβλ2

) <
C3

µ′η,
(28)

Hence, for δ > δ̄ with δ̄ := 1
βλ2

(µ′η
µκ

−1)(
C3
µ′η − C2

µκ
)−1, the inequality

(28) holds and the result follows. □

The above result guarantees that a large enough network
ensures an ensemble averages estimate with higher quality than
that obtained with federated learning. In the following corollary,
we show that even for small networks but highly heterogeneous
datasets (high asymmetries in individual noise), the SGN en-
semble estimate is superior to the estimate obtained through
federated learning.

Corollary 10. Consider the case with Λi = 0 for all i ∈ V , α̂i = 1

σ2
i

,

and c =
∑N

k=1
1

σ2
k

. Let σ̄ > 0 be defined as:

1

σ̄ 4
:=

∑N

k=1
1

σ4
k

µk ∥Xk∥2
F

∑N

k=1 µk ∥Xk∥2
F

.

If σ̄2

min σ2
k

>

√

µ′η
µκ

, there exists δ̄ < ∞, such that for all δ > δ̄, it

holds that

lim
t→∞

E[Ut ] < lim
t→∞

E[Ft ].

Proof. In this case, Ω−1
k = 1

σ2
k

Ik, therefore


X
⊺
kΩ

−1
k





2

F
=

1

σ2
k

∥Xk∥2
F . Also, αi = α̂i

c
, and C2 and C3 become

C2 = γ

2

N
∑

k=1

α2
kσ

2
k µk



X
⊺
kΩ

−1
k





2

F
= γ

2c2

N
∑

k=1

µk

σ 4
k

∥Xk∥2
F ,

C3 = γ

2

N
∑

k=1

σ 2
k µk



X
⊺
kΩ

−1
k





2

F
= γ

2

N
∑

k=1

µk ∥Xk∥2
F .

Hence,
C3
C2

= c2σ̄ 4. Since 1
c

≤ mink σ 2
k , we conclude that if

σ̄2

mink σ2
k

>
√

µκ

µ′η , then
C2
µκ

<
C3
µ′η . The rest of the proof follows

the same argument to the previous corollary. □

This second corollary indicates that with large differences in
individual noise variance, the SGN approach provides a higher
quality asymptotic estimate than federated learning. Corollaries 9
and 10 indirectly point to conditions under which federated
learning is likely to outperform the considered networked ap-
proach. In the networked approach, the asymptotic estimation
quality benefits from a noise averaging effect due to network reg-
ularization (i.e., the term 1

N2 ). With homogeneous rates (i.e., µ′ =
µ) and well-conditioned individual estimation problems (i.e. η

κ
≈

1), the sufficient condition in Corollary 9 requires a relatively
small network size. With heterogeneous rates and ill-conditioned
individual estimation problems, the requirement on network size
is more stringent, and it is more likely that federated learning
outperforms the proposed approach. Similarly, in Corollary 10,
with homogeneous noise distribution (i.e. σ 2

i = σ 2
2 = σ ) it

follows that σ̂2

mink σ2
k

= 1. Since η > κ , the sufficient condition in

Corollary 10 cannot be met. To sum up, federated learning is likely
to outperform the networked approach whenever the network is
small relative to a measure of heterogeneity which accounts for
individual estimation problems’ conditioning and heterogeneity
in noise distribution.

4. Numerical illustrations

We apply the proposed method to two examples to corrobo-
rate the analytical results. First, we apply the SGN algorithm to
a MRF estimation problem using a WSN with synthetic data and
compare our scheme with FL. Next, we look at a real-world prob-
lem: the escape behavior of European gregarious birds. In this
example, we examine the robustness of the networked approach
when the covariance matrices are recursively estimated.

6
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Fig. 2. (a) Network structure of sensors. The orange dots denote the nodes, and the lines represent the edges between nodes. The two heat sources are located
at (2 m, 8.5 m) and (8.5 m, 9 m), marked by yellow. (b) The 95% confidence intervals of average estimation error φ̄k by SGN and FL at the final iteration. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.1. Temperature estimation of a field

We consider a WSN deployed to estimate the temperature
on a 10 m × 10 m field, divided into 100 equal squares. We
assume that the temperature within the same square is the
same, and the field’s true temperature is stored in the vector
w∗ ∈ R

100×1. We randomly place N sensors on the field, and
each measures w∗ using noisy local observations yi ∈ R

100×1,
which is corrupted by the measurement noise εi, a detection
error that only influence sensor i; and the network disturbance
ξ , a common noise that is shared by all sensors. Each sensor
i only shares a portion of ξ , which is determined by a matrix
Λi. Λi values reflect the relative distance between the sensors’
locations and the measured squares: a sensor that is close to a
square is subject to lower noise levels. We assume w∗ is fixed
but yi changes at each measurement, which can be expressed as
follows:

yi = w∗ + εi + Λiξ, (29)

where εi ∼ Nm(0, σ
2I) and ξ ∼ Nm(0, I). Note that if we set

Xi = I, (1) and (29) have the same form. The local lost function
for each node is as (4).

We model the temperature of the field using a Gaussian MRF
and let the temperature values range from 0 ◦F to 255 ◦F, as
in Eksin and Ribeiro (2012). Two heat locations are located at
(2, 8.5) and (8.5, 9), and temperature drops from the heat source
at a rate of 25 ◦F/m within an area of influence of 5 m from the
source. We set N = 40 and randomly connect the nodes to their
neighbors within 2.5 m—see Fig. 2(a) for sensor locations and heat
map of the field.

We would like to minimize the cost function using SGN and
FL for each sensor by selecting proper wi. We set the stepsize
γ = 10−5N for SGN and γ = 10−5 for FL, the penalty parameter
is set as δ = 100 for SGN. We set the minimum individual noise
variance as 0.01 and let the maximum change from 1 to 40. The
stream parameters are set as µi = 10σ 2

i , i.e., the faster nodes
also generate noiser data. We define the estimation error at time

point k from the lth trial as φk,l =





ŵ

(l)
k − w∗






where ŵ

(l)
k is the

weighted average (12) from the lth trial. The average estimation
error over K trials is defined as: φ̄k = 1

K

∑K

l=1 φk,l. We run both
algorithms for 10 trials and show the average estimation error
with 95% confidence interval at iteration T = 4000 in Fig. 2(b).
It shows at the final iteration, as the maximum individual noise
variance increases, the average estimation error of FL increases
while that of SGN is stable, which suggests that SGN is robust
against noise.

4.2. Modeling flocking escape behavior

In this section, we consider a real data-set used for modeling
bird escape behavior based upon the Flight Initiation Distance
(FID), the distance at which animals take flight from approach-
ing threats. In a regression model, the FID is considered as the
response variable, and 7 birds’ behaviors are considered as pre-
dictors. (See Morelli et al. (2019) for details.) We normalize all
variables for the following analysis. At each node, the FID es-
timate is given by a linear model, where we denote node i’s
estimate with wi = [w0, . . . , w7] as before. The data contains
941 observations in total collected from eight European countries
and 23 different bird species. We group 23 bird species into
N = 15 nodes where each species is assigned to one node.
Since all nodes contain more than 10 observations, we use the
mini-batch of size 10 in the experiment to unify the data length
at different nodes. In this experiment, we consider a complete
network (a network with lower connectivity may only reduce
the performance slightly). We use α̂i = 1

tr(Ωi)
for each i, and

the covariance matrix of a node is computed as the diagonals of
the covariance matrix of 15 mini-batch samples. We use a fading
memory update rule to compute the trace of the covariance
matrix, tr(Ωi), Nocedal and Wright (2006):

tr(Ωi,k+1) = ϕtr(Ωi,k) + (1 − ϕ)tr(Ω̂i,k+1),

where tr(Ω̂i,k+1) is the ith covariance matrix trace computed at
the (k + 1)th iteration, and ϕ ∈ (0, 1) is the fading parameter
that controls the memory of the past covariance values. For SGN
experiments in this section, we set parameter ϕ = 0.9, the step
size γ = 0.001, and the regularization penalty δ = 100.

The SGN’s estimation error at time point k from the lth run is

given by φk,l =





FID − Xŵ

(l)
k






, where X is the matrix containing

the observations and ŵ
(l)
k is the SGN weighted estimation (12)

from the lth trial. The average estimation error φ̄k is defined as
in 4.1 with K = 20. When we compare the final estimator ŵT at
T = 3000 of SGN with the solution of the GLS, more than half
of the SGN estimators fall into the 97% confidence interval of the
GLS estimators. The average estimation error of SGN at the final
step (φ̄T = 20.45) is close to the estimation error of GLS (19.31).

5. Conclusions

The ever-increasing dimension of data and the size of datasets
have introduced new challenges to centralized estimation. For
example, limited bandwidth in the current networking infrastruc-
ture may not satisfy the demands for transmitting high-volume

7
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datasets to a central location. Hence, it is of interest to study
alternatives to centralized estimation.

In this paper we consider a distributed architecture for learn-
ing a linear model via generalized least squares by relying on
a network of interconnected ‘‘local’’ learners. In the proposed
distributed scheme, each computer (or local learner) is assigned
a dataset and asynchronously implements stochastic gradient up-
dates based upon a sample. To ensure robust estimation, a net-
work regularization term that penalizes models with high local

variability is used. Unlike other model averaging schemes based
upon a synchronized step, the proposed scheme implements local
model averaging continuously and asynchronously. We provide
finite-time performance guarantees on consistency. We illustrate
the application of the proposed method for sensor estimation in
a Markov Random Field, and a real dataset from ecology.

Appendix

A.1. Continuous time representation of SGN

In this section, we will derive the formula of dwi,t . By Cen-
tral Limit Theorem, the approximation for noise terms hold for
general distributions. (The proof is omitted here, see Hong et al.
(2021) 5.3.2 for detailed discussion.) For simplicity of notations,
we assume both noise terms have zero-mean Gaussian distribu-
tion: ξk ∼ Nm(0, Im) and εi,k ∼ Nm(0, σ

2
i Im) for all i.

For each node i ∈ V , we rewrite the scheme (10) as:

wi,t =wi,0 − γ

Ng,i(t/γ )
∑

k=1

gi,k − γ δ

Nr,i(t/γ )
∑

k=1

∇ρi,k+

γX
⊺
i Ω

−1
i

Ng,i(t/γ )
∑

k=1

εi,k + γX
⊺
i Ω

−1
i Λi

Ng,i(t/γ )
∑

k=1

ξk.

(30)

Consider the second and the third term in (30). By renewal

theorem
Ng (t/γ )

t/γ
→ µi as γ → 0. When γ ≪ µi,

γ

Ng,i(t/γ )
∑

k=1

gi,k =γNg,i(t/γ )

t

Ng,i(t/γ )
∑

k=1

gi,k
t

Ng,i(t/γ )
≈ µi

∫ t

0

gi,sds.

(31)

Similarly, we have

γ

Nr,i(t/γ )
∑

k=1

∇ρi,k ≈β̂

∫ t

0

∇ρi,sds. (32)

Now consider the individual noise. We assume all components of
εi,k are independent and it is enough to illustrate one-dimension

approximation. Let ε
(q)
i,k be the qth dimension of εi,k, and for all

q ∈ D = {1, . . . ,m},

E

[

Ng,i(t/γ )
∑

k=1

γ ε
(q)
i,k

]

= 0,

Var
[

Ng,i(t/γ )
∑

k=1

γ ε
(q)
i,l

]

= γNg,i(t/γ )

t
γ σ 2

i t ≈ γµiσ
2
i t.

By Donsker theorem, we approximate
∑Ng,i(t/γ )

k=1 εi,k with a stan-
dard m-dimensional Brownian Motion Bi,t . Let τi = σi

√
γµi, then

the individual noise term in (30) can be approximated as

γX
⊺
i Ω

−1
i

Ng,i(t/γ )
∑

k=1

εi,l ≈ τiX
⊺
i Ω

−1
i Bi,t . (33)

Similar to the proof of the individual noise approximation, let ξ
(q)
k

be the qth dimension of ξk, for q ∈ D,

E

[

Ng,i(t/γ )
∑

k=1

γ ξ
(q)
l

]

= 0, Var
[

Ng,i(t/γ )
∑

k=1

γ ξ
(q)
l

]

≈ µiγ t.

Let ςi = √
γµi, we approximate the common noise term in (30)

with an m-dimensional Brownian Motion Bt :

γX
⊺
i Ω

−1
i Λi

Ng,i(t/γ )
∑

k=1

ξk ≈ ςiXiΩ
−1
i ΛiBt . (34)

Substituting (31), (32) and (34) to the corresponding terms in
(30), wi,t approximately satisfies the following stochastic Ito in-
tegral:

wi,t =wi,0 − µi

∫ t

0

gi,sds − δβ̂

∫ t

0

∇ρi,sds

+ τi

∫ t

0

X
⊺
i Ω

−1
i dBi,s + ςi

∫ t

0

X
⊺
i Ω

−1
i ΛidBs.

Taking the derivative of the above equation, we get (11).

A.2. Weak convergence

Consider the stacked vector wt = [w⊺
1,t , . . . ,w

⊺
N,t ]⊺ and a

potential function:

H(w) ≜

N
∑

i=1

αi[µifi(wi) + δβ̂

2
ρi(w)].

Note that αi∇wi
ρi(w) = αj∇wi

ρj(w). Hence,

∇wi
H(w) = αi[µi∇wi

fi(wi) + δβ̂∇wi
ρi(w)],

and the system of stochastic differential equations (11) can be
written as stochastic gradient flow:

dwt = −A−1∇H(wt )dt + √
γ dB̃t ,

where A ⪰ 0 is the diagonal matrix with diagonal entries αi > 0
and B̃t is defined as:

B̃i,t ≜
√

µiX
⊤
i Ω−1

i (σiBi,t + ΛiBt ).

By theory of diffusions (see e.g. Risken (1996)), the process {wt :
t ≥ 0} converges weakly (in distribution) and the limiting density
is Gibbs, i.e.,

lim
t→∞

Pr(wt ∈ C) ∝
∫

C

exp(−H(w)

γ
)dw,

for C ⊂ R
p×N . By continuous mapping theorem, the ensemble

average {ŵt : t > 0} also converges in distribution. This in turn

implies that both {V̄t : t > 0} and {Ut : t > 0} converge in
distribution.

A.3. Proof of Theorem 3

The following lemma provides the differential form of the
regularity measure.

Lemma 11. The regularity measure V̄t satisfies

dV̄t ≤ −
N

∑

i=1

αiµig
⊺
i,tei,tdt − δβ̂

N
∑

i=1

αi∇ρ
⊺
i,tei,tdt + K1dB̃t + C1dt,

(35)

8
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where K1dB̃t is the summation of Ito terms,

K1dB̃t =
N

∑

i=1

αiK1,idB̃t ,

with K1,idB̃t for i ∈ V defined as,

K1,idB̃t = τiX
⊺
i Ω

−1
i dB

⊺
i,tei,t + ςiX

⊺
i Ω

−1
i ΛidB

⊺
t ei,t .

Proof. By definition of ŵt and ei,t , it follows that

dei,t =dwi,t − dŵt . (36)

Note that for d-by-m matrices C = [c1, . . . , cd] and Q =
[q1, . . . , qd], CdBt ·CdBt = ∥C∥2

F dt , and CdBt ·QdBt = 1⊺(C ◦Q )1,
where ‘‘1’’ is a vector of all ones and ‘‘◦’’ denotes the Hadamard
product. Then by (36), the inner product of two dei,t is dei,t ·
dei,t = C1,idt , and hence C1,i is positive. Applying Ito’s lemma
to dVi,t , we obtain

dVi,t = ei,t · dei,t + 1

2
dei,t · dei,t ≤

(

−µigi,t + µ′
N

∑

k=1

αkgk,t

)⊺

ei,tdt

+ δβ

(

−∇ρi,t +
N

∑

k=1

αk∇ρk,t

)⊺

ei,tdt + 1

2
Ci,1dt + K1,idB̃t − K1dB̃t ,

(37)

where µ′ = maxi µi. To obtain the differential form of the regu-
larity measure, we take the weighted average of (37). Because of
(19), the terms with double summation (weighting) vanish, and
(35) follows. □

Now we are ready to prove Theorem 3. We first obtain an
upper bound of dV̄t and then integrate and take the expectation
of the obtained bound to get the desired result. Consider the first
term of (35), let ht = mini∈V gi,t (ŵt ). By (19), we can add a

zero-valued term h
⊺
t

∑N

i=1 αiei,t to the equation, and by the strong
convexity of gi (16),

−
N

∑

i=1

αiµig
⊺
i,tei,t ≤ −µ

N
∑

i=1

αi(gi,t − ht )
⊺ei,t

≤ −µ

N
∑

i=1

αiκi



ei,t




2 ≤ −2κµV̄t ,

(38)

where µ = mini µi and κ = mini κi. Now we consider the second
term of (35). Define the vector et = [eT1,t , . . . , eTN,t ]T and the

matrix L̂ = L̂ ⊗ Im, where ⊗ is the Kronecker product. Then

−
N

∑

i=1

∑

j̸=i

α̂iα̂jai,j(wi,t − wj,t )
⊺ei,t = −e

⊺
t L̂et , (39)

where l̂i,j is the (i, j)th entry of L̂. The second smallest eigenvalue

λ̂2 > 0 satisfies (see Godsil and Royle (2001)), minx̸=0, 1⊺x=0
(x⊺ L̂x)

∥x∥2

= λ̂2. Thus, we have −eTt L̂et ≤ −λ̂2

∑N

i=1



ei,t




2
. We assume that

α̂i = cαi and β = β̂/c , it follows that,

−δβ̂

N
∑

i=1

αi∇ρ
⊺
i,tei,t ≤ −δβ̂

c
λ̂2

N
∑

i=1



ei,t




2 = −2δβλ̂2V̄t .

An upper bound for dV̄t follows

dV̄t ≤ −2(µκ + δβλ̂2)V̄tdt + K1dB̃t + C1dt. (40)

Now consider the derivative of e2(µκ+δβλ̂2)t V̄t ,

d(e2(µκ+δβλ̂2)t V̄t ) ≤e2(µκ+δβλ̂2)tC1dt + e2(µκ+δβλ̂2)tK1dB̃t , (41)

Integrating both sides of the inequality in (41),

V̄t ≤e−2(µκ+δβλ̂2)t V̄0 + C1

2(µκ + δβλ̂2)
(1 − e−2(µκ+δβλ̂2)t )

+ e−2(µκ+δβλ̂2)t

∫ t

0

e2(µκ+δβλ̂2)sK1dB̃s.

(42)

Since the stochastic integral is a martingale, we obtain the desired
upper bound by taking the expectation on both sides of (42). In
the long run, as t → ∞, the exponential terms will vanish, and
the upper bound of the regularity measure follows.

A.4. Proof of Theorem 4

The proof follows a similar outline as Theorem 3. We start with
Ito’s Lemma to get the stochastic dynamics form of dUt and then
introduce an auxiliary variable Wt that depends on both Ut and
V̄t to bound E[Ut ].

We apply Ito’s lemma to dUt , and use the identity in (19) and
ŵt − w∗ = (wk,t − w∗) − ek,t and the differential form of ŵt to
get the following form,

dUt = −
N

∑

i=1

αiµkg
⊺
k,t (wk,t − w∗)dt +

N
∑

i=1

αiµkg
⊺
k,tektdt + K2dB̃t + C2dt,

(43)

where the summation term C2 is defined in (21) and K2dB̃t is
given as,

K2dB̃t =
N

∑

k=1

αkτk(ŵt − w∗)⊺X⊺
kΩ

−1
k dBk,t

+
N

∑

k=1

αkςk(ŵt − w∗)⊺X⊺
kΩ

−1
k ΛkdBt .

We have the upper bound on the first term of (43),

−
N

∑

i=1

αiµkg
⊺
k,t (wk,t − w∗) ≤ − µ

N
∑

i=1

αi(gk,t − g(w∗))⊺(wk,t − w∗)

≤ − 2κµ(V̄t + Ut ).

(44)

The first equality is obtained by subtracting the zero-valued term
g(w∗) from gk,t . The second inequality is by strong convexity of
the gradients (gk,t ), and the last equality follows from (17).

Now consider the second term of (43). Let qt = maxk∈V gk(ŵt ),
then it follows that

N
∑

i=1

αiµkg
⊺
k,tek,t ≤ µ′

N
∑

i=1

αi(gk,t − qt )
⊺ek,t

≤ 2µ′
N

∑

k=1

αi

2
(gk,t − gk(ŵt ))

⊺ek,t ≤ 2µ′ηV̄t .

(45)

By (43)–(45), we can obtain an upper bound of dUt ,

dUt ≤ − 2µκUtdt + 2(ηµ′ − κµ)V̄tdt + C2dt + K2dB̃t . (46)

We construct an auxiliary variable Wt and then follow similar
steps as in the proof of Theorem 3: integrate the upper bound of

dWt and then take expectation. Now, define Wt = Ut + ηµ′−κµ

δβλ̂2
V̄t .

The differential of Wt can be obtained plugging in the bounds for
dV̄t in (40) and for dUt in (46) into dWt :

dWt ≤ − 2µκWtdt +
(ηµ′ − κµ

δβλ̂2

C1 + C2

)

dt +
(ηµ′ − κµ

δβλ̂2

K1 + K2

)

dB̃t .

(47)

9
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Consider the derivative of e2µκtWt and plug in the upper bound
of dWt in (47) to obtain,

d(e2µκtWt ) = e2µκtdWt + 2µκe2µκtdWt ≤

e2µκt
(ηµ′ − κµ

δβλ̂2

C1 + C2

)

dt + e2µκt
(ηµ′ − κµ

δβλ̂2

K1 + K2

)

dB̃t

(48)

We assume that all nodes have the same initial estimate, i.e.,
wi,0 = wj,0 for all i, j. Then, V̄0 = 0, which means W0 = U0.
Note that the stochastic integration of the Ito term is martingale
and hence the expectation is zero. Integrating both sides of (48)
and taking expectation,

E[Wt ] ≤ e−2µκtU0 + 1

2µκ

(ηµ′ − κµ

δβλ̂2

C1 + C2

)(

1 − e−2µκt
)

.

(49)
Since ηµ′−κµ > 0, we have E[Ut ] ≤ E[Wt ]. Hence the right-hand
side of (49) is also the upper bound of E[Ut ]. In the long run, as
t → ∞, the exponential terms vanish and the upper bound of
the consistency measure follows.

A.5. Proof of Theorem 8

In this section, we first derive the formula of dwt in the similar
way as in A.1, and then provide the convergence property of the
federated learning.

We rewrite the scheme (23) as:

wt = w0 − γ

N
∑

i=1

Ng,i(t/γ )
∑

k=1

X
⊺
i Ω

−1
i Xi(wi,l − w∗)

+ γ

N
∑

i=1

Ng,i(t/γ )
∑

k=1

X
⊺
i Ω

−1
i εi,l + γ

N
∑

i=1

Ng,i(t/γ )
∑

k=1

X
⊺
i Ω

−1
i Λiξl

+ γ

N
∑

i=1

Ng,i(t/γ )
∑

k=1

ϵi,l.

(50)

By (31), and (34), we can obtain the continuous approximation of
dwt . The rest of the proof follows a similar outline as Theorem 3.
We apply Ito’s lemma to dFt to get the following form,

dFt = −
N

∑

i=1

µig
⊺
i,t (wt − w∗)dt + K3dB̃f ,t + C3dt,

where K3dB̃f ,t and C3 are defined in (24) and (25). Note that
(∇f (x1) − ∇f (x2))

T (x1 − x2) ≥ κ
2

∥x1 − x2∥2, then

−
N

∑

i=1

µig
⊺
i,t (wt − w∗)dt ≤ −κµ



wt − w∗


2
dt.

It follows that

dFt ≤ −2µκFtdt + K3dB̃f ,t + C3dt.

Now consider d(e2κµtFt ),

d(e2κµtFt ) =e2κµtdFt + 2κµe2κµtFtδdt ≤ e2κµtC3dt + e2κµtK3dB̃t .

Integrating the left and right hand sides of the inequality and
taking the expectation, by observing that the last term is a mar-
tingale we get (27). Now, we consider the lower bound of Ft . By
Lipschitz continuity,

−
N

∑

i=1

µig
⊺
i,t (wt − w∗)dt ≥ −ηµ′ 

wt − w∗


2
dt.

It follows that

dFt ≥ −2ηµ′Ftdt + K3dB̃f ,t + C3dt.

Now consider d(e2ηµ′tFt ),

d(e2ηµ′tFt ) =e2ηµ′tdFt + 2ηµ′e2ηµ′tFtdt

≥e2ηµ′tC3dt + e2ηµ′tK3dB̃t .

Integrating both sides of the inequality and taking expectation, it
yields (26).
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