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We demonstrate the use of matrix product state (MPS) models for discriminating quantum data on quantum
computers using holographic algorithms, focusing on the problem of classifying a translationally invariant
quantum state based on L qubits of quantum data extracted from it. We detail a process in which data from
single-shot experimental measurements are used to optimize an isometric tensor network, the isometric tensors
are compiled into unitary quantum operations using greedy compilation heuristics, parameter optimization on the
resulting quantum circuit model removes the postselection requirements of the isometric tensor model, and the
resulting quantum model is inferenced on either product state (single-shot measurement) or entangled quantum
data. We demonstrate our training and inference architecture on a synthetic dataset of six-site single-shot mea-
surements from the bulk of a one-dimensional transverse field Ising model (TFIM) deep in its antiferromagnetic
and paramagnetic phases. We find that increasing the bond dimension of the tensor-network model, amounting
to adding more ancilla qubits to the circuit representation, improves both the average number of correct
classifications across the dataset and the single-shot probability of correct classification. We experimentally
evaluate models on Quantinuum’s H1-2 trapped ion quantum computer using entangled input data modeled
as translationally invariant, bond dimension 4 MPSs across the known quantum phase transition of the TFIM.
Using linear regression on the experimental data near the transition point, we find predictions for the critical
transverse field of 7 = 0.962 and 0.994 for tensor-network discriminators of bond dimension x =2 and x = 4,
respectively. These predictions compare favorably with the known transition location of 47 = 1 despite training on
data far from the transition point. Our techniques identify families of short-depth variational quantum circuits in
a data-driven and hardware-aware fashion and robust classical techniques to precondition the model parameters,
and can be adapted beyond machine learning to myriad applications of tensor networks on quantum computers,

such as quantum simulation and error correction.
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I. INTRODUCTION

Quantum technology continues to advance rapidly. This
progress urgently requires developing and assessing ap-
plications of near-term quantum technology and methods
to analyze and interpret the large volumes of quantum
information these devices will produce. Beyond-classical
computational tasks [1] have been demonstrated, including
sampling from random unitaries [2] and boson sampling
[3], and smaller-scale demonstrations and proposals exist for
quantum simulation [4], optimization [5], machine learning
[6], and other topics [7]. In contrast to the widely used ran-
domized benchmarking [8] and random unitary simulation [2]
use cases, applications like quantum simulation and machine
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learning will deal with physical data that is expected to be
highly structured. Identifying quantum models that can dis-
cover and adapt to this underlying structure, as is the case in
successful classical approaches to similar problems [9,10], is
key to both developing performant algorithms and identifying
hardware improvements that improve model performance in
relevant metrics.

Tensor networks (TNs), in which a high-rank tensor is de-
composed into a contracted network of low-rank tensors, have
been used in a variety of applications across physics, chem-
istry, applied mathematics, and machine learning [11-17]. In
quantum physics, TNs are used to represent the coefficients of
a wave function in a fixed basis, and the geometry of the TN
is related to the entanglement and correlation structure of the
resulting wave function [18,19]. Variational methods within
the class of TNs define the gold standard for simulations of
strongly correlated quantum many-body systems on classical
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computers, with the most prominent example being the den-
sity matrix renormalization group (DMRG) algorithm [11,20].
Similar to how classical machine learning has benefited sig-
nificantly by tailoring the structure of the learning model to
the structure of the data, e.g., to account for its hierarchical or
causal nature [21], we can expect that models which encode
quantum characteristics of the data may be more performant
or interpretable when applied to quantum learning problems.

There is also strong impetus for developing TN models
to be employed on quantum computers. Certain TN archi-
tectures naturally define a sequential preparation scheme for
quantum states in which qubits holding the quantum state
information are correlated using a register of ancilla qubits
through a sequence of quantum gates [22,23]. The ancilla
qubit register is the quantum analog of the contracted indices
of the classical TN representation. However, its effective bond
dimension grows exponentially with the number of qubits in
the register, leading to a vastly improved scaling of network
expressiveness with resources compared to the classical case.
The state of the ancilla qubits in a partially contracted net-
work also carries information about the state, but scales only
with the boundary of the contracted region. This so-called
“holographic” encoding of quantum information [24-28] has
been utilized in recent works to measure static and dynamic
properties of quantum states on quantum computers [29-32].
The ability of tensor networks to partially localize information
about a quantum state into a reduced-dimensional representa-
tion may also bode well for trainability in machine learning
applications by avoiding the phenomenon of barren plateaus
[33].

In this work, we explore the use of matrix product states
(MPSs), one-dimensional tensor networks, for inferencing
from quantum data on quantum computers. Namely, we fo-
cus on the problem of classifying a translationally invariant
quantum state given L qubits of data extracted from it. Our
discriminator architecture first generates a prior distribution
on the ancilla degrees of freedom in the network, and then
conditions the state of the ancilla distribution on the quan-
tum data to be classified. A final quantum operation on the
ancilla qubits encodes the class label into a subset of those
qubits, which can then be read out by measurement in the
computational basis. We detail a process in which the tensors
in the network architecture are classically optimized using op-
timization techniques on manifolds inspired by canonical TN
algorithms, the tensors of the optimized classical model are
compiled into quantum operations using greedy compilation
heuristics [34,35], and then the resulting model parameters
can be fine-tuned based on results obtained from inferencing
the quantum model. In contrast to many other variational
quantum circuit approaches, in which a fixed-depth sequence
of native gates is optimized over its parameters, our approach
only defines the geometry of quantum operations between
qubits and allows for an automatic determination of the circuit
structure and depth by interfacing with quantum data.

We demonstrate the training of our architecture on a col-
lection of single-shot experimental measurements, in which
each shot corresponds to the measurement of L qubits from
a fixed set of bases. Such single-shot measurements can be
realized not only in programmable quantum hardware [36],
but also in other platforms such as cold atoms [37] and trapped

ions [38,39], and so our training strategy avoids the need for
the quantum system providing the data to be programmable.
While the collection of single-shot measurements can be rep-
resented as vectors in a 2L-dimensional space and classically
analyzed, the quantum model can capture that these vectors
are sparse representations of vectors embedded in a 2F-
dimensional Hilbert space, and use their correlations to define
entangled decision boundaries. In addition, once trained our
model can be inferenced on either single-shot measurements
or entangled input data, with the latter having no classical
analog. We analyze the performance of both modalities in this
work.

This work is organized as follows: Sec. I overviews matrix
product states, applications to machine learning, and their
implementation on quantum hardware; Sec. III presents our
tensor-network discriminator architecture and algorithms for
classical training, quantum compilation, and other classical
preconditioning strategies of the quantum model; Sec. IV
describes an application of our model workflow to the
one-dimensional (1D) transverse-field Ising model, including
classical simulations of model performance and analysis of
experiments on Quantinuum’s model H1-2 trapped ion quan-
tum computer; finally, Sec. V presents conclusions. Technical
details of algorithms used to generate the synthetic training
data are presented in the Appendixes.

II. MATRIX PRODUCT STATES

A. Overview

Matrix product states (MPSs), also known as finitely cor-
related states, are tensor networks with a 1D geometry. MPSs
are of interest because they exactly represent ground states
of gapped, local, 1D Hamiltonians [18,40], and also because
many efficient algorithms have been developed for finding ap-
proximate MPS representations of many-body systems, such
as the density-matrix renormalization group (DMRG) algo-
rithm [20]. The MPS description of a quantum state |y) on
a lattice consisting of Ld-level subsystems is given by the
contraction of the L tensors {Al/} as

) = Y (A AT ey gy ), (1)

lo...IL—1

in which AU denotes the matrix obtained by holding the
index i; fixed in the tensor AUl. Each tensor AV is (x, d, x)-
dimensional, and the bond dimension y forms the main
convergence parameter of an MPS. The states |/) and |r) are
x -dimensional states specifying boundary conditions.

The matrix product structure of Eq. (1) implies that we
can place any full-rank x x x matrix X and its inverse X!
between any two neighboring tensors in the product without
changing the nature of the state. This leads to a gauge freedom
in MPSs that can be exploited to put the tensors into one of
a number of so-called canonical forms [11]. In this work, a
central role will be played by MPSs in the left-canonical form,
in which ZaiAg’g’Ai’;'f = 8pp. Reshaping this tensor into a
(xd) x x-dimensional matrix, left-canonical form specifies
that this is an isometric matrix with orthonormal columns.
Hence, this isometric operation can be embedded into a
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unitary operation U) such that
ALY = (i;al070p), )

and this sequence of unitary operations can then be used to
sequentially generate the state as

) = (1000 ® - @ UEM0)—1 @ [1)p. (3)

Here the subscript b denotes states in a y-dimensional bond
Hilbert space, and the other subscripts denote qubit index in a
register of L qubits used to hold the generated state.

Equation (3) codifies a scheme to prepare the state i) us-
ing L + log, x qubits: a register of L qubits plus an additional
log, x qubits to encode the bond degrees of freedom. How-
ever, this scheme can be modified to require only log, x + 1
qubits for implementation provided the hardware supports
midcircuit measurement and reuse (MCMR) [22,41,42]. In
this scheme, log, x of the qubits form the bond register, and
the remaining qubit is used to prepare the physical degrees of
freedom by sequentially coupling with the bond register. Then
the physical qubit information is measured before the next
physical qubit state is generated, and so this reduced qubit re-
quirement scheme can be used to calculate observables which
can be expressed as tensor products of local operators. This
scheme can also be used to generate sample product states in
a specified basis, |ig - - - ir—1) according to their probability of
occurrence in the wave function, |(y]ig - - - ir_1)|>. The log, x
qubits required are exponentially smaller than the number of
classical bits required to implement the MPS, and relatively
large system sizes can be amenable to current devices with
modest numbers of qubits [22].

MPSs can also represent the thermodynamic limit of a
translationally invariant system on an infinite chain of sites
obtained by the L — oo limit of Eq. (1), in which case we
can capture the state using a single, translationally invariant
tensor, dropping the site index superscript in brackets. This re-
duced description of an infinite-size state with an MPS tensor
is known as an iMPS. Intuitively, far from the boundary the
particular boundary vector, e.g., |r) used to generate the state
becomes unimportant as the state of the bond degrees of free-
dom reaches a steady state. This can be roughly formalized by
the fact that the (right) transfer operator of the left-canonical
iMPS defined by

Tr(A:E) =) AEA", 4)
1

in which [E is a x x x matrix, admits the half-infinite reduced
density matrix Dpaif—infinite Obtained by tracing out one half of
the infinite chain, as an eigenmatrix with maximal eigenvalue,
which is 1 for a normalized iMPS. Hence, the half-infinite
density matrix in bond space is obtained as the steady state
of the channel

p=Trn, U0y, ® - ® TraU[0)2 ® Tr1U[0); @ [r)p,  (5)

as N, — oo. Here U is the unitary embedding of the MPS
tensor A in left-canonical form, defined as in Eq. (2), which
acts on the combined register of the bond qubits (denoted by
subscript b on the key) and a physical register (denoted by
subscript numerals) before the latter is traced out. In general,
tensor networks encode a D dimensional quantum system

into a register of qubits on the (D — 1)-dimensional bound-
ary, so this approach is referred to as “holographic” [24-29].
Holographic approaches have been recently exploited in a
trapped-ion quantum computer to measure the entanglement
entropy defined by the spectrum of Pnaf—infinie [30,31], as
well as for dynamics [32]. In practice, since MPSs of finite
bond dimension have a finite correlation length, a finite “burn-
in length” N, suffices (set to L in the results that follow),
and the boundary state |r) can be chosen to facilitate rapid
convergence to the steady state (see Appendix A for further
algorithmic details).

B. MPSs for machine learning

Given that MPSs define a sequential preparation procedure
for quantum states starting from a given reference state, a
natural application of MPSs is generative modeling [34,43].
In this scenario, the tensors A of an MPS are optimized to best
represent a collection of training quantum states {|,,)}, m =

1, ..., M by some metric, such as the average log-likelihood
of the data in the MPS
1 2
L= M;lnux/fmwfm]n, (6)

where |Y[A]) denotes the state generated by MPS tensors
A. Once trained, the model can be compiled to quantum
hardware by finding appropriate embeddings of the tensors
A in left canonical form into unitaries as in Eq. (2) and then
applying the sequential preparation procedure. A proof of
principle of this generative model pipeline has been explored
in Ref. [34], in which greedy heuristics were applied to com-
pile the isometries into unitaries for hardware with a given
gate set and geometry using as short of gate sequences as
possible. For a finite-size system, |r) can be chosen to be
the vacuum state of the qubits encoding the bond degrees of
freedom, while for an infinite-size state the “burn-in” pro-
cedure described above can be enacted to first generate the
half-infinite density matrix on the bond states, and then the se-
quential preparation of a finite portion of the state performed.

If we instead consider a supervised discriminative task, we
now wish to classify a quantum state |Ys) into one of N¢
classes given a collection of training states and class labels
T ={(xn), €m), m =1, ..., M}. One means of doing so is to
define an MPS linear model [44] by introducing a x x N¢ X
x-dimensional label tensor P¢ in between the bonds of the
MPS tensors in the representation Eq. (1) to define a classifier
state |'(pclass;l) as

Wetasse) = Y, (LA AR PO ) fig iy ). (7)
i+ i1

This object is shown graphically in Fig. 1(a). The overlap of
this classifier MPS with a test quantum state |5 defines an
indicator function f;(|¥est)) as

f@(lwtest)) - (wclass;dwtem)
= Z (LAY ... A=l ey

iO'“iLfl

X (o -+ - ir—1|Yiest) s (®)
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FIG. 1. MPS linear classifier model represented by tensor-
network graphical notation. (a) A linear model MPS classifier is
obtained by introducing a label tensor P¢ on one of the bonds of an
MPS structure. (b) The overlap of the MPS classifier wave function
defined in (a) with a test wave function |y.) defines an indicator
function f;(|es)) that can be optimized for classification perfor-
mance. (c) The action of the linear MPS model can be interpreted as
an encoding of the test state information into the bond space to define
an operator MI(|1s)) shown graphically, followed by classification
using the indicator tensor as argmax, Tr(P* M (|¢ext)))-

shown graphically in Fig. 1(b). This indicator function can
then be optimized over the tensors of the MPS (A and P) such
that f[(wftest)) ~ 1 when W’lesl) is in class £ and fi/(hylest)) ~
0 for all other classes ¢, with performance averaged over
the training set 7. We note that the position of the indica-
tor tensor P¢ in the MPS chain can be shifted using gauge
freedom, and so we have shifted it to the right end for conve-
nience. We can rewrite the indicator function as f;(|Vest)) =
Tr(P“"M(|¥iex))) in which

M(h//test)) = Z A[Lfl]iL—lT .
ioein—1
X A[ow(io 1| Yrese ) | D (7] 9)

MI(Jyr)) is shown graphically in Fig. 1(c) and represents the
overlap between the vector |i) and the state represented by
the MPS tensors A in bond space. Hence, the indicator tensor
P* performs classification based on the bond space encoding
of this overlap. In this way, an MPS classifier performs a
lower-dimensional “holographic” encoding of the information
needed for classification into the bond degrees of freedom,
in analogy to how classical encoders produce reduced di-
mensional representations in an appropriately defined latent
space.

This observation leads to a duality between generative and
discriminative MPS models. Namely, consider that we have
two generative MPS models with tensors A and A’ and bond
dimensions x and x’ encoding training sets 7 and 7’ with
high fidelity. If we now consider that the elements of T are

in class 0 and those of 77 are in class 1, we can construct an
MPS classifier with bond dimension . = x + x’ as

chlasei =N Z lig -+ - ip—1)

ig--+if—1
x (Al @ T, 41, @ Al0)
. (A[L_l]iL—l ® Hx’ + HX ® A/[L_l]iL—])
x (8¢.0P0 + 8e.1P)Ir) @ |r), (10)

UEXE

in which 8, ¢ is the Kronecker delta, 750 (751) is a projector
onto the bond states connecting to the tensors A (A’), and NV is
a normalization factor. The indicator function associated with
this MPS model applied to a test state |X) is

Je(Ix)) = N(Se,0(WIANIX) + 8e 1 (¥ [A']x)).  (11)

Hence, this indicator function behaves as desired, selecting
the class according to the state with higher overlap, and will
be accurate so long as the two classes are sufficiently distin-
guishable (have small overlap « 1). In the extreme case that
one of the generative models is provided as a test state, the
correct class will have weight o 1 while the incorrect class
will be weighted by a factor o< (W[A]|W[A']) that will be <« 1
when the classes are distinguishable.

The above process generates an accurate classifier provided
that the training data within each class can be well described
as an MPS with the specified bond dimension. However,
there are several drawbacks of this approach. Perhaps most
strikingly, this process requires building of generative models
which capture all properties of the training data, and then
requires all of this information from all classes to be encoded
into the classifier model. This leads to potentially very large
bond dimensions. However, just as in classical learning, it is
likely that the classification decision can be made based on
a set of features derived from the data, whose size is much
smaller than the size of the full data set. In the architecture
we present in the next section, we avoid this drawback by
training a generator in feature space and the discriminator
simultaneously. This enables us to model only the parts of
the data necessary for the classification decision, reducing the
resource requirements for the model. Further, this approach
does not require that the training data have an efficient MPS
representation, but only that the set of features used for the
classification decision does.

The second point we will address with our tensor-network
discriminator architecture has to do with the implementation
of a classifier like Eq. (10) on quantum hardware. As follows
from Eqgs. (10) and (3), an MPS classifier can be applied
to a separable feature state |X) = |xp) ® --- ® |x, 1) using
log, x + [log, N¢ qubits and MCMR as

(r1sU10) OI0=" xp ) ® -+ - @ (010 |x0) ® 1), (12)

in which UU! is a unitary embedding of the MPS tensor
defining the generative interpretation of the model Eq. (2) and
U is a similar unitary embedding of P* such that

Py = (CalU|0B), (13)

in which £ is the class label interpreted in binary. Following
several executions of the circuit, the most probable inferred
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value of ¢ obtained by measurements in the computational
basis can be assigned as the predicted class label.

As is evident from Eq. (12), this circuit also requires posts-
election on the physical qubits being in the state |0) following
action of UU]. When the state |1) is instead measured it in-
dicates that the action of the circuit does not correspond to
action of the tensor Al defining the MPS, but rather to the
portion of the unitary embedding U that is not determined
uniquely by the MPS representation. While the probability
of successful postselection may be high in the case that the
training and test feature vectors have significant overlap and
the MPS model is very expressive, it is clearly preferred to
develop a model that does not require these conditions to be
met. In the next section we develop an architecture inspired by
these observations that will obviate the need for postselection.

III. TENSOR-NETWORK DISCRIMINATOR
ARCHITECTURE

In this section, we put forth a tensor-network discrimina-
tor architecture for quantum hardware that enables efficient
classical training and preconditioning, avoids the need for
postselection that arises from naive application of an MPS
model for classification, and produces local cost functions
with a data-defined circuit architecture amenable to refine-
ment and optimization with the quantum device in the loop.
While our methodology can also be straightforwardly adapted
to finite-size systems with boundaries, we will henceforth
specialize to the case of learning from a finite string sampled
from an infinite, translationally invariant state.

Our discriminator consists of four key model components
to be trained, which we will denote as 0R, U(;, UD, and UC.
Ug is a x x x unitary operator acting on the bond degrees
of freedom to form an appropriate representation of the right
boundary condition |r). Ug is a (xd) x (xd)-dimensional
unitary that generates an appropriate prior distribution for the
feature space in the bond degrees of freedom starting from
the state generated by Ug. Together, Uz and U generate the
appropriate boundary conditions and prior information for the
classifier, similar to the contribution |/)(r| in the matrix M
defined in Eq. (9). Up is a (xd) x (xd)-dimensional uni-
tary that conditions the state of the bond degrees of freedom
based on an input vector |x). Finally, Uc is a (xd) x (xd)-
dimensional' unitary that encodes predicted class labels into
the probabilities of the states in a log, Nc-dimensional register
based on the state of the bond degrees of freedom output from
Up. In this way, Ug is analogous to the unitaries U generating
an MPS state as in Egs. (2) and (3), Up is analogous to the
adjoints of U utilized in an MPS classifier as Eq. (12), and Ue
classifies based on the state of the bond degrees of freedom
analogous to I in Eqs. (12) and (13). In addition to the input
parameters L (the number of qubits encoding the input data)
and N¢ (the number of classes) there are two hyperparameters
of the model: N, is the number of times Ug is applied to

'0¢ is not required to act on the physical qubit; however, since the
physical qubit is needed for other parts of the architecture, we have
included it as a potential resource to be utilized by Uc.

reach a steady-state bond register prior distribution and y is
the bond dimension.

This process is displayed visually in Fig. 2 for the case of
a product input vector |x). The total qubit requirements for
the classifier, assuming MCMR, are log, x 4+ 1. This does not
include the resources required to encode the input vector |x).
In the general case that this is an arbitrary quantum state it
will require L qubits to encode. Two important special cases
are (1) when all input vectors are product states, in which case
the physical qubit used in the classifier can be utilized and
no additional resources are required, and (2) when the input
data are described by an MPS with bond dimension x’, in
which case an additional log, x’ qubits are required. We will
demonstrate both of these modalities in Sec. I'V.

A. Classical training and preconditioning of tensor-network
architecture

We now turn to how the tensor-network discriminator
architecture can be optimized classically using adaptations
of standard tensor-network techniques. This classical pre-
conditioning serves several benefits. For one, the classical
preconditioning will define a quantum circuit architecture
with initial guesses that can then be optimized further on the
quantum device, with the initialization helping to avoid local
minima and barren plateaus [45—47]. In stark contrast to most
other approaches for variational circuit learning, in which
a predefined circuit architecture is optimized or operations
are characterized as general dense unitaries without reference
to their representation in native gates for a given hardware
realization, our approach will produce a family of quantum
circuits whose depth and native gate content are discovered
from the correlation structure of the training data itself. Fi-
nally, from a benchmarking perspective this process produces
models that can be analyzed on either classical or quantum
hardware to assess the quality of noise models for the latter in
structured use cases.

The operators Ur, UG, Up, and UC can be interpreted as
unitary embeddings of tensors R, G, D, and C, analogous to
the embeddings described in Sec. II. R describes a normalized
x -dimensional state, and so is an element of the sphere man-
ifold of dimension x, S*, whose elements have unit norm,2
and the unitary embedding takes the form R, = (a|Ug|0). The
tensor G can be described as a (x, d, x)-dimensional tensor
in left canonical form, such that the (xd) x x-dimensional
matrix reshaping of this tensor is an element of the Stiefel
manifold St(xd, x) of matrices with orthonormal columns.
Similarly, D is a (x, d, x)-dimensional tensor where the ad-
joint of the x x (xd)-dimensional matrix reshaping is an
element of St(xd, x). The unitary embeddings of these ten-
sors are analogous to Eq. (2) for MPS tensors. Finally, C is a
X X N¢ dimensional matrix that is an element of St(x, N¢)
and embedded as C, , = (015(£|Uca)p|0), where we have
assumed binary classification for simplicity.

Given that all of the tensors in our architecture are ele-
ments of Riemannian manifolds, using manifold optimization
techniques is a natural approach. Several recent works have

2Throughout the term norm refers to the L, norm.
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FIG. 2. Diagram of tensor-network discriminator architecture, with operation read left to right as in quantum circuit diagrams. First, the
operator Uy creates an initial state in the log, x bond qubits, starting from the vacuum state. Next, this bond state is coupled with a physical
qubit via the operator Ug and the physical qubit state discarded and reset N, times. This creates a bond state that can be interpreted as a feature
space representation of the density matrix obtained by tracing out half of the infinite system. This bond state is now combined with the input
state |x) a single qubit at a time via the operator Up, and the physical qubit measured and reinitialized after each application. For clarity, this
operation is drawn as though the test state is a product state, but the process also applies to any entangled input state stored in an L-qubit
register. Finally, the resulting bond degrees of freedom which have been conditioned on the observation of the state |x) are operated on by U,
and the measurement of log, N¢ of these qubits defines a binary representation of the predicted class label.

discussed manifold optimization techniques, including within
the context of tensor networks and other quantum applica-
tions [48,49]. In order to apply these techniques, we need
to define a cost function for the optimization over a train-
ing set 7 = {|X;), €m,m = 1, ..., M}. The key output to be
optimized is the density matrix p of the class qubit register
following the process outlined in Fig. 2. Namely, we would
like to optimize p such that the elements py, ¢, , corresponding
to the probability of measuring |£,,) when inferencing a state
|X,,), are as large as possible, while all other probabilities p;z
are as small as possible, averaged over the training set. When
evaluated with the tensors R, G, etc. rather than their unitary
embeddings, the analog of this density matrix will no longer
have unit trace and so is not a true density matrix. Hence,
in order to treat all training states on the same footing, this
object should be divided by its trace when evaluated in this
fashion. In practice, we find that minimizing the cost function
2= 3°,,C(p™, £,,), in which

2o Pec — 24,0,
Zz Pee '

performs well. We note that the coherences (off-diagonal ele-
ments) of the density matrix play no role in the optimization,
since the final readout is in the computational basis.

Summarizing, we can define a cost function amenable
to manifold optimization over the tensors R,G,D,C
as in Algorithm 1, which assumes a training set
of product state vectors X)) = [Xmo0) - [Xmr—1) =
Qi mo|l() (ZZL Xy i _liL—1)) for simplicity. As
discussed further in Sec. IV, product state samples
costrrespond to the case of single-shot measurements relevant
for near-term experiments.

A tensor-network diagram for the construction of p, o is
shown in Fig. 3(a). In practice, we achieve the best perfor-
mance when we do a first round of optimization jointly across
all tensors followed by rounds of optimization where a single
tensor is optimized with all others held fixed. We also note
that high-quality software packages for Riemannian manifold
optimization are available in a variety of programming lan-
guages [50,51].

With the optimized tensors in hand, we move to compiling
the embedded unitaries to quantum circuits for deployment
to quantum hardware. As in past work [34,35], we uti-
lize a greedy iterative heuristic for compilation in which

Clp, tm) = (14)

progressively deeper circuits are constructed from past iter-
ations until the distance between the compiled unitary and the
unitary embedding of the tensor over the elements where the
tensor is defined is less than a defined tolerance. The method is
initialized with an ansatz consisting of single-qubit rotations
on each qubit, and updates to previous iterations consist of
a single, elemental two-qubit entangling gate (e.g., CNOT)
together with single-qubit rotations on the modified qubits. At
each iteration the circuits are optimized over their parameters
(e.g., the rotation angles of the single-qubit rotations) and
the best performing # circuits are kept to initialize the next
iteration, with A being a hyperparameter. This procedure can
be readily adapted to restrictions in hardware connectivity,

Algorithm 1 Cost function for classification accuracy of
product-state training data over tensor elements.

Require: Input tensors G, D, € St(xd,x), C €
St (x, N¢), R e SX.
Require: Training set of product states T = {|xm), lm, m =

1,...M}
Require: Hyperparameters N, > 1, x > 1.
function CLASSIFICATIONCOST(R, G, D,C, Ny, x,T)
G+ Rcshapo(Gm, (x,d,x))
D + Reshape(Dm, (x,d,x))
BZX — Z/} aﬁRg
Va,a’ — Zi BZ;B;
N+ 1
while N < N; do
Big < 2o Voo Garg
Vaar < Z,ﬁ,i BSQ’G?&
N+ N+1
end while
<_ Z xm ,L— lDa,ﬁ
'm. <~ Z B(x’y‘/"/ﬂ
m — 2 Qm m*
N e 2
while N < L do
Bis < 22 Tm,.-nDég
Quls = 5., B,V
’7L <_ Z Q"L B"L*
N e N+ 1
end while
pil < Zaﬁ CO{ZV(%C;;Z
return & > C(p™, lm)
end function
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FIG. 3. Training of discriminator architecture. (a) Tensor-network diagram for the construction of py, from the tensors R, G, D, and C,
as in algorithm 1. (b) Compilation of the unitary embeddings of R, G, D, and C results in a quantum circuit sampling from the distribution
pe.¢ With postselection in the |0) state indicated by tags. (c) Example compiled unitary for Ug evaluated at the optimal parameters for the
postselected circuit in (b), here shown with two bond qubits. Gates connecting qubit wires are CNOTSs, and the single-qubit rotations have the

—siné

matrix representation I?},(G) = ( cos ?

a0
Sll’l2

2). (d) Circuit ansatz for model without postselection, in which the compiled circuit architectures

are the same as the postselected model [e.g., panel (c) for U, but with different values for the parameters.

can be modified to account for hardware noise through the
cost function used for model downselection, and utilizes the
freedom in compiling the isometric tensors to unitaries to
discover compiled gate sequences that are as short as possible.

As also described in Ref. [34], even when the MPS tensors
are in a properly defined canonical form there is still a unitary
gauge freedom on the bond degrees of freedom that can be
exploited to reduce the complexity of the compiled unitary
embedding. In the finite-size systems studied in Ref. [34], a
“diagonal gauge” was put forward in which a permutation op-
erator was applied on the bond degrees of freedom to attempt
to maximize diagonal dominance of the compiled unitary in
the computational basis. In this work we define an analog of
this diagonal gauge for iMPSs. Namely, we optimize a general
unitary rotation on the bond degrees of freedom W over the
cost function

ZAaﬂ[ZG sGiry + Dl gDl ]
o,f i

in which A, g = Zu |by(a) — bM(;B)|2 is a matrix of differ-
ences between the binary vector representations b(y) (i.e.,
Hamming distance) of the bond indices that penalizes off-
diagonal terms and

5)

Gap = D Waw Goop Wi (16)

o'

s = D Waar Dy Wiy a7

o' B!

As above, we optimize this cost function using Riemannian
optimization over the elements W € St(x, x). Following this
optimization, the tensors R, G, D, and C have their bond de-
grees of freedom transformed using this unitary operator. An
example of a gauged and compiled circuit using our compi-
lation procedure is shown in Fig. 3(c) using CNOTs and R,
rotations.

The compiled unitaries embedding the tensors R, G, D,
and C immediately define a quantum circuit which produces
samples of the binary encoding of the class label £ according
to the distribution p;,. However, because of the isometric
nature of the tensors R and others, this circuit requires post-
selection of the physical qubit from Up, and the bond qubits
from Ue, as shown in Fig. 3(b). We can remedy this by
replacing all instances of postselection by a trace over the
corresponding qubits; however, the parameters of the model
have been optimized for the postselected operation by virtue
of the isometric nature of, e.g., the tensors R, and using
these same parameters directly without postselection usually
results in poor performance. One way to improve perfor-
mance is to treat each of the operators, e.g., Ug, as a general
unitary and optimize its parameters for the circuit without
postselection. Such an approach has been taken in Ref. [22],

062439-7



MICHAEL L. WALL et al.

PHYSICAL REVIEW A 105, 062439 (2022)

where the unitaries were parameterized as the exponential of
a Hermitian matrix and the elements of this Hermitian matrix
optimized by the simultaneous perturbation stochastic approx-
imation (SPSA). However, such an approach will produce
dense unitaries which then have to be compiled to quantum
hardware, generally requiring deep circuits [52]. In contrast,
our approach produces underconstrained isometries, and the
freedom in embedding these isometries into unitaries can be
used to produce shorter circuits accounting for hardware con-
straints.

Our method to improve the performance of the model
architecture when applied without postselection is to keep the
circuit architecture that has been learned for operation with
postselection [e.g., the circuit compiling the unitary embed-
ding Ug; in Fig. 3(c)], and to directly optimize the parameters
of this circuit for a cost function using operation without
postselection. This leads to the circuit architecture in Fig. 3(d)
the with angles 6 as the parameters to be optimized. As the
operation of this circuit is now a completely positive trace-
preserving (CPTP) map, ), pse = 1. In order to balance the
optimization across many training instances in the dataset, we
find it is useful to use the regularized cost function of Ref. [22]

Con(p, ) = max(pz, 7, — Pe,e, + 4, 0)", (18)

in which A and » are hyperparameters and Z,, is the label
of the incorrect class for training vector |X,) with highest
model probability. This results in algorithm 2 for the classi-
fication accuracy cost given a set of circuit parameters 6 =
{6r. 66, {6p.i,i=0,...,L —1},0c}.

In practice, we optimize the circuit using the Limited
Memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algo-
rithm implemented in PyTorch [53].

B. Model inference with entangled data

Once the optimal parameters 6,y for execution of the
model without postselection have been determined, Algorithm
2 can be simply adapted to inference the model by replacing
the final cost function evaluation with sampling ¢ from pg.
As described, this algorithm applies to unentangled product
state data, but this same procedure can be readily adapted to
inference of entangled data. Here we present an algorithm for
inferencing entangled data in the form of an iMPS model.
Namely, the test data are assumed to be provided in the form
of unitaries Uy and U embedding a right boundary condition
and a left-canonical MPS tensor A, respectively. An algorithm
to obtain this form for the ground state of a Hamiltonian with
known matrix product operator (MPO) form is presented in
Appendix A.

As described in Sec. 11, the procedure to generate a finite
state string from a left canonical iMPS is to first obtain the
half-infinite density matrix by iteration of the transfer oper-
ator on the right boundary vector, and then to use the iMPS
tensor with this density matrix as input to generate samples.
In practice, we will obtain the half-infinite density matrix
using a finite number N, of iterations as in Eq. (5), with N,
a hyperparameter (set to N, in the results that follow). Hence,
the process for inferencing entangled state is (1) generate the
half-infinite density matrix of the test state via N, iterations of
U applied to the right boundary bond state generated by Ug

Algorithm 2 Cost function for classification accuracy of
product-state training data without postselection.

Require: Input parameterized gate sequences Ur (o),
Uc (o), Up (), Uc (o) and initial guesses for the param-
eters @ = {0r,0c,{0p,i,i =0,...,L —1},0c}.

Require: Training set of product states T = {|xm), lm, m =
1,... M}
function CLASSIFICATIONCOSTNOPOSTSELEC-
TION('UR, Uq,Up,Uc, Ny, 0, T)

Be, 25 Ucs(a,i)(8,0) (06) Uris,0 (OR)
Va,a’ — 27 BZ’: f)/
N1
while N < Ny do
Big < >0 VaarUsgi(ar i (8,0) (0G)
Vaar < Z/m Bﬂa’Ué;(a,i),(ﬁ,O) (0c)
N~ N+1
end while
Bog < 2 T, 1-1Ubi(ap)(8,0) (0D, L-1)
QI 5. BV,
Vag < 22, Qa5 BgY”
N 2
while N < L do
Bos < 2 Tm,L-NUbi(a.p)(8.0) (0D,L-N)
Qi « 5 mievy,
wp = 2 QubBs”
N+ N+1
end while

pue Zaﬁ_ﬁ Uc;(+,0),(a,0) (0c) VJEUE‘;(W,Z),(B,U) (Oc)
return - > Cay, (p™, lm)
end function

on a register of log, x’ bond qubits |0'); (2) generate the half-
infinite density matrix of the feature space employed by the
classifier by applying N, iterations of Us () applied to the
right boundary bond state generated by Ug(6z) on a different
register of log, x bond qubits |b); (3) fori=1,...,L, gen-
erate a qubit of the test state using Ug applied to the register
|b') and a single physical qubit in the |0) state, feed this state
into the classifier by applying Up(6p.,_;) to the prepared state
and the classifier bond register |b) and resetting the physical
qubit; (4) apply the classifier unitary Uc(6c) to the classifier
bond register |b); and (5) measure the subset of qubits defin-
ing the class register and discard all others. This process is
shown graphically in Fig. 4. The qubit resource requirements,
provided the same physical qubit is utilized by both the test
state and the discriminator to generate their half-infinite den-
sity matrices, are log, x + log, x’ + 1. Utilizing two physical
qubits—one for the test state and one for the discriminator—
leads to the resource requirement log, x + log, x’ + 2, but
enables the parallelized generation of the half-infinite density
matrices shown in Fig. 4.

IV. DEMONSTRATION ON THE TRANSVERSE FIELD
ISING MODEL

In this section we describe an example application of the
discriminator architecture, training, and test strategies put
forth in Sec. III. In particular, we consider the problem of
discriminating the two phases of the spin-1/2 transverse field
Ising model (TFIM) in one dimension, a canonical model
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FIG. 4. Inference of an MPS with the discriminator architecture. The diagram shows inference of an iMPS test state (lower half of diagram)
with unitaries UG/ and Up using the discrimination circuit with unitaries Uk, UG, Up, and UC (top half of diagram). The test state generates its
half-infinite density matrix using N, iterations of the transfer operator encoded by Ug applied to the boundary state generated by Uy, while
the discriminator generates the feature space half infinite density matrix using N, iterations of Ug applied to the boundary state generated
by U on a different bond register. The test state generator then generates a single qubit of the test state at a time, this state is fed into the
discriminator to condition its bond register, and the physical qubit is reset. After L qubits have been generated of the state, the test state bond
qubits are discarded, the discriminator bond qubits are fed into the classifier circuit U, and the measurement of the class register qubits defines

the predicted class label £.

for quantum phase transitions [54] that has been realized in
a variety of physical systems [55-57]. We demonstrate this
application in both classical simulations and on Quantinuum’s
H1-2 trapped ion quantum computer. The Hamiltonian for the
antiferromagnetic TFIM is

g _ AZAZ AX
HTFIM—E lop j—hE 67,
;

(i,.)

19)

in which (i, j) denotes a sum over nearest-neighbor pairs
i, j and we have normalized units of energy to the antifer-
romagnetic coupling strength. For & >> 1 the ground state is
in a paramagnetic (PM) phase whose characteristics are cap-
tured by the classical state | — - - - —) with all spins pointing
along the x direction. When & <« 1 the ground state is in
the antiferromagnetic (AFM) phase with properties similar to
the classical states | 1 --- 1)) and | {1 --- |1). There is a
quantum phase transition between the PM and AFM phases
at h = 1 in the thermodynamic limit, and we will train our
discrimination architecture on data taken on either side of
the transition with the goal of discriminating the phase of an
unknown test quantum state.

A. Description of dataset

Our dataset will comprise single-shot measurements taken
from the ground state of Eq. (19) at some value of A.
We will define a single-shot measurement through a col-
lection of L Hermitian operators {Oi}, i=1,...,L which
act on a subset of L contiguous sites £ from the infi-
nite lattice indexed by i. Each of these operators admits a
spectral decomposition as O; = Zx,- AilAi)(Ai]. A single-shot
measurement is now defined as a simultaneous projective
measurement of all of the operators {0}, which we can denote
as a collection of the associated eigenvalues {A;}. Associ-
ated with this measurement is a classical product state (CPS)
A1, ..., Ar), which is the state produced by the projective
measurement. The association is provided by the fact that
the measurement {};} from a state |¢) occurs with prob-
ability Tr[|A1, ..., AL) (X1, .. e, )LLlTI‘,‘¢L|Iﬂ><Iﬂ|]. A dataset

comprises a collection of these CPSs, randomly chosen from
the ground state |y) at specific points within the phase dia-
gram, together with labels £ denoting the quantum phase of
the state at that point, 7 = {|A;,), €, m =1, ..., M}.

We generate our single-shot measurement training data
using MPS methods. Namely, we find the ground state at
transverse field strength 2 on F > L sites using standard
variational MPS methods [11], and then sample CPSs from
this MPS given an operator basis {O;, i € £} on a subset of L
sites L. In the results presented in this work, we take F' = 32,
a truncated weight of & = 10~°, maximum bond dimension
of Ymax =40, L =6, and L to be the L sites in the center
of the chain. We take half of our samples in the uniform z
basis {0; = 67, Vi € L} and half in the uniform x basis (0; =
6;*,Vi € L}. These choices reflect how we envision our dis-
crimination architecture could be used in a near-term setting;
the central region of a finite-size experimental system will be
measured and taken to representative of the bulk of an infinite
system. Present-day quantum simulators, e.g., those based
on trapped cold atoms, do not universally feature single-site
addressability, but many have the ability to change the global
measurement basis, e.g., by applying a uniform microwave
pulse. Generating uncorrelated CPS samples from an MPS has
been described before in the context of minimally entangled
typical thermal state (METTS) algorithms and is reviewed in
Appendix B.

We take the states defining the PM and AFM phases to have
h =10 and h = 0.1, respectively, and generate 1000 shots at
each value of / in both the x and z basis. These shots are ran-
domly reshuffled using an 80/20 split into a training set and
a test set. We note that the ground state in the AFM phase is
doubly degenerate, with the ground states being distinguished
by the global spin flip operator X = ]_[fp=1 6; that generates
a Z, symmetry. Numerical noise in the initialization of the
MPS ground state search procedure can result in finding a
symmetry-broken state in this manifold. If all training mea-
surements were taken from a single MPS representation, this
would result in significant bias compared to measurements
taken from an experiment, in which a different symmetry
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broken state could be obtained for each realization. In order
to avoid this phenomenon, we add a term —hZz)? to the
Hamiltonian with sz, ~ 10 to ensure that the Z,-symmetric
ground state is chosen and there is no symmetry-breaking bias
in the training data.

Finally, for entangled inferencing of a model trained on
the product state data just described (see Sec. III B), we also
generate iMPS models of the ground state with small bond
dimension y < xmax through a novel optimization procedure
described in Appendix A. This algorithm produces a trans-
lationally invariant iMPS tensor A" in left-canonical form
together with a boundary bond state R’ that optimizes the
production of the true half-infinite density matrix obtained
from |Y[A’]) from a finite “burn-in” procedure with a fixed
number N, of iterations. Following optimization, these tensors
can be gauged and compiled as described in Sec. IITA to
define circuits for inferencing as described in Sec. III B.

B. Training and evaluation

Here we apply the classical training and compilation pro-
cedures of Sec. III A to the dataset described in Sec. IV A. Our
main metric of performance will be the F; score, defined from
precision p and recall r as

Cii
pi= S C, (20)
i Ci
Cii
== (21)
C:
iji{’i
[F1]; = Zp' T (22)

In these expressions, C is the confusion matrix indexed by
classes whose element C;; represents the number of data ele-
ments predicted to be in class j whose truth class is i.

As a classical machine learning benchmark, we train a
random forest classifier using the implementation in scikit-
learn [58] with the hyperparameter n_estimators set to 20.
Here the classical product state single-shot measurements are
flattened into classical vectors of dimension 2L as

Ix) = (ZXOJ(J“O)) ® - ® (ZXL—l,iL, |iL—|)> (23)

i
T
— (X0,0X0,1 * - * XL—1,0XL—1,1)" » (24)

and these classical representations are used for learning. This
flattened representation can capture superpositions at the sin-
gle qubit level, but not entanglement between qubits. We note
that no claims are made about the optimality of this classical
data encoding or classifier, we are merely using it as a reason-
able classical benchmark.

Following training of the tensor elements using manifold
gradient descent on the cost function in algorithm 1, we find
class-averaged F) scores of F, = 0.814, 0.910, and 0.939 on
the training data for models with x =2, 4, and 8, corre-
sponding to one, two, and three bond qubits, respectively. The
classical random forest benchmark achieves a class-averaged
Fy score of 0.973 on the training set. We then compile the
associated unitary embeddings using the greedy heuristics
described in Sec. III A with a squared two-norm tolerance of
4 x 107*, a basis of CNOT entangling gates and R, single-qubit

TABLEI. CNOT counts for the compiled unitaries with increasing
bond dimension.

x=2 x=4 x=38
Uz 0 1 3
Us 2 9 42
Up 2 9 41
Uc 2 3 8

rotations, and without any restrictions on the qubit pairs CNOTs
can be applied to. The CNOT counts for the various compiled
unitaries are collected in Table I.

While the finite tolerance of compiling the unitaries
does not significantly impact the model when run with
postselection, the F| scores using these parameters with-
out postselection are 0.360, 0.364, and 0.228. Following 30
epochs of LBFGS optimization of the compiled unitary pa-
rameters with the cost function hyperparameters A = 0.9, n =
2.0, we find optimized F scores of 0.764, 0.822, and 0.860. In
addition to the F; scores, an important metric as x increases
is the single-shot probability of success Pss = py,,.¢,,» Which
determines the frequency with which the classifier will return
the correct label in a single execution of the circuit. As shown
in Fig. 5, increasing the bond dimension not only increases the
average number of correct classifications (captured by the F;
score), but also the probability that a single run of the circuit
produces the correct label, on average. We note that the clus-
tering of highest probabilities near 0.9 is influenced by the
choice of the hyperparameter A; different choices of hyperpa-
rameters, possibly bond-dimension-dependent, can alter this
distribution.

2 - -2
& 1000 1
=
S
O
0 .
0.2 04 0.6 0.8
& 1000 A
=
S
O
0 ; . ' .
0.2 04 0.6 0.8
o s -3
& 1000 1
=
S
O

Psg

FIG. 5. Dependence of single-shot probability of success on
bond dimension. Histograms of the single-shot probability of correct
classification Psg over the training set are shown for y = 2,4, 8.
As the bond dimension increases, the average probability of correct
classification also increases.
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Fraction of calls in PM class

Transverse field h

FIG. 6. Predicted phases from the tensor-network discriminator
and classical benchmark; product state input data. The probability
that a classifier predicts the PM class, averaged over the test data, is
shown as a function of the transverse field 4. The inset shows a zoom
around the true phase transition point, 4 = 1, demonstrating that all
classifiers have a bias of a few percent.

A canonical use case for a quantum classifier is de-
termining the quantum phase of the state producing the
measurements, where the classifier has been trained on data
deep in the phases to be distinguished. In this use case, a key
metric is the distance between the phase transition point pre-
dicted by the classifier and the true transition point. In the case
of binary classification, the predicted phase transition point
can be taken as the place where the classifier predicts 50%
probability for both phases. In order to test this use case, we
produced ground state representations in the range 4 € [0, 10]
using MPS variational ground state search and sampled 1000
single-shot measurements in the x and z basis for each h,
following the procedure described in Sec. IV A. The fraction
of data predicted to be in the PM class for the x = 2,4, 8
tensor-network discriminators and the random forest bench-
mark are shown in Fig. 6. We see slight improvements in the
probability of correct classification as the bond dimension is
increased, in accordance with the behavior seen in the training
set in Fig. 5, while the random forest classifier shows the best
performance by this metric. As seen in the inset, all classifiers
are remarkably unbiased in their determination of the phase
transition point at 4 = 1 even though they were trained on data
at h = 0.1 and i = 10; all classifiers are within a few percent
of this value.

The final use case we consider is inferencing of our models
on entangled input data. To generate the test data for this use
case, we produce iMPS models for the ground state at a variety
of transverse field strengths £ as described in Appendix A. We
stress that this process is different than the finite-size ground
state search used to generate the single-shot measurement
training and test data. We then inference our tensor-network
models using a string of L = 6 qubits of entangled data gen-
erated from these iMPS models as described in Sec. III B.
The results are shown in Fig. 7. Here we plot the probability
that the classifier determines the input state to be in the PM

]
2
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0.4
E -e- x=2,x;=38
R k- x=4,x;=38
s . X=8 =8

0 2 1 6 8 10
Transverse field A

FIG. 7. Predicted phases from the tensor-network discriminator
and classical benchmark; entangled input data. The probability of
a classifier returning a call in the PM class for a single run of the
circuit is shown as a function of the transverse field 4. As the bond
dimension of the classifier increases, the probability of correct clas-
sification increases. The performance of all classifiers is relatively
unchanged as the bond dimension of the iMPS generating the test
data is increased from x; = 4 to y; = 8.

class in a single run of the circuit, as opposed to the case of
Fig. 6, in which probabilities were inferred by averaging the
2000 elements of the test set. Increasing the bond dimension
of the classifiers improves their performance in the sense that
the single-run probability of correct classification increases.
We see little dependence of the performance on the bond
dimension of the input data, x;. This process of entangled
inference following training of the classifier on single-shot
measurements provides a metric for determining the consis-
tency of experimental data (single-shot measurements) with
a reduced-order model (entangled input data according to a
particular model Hamiltonian). Finally, we note that there is
no classical benchmark here, as the inferencing of entangled
data is an inherently quantum process. It is interesting to note
that the performance of the classifiers on entangled input data
even at the smallest bond dimension is higher than the classi-
fiers evaluated on single-shot data at any of the evaluated bond
dimensions, even though the classifiers were trained only on
single-shot measurements.

C. Hardware implementation

We now turn to results obtained on Quantinuum’s HI-
2 trapped ion quantum computer [59]. A key consideration
when running the model on quantum hardware is the number
of runs of the circuit required to obtain a high-confidence
result for the predicted class. Each run of the circuit with
data instance |X) returns a class label £ which is 0 with an
unknown probability po(x). The task of the classical postpro-
cessing is to infer what po(x) is from a finite number n of
runs of the circuit, and assign the class of x as 0 if py(x) >
0.5 and 1 if po(x) < 0.5. In the ideal case where hardware
noise is independent and identically distributed, each run of
the circuit constitutes a Bernoulli trial, and we can utilize
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binomial confidence intervals to estimate the uncertainty in
the model’s predictions. In what follows, we will employ the
Wilson score interval, which utilizes a normal approximation
to the binomial to derive closed-form expressions for the con-
fidence interval in terms of z, the 1 — % quantile of the normal
distribution with target error rate «. Namely, the Wilson score
interval predicts

no +Zz/2 Z nony
~ + + z2/4, 25
Po(X) p n+z2,/ ” 2%/ (25)

where we have suppressed the dependence of ng, ny, and n
on x on the right-hand side to keep the notation uncluttered.
In the results presented, we use the 90% confidence interval,
corresponding to z = 1.645. A complementary online algo-
rithm which determines when a sufficient number of shots has
been taken according to a Bayesian credible interval is given
in Appendix C.

Given the better performance of the models inferenced on
entangled input data vs single-shot data in classical simulation
(see Sec. IV B), we utilized the entangled inference strategy
on the quantum hardware. Also noting the relative insensi-
tivity of our model performance to the bond dimension of the
entangled input data (see Fig. 7), we utilized a fixed input data
bond dimension of x; = 4 for all experiments. For each value
of the transverse field & considered, the circuit was run for
100 shots, and the Wilson score interval utilized to obtain the
uncertainty due to a finite number of shots. In order to identify
the predicted transition point, we take the points closest to
50% predicted probability in the PM phase and fit them to
a linear regression model with the Wilson score intervals as
errors. Figures 8 and 9 show the results for y =2 and 4,
respectively. In both figures, the orange triangles correspond
to the fraction of shots classifying the input state as being in
the PM class, the blue circles are the same quantity computed
using an H1 simulator in the absence of hardware noise, the
error bars are the 90% Wilson confidence intervals, and the
black dashed line is the prediction of the fit linear regression
model. Identifying the point of “maximal confusion” of the
classifier as the transition point, the linear regression predicts
h = 0.962 and 0.994 for the x = 2 and x = 4 models, respec-
tively. The mean absolute error (MAE) and R? coefficient of
determination of the two linear models over the data used in
the regression are (0.03,0.90) and (0.04,0.80) for x = 2 and
4, respectively, indicating that the lower bond dimension data
is slightly better fit and the linear model captures more of the
variance in those data. This is to be expected on account of the
deeper circuits utilized for the x = 4 model.

V. CONCLUSIONS AND OUTLOOK

We presented a workflow for classifying a translationally
invariant quantum state based on L qubits of quantum data
extracted from it using a tensor-network (TN) architecture
with a one-dimensional matrix product state (MPS) geom-
etry. In our discriminator architecture, a register of log, x
ancilla qubits forms an effective bond space of dimension x
mediating correlations between physical degrees of freedom.
Similar to encoder methods in classical machine learning,
this bond space stores an effective reduced-dimensional latent
representation of the data the model represents. Inferencing of
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FIG. 8. Performance of x = 2 model on entangled data. The top
panel shows the predictions of the x = 2 tensor-network discrimi-
nator evaluated on entangled iMPS input data with x; = 4, with the
triangles corresponding to the mean of experimental results on the H1
machine and the circles corresponding to simulations of the circuit
execution in the absence of hardware noise. All points correspond to
100 shots, and error bars are 90% Wilson confidence intervals. The
bottom panel is a zoom around the transition point, together with the
linear regression model predicting a transition at & = 0.962.

our model begins with preparing the ancilla qubits in an initial
state which encodes a prior distribution over a collection of
latent quantum feature vectors. A series of quantum opera-
tions coupling these ancilla qubits with a register of physical
qubits then conditions the state of the ancillas on the input
quantum data. A final quantum operation predicts the class
of the input data depending on the state of the ancilla qubits
and stores the result in a subset of the ancillas. We presented
methods for robust and efficient classical preconditioning of
this discriminator architecture from a dataset of single-shot
experimental measurements, consisting of optimization of the
isometric tensors in a classical tensor-network representation
using manifold optimization techniques, compilation of the
isometric tensors into quantum operations using hardware-
aware greedy compilation heuristics, and further optimization
of the parameters of the resulting compiled quantum circuit
to remove the postselection requirements of the isometric
tensor-network model. Following training, the resulting model
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FIG. 9. Performance of x = 4 model on entangled data. The top
panel shows the predictions of the x = 4 tensor-network discrimi-
nator evaluated on entangled iMPS input data with x; = 4, with the
triangles corresponding to the mean of experimental results on the H1
machine and the circles corresponding to simulations of the circuit
execution in the absence of hardware noise. All points correspond to
100 shots, and error bars are 90% Wilson confidence intervals. The
bottom panel is a zoom around the transition point, together with the
linear regression model predicting a transition at 7 = 0.994.

can be inferenced with quantum data on quantum hardware.
Our architecture enables the discovery of model circuits in
a data-driven fashion without specifying the gate depth or
composition ahead of time and aids in trainability by enabling
efficient classical preconditioning and requiring measure-
ments of only a small subset of model qubits.

We demonstrated the training of our TN discriminator on a
synthetic dataset of data extracted from the 1D transverse field
Ising model (TFIM) in its paramagnetic (PM) and antifer-
romagnetic (AFM) phases. Following training on single-shot
experimental data, we analyzed the performance of the model
inferenced on product state or entangled input data. We found
that increasing the bond dimension of the model, amounting to
adding more qubits to the ancilla register in the quantum rep-
resentation, improved both the average classification accuracy
and the probability of correct classification in a single run of
the circuit, and that inference of entangled data had better av-
erage performance than inference of unentangled data. Using

TN models of bond dimension x = 2 and 4 trained on single-
shot data deep in the PM and AFM phases, we ran experiments
on Quantinuum’s model H1-2 trapped ion quantum computer
inferencing these models against entangled input data mod-
eled as MPSs of bond dimension x; =4 across the phase
diagram. Using linear regression near the point of maximal
confusion of our models (i.e., 50% prediction in each phase),
we extracted predictions of the phase transition at z = 0.962
and 0.994 for bond dimension x =2 and x = 4, comparing
well with the known location of & = 1.

Our results demonstrate that classical techniques for
optimizing TNs can be utilized to define and optimize well-
performing machine learning models for quantum hardware
in a data-driven and hardware-aware fashion. The classical
training and optimization schemes put forwards in this paper
can be used to precondition models with a modest number of
qubits to reduce the workload on an optimizer when operated
with a quantum device in the loop. Because tensor-network
model expressibility, as quantified by the bond dimension,
grows exponentially with the number of qubits but only poly-
nomially with classical resources, adding additional qubits
provides a clear pathway for potential model advantage. By
analyzing a series of classically preconditioned model archi-
tectures of increasing bond dimension, model architectures
can be scaled towards the classically intractable regime in
which quantum models may display an advantage in express-
ibility. While we focused on the case of MPS models, the
generalization to other TN topologies is straightforward. In
addition, looking beyond machine learning, many of the tools
we have developed can be brought to bear on efficiently
preconditioning and scaling quantum TN models for other
use cases, such as quantum simulation and error correction
[60,61].
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APPENDIX A: ALGORITHM FOR OPTIMIZING AN IMPS
IN LEFT-CANONICAL FORM

In this Appendix we provide an algorithm for obtaining
a quantum circuit for the iMPS description of the ground
state of a Hamiltonian A with a known matrix product op-
erator (MPO) form. While the iMPS algorithm put forth by
McCulloch [62] (building on the seminal iDMRG algorithm
of White [20]) works well for this purpose, the algorithms
herein provide a simple and robust means for obtaining iMPS
representations directly in left-canonical form, from which
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our quantum compilation methods can be applied to generate
low-depth quantum circuits.

We define the action of the generalized left transfer opera-
toron a y x x matrix E as

T, 0(AE) =) (ilOlHATEA, (A1)

ii

where O is an operator acting on the single-site Hilbert space
and A is the translationally invariant iMPS tensor. Hence,
the left transfer operator of the identity for an iMPS in
left-canonical form has the y x x identity matrix I as an
eigenmatrix with eigenvalue 1, TLJA(A;]I) = [. Additionally,
defining the corresponding right generalized transfer matrix

TroAE) = ) (ilOl)A'EA™, (A2)

il

we see that the right transfer operator of the identity admits
the half-infinite reduced density matrix as an eigenmatrix
with eigenvalue 1 in the case of a left-canonical iMPS,
T}, j(A; Pnatf—infinite) = Phalf—infinite- Defining a matrix represen-
tation of the transfer operator as

[T lwarr.ppr = Y AugilOl)AL 5. (A3)

i’

we see that the left and right transfer operators are just the
left- and right-action of this transfer operator, and so 7;(A)
admits [ and pp,if—infinite S left- and right-eigenmatrices with
eigenvalue 1, respectively.

The transfer operator formalism is useful to extract fixed-
point relations of the iMPS state, such as the eigenmatrix
relations described in the last paragraph. For a Hamiltonian
with MPO representation defined by a translationally invariant
MPO tensor Wof"’ that is lower triangular in the bond space,
this same formalism will enable us to extract the energy den-
sity of an iMPS in the thermodynamic limit, as described in
Ref. [62,63]. Several works, e.g., Ref. [64], have discussed
how to put common Hamiltonian terms into this lower trian-
gular “canonical form” and compose them. For concreteness,
we will consider the MPO representation of the TFIM used in
the main text, given as

I 0 0
w=| s, 0 0]. (A4)
—h6* 6, T

For each value of the bond index of the MPO matrix we can
associate a matrix E,, and the fixed-point relations for these
matrices associated with the left action of generalized transfer
operators take the form

Eq = Tpy,, (A, Eo) + Z Tysiy, (A, Ep). (A5)

B>

Because of the lower triangular nature of the MPO, we can
solve for the terms in order, starting from the last (o« = xw,
with xy the bond dimension of the MPO). Namely, we find
the fixed-point relation

IE:Xw = TLi(A’ EXW)’ (A6)

Algorithm 3 Algorithm for the energy density of the TFIM with
respect to a left-canonical iMPS.
Require: A in left canonical form, ), ATAT =T
function ENERGYDENSITY (A, h)
Tiaany, (88" < 225 AdsAarpr
Phalf—infinite <— right eigenvector of T" with eigenvalue 1
E. Y, (i6:]i") AT AT
E. « 3, (il6.|i")ATE, A"
Ep < 3250 (iloa]i) AT AT
€o < Tr [pha‘lffinﬁnite (Ez -
return ey
end function

hE;)]

and so E,, =TI for an iMPS in left-canonical form. For the
case of the TFIM MPO, Eq. (A4), the next matrix is

E, =T, (A Ey, ), (A7)

= T15.(A, 1. (A8)

Hence, this is not a system of equations but a definition. The
one remaining fixed-point relation is

Ey =T;(AE)) 4+ T6.(A, Eo) — hT16, (A, Ey, ), (A9)

= Ei(I = Tj(A) = T15,(A, Trs (A, 1) — hT15, (A, ID.
(A10)

Recalling that the transfer operator 7;(A) has the identity as a
left eigenmatrix, we see that the left-hand side of this (left)
system of equations is singular, meaning that we can add
any multiple of the identity to a solution and obtain another
solution. We can find the solution with zero weight on the
identity by removing the components in this direction from
the right-hand side matrix. This is achieved by recalling that
Phalf—infinite 1S a right eigenmatrix of the transfer operator with
eigenvalue 1, and so spans the null space of the left-hand
operator. Hence, subtracting I times

eo = Tr[ pnatt—infinite 1.6, (A, T16.(A, 1)) — AT 5, (A, 1],
(A11)

from the right-hand side ensures that the right-hand side is
orthogonal to the null space of the left-hand side, and so this
equation has a consistent solution in spite of being singular.
The extracted quantity e is the energy density. The singularity
in the relation for E; amounts to an ambiguity in defining the
zero of energy.

The above observations lead directly to an algorithm for the
energy density of a left-canonical iMPS in the thermodynamic
limit, which for the TFIM takes the form of Algorithm 3.

This algorithm can hence be used as a cost function in
a minimization routine to optimize the tensor A. In order to
ensure that the tensor remains in left-canonical form during
the optimization, we utilize Riemannian manifold gradient
descent with the matrix A)p = Al , forming an element
of the Stiefel manifold St(xd, x) [65]. As detailed in other
recent works [35,48,49], this procedure consists of projec-
tion of cost function gradients onto the tangent space of the
manifold at the current estimate point and subsequent update
of the tensor using a retraction of this projected gradient.
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Algorithm 4 Cost function for difference between true half infi-
nite density matrix and that obtained from a finite burn-in procedure
Require: A in left canonical form, ), ATAT =T
Require: V with unit norm, 3°_ [Va|? =1

function BURNINCOST(A, V, Ny)
Taan, (88" < 225 AdsAarpr
Phali—infinite = Tight eigenvector of T" with eigenvalue 1
BZ)/ — 2[3 AZ&S‘/}"
Upar ZZ BZ:BZ‘!,
N+ 1
while N < N, do
Qqaﬁ — Zu' Uaa’A:y’_ﬁ
Unar = Zﬁ.i QBN’A%*Q
N+ N+1
end while
return norm (U — phalf—infinite )
end function

Vector transport can be used to incorporate information from
previous iterations through the momentum technique. This
process integrates readily with modern numerical packages
performing automatic differentiation to obtain gradients, such
as TensorFlow [66] and PyTorch [53].

The tensor output from this optimization procedure pro-
duces the proper half-infinite density matrix as the fixed
point of the transfer matrix. However, when practically
implemented on quantum hardware we will produce an ap-
proximation to the half-infinite density matrix by using the
“burn in” procedure with a fixed number N, of iterations
(taken as a hyperparameter in our approach). Hence, we will
optimize the initial state of the bond qubits (boundary vector)
to reproduce the true half-infinite density matrix obtained as
the fixed point of the transfer operator as closely as possible
using this procedure. The cost function for this process is
given as Algorithm 4.

Algorithm 5 Online algorithm to determine class from proba-
bilistic classifier with confidence parameter p,

Require: p., method to obtain probabilistic class prediction
SamplePrediction
function CLASSFROMSAMPLES(py)
B <+ 4,194 0,n1 < 0, pc e%
while True do
s <—SamplePrediction
if s == 0 then
P< < P< — m
B+ 2B 0t
nog < nog+1
else
P< < p< + m
B« 2B
ni<+<ny+1
end if
if p< > p« then return 1
else if p. <1 — p, then return 0
end if
end while
end function

This cost function can again be integrated with manifold
optimization on the y-dimensional sphere manifold to op-
timize the boundary state V. With the optimized tensor in
hand, we can utilize the gauging and compilation procedures
described in the main text to convert this into a quantum
circuit for implementation on hardware.

APPENDIX B: ALGORITHM FOR SAMPLING A
CLASSICAL PRODUCT STATE FROM A MATRIX
PRODUCT STATE

In this Appendix, we review an efficient algorithm for
sampling a classical product state in the basis defined by a col-
lection of L Hermitian operators {Oi, i=0,...,L—1}from
a finite MPS |¢/[A]) on L sites with open boundary conditions
({I| = |r) = 84.0) according to its probability of occurrence in
the MPS. Specifically, product states |Ag, ..., Az—;) in a basis
to be described will be sampled from |{¥[A]| Ao, . . ., A_1)]?.
This algorithm first appeared in the context of minimally
entangled typical thermal state (METTS) algorithms [67].
Given the Hermitian operators O; with spectral decomposition
0; = in XilA;) (A;] we can define projection operators f’l w=
[Ai ) (Ai | Now, assuming the MPS is in left-canonical form,
we sample the (L — 1)th site by sampling from the categor-
ical distribution defined by the vector v, = Tr[P,p._], in
which [p_11j, = Y, ALy WAL ™ s the (L — 1)th site’s
reduced density matrix. Given the index chosen by the random
sampling, @y, we now construct an MPS representation of
Pi_1,, ,|¥IA]) by replacing AL~ «— Y (jla,, )ALT!.
Since the (L — 1)th site now no longer has a site index, we
can absorb this tensor into the tensor for site (L — 2) as

AL <y AR, (B1)
B

to define an MPS on (L — 1) sites describing PL,L we i [WIAD.
This process is now repeated, constructing the single-site
reduced density matrix for site (L — 2), sampling from the
(normalized) vector obtained by tracing the reduced density
matrix with the projectors onto the eigenspaces, applying the
chosen projector to the state, and contracting the MPS ten-
sor from the sampled site into the neighboring MPS tensor.
Repeating for all remaining sites, the result of this algorithm
is the string (uo, ..., #z—1) which can be re-interpreted as a
CPS A, ..., Ay, ,). This algorithm produces CPS sampled
according to [(A,, - .. Ay, [¥[A])|?, and has a O(x>L) cost
that is subleading to the O(Lx?>) cost of variational ground
state search.

APPENDIX C: ONLINE ALGORITHM FOR
DETERMINING THE NUMBER OF SHOTS NEEDED FOR
ACCURATE CLASSIFICATION

For classically preconditioned models such as those de-
scribed in this paper, the Wilson score interval can be used
to estimate the number of experimental shots required to infer
the class of a given input state |x) with a desired accuracy,
as po can be obtained from the classically tractable model.
As models are scaled up towards the classically intractable
regime, we no longer have knowledge of py, and it must in-
stead be inferred from the experimental data. In this scenario,
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it is useful to have an online algorithm which estimates a
distribution over py conditioned on the shot history, such that
statistical measures on this conditional distribution can deter-
mine when a sufficient number of shots have been taken. A
natural setting for this is Bayesian inference. Using a uniform
prior distribution over py, corresponding to the absence of any
a priori knowledge about py, and the assumption that each
shot of the experiment is a Bernoulli trial and hence described
by a binomial distribution, the resulting posterior distribution
for po conditioned on a shot history of ny zeros and n; ones is
a beta distribution

(ChH

P(polng, ny) = P (1 — po)™,

B(ng+1,n;+1)
in which B(x, y) is the beta function. Hence, the probability
that py < %, corresponding to the posterior model predicting
class one, is given by the cumulative distribution function of
this posterior distribution evaluated at % For the present case,
this is

172
P<E/ dpo P(polng, m) =Ii(ng + 1,n1 + 1),  (C2)
0

in which I,(a, b) is the regularized incomplete beta function.
With this, one can set a threshold % < py < 1 such that no
more shots are taken and the class is called as one when p_ >
P« or zero when p_. < 1 — p,. These criteria define that the
interval [0, 1/2] is a credible interval with probability p,, in
the Bayesian sense.

Using the identities

_ x(1 —x)?
Ix(a ~|— 1, b) = Ix((l, b) — m, (C3)
L b+ 1) = La, by — S A= (C4)
s Y T T B b)
a
Bla+1.b) = Ba,b)—"—. (C5)
Bla.b+ 1) = Bla.b)—— (C6)

a+b

and I%(l, 1) = %,B(l, 1) =1, we can develop an online
Bayesian algorithm that will halt when the requisite number
of shots have been taken, summarized in Algorithm 5.

From this algorithm, we can also obtain the maximum a

Lo o
posteriori estimate of pg as —
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