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Finite-size errors (FSEs), the discrepancies between an observable in a finite system and in the thermodynamic
limit, are ubiquitous in numerical simulations of quantum many-body systems. Although a rough estimate of
these errors can be obtained from a sequence of finite-size results, a strict, quantitative bound on the magnitude
of FSE is still missing. Here we derive rigorous upper bounds on the FSE of local observables in real-time
quantum dynamics simulations initialized from a product state. In d-dimensional locally interacting systems
with a finite local Hilbert space, our bound implies | (S(z))L — (§(1)>oo| < CQut /L)t H, with v, C, ¢, u constants
independent of L and ¢, which we compute explicitly. For periodic boundary conditions (PBCs), the constant c is
twice as large as that for open boundary conditions (OBCs), suggesting that PBCs have smaller FSEs than OBCs
at early times. The bound can be generalized to a large class of correlated initial states as well. As a byproduct, we
prove that the FSE of local observables in ground-state simulations decays exponentially with L under a suitable
spectral gap condition. Our bounds are practically useful in determining the validity of finite-size results, as we
demonstrate in simulations of the one-dimensional (1D) quantum Ising and Fermi-Hubbard models.
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I. INTRODUCTION

Numerical simulations are crucial to our understanding
of many-body quantum matter, and are routinely applied in
all fields of physics and in chemistry. Unfortunately, many
numerical techniques popular in these fields incur significant
FSEs when approximating properties of a large (potentially
infinite) system by properties of a finite one. The most direct
example is exact diagonalization, which exactly solves the
finite system numerically [1-4]. Accessible system sizes are
limited since the Hilbert space dimension grows exponentially
with system size; for the simplest case of interacting spin-
1/2s, a state-of-the-art ground-state calculation is limited to
~45 spins [5]. FSEs also significantly affect other techniques,
such as density matrix renormalization group (DMRG) [6-9],
many tensor network algorithms [10,11], quantum dynami-
cal typicality-based algorithms [12-16], and quantum Monte
Carlo [17], and they are a significant source of errors for
simulating quantum systems on quantum computers [18] and
for analog quantum simulations using ultracold matter [19],
trapped ions [20], and other platforms [21].

It is often difficult to characterize FSEs. The standard
method to assess them is to calculate and compare observables
for different system sizes, ideally using finite-size scaling [3].
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Although useful, this method has limitations. One is that it
offers no guarantees. Two different system sizes may have re-
sults that closely agree, but at larger sizes the physics changes
and observables deviate [22]. Another is that one may not be
able to study multiple system sizes that are sufficiently large
to get a good estimate of the convergence.

In this paper, we derive rigorous upper bounds on the error
of approximating observables in a large, possibly infinite,
quantum many-body system by results in a smaller one. The
bounds are applicable to arbitrary Hamiltonians for which
a Lieb-Robinson (LR) bound exists. For quantum dynamics
simulations starting from product initial states and evolv-
ing under locally interacting Hamiltonians with a finite local
Hilbert space, the bound for a local observable Sis

18O = (S(1))ec] < CQuE/LYTH, M
where v, C, ¢, and p are constants that can be computed
explicitly and depend on the Hamiltonian, observable, and
boundary condition.

Such dynamics is explored in a wide variety of ultra-
cold matter experiments, such as quantum quenches and
slow ramps in Rydberg atoms [23-28], molecules [29-31],
Fermi gases [32], atoms in optical lattices [33-37], and
optical clocks [38]. This dynamics can probe fundamental
phenomena, such as many-body localization [39-43], prether-
malization [44,45], and generation of topological defects near
critical points [46].

This bound is then extended to a large family of correlated
initial states satisfying an exponential clustering condition.
While our main focus is on dynamics, we also show that the
FSE of local observables in a many-body ground state decays
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FIG. 1. An illustration of our bounds. In locally interacting sys-
tems, information propagates no faster than the LR speed v, so it
takes a finite amount of time 7. ~ dxg/v for the effect of the bound-
ary, AH to affect the center site observable 8. Here dyp is the distance
between the supports X (yellow square) and B (red crossed circles)
of 8(¢) and AH, respectively.

exponentially in system size, under a suitable spectral gap
condition.

The idea behind our bound is that locality—specifically,
that one piece of a system does not instantly affect far-away
pieces—imposes strong constraints on quantum dynamics
[47,48]. This can be seen by considering evolution under a
Hamiltonian initiated from a product state (other scenarios
can be understood by similar arguments). As illustrated in
Fig. 1, an observable in a region X will be affected by FSEs
only after a long enough time for information to propagate
from the boundary to X. This idea is made precise by relating
FSEs to unequal time correlation functions, which can then
be bounded by a LR bound [49], a direct consequence of
locality. Although similar ideas of applying LR bounds to
analyze the performance of some numerical algorithms have
been employed in Refs. [S0-58], the connection to FSE has
not been made explicit, and the practical utility of the bounds
for numerics was not demonstrated. This idea has also been
applied to estimate FSE in a nonrigorous way, for example, in
Ref. [59].

Our FSE bound not only shows the convergence of finite-
size approximations in principle, but is tight enough to be
useful in practice, which we demonstrate in simulations of
some prototypical models. For example, in the dynamics fol-
lowing a sudden change of parameters in a 1D transverse
field Ising model (TFIM) with L = 21 sites, the error bounds
for the transverse magnetization and nearest-neighbor cor-
relations remain extremely small to times where they have
evolved close to equilibrium. Furthermore, the bounds are
reasonably tight: The time at which the error bound becomes
significant is only 20-25% smaller than the time at which
the actual FSE becomes noticeable. We similarly demonstrate
this for the nonequilibrium relaxation of the Fermi-Hubbard
model (FHM) from a checkerboard state, inspired by exper-
iments and theory of Refs. [60-63]. The precision of these
bounds is enabled by the major quantitative improvements
offered by recent LR bounds [64,65].

In addition to their quantitative utility, these bounds pro-
vide insight into the convergence of numerical methods and
open the way to designing new algorithms. One immediate
consequence of the bounds is to rigorously show that the FSE
decays exponentially with the linear dimension of the system
for periodic boundary conditions (PBCs), as well as for open
boundary conditions (OBCs) provided that one measures ob-
servables only near the center of the system, as commonly

employed in the DMRG community. If one instead averages
the measurement over all sites in OBCs, then our bound
indicates that the error decays only algebraically. Similar be-
havior at finite temperature has been observed and analyzed in
Ref. [66]. Furthermore, if one compares PBCs to OBCs with
center site measurements, our error bound for PBCs decays
twice as fast with distance as the bound for OBCs at early
times, suggesting that PBCs give more reliable results at early
times [67]. These insights may lead to new methods; one
example is that they show why the moving-average cluster
expansion method of Ref. [30] converges exponentially faster
than alternative schemes.

A. A simple bound for both OBCs and PBCs

Consider the dynamical evolution of a quantum many-body
system on an infinite d-dimensional lattice, governed by a
locally interacting Hamiltonian A . For illustrative purposes,
in Fig. 1 we draw the configuration for a 1D nearest-neighbor
interacting lattice model. Let |i) be the initial product state,
S be a local observable to be measured that acts on a finite
region X (center point in Fig. 1), and let AH = Z V be the
sum of all the interaction terms between the inner and outer
parts of the system (red links in Fig. 1). If PBCs are used, we
further subtract from AH the interaction between the first and
the last site (brown link in Fig. 1). Let H; and |y) denote the
Hamiltonian and the initial state of the finite-size simulation,
respectively (i.e., the restriction of A and |y) to the L-site
inner system). Denote A’ = H — AH, so H' decouples into
two commuting terms, one acting only on the inner system,
the other acting only on the outer system. The FSE of the
observable S is

8(S(1))y

where (A)y, = (¥|A|), and we set /i = 1 throughout. Since
A’ decouples into two independent spatial regions (inner and
outer) and |v) is a product state, the first term in Eq. (2) can
be rewritten as (¢ Se~H’ ")y Inserted into Eq. (2), the two
expectation values are taken in the same state |i), so their
difference can be bounded by the operator norm | (Y |A|1p)| <
||A|| Usmg the unitary invariance of operator norm IA] =
IUAV | for arbitrary unitary operators U,V, we have

18(5())y |

= |<€iHLtS‘€7iHLt>1/,L

_ (ethSvefiH”‘/]" (2)

< N0)8U; )" - 8, 3
where U;(1) = e"H"¢il"" is the evolution operator in the in-
teraction picture, which satisfies U,(O) =1 and iallj,(t) =
U;(tH)AH (1), where AH(t) = e~ " AHeH'". Now applying
the fundamental theorem of calculus and the triangle inequal-
ity, we obtain a bound on the FSE:

18(S(t))yl < fo

= / 10, AH (), S10,) \dt’
0

dt’

d [0,(H8U ()" — S]
dt’ I 1

_ / AR, STildr. )
0

The integrand is the quantity bounded by LR bounds, so
to upper bound the FSE, one can insert the relevant LR
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bound. We focus on locally interacting systems, but Eq. (4)
applies equally to long-range interactions by substituting the
corresponding LR bounds [57,68-74] in those systems. For a
locally interacting system, the currently tightest LR bound is
obtained by computing the series in Eq. (S19) of the Supple-
mental Material (SM) [75], which is based on Refs. [64,65],
although this may not be efficiently computable in general. A
slightly looser but efficiently computable method is discussed
in Ref. [65], in which one solves a system of first-order linear
differential equations for a number of variables proportional
to the system size. To see the qualitative features of the bound
for large systems, we can insert the simple expression given
in Eq. (3) of Ref. [65] into Eq. (4) to obtain

R vle\ PGV
|Mﬂnw|<§:q(3—) , )
j X

where ¢; are constants independent of ¢ and dy;, D(S, V_,-)
is the distance between the operators S, V; in the commu-
tativity graph (CG) as introduced in Ref. [65], and v is the
LR speed. The distance in the CG is related to the distance
in real space dx; by DS, Vj) = ndx; — u, where n, u are
(straightforwardly determined) constants and dy; is the dis-
tance between X and j in real space. Therefore, the right-hand
side of Eq. (5) is bounded by (v|t|/dxp)"***, where dyp =
minjep dx ;. Despite its simplicity, the ¢ dependence of this
bound generically agrees with the exact error to lowest order
in ¢t in OBCs [75].

Besides its practical utility for bounding FSEs in cal-
culations, as demonstrated below, this result has qualitative
implications. One is to rigorously support the common prac-
tice of measuring observables close to the center site in OBC
numerics (e.g., in the DMRG community), rather than aver-
aging over all sites. This minimizes the error bound, since the
center size maximizes dyp. This choice yields our main result
in Eq. (1) for the OBC case, with ¢ = 1/2. Our bound allows
one to extend this. For example, in dimensions greater than
one, we can minimize FSEs by choosing an optimal cluster
shape that minimizes the right-hand side of Eq. (5) and run
simulations on the optimal shape.

As a side note, although we have restricted our discussion
to a local observable S, our bounds can equally well be applied
to nonlocal ones of finite extent, such as equal time correlation
functions. To do this, one only needs to replace the local
observable S in Eq. (4) by a nonlocal one, and measure S in
the central region of the finite cluster so that  is as far from
the boundary as possible. The resulting FSE would be bigger
than local observables, but for 1D finite-size simulation with
~20 sites, one can simulate a ~4 site correlation function
with acceptably small error bounds. Such correlations are
important for many experiments.

B. An improved bound for PBCs

In the previous section, we treated PBC in a way similar
to OBCs. But it turns out that the resulting bound in Eqgs. (4)
and (5) is qualitatively loose at small ¢ for PBCs. The reason
for this can be intuitively understood as follows. The two
terms on the right-hand side of Eq. (2) can be expanded in
t. As we discuss in greater detail in the SM [75], the FSE

for $(t) actually is only contributed by terms in efﬁ’S'e"ﬁ !
whose spatial span is larger than L and terms in e/t'Se~
that wrap around the whole periodic system. The leading order
of these terms is proportional to ~, where L is the length of
the shortest noncontractible loop on the PBC CG, which is
roughly twice as large as the exponent D(S, Vj) in Eq. (5).
The SM [75] extends methods developed in Refs. [64,65] to
derive a rigorous upper bound for |5(S(¢))| that leads to this
improved ¢* scaling. The main result is

A 20,0\ 57
8@ Y C,,(L—”> , (6)
1<p<d p

iﬁLf

where the constant C,, is given in Eq. (S52), v, is the LR speed
in the pth direction given in Eq. (S53), and £, is the size of
the periodic system in the pth direction in CG. £,, is related to
the real space system size L, by £, = n,L, — u,, for constant
integers 7,, i,. We note that while this bound improves the
small-time exponent of the PBC bound by a factor of 2 com-
pared to Eq. (5), the timescale 7. ~ min, L,/2v, on which the
bound exponentially grows is still approximately the same as
Eqg. (5). Besides its quantitative utility, Eq. (6) shows that in
anisotropic systems where v, is different in each direction,
one should choose L, v, to minimize the FSE.

C. FSEs in nondegenerate gapped ground states

So far, we have been discussing FSEs of quantum dy-
namics simulations. We now derive a bound on FSEs of
local observables in nondegenerate ground states under a gap
assumption. This result is interesting in its own right, and
will also be useful for our subsequent generalization of the
dynamics error bound to correlated initial states.

The Hamiltonian H, observable S, boundary terms AH,
etc. are the same as before. For convenience, we suppose that
the operator § = §; has unit norm and acts nontrivially only
within a region X = X; of diameter / which sits on the center
of the finite-size cluster. The difference now is that we con-
sider the observable (S) = Tr[pS] given by the ground-state
density matrix p. The numerical simulation approximates
this thermodynamic quantity by the expectation value in the
finite-size ground state Tr[f)LS’], where Py is the ground-state
density matrix of Hy. Our result relies on an assumption
that the interpolated Hamiltonain H(\) = H — LAH is non-
degenerate for all 0 < A < 1 and has a uniform spectral gap
minpci<1 A(A) = A > 0. When this condition is satisfied,
then analogously to Eq. (1) we have [75]

ITe[pS) — prSil| < CemED/%, (7)

D. Bounds for correlated initial states

We now generalize our error bound to dynamics initi-
ated from a class of (possibly mixed) initial states p, for
which there exists a sufficiently good finite size approximation
pr satisfying Eq. (7). This includes nondegenerate gapped
ground states (under the condition described above) but also
includes translation invariant matrix product states (MPSs)
with a finite bond dimensiAon [76] Aand finite-temperature
thermal states [77] p = e #H /Tr[e#¥] above a certain tem-
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perature, where p; = e PH /Tr[ePHL], i.e., the thermal state
of ﬁL.

Given that we have an initial state p;, satisfying Eq. (7), we
can bound the dynamics FSE as

88, = 8L 5, — (S(0))
<ATel(pr — pup)SON + 1(SLt) — SOl (8)

where 8, (1) = ¢/ 8e~it1 | oy, is the reduced density matrix
of p on the finite cluster, and in the second line we used the
triangle inequality. The second term can be bounded using
the same method as in Eq. (2), since Tr[pA] < ||A|| for any
density matrix p. To bound the first term, we insert the expan-
sion S;.(1) = So(t) + 1, [S1(t) — §;_1(1)] into Eq. (8) and
notice that $;(z) — §,_(¢) is an operator acting on X;, whose
norm is bounded by Eqs. (4) and (5) to be ||S;(r) — S;_1(t)|| <
C(2ut /1)"/? for some constant C. For initial states satisfying
Eq. (7), this implies [75]

8(8(1))p < Cre™HDIE 4 CrenTHR), ©)

where C; and C, are model-dependent constants that can be
explicitly determined.

E. Example: 1D TFIM

We test our dynamics error bounds in simulations of proto-
typical models for quantum many-body physics, starting with
the TFIM,

A= —JZa;a;+l — hZ&;. (10
J J

This is a canonical model for quantum phase transitions
[78,79] and occurs in materials like CoNb,O¢ [80], cold
atom [26,46,81] and trapped ion [82—-86] experiments, and
superconducting circuits [87,88]. We numerically study the
dynamics of this model at the critical point J =h for
several L, and calculate the exact evolution for L = oo.
Specifically, we study the dynamics of (6*(¢)) starting
from |¥(0))=| —-— ... —). Analogous dynamics in the
2D TFIM has been explored in Rydberg atom experiments
[26,27].

Figure 2(a) shows (6;‘(t)) from L =5 to 21 using PBCs,
along with the exact L = oo solution [89]. To obtain a FSE
bound for (67(1)), we use the LR bound given in Eq. (S24)
of the SM [75] [obtained from the general bound Eq. (S20)],
which, after inserting into Eq. (4), yields

J QNTht)=Y T (4NTht )2
h QL—1)! "h @QL-2) °

As Fig. 2(a) shows, this error bound provides a guarantee of
the numerical calculations’ accuracy out to interesting and
useful timescales. For the L = 21-site calculation, the bound
guarantees that the results are accurate (within 1072) up to
times Jt ~ 3.5, where the observable has nearly reached equi-
librium. Furthermore, this time is in reasonable accord with
the true time at which FSE becomes important (within 20%).

We emphasize that the FSE bound never made use of the
TFIM’s exact solution. The bound Eq. (4) can be applied to
any system, including in dimensions greater than one. As we
will now demonstrate in the 1D FHM, the bound still provides

5(67 ()] <4 (11)

1.0
Jt

FIG. 2. Numerically exact evolution for (a) (67(¢)) in the L-site
PBC TFIM at J = h, with |/(0)) = | ->— ... —), and (b) (M(¢))
in the L-sitt OBC FHM at U = 0.5/, with |4 (0)) = |202020. .. .20).
The dashed curve in TFIM is the exact L — oo result. The shaded
areas for each curve represent the region in which the actual L —
oo values must lie according to the FSE bounds in Egs. (11), (4),
and (S19), respectively, and we do not show the shade beyond the
timescale 7. &~ L/(2v) at which the error bounds become too large to
be useful.

a useful guarantee of the finite-size results when no exact
solution is available.

F. Example: FHM

The 1D FHM describes spin-1/2 fermions in a lattice
whose Hamiltonian is

A=-] Y (aa,+Hc)+U» alaf. (12)
(ij).o="1. i

The FHM exhibits rich behavior, such as a metal-Mott
insulator transition, and potentially high-temperature super-
conductivity. It is a reasonable approximation of some real
materials, such as FeO, NiO, CoO [90], and has been realized
in ultracold atoms [91-95].

We numerically study the relaxation dynamics of a charge
density wave state [¢(0)) = [202020...20), analogous to
previous theory [96] and experiments [97], where 2 (0) means
a doubly occupied (empty) site. We run the finite-size simu-
lations in OBCs and measure the density imbalance M@) =
[Neven(t) — Noga(t)]/L [96]. To get a FSE bound for M (z), we
use the currently tightest LR bound, obtained by numerically
summing the series in Eq. (S19) of the SM [75] and inserting
the result into Eq. (4). Figure 2(b) shows the results.

Our error bound can be compared to estimates of FSE
obtained from comparing calculations of different sizes. For
example, one can take the difference between the L = 10 and
L = 12 as a rough estimate of the FSE of the L = 12 calcula-
tion. Our bound is comparable in its guaranteed timescale of
convergence to this conventional estimate. For example, we
can guarantee that the FSE in (M(z)) of the L = 12 result is
less than 1% for Jt < 1.2, comparable to the time Jt ~ 1.6
where the L = 10 and 12 results differ noticeably.

II. CONCLUSIONS

We have presented a rigorous upper bound on the FSE
of local observables measured in numerical simulations of
quantum dynamics starting from a large class of initial states.
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For product initial states, the bounds show an advantage of
using PBCs at early times. We also presented a generalization
to simulations of local observables in nondegenerate gapped
ground states. In all the cases we considered, the bounds
decay exponentially in system size and guarantee the ac-
curacy of finite-size dynamics simulation up to a timescale
t. ~ L/2v. These insights into FSE can motivate better
algorithms.

The quantitative utility of the bounds is demonstrated
in the 1D TFIM and 1D FHM. In both cases, the error
bounds are extremely small up to timescales where there
is interesting physics and even equilibration, and they are
reasonably tight compared to the actual FSEs. We expect
these bounds to provide useful tools to researchers going

forward, providing FSE bounds on numerical calculations
and suggesting new numerical methods that minimize this
error.
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