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Predicting the Macronutrient Composition of
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Abstract—Diet monitoring is an essential intervention
component for a number of diseases, from type 2 diabetes
to cardiovascular diseases. However, current methods for
diet monitoring are burdensome and often inaccurate. In
prior work, we showed that continuous glucose monitors
(CGMs) may be used to predict meal macronutrients (e.g.,
carbohydrates, protein, fat) by analyzing the shape of the
post-prandial glucose response. In this study, we examine
a number of additional dietary biomarkers in blood by
their ability to improve macronutrient prediction, compared
to using CGMs alone. For this purpose, we conducted a
nutritional study where (n = 10) participants consumed
nine different mixed meals with varied but known
macronutrient amounts, and we analyzed the concentration
of 33 dietary biomarkers (including amino acids, insulin,
triglycerides, and glucose) at various times post-prandially.
Then, we built machine learning models to predict
macronutrient amounts from (1) individual biomarkers
and (2) their combinations. We find that the additional
blood biomarkers provide complementary information,
and more importantly, achieve lower normalized root
mean squared error (NRMSE) for the three macronutrients
(carbohydrates: 22.9%; protein: 23.4%; fat: 32.3%) than
CGMs alone (carbohydrates: 28.9%, t(18)=1.64, p =0.060;
protein: 46.4%, t(18)=5.38, p<0.001; fat: 40.0%, t(18)=2.09,
p =0.025). Our main conclusion is that augmenting
CGMs to measure these additional dietary biomarkers
improves macronutrient prediction performance, and may
ultimately lead to the development of automated methods
to monitor nutritional intake. This work is significant to
biomedical research as it provides a potential solution to
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the long-standing problem of diet monitoring, facilitating
new interventions for a number of diseases.

Index Terms—Continuous glucose monitors,
biomarkers, diet monitoring, macronutrients, machine
learning.

I. INTRODUCTION

POOR diet is a major contributor to the development of
chronic diseases, from type 2 diabetes to heart disease [1].

Thus, monitoring andmodifying food intake is an essential com-
ponent of many clinical interventions. However, conventional
methods for diet monitoring rely on self-report tools (e.g., food
diaries, 24-hour recall), which are problematic. For example,
food diaries require manual input, which is burdensome [2]
and often leads to low adherence rates [3]. Further, 24-hour
records suffer frommemory recall, which can lead to severe over
and under-reporting [4]. To address this issue, various wearable
sensing techniques (e.g., microphones, accelerometers) are be-
ing explored to detect eating behaviors such as hand-to-mouth
movements and chewing/swallowing [5]–[7]. These approaches
can be used to detect moments of food intake, but have lim-
ited ability to estimate the nutritional content of foods. The
latter requires measuring dietary biomarkers associated with
consumption of various nutrients.
As a first step in this direction, in recent work [8], [9] we

proposed using continuous glucose monitors (CGMs) to mon-
itor food intake. CGMs generally consist of a small electrode
inserted under the skin to measure glucose in the interstitial
fluid, and a transmitter that sends the information to a monitor-
ing device. Our rationale for using CGMs for diet monitoring
was based on the observation that changes in blood glucose
levels after a meal, also known as the post-prandial glucose
response (PPGR), depend on the meal macronutrients (e.g.,
carbohydrates, protein, fat). Though the major determinant of
post-prandial glucose is the amount of carbohydrates (CHO),
adding protein or fat to a meal generally yields smaller spikes
and lengthier responses [10], [11]. To test this rationale, we
conducted a study in which 15 healthy participants consumed
nine different meals over the course of 2-3 weeks while wearing
a CGM. Each meal had a different but known amount of CHO,
protein, and fat. Then, we trained several machine learning
models to predict the macronutrient amounts (i.e., grams of
CHO and protein, and milliliters of fat) from the PPGRs. The
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best performing models were able to predict the macronutrient
amounts with a normalized root mean squared error (NRMSE)
of 22% for CHO, 47% for protein and 40% for fat, a promis-
ing result given the large inter-individual differences in food
metabolism [12].
As a logical next step, the aim of this work was to examine

whether measuring additional blood biomarkers would improve
prediction performance for the threemacronutrients, when com-
pared to using only glucose measurements from CGMs. To
answer this question, for 10 of the participants in the abovemen-
tioned study, we also analyzed blood samples at various times
during the post-prandial period to measure the plasma concen-
tration of three additional types of biomarkers: insulin, triglyc-
erides, and amino acids. Further, since CGMs measure glucose
in interstitial fluid,we collected two additional glucosemeasures
in venous blood for comparison, via liquid chromatography
(LC) and fingerstick blood glucose measurement. Our working
hypothesis was that the addition of amino acids and triglycerides
would primarily improve the prediction performance for protein
and fat, respectively. Using extreme gradient boosted decision
trees (XGBoost) [13] as the underlying prediction model, we
performed a series of computational analyses to predict meal
macronutrients. These analyses consistently indicate that the ad-
ditional blood biomarkers provide complementary information
to each other and, more importantly, achieve higher prediction
accuracy for the three macronutrients (CHO: 22.9%; protein:
23.4%; fat: 32.3%) thanCGMs alone (CHO: 28.9%, t(18)=1.64,
p =0.060; protein: 46.4%, t(18)=5.38, p <0.001; fat: 40.0%,
t(18)=2.09, p =0.025; one-tailed t-test).
This work is novel in several respects. First, to our knowl-

edge, the problem of predictingmeal macronutrients from blood
biomarkers has never been examined, with the exception of our
recent prior work [8], [9]. However, our prior work focused on
glucose responses fromCGMs, whereas the present work evalu-
ates 32 additional biomarkers by their ability to predictmacronu-
trients. Second, through a series of complementary analyses, we
identify (1) themost relevant individual biomarkers, (2) themost
relevant combinations of biomarkers, and (3) the most relevant
regions in the postprandial response of these biomarkers. Third,
our work is related to (but distinct from) research on the artificial
pancreas (AP) [14]. In both cases, the goal is to infer food
intake. In the artificial pancreas, this information is used to
control an insulin pump, which administers doses of insulin
according to a pre-established insulin-to-carb ratio. Thus, the
artificial pancreas is concerned with estimating the amount of
CHO. In contrast, our work aims to estimate not only CHO, but
also fat and protein. In addition, being a control problem, the
artificial pancreas is very sensitive to delays and lags: to prevent
large glucose responses after ameal, anAPmustmake a decision
based on the early part of the glucose response. In contrast,
our work can afford to exploit information in the entire glucose
response curve to predict the full macronutrient composition of
a meal. Finally, our work is related to (but also distinct from) the
personalized-nutrition project of Zeevi et al. [12], which used
machine-learning models to predict the post-prandial glucose
response of different meals; see Section II-A. In contrast, we
aim to solve the inverse problem: predictingmealmacronutrients
from post-prandial responses.

Results from this work suggest that expanding the sensing
capabilities of existing indwelling or implantable CGMs [15]
to measure these additional dietary biomarkers would make it
possible to monitor nutritional intake in an automated fashion,
removing burden from participants while providing a wealth
of nutritional and behavioral information to them and their
healthcare providers. Towards this end, our group has proposed
an implantable barcode-like sensor the size of a grain of rice
that, once inserted, could be probed optically with a watch-type
device and used to noninvasively monitor not only glucose but
other dietary biomarkers such as the ones presented here in free
living conditions [16]. These data could then be analyzed on the
watch, or transmitted to amobile device or to the cloud, to detect
moments of meal intake and predict macronutrient composition
of those meals.
Note that measuring these biomarkers using current standard

methods is complicated as it requires extraction of the fluid,
such as either a blood draw and centrifugation to get plasma, or
dialysis membrane extraction for interstitial fluid, followed by
the use ofwell-established but relatively sophisticated bench-top
analytical instruments. Though the future barcode sensor would
facilitate the measurement of these biomarkers, development of
the sensor itself is nontrivial as both the recognition elements
(e.g. aptamers, antibodies) and transduction methods through
tissue (e.g. fluorescence, phosphorescence lifetime) need to be
determined and optimized for each biomarker.

II. RELATED WORK

A. Effect of Macronutrients on Postprandial Glucose

A number of studies have examined the effect of meal
macronutrient amount and composition on PPGRs. The main
determinant of postprandial glucose is the amount and type of
CHO. However, other macronutrients that are present in mixed
meals also contribute to the glucose response. Specifically,
adding protein, fat or dietary fiber to ameal reduces and/or slows
down the glucose response [10], [11], typically due to gastric
emptying or endogenous secretion of insulin [17]–[19]. More
recent work has focused on understanding individual differences
in food metabolism. In a landmark study, Zeevi et al. [12] used
CGMs to track the glucose response of 800 participants while
participants kept detailed records of their diet. The authors found
high inter-personal variability in the glucose response to identi-
calmeals,which puts into question the utility of universal dietary
recommendations. To address this issue, the authors developed a
machine-learning model that could predict the glucose response
of ameal for eachparticipant by accounting for individual factors
(e.g., anthropometric variables, blood panels, gut microbiota).
When tested on an independent cohort of 100 participants, the
model was able to generate personalized diets that led to reduced
postprandial hyper-glycemia.

B. Diet Monitoring Technology

Technology may enable automatic monitoring of food intake,
reducing participant burden and avoiding errors due to manual
food tracking. Three broad types of technologies have been used
for monitoring food intake: wearable sensors, smart utensils and
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computer vision. As an example, food intake can be captured by
recording chewing sounds with a microphone and then perform-
ing acoustic analysis [5], [20]. Piezoelectric sensors have also
been used for detecting food intake from chewing [6]. After
chewing, swallowing is the next step of food consumption, and
a number of wearable sensors have been used for detecting
swallowing sounds based on acoustic analysis [21]. Finally,
a few studies have attempted to detect food intake from both
chewing and swallowing sounds [22], [23]. A number of smart
devices, such as smartwatches and smart utensils, have also been
used to detect food types and the amount of food consumed [7],
[24]. The advantage to using smart watches with inertial sens-
ing is that they do not interfere with user privacy, compared
to other approaches such as microphones embedded in ear-
buds [25]. Smart utensils (e.g., smart forks) have also been used
for identifying foods consumed [26], and commercial products
also exist (e.g., HAPIfork). Finally, computer vision techniques
have been developed to classify foods, predict food constituents
and estimate food portions from images [27]–[29]. Further, a
growing number of commercial apps are using computer vision
techniques to estimate nutrition from food photographs, e.g.,
Lose It!, CalorieMama, Snaq, Undermyfork, gocarb, and several
software libraries for food image recognition are available for
integration with mobile apps, e.g., bite.ai, FoodAI.

C. Dietary Biomarkers

Various dietary biomarkers have been associated with
macronutrients, foods and dietary components. Sugars such as
glucose or fructose are associated with CHO and contribute to
energy intake. Unfortunately, sugar can be introduced through a
number of processed foods and hidden sources, which makes
accounting for the amount of sugar consumed challenging.
Instead, a biomarker that could estimate the amount of sugar
in food would be more useful. To this end, urinary sucrose
and fructose have been identified as dietary biomarkers for
sugar intake [30]. For the consumption of saturated fats, blood
lipids such as low density cholesterol (LDL) and high density
cholesterol (HDL) have been identified as predictive biomark-
ers [31]. Plasma cholesterol and triglyceride (TG) levels may
also be associated with dietary fiber intake; however, some
studies reveal conflicting results. Specific fatty acids such as
mono-unsaturated (MUFA), poly-unsaturated (PUFA) and satu-
rated fatty acids (SFA) are hard to capture and current methods
of estimation are costly and time-consuming [32]. To measure
dietary protein intake, urinary nitrogen has been identified as
a potential biomarker [33]. Other potential biomarkers of pro-
tein intake include creatinine, taurine, 1-methlyhistidine and
3-methylhistidine [34]. These biomarkers are specific to meat
intake and are excreted via urine.

III. METHODS

This section describes the experimental dataset used for the
study, and the data preprocessing techniques to extract infor-
mation from postprandial responses and reduce individual dif-
ferences. Further, we describe the prediction model (XGBoost)
that was used throughout all subsequent analyses, to answer
this study’s overarching question: to what extent do additional

TABLE I
MACRONUTRIENT AMOUNTS OF THE 9 MEALS IN THE STUDY

biomarkers (i.e., beyond interstitial glucose from CGMs) im-
prove prediction of meal macronutrients?

A. Dietary Study Dataset

To assess the influence of meal macronutrients on postpran-
dial responses for glucose and other biomarkers, we recruited 15
healthy participants (not diagnosed with pre-diabetes or type 2
diabetes) between the ages of 60-85 andBodyMass Index (BMI)
in the range of 25-35. Each participant took part in nine study
days where they consumed a predefined meal on each day based
on a randomized design. The participant was asked to follow
the same protocol on each day and the only difference between
any two days was the macronutrients of the meal consumed. The
meal was prepared as a liquid drink mixed with a pudding base
(Jell-O Vanilla, Kraft Food, IL, USA) containing 0.75 g CHO
and with different levels of protein, CHO and fat; see Table I. In
what follows, we use the notation CxPxFx to denote the amount
of macronutrients in a meal, where x can take values 1 (low),
2 (medium) and 3 (high). Whey protein (BiPro, Agropur, MN,
USA) was used as the protein nutrient, maltodextrin (Polycose,
Abbott Nutrition, IL, USA) as the CHO nutrient, and sunflower
oil (Great Value, Wal-mart, AZ, USA) as the fat nutrient. Meals
were prepared early on each study day. The protein hydrolysates
and maltodextrin were dissolved in 250 ml water, mixed with
the pudding base, and then thoroughly mixed with sunflower oil
within 30 minutes of ingestion. Each participant was asked to
fast for eight hours before consuming the meal, so that the first
reading captured would be their fasting biomarker levels. After
consuming the meal, the participant remained in a sedentary
state for the next eight hours, so that there was no effect of
physical activity on postprandial responses. Informed consent
was obtained from all participants involved in the study. This
study was approved by the Texas A&M Institutional Review
Board (IRB #2017-0886F; approval date 12/06/2017).
On the first day of the study, an Abbott Freestyle Libre Pro

CGMwasplacedon theparticipants upper arm, andwas replaced
as needed. This CGM device takes glucose readings every 15
minutes for up to 14 days. The concentration of the remaining
biomarkers was measured by first extracting blood samples via
venipuncture at intervals of 15 minutes for the first hour, 30
minutes for the second hour and 60 minutes for the remainder
of the study day. However, due to budgetary constraints, blood
samples were analyzed for only 10 subjects. Additionally, the
response of three meals were missing due to experimental errors
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TABLE II
LIST OF BIOMARKERS MEASURED IN THE STUDY

or CGM malfunction, leading to a total of data from 87 meals
for analysis across the 10 subjects. Table II provides a list of all
biomarkers measured in the study. The first 24 biomarkers are
individual amino acids. Biomarkers 25-27 represent different
combinations of amino acids commonly used in nutritional
studies. Biomarkers 31-33 represent three independentmeasures
of glucose from venipuncture (LC-glucose), fingerstick (Stick-
glucose) and interstitial fluid (CGM-glucose).
Venipuncture blood samples were collected in pre-chilled,

EDTA or li-heparinized tubes (Becton Dickinson Vacutainer
system, Franklin Lakes, NJ, USA) and kept on ice. Plasma was
obtained by centrifugation of whole blood at 4◦C for 10 min at
3120 g, and was aliquoted with vortexing to tubes containing
either 0.1 vol of 33% (w/w) trichloroacetic acid or the residue
after evaporation of 0.17 vol of 33% (w/w) 5-sulfosalicylic
dihydrate to denature proteins. All samples were frozen in liquid
nitrogen and stored at −80◦C until analysis. All venipuncture
biomarker analyses were performed in plasma. Insulin was
measured with an electrochemiluminescent immunoassay, and
glucose and triglycerides with standardized enzymatic assays,
all assessed by LabCORP. The fingerstick glucose readingswere
analysed using using reagent test strips and a point of care
testing glucometer (Accu-Chek>Aviva, Roche). Plasma amino
acids were analyzed batchwise with liquid chromatography

Fig. 1. gAUC features extracted using 5 Gaussian kernels. The red
curve represents the post-prandial response of a biomarker, and the
shaded curves represent a family of Gaussian kernels. Each gAUC
feature is the weighted average of the biomarker concentration at a given
time period, weighted by the kernel.

Fig. 2. Area under the curve of three biomarker responses (blood
glucose, Leucine, and triglycerides) for meals with different amounts
of macronutrients. Error bars indicate standard deviation, measured by
aggregating individual AUCs from all subjects for the corresponding
meals. ***: p < 0.001, **: 0.001 ≤ p ≤ 0.01, *: 0.01 ≤ p < 0.05.

with tandem mass spectrometry (LC/MS/MS), as previously
described [35].

B. Feature Extraction

A prototypical biomarker response is shown in Fig. 1; it
features an initial rise, reaches a peak and then finally returns
to baseline. Actual biomarker responses are illustrated later see
Fig. 3. To capture the shape of the response, we place a family
of Gaussian kernels uniformly over time, as shown in Fig. 1.
Using these kernels, we then calculate the area under the curve
(AUC) of the biomarker response, which we refer to as Gaussian
area-under-the-curve (gAUC) as:

x(k) =

∫ T

0

[b(t)− b(0)]
1√
2πσk

exp
(t− Tk)

2

2σ2
k

(1)

where b(t) is the biomarker response over time, x(k) is the
k-th gAUC feature computed from b(t), T is the duration of
postprandial period (8 hours in our study), and Tk represents
the time at which the Gaussian kernel is centered with a spread
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Fig. 3. Average shape of the postprandial biomarker response for
different amount of macronutrients. For each biomarker, only the most
influential macronutrient is shown (e.g., CHO for LC-glucose and insulin,
protein for Leucine, and fat for triglycerides).

of σ2
k. These gAUC features capture information related to the

initial time to peak, duration of elevated glucose level and time of
return to baseline level. For consistency with our prior work [9],
we use a combination of 3 and 5 kernels to extract features
from the biomarker responses, as we found this combination led
to the best performance5. As a final pre-processing step, and
following our prior work [9], we normalize the gAUC features
of each participant using z-score normalization, i.e., we subtract
the mean from each gAUC feature and divide by its standard
deviation. Note that we also subtract the biomarker reading prior
to consuming a meal b(t = 0) from the postprandial biomarker
response of the meal. The rationale behind using a baseline
correction step is that two individuals may have different re-
sponses to the same meal owing to their different fasting levels.
A baseline correction step ensures that there is no effect of
fasting level on the overall response. The biomarker response
is therefore represented as relative to the fasting level instead of
an absolute value.

C. Macronutrient Prediction Model

Once the gAUC features are generated, we predict the amount
of each macronutrient by means of eXtreme Gradient Boosting
(XGBoost) [13], a machine learning algorithm that has achieved
state-of-the-art results on a number of domains, such as web
text classification, customer behavior prediction and product
categorization. XGBoost uses an ensemble of weak learners

5Gaussian centers are placed evenly across the 8-hour period following
meal intake, i.e., Tk = {0˜h, 4h, 8h} for the 3-Gaussian family, and Tk =
{0˜h, 2h, 4˜h, 6h, 8h} for the 5-Gaussian family. To ensure that the 95%
confidence interval of the Gaussian kernel aligns with these time intervals, we
set the standard deviation of the Gaussian to σk = σ = 8/n/1.96, where n is
the number of kernels. This results in σ = 82˜min for the 3-Gaussian family
and σ = 49˜min for the 5-Gaussian family.

(regression trees) to obtain a strong learner using an iterative
process. Starting with one regression tree trained to model the
entire data, XGBoost iteratively adds one more regression tree
to the ensemble in order to reduce the residual obtained from
the previous set of trees using gradient descent. Following [13],
XGBoost generates a prediction by adding the outputs from all
the trees in the ensemble:

ŷi =
K∑

k=1

fk(xi) (2)

where ŷi is the prediction for input xi, and fk is the k−th
regression tree in the ensemble. Themodel is trained to optimize
the objective function:

L =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk) (3)

where l is the loss function between the ground truth yi and the
prediction ŷi, and Ω is a regularization term that penalizes the
weights of the model from becoming very large, and therefore
prevents overfitting:

Ω(fk) = γT +
1

2
λ||w||2 (4)

where T is the number of leaves in the tree, ||w|| represents the
scores of the leaves, and γ and λ are regularization parameters.
At each iteration t, a new regression tree ft is added to reduce
the loss:

L(t) =
∑
i

l(yi, (ŷi
(t−1) + ft(xi))) + Ω(ft) (5)

We use XGBoost for all the experiments in the manuscript.
Because XGBoost is based upon decision trees, the impact
of the features provided have easy-to-interpret relationships
with the predicted regression values. We train a separate
model to predict each of the macronutrients (CHO, protein,
fat). To further avoid overfitting and assess the generalization
capabilities of the model, we use a leave-one-subject-out proce-
dure to evaluate the model, i.e. we train on data from 9 subjects,
then test on the 10th subject. To report the performance of the
model, we use normalized root mean squared error (NRMSE)
between the predicted and ground truth macronutrients:

NRMSE =

(
1

N

∑
(y − ŷ)2/y2

) 1
2

(6)

For hyperparameter tuning6, we use the following cross-
validation procedure: given a total of 10 subjects, we use 8
subjects for training, the 9th subject for validation and the
10th subject for testing. A model is trained on 8 subjects and
then tested on the validation subject using all combinations of
hyperparameters. Keeping the test subject fixed, we repeat this
process for all combinations of train and validation subjects and
all hyperparameter combinations. The set of hyperparameters
that have the lowest NRMSE across all validation subjects is

6We used the XGBoost (https://xgboost.readthedocs.io) package imple-
mented in Python. For hyperparameter tuning, we wrote our own code using
nested for loops instead of using existing packages
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then chosen for testing. In our experiments, we optimize two
hyperparameters, the maximum depth of tree (n = 2, 3) and the
maximum number of trees (m = 20, 30), and set the learning
rate to η = 0.1. We limited the depth of the trees and number
of trees to prevent overfitting, relative to the number of features
extracted for each meal and number of meals.

IV. RESULTS

A. Impact of Macronutrients’ Amounts on Biomarker
Concentrations

In a first analysis, we examine how increasing amounts of
macronutrients affect the postprandial response for the differ-
ent biomarkers. Results are summarized in Fig. 2. The first
row shows the average AUC for venipuncture blood glucose
(LC-glucose) as we increase the amount of CHO, protein, and
fat. We observe a marked increase in the AUC as the amount
of CHO increases (a correlation coefficient r = 0.65), and a
smaller increase for proteins and fats (r = 0.24 and r = 0.03,
respectively), a result that is consistent with our earlier studies
showing predicting macronutrients from CGMs is easier for
CHO than for fat and protein, in that order [8], [9]. This result
also confirms that LC-glucose responds maximally to increases
in consumption of CHO, as onemight expect. The second row in
Fig. 2 illustrates the corresponding effect for amino acids, in this
case using Leucine (LEU) as an example. The greatest increase
in AUC arises from consuming meals with increasing amounts
of protein (a correlation coefficient r = 0.68), which suggests
that the postprandial levels of LEU are mostly affected by intake
of protein, aswe had hypothesized, and onlyminimally by intake
of CHO and fats (r= 0.21 and r= 0.24, respectively). The third
row of Fig. 2 illustrates the average AUC of triglycerides after
consuming meals with different amounts of macronutrients. In
this case, we note that the postprandial levels of triglycerides are
associated mainly with fat intake (r = 0.55), but also with the
amount of CHO (r= 0.28) and protein (r= 0.35). However, the
largest increase is seen for fats, which suggests that fat content
in a meal is the most important determinant of post-prandial
triglycerides, as we had also hypothesized. Finally, the fourth
row in Fig. 2 shows the average AUC for insulin as a function
of the macronutrients. The three macronutrients have a marked
effect, with CHO showing the strongest influence (as one might
also expect). Altogether, these results suggest that the four
biomarkers provide information that is complementary about the
amount of macronutrients in the meal, which provides support
for the main objective of this work.
Next, we analyze the shape of the post-prandial biomarker

response for different amounts of macronutrients. Fig. 3(a)
shows the LC-glucose response (averaged across subjects) for
meals with low, medium and high amount of CHO. We observe
that the corresponding increases in theAUC are largely due to an
increase in the time to return to baseline, but that the peak of the
response does not change significantly. Fig. 3(b) shows the aver-
age response for Leucine as the amount of protein is increased.
In contrast with LC-glucose, the corresponding increases in the
AUC are due to the combined effect of increases in the peak
of the response and in the time to return to baseline. Similar

results are obtained for triglycerides with respect to increases
in fat see Fig. 3(c), and for insulin with respect to increases
in CHO –see Fig. 3(d). Notice that the shape of the response
is markedly different for LC-glucose, Leucine and insulin, the
three of which show rapid increases in concentration shortly
after consumption of the meal, as compared to triglycerides, for
which the response is much slower. Thus, the shape of these
postprandial responses appears to provide critical information
that may help the prediction model (XGBoost) estimate the
amounts of macronutrients in the meal, which further justifies
our use of the gAUC features.

B. Quantifying the Performance of Individual Biomarkers

In the next experiment, we evaluate the ability of individual
biomarkers to predict each one of the three macronutrients. For
this purpose, we built a separate XGBoost model using gAUC
features from each individual biomarker as the only inputs,
and then examined the NRMSE of the predictions. Results
for CHO are shown in Fig. 4(a), where biomarkers have been
arranged by increasing order of NRMSE. The most predictive
biomarker is insulin, with an NRMSE of 23.5%. This is an
expected result, since insulin is released by the pancreas in
response to glucose levels increasing in the bloodstream for
normal subjects. The next three biomarkers in the list are the
three independentmeasures of glucose in the study (LC-glucose,
CGM and finger stick). Of interest, we observe a sharp increase
in NRMSE between insulin and the three glucose measures,
one of which (CGM-glucose) was the biomarker used in our
original studies [8], [9], but the difference is not statistically
significant (t(18) = 1.49, p = 0.076). Additional increases in
NRMSE as we move towards the least informative biomarkers
appear marginal, but overall there is a significant difference in
performance between the most predictive biomarker (insulin;
23.5%) and the least predictive one (GLY; 47.3%; t(18) =
7.15, p < 0.001).
Results for the prediction of protein are shown in Fig. 4(b).

The most predictive biomarker is LYS, with an NRMSE of
23.6%. We observe a significant increase in NRMSE for the
amino acids PRO and ASN. Inspection of the amino acid con-
tent of the whey protein used in the study (data not shown)
indicates that the majority of the amino acids before these
sharp increases are those that appear at higher concentrations
in whey protein (e.g., LYS, LEU, TYR), or are combinations
of multiple amino acids (e.g., EAA, BCAA, SUMAA), which
explains the result. Comparison between the best biomarker for
protein (LYS; 23.6%) and CGM-glucose (46.4%) the biomarker
used in our previous studies [8], [9], shows a statistically signif-
icant improvement in the prediction of protein (t(18) = 4.29,
p < 0.001).
Results for the prediction of fat are shown in Fig. 4(c). As

onemight expect, themost predictive biomarker is triglycerides,
with an NRMSE of 35.2%. In contrast with CHO and protein,
however, we do not observe an elbow in the distribution of
NRMSEs across biomarkers, but a graded response. Further,
unlike in the case of protein, the most predictive biomarker
(triglycerides) is only slightly more predictive of fat content in
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Fig. 4. Prediction performance of an XGBoost model trained to predict
the amount of (a) CHO, (b) protein, and (c) fat in the meal from each indi-
vidual biomarker. Highlighted in black and white stripes is CGM-glucose,
the biomarker used in our original studies [8], [9], as a reference. Error
bars represent standard deviations.

themeal than the biomarker in our original study (CGM-glucose,
40.0%, t(18) = 0.94, p = 0.177).
Finally, we performed one-tailed t-tests between the best

performing biomarker and each of the remaining ones.The first
biomarkers forwhich there is a statistically significant difference
(p< 0.05)with respect to the best performing biomarker areLYS
for CHO, PRO for protein, and ASN for fat.

C. Identifying the Optimal Combination of Biomarkers

Next, we perform a study to identify which combinations of
individual biomarkers ismost predictive of themacronutrients in
themeal.Given the relatively large number of biomarkers (a total
of 33 in Table II), exhaustive evaluation of each possible combi-
nation is impractical (over 8 billion combinations). Further, the
limited dataset in our nutritional study also precludes us from

Fig. 5. Ranking all feature combinations of four biomarkers: glucose
(G), insulin (I), triglycerides (T) and amino acids (A) for the prediction of
(a) CHO, (b) protein, (c) fat, and (d) the combined prediction of the three
macronutrients.

building models with a high number of input features. For this
reason, we decide to pre-select the most important biomarkers
identified in the previous section: (1) insulin and (2) LC-glucose
for CHO, (3) Lysine for protein, and (4) LC-triglycerides for
fat. This allows us to perform exhaustive search (15 possible
combinations of biomarkers, or 24 − 1) on this reduced feature
set, which is computationally feasible and also avoids issues
associated with data sparsity.
Results for CHO are shown in Fig. 5(a), ranked from the

most predictive feature subset to the least predictive. The feature
subsets cluster into three distinct areas. The first eight subsets
correspond to all combinations that contain insulin as a feature.
The feature subset that only includes insulin is ranked in posi-
tion #5, but its performance is not statistically different from the
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other seven subsets, indicating that insulin is the only necessary
biomarker for prediction of CHO. The next four combinations
consist of all subsets that include glucose (but not insulin), and
we find that the difference in NRMSE between subset (_I_A)
and (G_TA) is not statistically significant (t(18) = 1.19, p =
0.124). The last three combinations are feature subsets that
do not include insulin or glucose. Notice that for these last 3
feature subsets there is a high degree of individual variability, as
indicated by the error bars.
Results for protein are shown in Fig. 5(b), again ranked from

most to least informative. We find two distinct clusters. The first
eight combinations represent subsets that include amino acids
as a feature. As shown in the figure, they all perform similarly,
suggesting that amino acids are the only biomarkers needed in
order to predict protein. Removing the amino acid from the
feature subset results in a statistically significant degradation
in prediction performance (t(18) = 2.77, p = 0.006).
Results for fat are shown in Fig. 5(c). In this case, we still find

an intuitive ordering of the feature subsets, but the clustering is
less prominent than in the case of CHO and protein. The first
eight combinations represent all subsets that contain triglyc-
erides, and the first four combinations contain triglycerides and
glucose. In contrast with the previous two cases, where a single
biomarker was sufficient (e.g., insulin for CHO, amino acids for
protein), in the case of fat, two biomarkers appear to be critical:
triglycerides and glucose.
In a final analysis, we evaluate the 15 feature subsets in terms

of the average NRMSE across the three macronutrients. Results
are shown in Fig. 5(d). As with fats, there is no clustering
of feature subsets, though the subsets are ordered such that
the first eight combinations are those containing amino acids.
We also find that the optimal subset is the one containing the
four types of biomarkers: glucose, insulin, amino acids and
triglycerides, with an average NRMSE of 26.7% across the three
macronutrients. It is interesting to note that removing insulin
from the subset (#2 combination) does not result in a statisti-
cally significant increase in NRMSE (t(18) = 0.63, p = 0.267).
This finding can have practical implications since insulin is a
relatively large molecule that may be more difficult to detect
in interstitial fluid a likely target of implantable or indwelling
biosensors for nutritionmonitoring [16]. Finally, we find that the
optimum subset (GITA; 26.7%) is significantly more predictive
than the biomarker in our original study (CGM-glucose; 38.5%;
t(18) = 5.45, p < 0.001).

D. Understanding the Prediction Models

Next, we examine whether it is possible to identify particular
regions in the biomarker postprandial response that are used
preferentially by the prediction model. To answer this question,
we use one measure of feature importance returned by XGBoost
that represents the average gain (in information) of splits in
the decision trees that use each feature. Namely, we trained
XGBoost models for each macronutrient that used the four
types of biomarkers as inputs (glucose, insulin, amino acid,
triglycerides), and then generated an importance profile for each

Fig. 6. Importance profile of the post-prandial response of each
biomarker for predicting macronutrients.

biomarker as:

i(t) =
K∑

k=1

Gk
1√
2πσk

exp
(t− Tk)

2

2σ2
k

(7)

where Tk and σk are the mean (i.e., time location) and variance
(i.e., spread) of the k-th Gaussian kernel (see Fig. 1), K is the
number of Gaussian kernels used (8 for each biomarker, 32 in
total), and Gk is the gain returned by XGBoost for the k-th
input feature. Results are shown in Fig. 6. The first row shows
that the carbohydrate model relies primarily on a narrow time
window (centered at 6 hours after meal intake) in the insulin
postprandial response, with only a minor contribution from a
broader region (centered on 4 hours after meal intake) in the
glucose postprandial response. This result agrees with those
reported in Section IV-C, which showed that the best feature
subsets are those that contain insulin, and that the combination of
glucose and insulinwas optimal, though only by a narrowmargin
(see Fig. 5(a)). The second row in Fig. 6 indicates that the protein
model relies primarily on the amino acid postprandial response,
but in this case on a broad time window between 3-7 hours
after meal intake. Again, this overall result is consistent with
Section IV-C, which showed that the best feature combinations
were those that contained amino acids. Finally, the third row in
Fig. 6 shows that the fat model mainly uses information from the
triglyceride postprandial response, in this case around 4 hours
aftermeal intake. As before, this result is consistent with those in
Section IV-C, which showed that the best feature combinations
are those that contain triglycerides. It is also interesting to note
that the peak in the importance profile is closely aligned with
the peak of the triglyceride postprandial response in Fig. 3,
something that does not occur for the other three biomarkers.

E. Analyzing Prediction Errors

In a final step,we analyzed the distribution of prediction errors
for each meal across participants. Results are shown in Fig. 7.
For each macronutrient, and for ease of interpretation, meals
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Fig. 7. Distribution of prediction errors across meals for all partici-
pants. For each macronutrient, meals (top to bottom) and participants
(left to right) were ordered by increasing order of NRMSE. Colorbar on
top shows NRMSE scale.

(top to bottom) and subjects (left to right) have been sorted
by increasing order of the corresponding NRMSE. Thus, the
bottom right corner of each heatmap tends to have higher errors.
To analyze these results, we performed 2-way ANOVA on the
carbohydrate NRMSE, with meal and gender as independent
factors. We find a marginally significant effect for meal type
(F (8, 72) = 2.06, p = 0.051), indicating that the prediction er-
rors vary across meals, and a significant interaction between
the two factors (F (8, 72) = 2.96, p = 0.006), indicating that the
errors are not uniformly distributed across participants. Repeat-
ing the analysis on protein NRMSE yields a significant effect
for gender (F (1, 72) = 4.71, p = 0.033),), indicating that the
average errorwas higher for females (0.24) than formales (0.16),
and meal type (F (8, 72) = 3.19, p = 0.004), but no interaction.
Finally, the same analysis on fat NRMSE yields a significant
effect for meal type (F (8, 72) = 2.66, p = 0.013) and a signif-
icant interaction (F (8, 72) = 2.72, p = 0.011).

V. DISCUSSION

In prior work [8], [9], we had shown that CGMs can be
used to monitor diet by analyzing the shape of the postprandial
glucose response, which depends not only on the amount of
CHO in a meal but also on the protein and fat content. In the
present study, we sought to determine if other blood biomarkers,
namely amino acids, insulin and triglycerides, could provide
additional information to the prediction model. Results from
four types of analysis consistently show that they do, and that
the information provided by the four biomarkers is largely
complementary.
In a first analysis (Section IV-A), we showed that increasing

the macronutrients in a meal leads to measurable changes in the
concentration of the four types of biomarkers post-prandially:
addingCHO increases glucose and insulin concentration rapidly,
adding protein increases amino acids (also rapidly), and adding
fat increases triglycerides, though at a slower rate. In a second
analysis (Section IV-B), we compared biomarkers individually
by their ability to predict the three macronutrients. For CHO,
we find that insulin is the most predictive biomarker, followed
by the three independent measures of glucose in our study. In
the case of protein, we find that the most informative amino
acids are those that appear at higher concentration in the protein
source used in our dietary study. This could be viewed as
problematic, since different protein sources have different amino

acid content. Fortunately, we find that overall measures of amino
acid content that are likely to generalize across a variety of
protein sources, such as Branched Chain Amino Acids (BCAA)
and Essential Amino Acids (EAA) also perform well, as shown
in Fig. 4(b). Finally, in the case of fat, we find that the most
informative biomarker is triglyceride. In a third analysis (IV-C),
we preselected the four key biomarkers identified in the previous
analysis, and performed an exhaustive search for the optimal
combination of biomarkers for each macronutrient. Results re-
inforce with the earlier two analyses, showing that insulin (and
glucose to a lesser extent) is themost critical biomarker for CHO
prediction, amino acid for protein prediction, and triglycerides
for fat prediction. In a fourth analysis (Section IV-D), we sought
to determine if there are specific regions in the postprandial
response of each biomarker that are important for prediction.
We find that the prediction models use a relatively narrow time
window in the latter part of the postprandial glucose response
to predict CHO, a very broad analysis window in the postpran-
dial amino acid response to predict protein, and also a broad
region halfway through the postprandial triglyceride response
to predict fat. While it could be argued that these four sets of
analysis are somewhat redundant, we view the overwhelming
agreement between them as evidence of the robustness of our
results.
We performed three types of statistical analyses to derive

these conclusions. First, we used pairwise t-tests to compare the
performance of models that employed different biomarkers as
inputs. Second,we usedPearson’s correlation to test the relation-
ship between macronutrients amounts and the area-under-the-
curve for various biomarkers. Finally, we used 2-way ANOVA
to analyze the distribution of prediction errors across participants
and meals.
While our results are promising, it is important to highlight

the limitations of this work. First, participants were asked to
consume liquid meals with single-source macronutrients (mal-
todextrin, whey protein and sunflower oil), so our findings
must be validated when participants consume solid meals with
a more complex mixture of macronutrients that may lead to
different digestion patterns and thus postprandial responses.
Second, participants were asked to rest for 8 hours following
consumption of the meal, whereas in practical settings par-
ticipants will likely engage in some form of physical activity
following meal intake (e.g., walking), which is known to affect
postprandial glucose [36]. A further limitation in the study is that
the machine-learning model uses an 8-hour prediction window
during which it is assumed that no other meal is consumed. To
address these issues, in a forthcoming study we will have partic-
ipants (n=100) consume not only liquid meals (as in the study
reported here) but also complex meals in free-living conditions.
This will allow us to examine the extent to which models trained
on liquid meals generalize to solid meals, and also account for
post-prandial physical activity. Further, while the forthcoming
study will still impose an eating restriction following each meal,
this restriction will be limited to a more realistic 3 hours rather
than the 8 hours used here. This will allow us to examine the
compounding effects of multiple meals taken within a short
period.
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A. Future Work

Additional features may be extracted from postprandial re-
sponses, including features derived from the time derivative,
time to peak concentration, number of local peaks, and other
local variations. This would likely require using a smoothing
filter prior to feature extraction, since postprandial responses
tend to be rather noisy, particularly for CGMs. Future anal-
yses will also examine whether limiting feature extraction to
the early part of the postprandial response (e.g., 2–3 hours
after food intake) would affect prediction performance. The
average postprandial responses in Fig. 3 suggest that sufficient
discriminatory information is contained in the first 2-3 hours,
so predicting macronutrients based on this information seems
plausible. Additional machine-learning models could also be
used for macronutrient prediction. As an example, recurrent
neural networks such as Long Short-Term Memories (LSTMs)
may be used to process the raw postprandial responses directly,
avoiding the need to perform feature extraction and any potential
loss of information in the process. Finally, data augmentation
techniques could be used to generate synthetic data to train
the macronutrient prediction models. As an example, a recent
study [37] used Generative Adversarial Networks (GANs) to
synthesize realistic CGM daily patterns conditioned on HbA1c
levels. A similar GAN approach could be used to synthesize
postprandial responses conditioned on the amount of macronu-
trients, and other information such as participants’ gender, age,
body mass index or gut microbiota.

VI. CONCLUSION

In this paper, we evaluated a number of dietary biomark-
ers (amino acids, triglycerides, insulin) by their ability to im-
prove the prediction of meal macronutrients, when compared to
using glucose measurements from CGMs. Our results show that
adding measurements of amino acid and triglyceride concen-
trations lead to significant improvements in the prediction of
protein and fat, respectively. This support the idea of augment-
ing current CGM systems to measure these additional dietary
biomarkers, as a step towards the development of automated
methods for monitoring food intake.
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