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Abstract

We report upper limits on the Epoch of Reionization 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights
of data (∼36 hr of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I
data show evidence for systematics that can be largely suppressed with systematic models down to a dynamic
range of ∼109 with respect to the peak foreground power. This yields a 95% confidence upper limit on the 21 cm
power spectrum of D 30.76 mK21

2 2 2( ) at k= 0.192 h Mpc−1 at z= 7.9, and also D 95.74 mK21
2 2 2( ) at

k= 0.256 h Mpc−1 at z= 10.4. At z= 7.9, these limits are the most sensitive to date by over an order of
magnitude. While we find evidence for residual systematics at low line-of-sight Fourier k∥ modes, at high k∥ modes
we find our data to be largely consistent with thermal noise, an indicator that the system could benefit from deeper
integrations. The observed systematics could be due to radio frequency interference, cable subreflections, or
residual instrumental cross-coupling, and warrant further study. This analysis emphasizes algorithms that have
minimal inherent signal loss, although we do perform a careful accounting in a companion paper of the small forms
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of loss or bias associated with the pipeline. Overall, these results are a promising first step in the development of a
tuned, instrument-specific analysis pipeline for HERA, particularly as Phase II construction is completed en route
to reaching the full sensitivity of the experiment.

Unified Astronomy Thesaurus concepts: Reionization (1383); Cosmology (343); Astronomy data analysis (1858)

1. Introduction

The 21 cm line of neutral hydrogen has emerged in the past few
decades as a theoretically powerful probe of cosmology and
astrophysics by tracing the growth of structure across cosmic time
(Hogan & Rees 1979; Madau et al. 1997). At high redshift
(z> 6), the 21 cm line is a tomographic probe of the intergalactic
medium (IGM) and allows us to directly trace its ionization,
density, and temperature state. This is particularly important for
understanding the Cosmic Dawn and the subsequent Epoch of
Reionization (EoR), when radiative feedback from the first
generation of stars and galaxies heated and ionized the IGM over
the course of baryonic structure growth at redshifts 40< z< 6.
Understanding these two milestones will give us a much better
understanding of the formation of the first luminous sources, their
environments, and the growth of large-scale structure.

Our current understanding of the timing of the EoR is largely
based on measuring the absorption and scattering of the IGM
against background sources. These can be either (i) astro-
physical sources, such as galaxies and quasars whose Lyman
series transmission is sensitive to the ionization state of the
IGM; or (ii) the Cosmic Microwave Background (CMB),
whose fluctuations are sensitive to the integrated column
density of free electrons. Recent analyses of both (i) and (ii)
point toward an EoR that is evolving rapidly between
5.5< z< 7. In particular, IGM damping wing absorption in
QSO spectra (e.g., Mesinger & Haiman 2004; Bolton et al.
2011; Greig et al. 2017; Davies et al. 2018) and the rapid
decline of Lyα emitting galaxies (e.g., Stark et al. 2010;
Schenker et al. 2012; Jensen et al. 2013; Caruana et al. 2014;
Pentericci et al. 2014; Mesinger et al. 2015; Mason et al.
2018, 2019) suggest that the EoR is ongoing at z∼ 7, albeit
with significant systematic uncertainties. The Lyα forest at
z∼ 6 suggests that reionization has mostly completed by then
(McGreer et al. 2015). However, the sizable sightline-to-
sightline scatter in the forest transmission (Becker et al. 2015;
Bosman et al. 2018) seems to require the final, overlap stages
of the EoR to extend down to z∼ 5.5 (Kulkarni et al. 2019;
Keating et al. 2020; Choudhury et al. 2021; Qin et al. 2021).
This is broadly consistent with the CMB constraints on the
electron scattering optical depth (Planck Collaboration 2020)
that supports a relatively late EoR with a midpoint around z∼ 7
(e.g., Douspis et al. 2015; Mitra et al. 2015; Greig &
Mesinger 2017; Millea & Bouchet 2018; Qin et al. 2020b),
and it is also consistent with the high-z galaxy luminosity
functions, given reasonable assumptions about their properties
(Robertson et al. 2015; Price et al. 2016; Gorce et al. 2018;
Hazra et al. 2020; Park et al. 2019; Qin et al. 2020a). However,
much remains to be understood about the EoR, such as when it
began, the properties of the astrophysical sources that drove it,
and what impact it had on future generations of star-forming
galaxies. Meanwhile, considerably less is understood about the
Cosmic Dawn, including when the first Population III stars
formed, what their physical and spectral properties were, what
their impact was in heating and enriching the IGM, and how
this ultimately enabled the emergence of Population II stars and
modern galaxies as we understand them.

Low-frequency radio experiments are aiming to directly
measure the high redshift 21 cm signal and in doing so place
constraints on the timing and duration of the EoR to understand
the underlying physical processes driving the heating and
reionization of the IGM (for reviews, see Ciardi & Ferrara 2005;
Furlanetto et al. 2006; Morales & Wyithe 2010; Pritchard &
Loeb 2012; Mesinger 2016; Liu & Shaw 2020). Prior and
ongoing interferometric experiments include the Donald C.
Backer Precision Array for Probing the Epoch of Reionization
(PAPER; Parsons et al. 2010; Cheng et al. 2018; Kolopanis
et al. 2019), the Murchison Widefield Array (MWA; Tingay
et al. 2013; Dillon et al. 2014, 2015; Beardsley et al. 2016;
Ewall-Wice et al. 2016b; Li et al. 2019; Barry et al. 2019b;
Trott et al. 2020), the Low Frequency Array (LOFAR; van
Haarlem et al. 2013; Patil et al. 2017; Gehlot et al. 2019;
Mertens et al. 2020), the Giant Metre Wave Radio Telescope
(GMRT; Paciga et al. 2013), and the Long Wavelength Array
(Eastwood et al. 2019), which have put increasingly stringent
constraints on the power spectrum over the past decade. At the
same time, total-power measurements of the sky-averaged
signal (or global signal) have similarly put upper limits on the
monopole component of the 21 cm signal (Bernardi et al. 2016;
Monsalve et al. 2017; Singh et al. 2017), with a tentative first-
detection of the 21 cm global signal at z≈ 17 from the
Experiment to Detect the Global EoR Signature (Bowman et al.
2018), with a robust discussion of whether this signature may
be due to instrumental systematics (Hills et al. 2018; Bradley
et al. 2019; Singh & Subrahmanyan 2019; Sims & Pober 2020;
Mahesh et al. 2021).
The 21 cm power spectrum at the EoR and Cosmic Dawn

contains a wealth of statistical information that can be used as
both a cosmological and astrophysical probe (Mao et al. 2008;
Patil et al. 2014; Pober et al. 2014; Liu & Parsons 2016; Greig
et al. 2016; Ewall-Wice et al. 2016c; Kern et al. 2017). While
radio interferometric experiments have indeed made substantial
progress over the past decade, a first power spectrum detection
has yet to be made. As second-generation 21 cm experiments
are designed and built, such as the Hydrogen Epoch of
Reionization Array (HERA; DeBoer et al. 2017) and the
Square Kilometre Array (SKA; Koopmans et al. 2015), the
understanding and control of instrumental systematics will be
the crucial factor in enabling their ultimate success in making a
first robust detection of the 21 cm power spectrum.
HERA is an interferometric array of fixed, zenith pointing

dishes located in the Karoo desert, South Africa. The dishes are
14 meters in diameter and packed hexagonally into a nearly
continuously covered core 300 m across. The array is being
built in a series of phases with simultaneous construction and
observing. Phase I used the feeds and correlator from the
PAPER experiment (Thyagarajan et al. 2016; Ewall-Wice et al.
2016a; Patra et al. 2018; Fagnoni et al. 2021a), while Phase II
will use a new feed as well as analog and digital systems
(Fagnoni et al. 2021b). The data reported here come from the
second internal data release (IDR2) taken from the first Phase I
observing season, which commenced with roughly 50
antennas.

2
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A series of recent papers describe the Phase I analysis
pipeline in detail, which includes redundant calibration (Dillon
et al. 2020), absolute calibration (Kern et al. 2020a), systematic
modeling (Kern et al. 2019, 2020b), power spectrum estimation
and error propagation (Tan et al. 2021), and pipeline validation
(Aguirre et al. 2022). Complementary studies on the data set
discussed in this work also include foreground modeling
(Ghosh et al. 2020), imaging (Carilli et al. 2018), power
spectrum analysis of the bispectrum phase (Thyagarajan et al.
2020), antenna primary beam characterization (Nunhokee et al.
2017), and electromagnetic modeling of the front-end signal
chain (Fagnoni et al. 2021a). Here, we give an overview of the
full analysis pipeline, discuss the criteria used for data
selection, present the power spectrum limits, and describe
statistical tests used to characterize the performance of the
system and our analysis techniques.

In this paper, we report the first upper limits on the 21 cm
power spectrum from HERA Phase I at redshifts 7.9 and 10.4
with 18 nights of observations. These observations were made
with only a fraction of the array built (∼50 out of 350
antennas), as it was under active construction at the time. Our
analysis shows that the data are largely consistent with the
expected thermal noise level at large line-of-sight Fourier k
modes, achieving a dynamic range with respect to the peak
foreground emission of 109 in power. However, at low Fourier
k modes we see evidence for residual, low-level systematics
that begin to exceed the thermal noise. Nonetheless, the limits
presented here are to date the most sensitive at z∼ 8 by over an
order of magnitude. A companion astrophysical interpretation
paper shows that, under standard galaxy astrophysics, these
limits disfavor cold reionization scenarios, where the IGM
temperature is not substantially heated above its adiabatically
cooled limit (HERA Collaboration 2021, in preparation).

The paper is organized as follows. In Section 2 we give a
summary of the instrument and the observations analyzed in
this work. In Section 3 we discuss the data reduction pipeline.
In Section 4 we discuss our power spectrum estimation pipeline
and present our integrated power spectrum limits. In Section 5
we discuss a suite of statistical tests used to assess the quality
and stability of the final data products. Finally, in Section 6 we
summarize our results.

2. Observations

Here, we discuss the observational parameters used for this
analysis, as well as the state of the HERA instrument when
these observations were made. As noted, the data discussed in
this work were taken with the Phase I instrument, which was a
hybrid HERA/PAPER system. Phase I re-purposed the radio
frequency (RF) signal chains and correlator from PAPER and
attached them to new HERA dishes. The antenna consists of a
14 meter dish with a cross-dipole feed at its focal point
measuring two linear polarizations (DeBoer et al. 2017). At
150MHz the beam has a full width at half maximum (FWHM)
of ∼10° (Fagnoni et al. 2021a). Not all PAPER front ends
could be salvaged and as a stopgap new signal chain
components—feed baluns and post-amplifiers—were manufac-
tured to be backward compatible with the 75Ω cables carried
over from PAPER.

Kern et al. (2020b) characterized the performance of the new
and old signal chains for the Phase I system, finding spectral
structure across a range of delays that cover the EoR window,
which they attribute partially to cable reflections. They also

present methods for modeling and suppressing these systema-
tics in the data. Fagnoni et al. (2021a) also performed
electromagnetic simulations of the Phase I signal chains,
finding a broad range of structure induced by both instrument
cross-coupling and cable reflections, as well as dish reflections.
The HERA Phase I correlator, re-used from the PAPER

experiment, employs an FX architecture, which was housed in
a radio frequency interference (RFI)−shielded container in the
field. In the F-engine, analog-to-digital units on a ROACH2
board (Parsons & Backer 2009) digitize each antenna’s linear
polarization voltage stream, which are then fed to a field
programmable gate array (FGPA) that Fourier transforms the
signal into voltage spectra with a 100 MHz bandwidth from
100–200MHz. This is done across 1024 channels, leading to a
spectral resolution of 97.66 kHz. The spectra are then sent to a
Graphics Processing Unit−based X engine that correlates all N
(N–1)/2 cross antenna-polarization pairs and all N auto
antenna-polarization pairs, where N is the number of feeds.
The correlator then integrates the data for 10.7 s before writing
them to disk. Finally, the data are chunked into 10 minute files
and sent to the on-site Karoo Array Processing Center for
storage, and eventually transported to the National Radio
Astronomy Observatory Array Operations Center in New
Mexico, USA, via internet connection. Other observational
parameters are summarized in Table 1.
The HERA Phase I observing season ran from 2017 October

to 2018 April while the array was under active construction.
Observations were taken throughout the South African summer
at night when the Galactic center and Sun are below the
horizon, while active construction and commissioning pro-
ceeded during the day. A major focus of development was
building an online data quality assessment pipeline that
reported on radio interference, calibration quality, and other
metrics. These metrics, some of which we discuss in the next
section, were used to select a subset of data taken during a
relatively stable epoch in the observing season when construc-
tion activities were at a minimum and data quality was
consistently high. This resulted in an 18 day data set that is the
basis of this work, referred to as the second internal data release
(IDR2). These observations spanned 2017 December 10–28,
(Julian dates 2,458,098–2,458,116). For each of these days,
observations were made for 12 hr per night, of which roughly

Table 1
HERA Phase I Array and Correlator Parameters

Array Parameters
Array coordinates (Lat, Lon) −30°. 7 S, 21°. 4E
Total antenna number 52
Unflagged antenna number 39
Min. baseline length 14.6 meters
Max. baseline length 140 meters
Dish diameter 14 meters

Correlator Parameters
Min. frequency 100 MHz
Max. frequency 200 MHz
Number of channels 1024
Channel width 97.66 kHz
Integration time 10.7 sec
Nighttime recording duration 12 hr
Total data duration 18 nights
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10 hr were used for science data when the Sun was below the
horizon.

Together, these observations span a local sidereal time (LST)
of 0 to 12 hr (Figure 1), which overlaps with a radio cold patch
at 4 hr LST, as well as the Galactic plane at 8 hr LST for
HERA’s latitude of −30°.7 South. In total, this work considers
an 18 night data set (for a total of 180 hr), however, as
discussed in Section 3, after additional rounds of data cuts we
are left with three fields, each with ∼36 hr of integration for
power spectrum analysis. The area of the sky observed in the
IDR2 data set is highlighted in Figure 1, which shows the
diffuse foreground emission from the Galaxy and also identifies
the three main fields used for power spectrum analysis (colored
boxes). The edges of the data set are not included due to
reduced sensitivity of the nightly averaged data products
caused by LST drift of the observations from night to night.

At the time of observations, the array had 52 fully deployed
antennas arranged in a close-packed fashion, which constitutes
only a fraction of the full 350 that will eventually be built, and
corresponds to a corner of the full array (Figure 2). However, as
we will discuss next, only 39 of these antennas were deemed
science quality and were used for data analysis.

3. Data Reduction

Our analysis pipeline is summarized in Figure 3, which
highlights the data reduction pipeline (green), the power
spectrum pipeline (red), the data products that are input to
and output by the pipeline (blue), and the steps that are tested in
the companion validation analysis (dashed; Aguirre et al.
2022). Here, we will focus only detailing the data reduction
pipeline, which we do in order of their appearance in the
pipeline. The primary role of the reduction pipeline is to
identify and flag faulty data, solve for the complex gain
solutions imparted by the instrument and invert them, average
the visibilities coherently across nights, and treat the data for
known systematics. Note that, unlike other works, we do not
perform any explicit foreground subtraction or filtering in this
analysis, although future work may benefit from such
techniques (e.g., Ewall-Wice et al. 2021).

Note that all of the important analysis packages can be found
in the publicly accessible HERA-Team26 software repository,
including the hera_cal, hera_pspec, hera_qm, and
hera_opm packages used extensively in this analysis.

3.1. Antenna Metrics

Raw data from the correlator are first sent through an antenna
metrics stage where faulty antennas are identified and flagged.
This is an important pre-calibration step to prevent obviously
malfunctioning antennas from adversely affecting the calibra-
tion solutions. Metrics are calculated on every 10 minute file
for each of the dual-polarization feeds of every antenna, which
gives us a sense for how antennas and their linear polarization
feeds are behaving throughout any given night.
While a few different metrics were trialed, one metric was

found to be the most useful and was the primary metric used to
flag faulty antennas. This metric was the mean visibility
amplitude for each antenna, which we define for a given
antenna i as

n
=

å

-
n¹

M
V t

N

,

1
, 1i

j i t ij, , ∣ ( )∣
( )

where Vij(ν, t) is the visibility between antennas i and j at
frequency ν and time t, N is the number of antennas in the
array, and the sum is taken over all antennas j≠ i, times, and
frequencies in the observation. For notational brevity, we will
drop the explicit frequency and time dependence of Vij. This
metric measures when an approximate estimate of the antenna
gain is low compared to most other antennas, which can occur,
for example, when the signal chain is not connected to the feed
or a gain stage has lost power. It was also used to help
determine when an antenna was cross-polarized, or when its

Figure 1. The Global Sky Model at 150 MHz (de Oliveira-Costa et al. 2008)
showing the dominant diffuse foregrounds from the Galaxy. Being a non-
tracking, zenith pointed array, HERA’s field of view is centered at δ = −30°. 7
and in theory spans a full 360° range in R.A. With a primary beam FWHM of
∼10° (at 150 MHz), HERA’s sensitivity is primarily focused on a narrow strip
of sky. The data reported here span a range of right ascensions from 0 to 12 hr
(IDR2), although only three specific fields (colored boxes) largely devoid of
bright foregrounds are used for power spectrum estimation.

Figure 2. The HERA Phase I array layout. Antennas flagged by the antenna
metrics stage are shown in blue, while those flagged during calibration are
shown in red, leaving a total of 39 unflagged antennas. For details on this
process, see Dillon et al. (2020).

26 https://github.com/hera-team
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east and west polarization signal chains were accidentally
interchanged in the cable connections downstream.

Because the metric is computed before calibration, and thus
uses raw data, we cannot make an absolute cut based on the
expected noise level of the visibilities in Janskys. Instead, we
estimate the standard deviation of the metric across antennas
and compute a Z-score, which is defined as the deviation of any
given point from its sample mean in units of the sample
standard deviation. To account for outliers, we use the more
robust, modified Z-score, defined as

s
=

-
Z

x xmed
2i

imod
mad

( ) ( )

s = ´ -x x1.482 med med , 3mad ∣ ( )∣ ( )

where x is the mean visibility amplitude metric defined
above.27 The median absolute deviation (σmad) is a robust
estimator of the standard deviation but requires a correction
factor of 1.482 to reproduce the standard deviation in the case
of white Gaussian noise (Rousseeuw & Croux 1993).

It is generally clear from these metrics which antennas are
poorly behaving; nonetheless, we flag antennas that deviate
from the sample mean beyond a 5σ level. Antennas that were
repeatedly flagged by the antenna metrics stage for nights
throughout the data set are flagged outright for all nights. If
either of an antenna’s polarizations is thus flagged, we flag the
entire antenna (i.e., we flag both linear polarizations).

The faulty antennas caught at the antenna metrics stage are
really only the very worst offenders, shown in blue in Figure 2.
Other subnominal antennas are flagged subsequently in the
process of calibration, which we describe next.

3.2. Redundant Baseline Calibration

One of the foremost challenges for 21 cm cosmology is the
task of precision instrumental gain calibration. In general, the
measured visibility Vij

obs between antennas i and j is related to
the true, uncorrupted visibility Vij

true via a product of each
antenna’s gain, gi,

= +*V g g V n , 4ij i j ij ij
obs true ( )

where nij is the thermal noise in the measurement (Hamaker
et al. 1996; Smirnov 2011). Note that we solve Equation (4) for
both linear polarizations independently (EE and NN), which
are also implicitly a function of time and frequency. This
representation ignores intrafeed D terms as well as direction-
dependent gain calibration, which we do not solve for in this
analysis (a simulated primary beam model is used for sky-
based calibration discussed in Section 3.3).
HERA’s redundant array configuration opens the possibility

of calibrating the relative gains of antennas using internal
degrees of freedom among measurements of groups of
redundant baselines (Dillon & Parsons 2016). Redundant
baseline calibration uses the principle that every redundant
baseline should measure the same visibility; in practice, they do
not due to antenna-based gain terms, which allows one to
constrain the relative gain of each antenna (Wieringa 1992; Liu
et al. 2010). Specifically, redundant baseline calibration seeks
to minimize a χ2 written as

åc
s

=
-

<

-*V g g V
, 5

i j

ij i j i j

ij

2

obs sol 2

2

∣ ∣
( )

where -Vi j
sol is the visibility solution for the redundant baseline

type with the same vector separation as Vij. The key distinction
in redundant baseline calibration highlighted here is that the
visibility solutions are left as free parameters to be solved for in
the process of calibration along with gi and gj. For highly

Figure 3. A diagram of the data reduction and power spectrum estimation pipelines, starting with raw HERA data and ending with the averaged power spectrum and
its associated null tests. The blue boxes represent data products, while the green and red boxes represent steps in the data reduction and power spectrum pipelines,
respectively. Boxes with dashed borders represent elements tested by the validation pipeline (Aguirre et al. 2022). Noise simulations are generated after the data
reduction pipeline and fed through the power spectrum pipeline for diagnostic purposes when evaluating null tests.

27 Using the modified Z-score still relies on the majority of the array being
healthy in order to detect outlier antennas. When this is not true, for example
during correlator errors or partial power outage, it is very obvious from visual
inspection of the data products.
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redundant configurations like HERA, this leads to an over-
constrained system of equations that can be solved to yield
estimates of the gains in addition to the model visibilities.

Due to inherent degeneracies in the system of equations,
redundant baseline calibration cannot solve for the overall
amplitude and directional phasing (the “Tip-Tilt” phasor) of the
antenna-based gains (Liu et al. 2010; Zheng et al. 2014; Dillon
et al. 2018; Li et al. 2018; Byrne et al. 2019). Consequently,
these must be solved for independently and added to the
redundant calibration gains, commonly referred to as absolute
calibration.

A complete description of the redundant baseline calibration
of HERA appears in Dillon et al. (2020), including a
quantitative assessment of the redundancy of HERA via, e.g.,
the deviation of χ2 for the expected value in a perfectly
redundant array. For more detail on the series of algorithms
with which we minimize χ2 (Equation (5)), see Dillon et al.
(2020). Furthermore, the subsequent process of solving for the
degenerate modes (i.e., absolute calibration) is described in
Kern et al. (2020a).

In Figure 4 we show the results of redundant baseline χ2

minimization for different nights in our analysis.
Our results show clear evidence for nonredundancy in excess

of the thermal noise at the ∼20% level in the visibility. Dillon
et al. (2020) attributes much of this excess to small deviations
in the placement of dishes and to minor antenna-to-antenna
variation of the primary beam. Some of it is also likely
attributable to baseline-dependent systematics (Kern et al.
2020b) that break the assumption in Equation (4). As discussed
in Dillon et al. (2020), the statistic is not consistent with one,
meaning there are extra sources of variance in the data beyond
noise that cannot be constrained by antenna-based calibration.
We assess the effect of nonredundancy on our final power
spectrum limits in Section 3.11.

3.3. Absolute Calibration

To finish calibration, we need to solve for the degeneracies
of redundant baseline calibration by referencing to the sky. One
way to do this is to compare a model of the true visibilities to
redundantly calibrated visibilities and varying the degenerate
parameters to make the two match. In this work, we use a series
of previously calibrated visibilities over the full LST range as
our set of reference (or model) visibilities that we use to extract
the degenerate components of the calibration gains.
We build our reference visibilities following the sky-based

calibration methodology described in Kern et al. (2020a),
which uses the Common Astronomy Software Applications
(CASA; McMullin et al. 2007) software to construct visibility
models at specific fields where we expect to be able to model
the dominant contributions of the flux on intermediate and long
baselines. Specifically, we select three fields transiting our field
of view (FoV) at 2.0, 5.2, and 14.4 hr LST. These fields are
chosen to have minimal diffuse foregrounds within the FoV,
and have a bright point source from the MWA GLEAM catalog
(Hurley-Walker et al. 2017) near the field’s zenith pointing,
which is used to confirm the absolute flux density scale of the
calibrated data.
For each of the three fields we pick a different night in the

Phase I observing season, selected such that the field transits
roughly halfway through the nighttime observations. We then
select out five minutes of observations centered at the field transit,
average the data and perform calibration using standard CASA
routines (e.g., gaincal and bandpass). These gains are then
transferred to every integration for that observing night, leaving us
with three nights of calibrated visibilities, each of which span a
slightly different range of LSTs. Drift in the gain amplitude
throughout the nighttime observation is not corrected for, but is
expected to be at the ∼3% level (Kern et al. 2020a).
Finally, these three sets of visibilities are averaged onto a

common LST grid spanning nearly 20 hr of LST, which yields
our full set of reference (or model) visibilities that we use for
absolute calibration. After averaging, the visibilities are passed
through a Fourier low-pass filter across frequency, which filters
out all signals with delays beyond the baseline horizon delay
plus an additional 50 nanoseconds. This suppresses noise in
high delay structure that is not associated with foregrounds, and
also fills in flagged frequency channels with a best guess of the
foreground structure using a delay-domain deconvolution
(similar to the inpainting algorithm described later; Parsons
& Backer 2009; Kern et al. 2020a).
Figure 5 shows CLEANed, multifrequency synthesis images

(across 135–165 MHz) of the three fields we use for
constructing the reference visibilities, demonstrating the
point-source distribution in each field. It also shows the Julian
date of the night used to calibrated each field as well as the
range in LSTs of each of the nights (green, orange, and blue
bars). Stacking these visibilities onto a common LST grid gives
us our final “Full Model” (purple bar) that we use in
performing absolute calibration of the nightly data in the
Phase I data set considered here. It should be noted that the
gains solved for are inherently direction-independent gains,
with no cross-feed D terms.

3.4. Radio Frequency Interference Flagging

The Karoo Astronomy Reserve is an RFI quiet zone, and as
such much of the frequency band between 120 to 180 MHz is

Figure 4. Redundant calibration attempts to minimize χ2, defined in
Equation (5), using a model that assumes that redundant baselines observe
the same true visibilities up to their antenna-dependent gains and the thermal
noise. Were this true, we expect that χ2 normalized by the number of degrees
of freedom (DoF) in the model (approximately 520 in this analysis, see Dillon
et al. (2020) for a precise quantification) would have a mean of one and follow
a χ2 distribution. Here, we show the distribution of χ2/DoF over polarizations
and unflagged (see Section 3.4) times and channels for different nights in our
analysis. While consistent from night to night, the overall mean of 1.389 is
clearly inconsistent with one, indicating persistent nonredundancy at levels
roughly 20% in excess of the thermal noise. Figure reproduced from Dillon
et al. (2020) with permission.
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relatively clean of interference. Nonetheless, we still see
narrowband RFI due to satellite and terrestrial transmitters, as
well as rare occurrences of wideband RFI above 180 MHz. Our
RFI detection algorithm relies on the detection of local outliers,
using the distribution of surrounding data points in time and
frequency to distinguish RFI from thermal noise fluctuations.
Our pipeline uses a number of data products to identify not just
interference but also general problems with the array, such as
correlator malfunctions. As its input it takes raw HERA data,
the gain solutions from redundant baseline calibration and the
redundant visibility solutions, its χ2 distributions, the absolute
calibration gains, and their χ2 distributions.

For each data product (except the raw visibilities) a
corresponding modified Z-score metric is computed, Zmod ,
which is formed by median-subtracting the data product with a
median filter and then normalizing it by an empirical estimate
of its noise. Performing the median filter across frequency and
time helps to identify occasional sources of wideband RFI from
broadcast television that can be as wide as 8 MHz
(Wilensky 2020). These metrics are averaged in quadrature
across all baselines, antennas, and polarizations to increase the
sensitivity to low-level contamination, resulting in a single
metric as a function of time and frequency for each data
product.

Next, we flag these metric waterfalls with an initial threshold
of Z 5mod , followed by a watershed algorithm where any
time and frequency pixel adjacent to a flagged pixel is itself
flagged if it exceeds a lower threshold of Z 2mod (Kerrigan
et al. 2018). We found that different types of contaminants will

manifest more brightly in certain metrics, so each metric is
flagged individually.
Having removed the brightest sources of RFI, we now apply

the resultant flags and repeat the flagging procedure; however,
this time we compute the standard Z-score metric using a mean
filter rather than a median filter. The mean filter is considerably
faster, so at this stage we are also able to include the raw
visibility data as an additional metric. Just as before, we
compute these metrics, average them in quadrature, and apply
the same watershed flagging routine on the averaged metrics.
The result is a single waterfall of flags for all baselines. This
entire routine is performed on every 10 minute file over the
course of a nightly observation.
Our last step is to examine each metric waterfall over the

entire night and use medians to collapse them to a single time
series or spectrum. These are again flagged by computing a
modified Z-score for each channel or integration, flagging any
above 7 or any above 3 that are adjacent to a previously flagged
channel or integration. This step helps us find global outliers in
time that may not be obvious from the analysis of a signal file
and to find channels that are so frequently occupied by RFI that
it safer to assume they are always RFI-contaminated.
The strongest forms of identified RFI are persistent,

narrowband emitters, which can be clearly seen in the
calibration gain solutions (e.g., Figure 6). However, the final
flagging mask applied to the nightly data excises both narrow
and wideband features (e.g., the left panel of Figure 8). The
contaminating features in the data include FM radio (ν< 111
MHz), ORBCOMM satellite communication (ν= 137 MHz),

Figure 5. Construction of the absolute calibration reference visibilities (purple) from a set of three nights throughout the observing season. Each night is calibrated at a
single field that transits near midway through the night. The calibration is transferred to all integrations from that observing night, and the visibilities are then LST
binned onto a common grid to form the full model spanning nearly 22 hr in LST. Drift in the gain amplitude through each night is not corrected for, but is expected to
drift at the ∼3% level (Kern et al. 2020a).
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and broadcast television (ν> 174 MHz), as well as intermittent
correlator integration failures (wideband).

In addition to flagging the data for RFI and correlator
failures, we also flag 50 channels on either edge of the
frequency band where the bandpass filter falls off steeply, as
well as all integrations where the Sun is at or above the horizon
due to issues it creates in our calibration. Lastly, after LST
binning (described below), the averaged visibilities are
manually inspected for low-level narrowband RFI that was
missed by the nightly RFI excision. In this process we find and
flag a handful of frequency channels (for all baselines and
times), which amounts to <11% of the total data.

On average, we flag roughly 15% of the band in our RFI
flagging step. This estimate excludes our routine flagging of the
band edges due to the roll-off of the bandpass filter (∼10 MHz
on either side of the band), as well as the complete flagging of
certain times due to problems with correlator failures. Through
visual inspection, we see areas where our pipeline is likely
overflagging the data. This suggests that our flagging strategy is
somewhat more aggressive and could be improved to reduce
the false-positive rate. Future work will investigate how more
precise RFI excision techniques, like the matched-filter SSINS
package (Wilensky et al. 2019), can improve the overall RFI
identification performance.

3.5. Gain Smoothing

While the goal of gain calibration is to remove spectral
structure introduced by the instrument, it is a double-edged
sword and can also impart spurious spectral structure. Many
sources of uncertainty come into play when calibrating a real
instrument, including baseline-to-baseline nonredundancies
(Orosz et al. 2019), incomplete sky flux density models

(Byrne et al. 2019), and various baseline-dependent instru-
mental systematics. A number of techniques have been
proposed to mitigate this effect, including the consensus
optimization technique (Yatawatta 2015, 2016) used in
LOFAR power spectra (e.g., Patil et al. 2017 and Mertens
et al. 2020) and fitting low-order polynomials to averaged
gains, a technique employed with the MWA (e.g., Barry et al.
2019a, 2019b).
Kern et al. (2020a) discussed some of these effects for

HERA and found their impact to be most severe for |τ|> 100
ns. They introduce a Fourier filtering procedure for low-pass
filtering the gains after calibrating out a per-antenna delay,
which mitigates the impact these spectrally dependent gain
errors have on the data. This filter is a two-dimensional
frequency and time iterative deconvolution algorithm that both
acts as a low-pass filter and also fills in missing calibration
solutions due to RFI flagging. It is conceptually similar to the
Hogbom CLEAN algorithm (Högbom 1974).
Dillon et al. (2020) showed that per-integration redundant

baseline calibration exhibits time-dependent structure that is
LST-locked and argued that this variation was due to bright
sources moving through direction-dependent nonredundancy.
Examining the temporal power spectra of gain solutions after
dividing out an LST-locked nightly average revealed no
evidence for intrinsic gain fluctuations on timescales shorter
than 6 hr. Likewise, Kern et al. (2020a) show that the gains
drift in amplitude with changes in the ambient temperature,
which varies slowly over the course of the 10 hr nightly
observation. Therefore, we also use the 2D low-pass filter to
remove temporal structure in the gain solutions on all
timescales shorter than 6 hr. This substantially mitigates sky-
dependent effects, since the filtering timescale is much longer

Figure 6. The progression of a single antenna-based gain through the calibration process of a single night, showing the gain amplitude (top panels) and phase (bottom
panels). Redundant calibration (left) solves for the relative gain but is susceptible to phase jumps at certain times and requires certain degeneracies, like the overall gain
amplitude, to be filled in. Absolute calibration (center) solves both of these problems by pinning the degenerate components and removing the phase jumps. Lastly, the
final gains are smoothed across frequency and time (right) to limit excess structure (Dillon et al. 2020; Kern et al. 2020a)—for example, amplitude fluctuations caused
by the passage of Fornax A around 3.4 hr seen in the top left and middle panels. Note that the process of gain smoothing is applied to the center column, not to the first
column where phase jumps are apparent.
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than the beam-crossing time—approximately 40 minutes at
150MHz, given a 10° FWHM (Neben et al. 2016).
Figure 6 shows the progression of the antenna gains from

redundant baseline calibration (left), absolute calibration
(center), and gain smoothing (right). Redundant baseline
calibration is prone to jumps in the degenerate subspace of
calibration solutions, particularly in phase. These are solved by
absolute calibration, which fills in the degenerate components,
thus mitigating the phase discontinuities in time introduced by
redundant calibration. Next the fast and localized spectral and
time-dependent features seen in the redundant and absolute
gains are filtered out by the smoothing step. Gain filtering
occurs after RFI identification, meaning we can input our flag
masks into the Fourier filtering algorithm to deconvolve them
out and fill in the missing pixels with a model of the smoothly
varying components.28 This is reflected in the sharp spikes in
the gains in RFI-dominated pixels that are smoothed over after
gain filtering (Figure 6). Gain smoothing is performed
independently for each antenna and linear polarization.

We are left with a set of gains spanning all frequencies and
times of our data on a nightly basis that has been filtered from
the initial solution at each frequency and time sample to a
restricted number of degrees of freedom for each antenna and
linear polarization. The total bandwidth of our data leads to a
delay resolution of Δτ= 10 ns meaning we keep 21 spectral
degrees of freedom, and the nightly observation duration is 10
hr, leading to 3 temporal degrees of freedom, for a total of ∼63
degrees of freedom in each antenna-polarization gain.29

3.6. LST Binning

Having calibrated each night independently, we next
coherently average them at fixed LST. Due to sidereal drift
night to night, each observing night has a slightly offset LST
grid, which must be accounted before LST binning. To do this,
we establish a single LST grid spanning 0 to 24 hr at a cadence
of 21.4 s, which is double the native correlator integration time
and helps to increase the sample count in the subsequent outlier
rejection routine. For each of these LST bins, we take data from
all nights that fall within the bounds of this bin and rephase
their pointing centers to the center of the LST bin. We then
perform another round of outlier rejection to help flag missed
RFI and other problems with the data that do not repeat night to
night at the same LST (as the cosmological signal should). We
do this by looking at the distribution of visibilities to be binned
together for every particular LST, frequency, and baseline
combination and rejecting individual samples across the nights
that have a modified Z-score (as defined in Equation (2))
greater than 4σ. We set the threshold at 4σ such that the
clipping has an effectively negligible impact on the Gaussian
noise distribution, yet still rejects strong outliers that were for
whatever reason not caught in our initially flagging round.
Clipping is performed on the real and imaginary component of
the visibility separately, but if either are clipped in the process
we flag the pixel entirely. Indeed, in practice we find that the
sigma clipping routine tends to catch clear broadband artifacts

due to correlator failures that were not initially caught. For the
∼18 nights of nightly data sampled at a cadence of 10.7 s, each
LST bin contains on average 36 samples as input to this sigma
clipping routine. All data in the bin that were not originally
flagged or flagged during the sigma clipping routine are then
uniformly averaged onto a single LST grid.
A key requirement for LST binning is that each night is

calibrated accurately, otherwise the averaged data will
decohere. We assess this by looking at the variability of the
calibrated data across all nights in the data set. Figure 7 shows
the delay-transformed visibilities across each night from a
single baseline and at a fixed LST. The dashed black line shows
the root-mean-square (rms) of the visibilities across nights. At
high delays we see the rms is consistent with the apparent noise
level of the nightly data; however, at low delays the rms rises to
a level that is ∼3% of the peak foreground power. The most
likely origin of this is the night-to-night variability of the gain
calibration, which would put the gain errors on the ∼1.5%
level. This is consistent with the fidelity of the Phase I
calibration pipeline assessed in Aguirre et al. (2022).

3.7. Data Inpainting

Flagging masks due to RFI and other instrumental problems
are generally fairly complex, with a nontrivial frequency, time,
and antenna dependence. Flagging masks presents a challenge
for power spectral analyses that make measurements in the
Fourier domain as they induce strong sidelobes in nonperiodic
signals. This is especially troublesome for 21 cm measure-
ments, which require high dynamic range signal separation
against bright foregrounds in the Fourier domain. A related
effect is produced when time averaging masked visibility data
with differing frequency flags as a function to time. The
resultant spectrum contains a complex weight structure as a
function of frequency that can manifest as sidelobe structure of
bright foregrounds (Offringa et al. 2019).
A common solution to the problem of masked or missing

data is to inpaint the masked data with a best guess of the signal
that should have been measured in that bin. A wide variety of
algorithms have been developed to solve this kind of problem;

Figure 7. Delay-transformed visibilities from each night after calibration but
before LST binning, showing the consistency of the calibrated visibilities from
night to night for a fixed baseline and LST. We also plot the rms of the complex
delay-transformed visibilities across nights (black dashed), showing excess
variability above the noise at low delays (at ∼3%), indicative of night-to-night
variation in calibration errors at the ∼1.5% level.

28 While we can infer gain solutions for times and frequencies that are flagged,
we only do this for the purpose of finding a smooth gain model. Data that are
flagged remain flagged.
29 The gains are complex quantities and our filter extends from
−100 < τ < 100 ns, giving us 21 independent Fourier modes: 10 on each
side of the τ = 0 ns mode. Likewise, we keep the temporal modes
corresponding to the −1st, 0th, and 1st Fourier modes.
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the CLEAN algorithm (Högbom 1974), for example, is one
way to do this, and is in fact how we addressed the problem of
masked data in our gain smoothing procedure of Section 3.5. In
this work, we use a similar delay-based iterative deconvolution
algorithm to fill in the missing data in the LST-binned data set
(Parsons & Backer 2009; Ali et al. 2015; Kerrigan et al. 2018).
The deconvolution is performed across nearly the full
bandwidth, spanning 115–185 MHz, and is performed on a
per-integration basis down to the thermal noise of each
visibility. The algorithm finds model components in delay
space across a window spanning −2000< τ< 2000, which is
chosen to encapsulate all of the strong features seen in the data
across all baselines.

Figure 8 shows an example of the LST-binned data products
and the results of delay deconvolution-based inpainting.
Inpainting only affects the pixels where the data are masked,
and because it is done only across frequency, integrations that
are fully flagged remain fully flagged. Aguirre et al. (2022)
study the accuracy of the inpainting algorithm described here,
showing that its performance is degraded for widechannel gaps,
like the 138 MHz ORBCOMM features (this is furthermore
seen in our spectral window null test; Section 5.4).

3.8. Systematic Modeling

Kern et al. (2020b) and Fagnoni et al. (2021a) outline the
major systematics seen in the HERA Phase I system, which are
attributed to cable reflections in the 150 meter coaxial cable
between the feed and the node and in the 20 meter cable
between the node and the digitization stage, in addition to
signal chain cross-coupling systematics (e.g., mutual coupling).
Fagnoni et al. (2021a) use electromagnetic simulations of the
HERA front end to show that mutual coupling (i.e., dish-to-
dish communication) can appear as a decaying shoulder in the
auto-correlation delay spectrum from 100–500 ns. They also
predict the presence of a cable reflection at the termination of
the coaxial cables, as well as a series of complicated
subreflections in the 150 meter cable spanning 100–1200 ns
that can be unresolved by the native delay resolution of the
data. Inspection of the data by Kern et al. (2020b) affirm the
presence of a shoulder in the auto-correlation delay spectrum,

however, its exact origin is not quite clear. Kern et al. (2020b)
speculate that the shoulder could in fact be due to the cable
subreflections and not mutual coupling, in part because it can
be effectively modeled and suppressed via a reflection
calibration procedure, which is not to be expected from a
highly direction-dependent systematic like mutual coupling.
Future work will seek to more clearly understand these
systematics via improved electromagnetic beam modeling and
visibility simulations, which explicitly include mutual coupling
effects.
To deal with the subreflections, we employ the same

reflection fitting algorithm on all antenna auto-correlations
from the LST-binned data, iteratively solving for 25 individual
reflection terms within a delay range of 150–1500 ns. These
parameters were chosen manually after visual inspection of the
residual visibilities. All reflection systematics are modeled at a
21.4 s cadence and then smoothed in time with a similar gain
smoothing procedure employed in the first round of calibration.
The most prominent source of systematics observed in Phase

I data is the presence of high delay features in the visibilities
that are nearly constant in time, thus occupying the fringe-rate
0 Hz mode, and roughly symmetric at negative and positive
delays (Kern et al. 2020b). For baselines with a projected east
−west separation �14 meters, this systematic can be
effectively filtered out from the data without significantly
reducing the measured EoR power (Kern et al. 2019).
However, this does lead to a small amount of signal loss on
the cosmological signal that we correct for in the power spectra
(Section 3.11). Overall, the combination of reflection calibra-
tion and cross-coupling filtering leads to roughly two orders of
magnitude of suppression in instrumental systematics spanning
0.1< k< 0.8 h Mpc−1. If not enacted properly, this step can
lead to nonnegligible amounts of cosmological signal loss, and
is therefore vetted in our validation pipeline to ensure it
performs as we expect it to (Aguirre et al. 2022).

3.8.1. Faraday-rotated Foreground Emission

After removing instrumental systematics from the data,
we found low-level excesses in the power spectrum at high
delays (beyond the foreground horizon) that transited on a

Figure 8. A progression of a visibility waterfall over a small time range through LST binning and flag inpainting, showing the reduction in flags (masked regions).
Note the marked reduction in flags after LST binning, due to different nights having independent flagging masks. Data inpainting reconstructs a best guess of the data
in flagged regions, but demonstrates poor performance over wideband flags like the ORBCOMM feature at 138 MHz. Because it operates on each integration
independently, integrations that were fully flagged remain flagged.
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beam-crossing timescale. These excesses decreased their
characteristic delay at increasing frequency, suggestive of
Faraday rotation. We investigated these systematics both in
instrumental and pseudo-Stokes polarization visibilities, the
latter of which are simply defined as a linear combination of the
instrumental polarization visibilities as
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where the east–east (or EE) instrumental polarization is an east-
facing feed correlated with another east-facing feed, and
likewise for the north–north (or NN) polarization.

We are able to identify these systematics as Faraday-rotated
foreground emission through a few pieces of evidence. First,
the characteristic period of the frequency oscillations (i.e., the
delay or k∥ mode of the systematic) decreases at higher
frequencies. This is shown in Figure 9, where the four-panel
plot shows the delay transform of the instrumental and pseudo-
Stokes visibilities over four different spectral windows with
increasing central frequency (but fixed bandwidth of 10 MHz),
showing a notable decrease in the k∥ mode of the systematic at
higher frequencies. In probing the relationship between the
systematic’s peak k∥ and the central frequency of the spectral
window, we find a tight relationship that follows the theoretical
expectation of Faraday-rotated foregrounds found in Equation
(3) of Moore et al. (2017; see also Jelić et al. 2010; Asad et al.
2015). Finally, we can perform a direct rotation measure
synthesis of the data to look for known sources of foreground
emission with high rotation measures in the field of view. Note
that we make the assumption here that the inferred rotation
measure is equal to the Faraday depth, which amounts to
assuming that the rotation measure is locally compact along the
line of sight. We do this by forming a spectral cube of dirty
Stokes Q and U images and then take their rotation measure

synthesis for each pixel on the sky. This yields the Faraday
depth distribution, written as

òf
p

l l l= + fl-F Q iU e d
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where Q and U are the Stokes Q and U maps, λ is the observing
wavelength, and f is the Faraday depth in radians meter−2

(Brentjens & de Bruyn 2005; Kim et al. 2016). Note we do not
actually form the true Stokes Q and U maps, but simply image
the pseudo-Stokes Q and U visibilities, which is a good
approximation of the Stokes parameters near the center of the
FoV. Doing this and scanning through f reveals a bright point
source at the center of the field (right panel of Figure 9), which
aligns exactly in location and in the inferred rotation measure
with a known pulsar (PSR J0742-2822; Lenc et al. 2017).
There are few other cases in the data where we see a high delay
excess and can connect it to a known pulsar in the Faraday
depth maps; however, they are seen at fairly low signal-to-
noise ratio.
While these systematics appear above the noise in the EE,

NN, pseudo-Stokes Q and U visibilities, they do not appear
appreciably in the pseudo-Stokes I visibility (Figure 9). While
this is expected, it is also true that intrinsic Q→ I leakage from
primary beam asymmetry between feeds can cause these
systematics to appear at suppressed levels in the Stokes I power
spectrum (Moore et al. 2013; Asad et al. 2016, 2018). Feed and
LST jackknife tests could help to determine if future, deeper
data sets are beginning to detect these systematics in Stokes I.

3.9. Coherent Time Averaging

While HERA observations are taken in drift-scan mode,
integrations taken at nearby LSTs can be coherently averaged if
they are phased to a common pointing center (Parsons et al.
2016). However, summing integrations that are separated too
much in time will begin to decohere the averaged signal due to
drift in the primary beam weighting, in addition to the inability

Figure 9. Faraday-rotated foreground emission from a pulsar. The four-panel plot shows the delay transform of the LST-binned data at α = 115° for two instrumental
linear polarizations (top panels) and two pseudo-Stokes polarizations (bottom panels), displaying the high k features that appear to drop out in the pseudo-Stokes I
visibility. The different colors represent four different spectral windows for the delay transform with a fixed bandwidth but with increasing central frequency, showing
the frequency dependence of the systematic that is suggestive of Faraday rotation. The right plot shows a dirty rotation measure synthesis image from 150–170 MHz,
clearly demonstrating a strong point source with a high rotation measure at image center. The artifacts around the central source are the grating lobes of the point-
spread function.
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to properly re-align the fringes across the entire sky with a
single fringe-stopping procedure. We evaluated the amount of
loss induced by time averaging by generating an ensemble set
of mock EoR visibilities and averaging them with increasingly
large time windows. We settled on a maximum time window of
428 s, which leads to an average of ∼1% decoherence of EoR
power that is scale independent. In Aguirre et al. (2022), this
test is repeated with a different kind of EoR model and they
report a similar finding of ∼1% decoherence in power. Recall
that our power spectrum estimator cross multiplies adjacent
time bins to avoid a noise bias. In order to ensure that data
separated by more than 428 s are not cross-correlated, we
actually halve the coherent averaging time window to 214 s.

3.10. Decoherence due to Nonredundancies

HERA’s array layout has a large number of instantaneously
redundant baselines. Averaging the visibilities directly rather
than their power spectra provides an extra boost in sensitivity
by a factor of Nbaselines , and is a key factor in HERA’s overall
sensitivity. The instrument is not perfectly redundant however
—variations in baseline length and orientation, antenna primary
beams, and even the calibration itself are expected at some
level (Orosz et al. 2019). Deviations from perfect redundancy
will cause the signal to decohere to some extent under
redundant averaging, and if these deviations are large enough,
some degree of signal loss will be sustained.

Here, we develop an empirical metric to quantify the amount
of signal loss incurred due to decoherence when averaging
slightly nonredundant visibilities. The impact of nonredun-
dancy-based decoherence can be estimated by comparing the
foreground power spectrum amplitude derived using coherent
redundant averaging compared to incoherent redundant aver-
aging. The incoherently averaged power spectrum, Pinc, is
constructed by first estimating power spectra for each baseline
pair in the redundant group and then averaging them together
such that

= + + + ¼~ ~ ~
P

N
V V V

1
, 8inc 1

2
2
2

3
2(∣ ∣ ∣ ∣ ∣ ∣ ) ( )

where V1, V2, K indexes individual baselines in a group, V is
the Fourier transformed visibility, and N is the number of
baselines in a group. Since phase information is discarded by
the initial power spectrum estimation step, phase errors cannot
combine destructively when the individual spectra are subse-
quently averaged. Thus, Pinc should be less susceptible to phase
nonredundancies (e.g., caused by miscalibration or primary
beam variations).

A cross-coherent power spectrum is constructed by cross
multiplying all redundant baseline pairs and then taking their
average, which does allow phase errors to combine destruc-
tively. Note that this is very similar to averaging the redundant
visibilities and then cross multiplying them, except for the
explicit exclusion of baseline terms paired with themselves. In
other words, we form the cross-coherent power spectrum as

= + + + ¼~~ ~~ ~ ~* * *P
M

V V V V V V
1

, 9coh 1 2 1 3 2 3( ) ( )

where M is the number of baseline pairs in a group. In the ideal
limit of perfect redundancy there should be no decoherence
effect as each baseline is an exact replication of the signal.
Thus the coherent and incoherent spectra should measure the

same value, with the exception of the different integrated
thermal noise level that, as we explain later, is a negligible
difference for the delay modes of interest. Note that this is not
the estimator used to estimate the 21 cm power spectrum is later
sections; this is only used as an approximate estimator for the
purposes of assessing signal loss.
To measure the amount of decoherence induced by the

coherent average we compute the fractional loss in power,

c t
t t

t
D =

-
á ñ
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P t P t
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,
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,
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where t denotes LST, τ is delay, and 〈K〉 denotes a time (LST)
average. The time average is necessary to provide a stable
baseline that limits spikes in the ratio when Pinc goes through a
null. Note that the delay of the visibility, τ, is simply the direct
Fourier dual to frequency in the Fourier transform, with units of
1 s−1.
What we are interested in is determining how the EoR signal

is suppressed in the coherently averaged power spectrum due to
nonredundant decoherence. Being an isotropic cosmological
signal, the EoR field is statistically invariant across the sky,
meaning our sensitivity to it comes predominately from the
main lobe of the primary beam. In order to use the measured
foreground emission, which is not statistically isotropic, as a
proxy for the amount of EoR signal loss, we will sharpen the
metric in two ways. First, we only inspect the τ= 0 ns mode,
which isolates smooth spectrum foreground emission to a strip
intersecting the main field of view of the primary beam. And
second, we choose to evaluate the metric at times where diffuse
foregrounds fill the main lobe of the primary beam, thus
upweighting the parts of the beam where we expect the EoR
signal to be most sensitively measured. For HERA, this occurs
most prominently at the transit of the Galactic anticenter. The
behavior of this metric has been explored in an accompanying
paper (Choudhuri et al. 2021). In this study, numerical
simulations of a small HERA-like array were performed with
different types of primary beam nonredundancies and calibra-
tion nonredundancies. The Δχ foreground metric was found to
accurately reflect the degree of nonredundancy, signal loss, and
modulation effects in the recovered EoR power spectrum. Its
behavior in the presence of baseline nonredundancies was not
studied.
Figure 10 shows the Δχ metric at τ= 0 ns for several

redundant baseline groups. We see an average of ∼1% power
loss, suggesting that the real nonredundancies between base-
lines within a redundant group do not significantly decohere the
sky signal. The worst case is the b= 50.6 m baseline, which
sees an average decoherence of about 3%. Inspecting the
visibilities of this baseline we see that this is due in part
because this baseline experiences a particularly strong null in
power compared to the other baselines, which systematically
brings down 〈Pinc〉 in the denominator of the metric, causing
the overall ratio to slightly inflate.

3.11. Other Forms of Signal Loss in the Pipeline

Here, we tabulate all of the identified forms of systematic
signal loss that arise from the analysis pipeline. Recall that the
philosophy of the analysis employed here is one that is
generally meant to minimize the inherent loss of the analysis
pipeline; therefore, corrections to the loss that have been
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identified are generally a small fraction of the total measured
power.

Some forms of loss are entirely expected, like from the time
averaging of drift-scan visibilities, and other forms were not
expected but found in the process of pipeline validation
(Aguirre et al. 2022), the most notable being the absolute
calibration bias. This bias was due to the logarithmic
linearization of the gain amplitude parameter in the process
of absolute gain calibration, which when employed on
visibilities with low signal-to-noise ratios can result in a bias
in the recovered amplitude (Boonstra & van der Veen 2003).
Because we calibrate HERA’s drift-scan observations every
10.7 s, there are some fields where this bias can be
nonnegligible and reaches into the percent level on the gains.
After gain smoothing, this bias is shown to be largely time
independent but does have a slight frequency dependence
(Aguirre et al. 2022). We estimate this bias as a single number
for each of the two power spectrum bands (Section 4.3) by
making multifrequency synthesis images of the calibrated and
LST-binned visibilities and comparing them to images of the
initial absolute flux density model. The ratio of a zenith-located
point source in the data and model is used as the correction
factor.

All forms of loss measured here are EoR model independent
and scale independent (i.e., flat across k). In some cases we
have physically motivated reasons to expect this (e.g., an
overall bias in absolute calibration is scale and EoR model
independent) and in other cases we have explicitly tested this
(as is the case for coherent time averaging and the
nonredundancy decoherence discussed above). These are
tabulated in Table 2 and are each corrected for at the end
stage by correcting the power spectra.

4. HERA Phase I Power Spectrum Limits

In this section we outline our power spectrum estimator, giving
a brief overview of quadratic estimators (QEs) and our power
spectrum pipeline, and present our derived power spectrum limits
from the analysis discussed in this work. Our power spectrum

estimator code base, hera_pspec,30 is publicly available
software. Throughout this work, we adopt a ΛCDM cosmology
(Planck Collaboration et al. 2016) with ΩΛ= 0.6844,
Ωb= 0.04911, Ωc= 0.26442, and H0= 67.27 km s−1 Mpc−1.

4.1. The Quadratic Estimator Formalism

The 21 cm power spectrum is the square of the three-
dimensional spatial Fourier transform of the 21 cm brightness
temperature field. Given that in the flat-sky limit the
interferometric visibility is the 2D transverse spatial Fourier
transform of the temperature field, we can estimate the 3D
21 cm power spectrum by taking the Fourier transform across
frequency,

òt n n=~ p ntV V e d , 11i2( ) ( ) ( )

where the delay domain (τ) is the Fourier dual of frequency.
Note that delay modes are not a direct mapping to the line-of-
sight k∥ wavevector; however, for short baselines they are
nearly the same and approximating τ modes as k∥ modes is
known as the delay approximation (Parsons et al. 2012; Liu
et al. 2014a). This is written as

 t t=
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where P̂ is our estimate of the power spectrum, X and Y are
scalars mapping sky angles and frequency to cosmological
distances, respectively, Ωpp is the sky integral of the squared
primary beam response, and B is the Fourier transform
bandwidth. Furthermore, the subscript on our visibilities, V1
and V2, indicates that we are cross multiplying visibilities with
independent noise realizations, meaning that the estimated
power spectrum has no noise bias. As written, the power
spectrum P has units mK2 h−3 Mpc3. The cosmological
wavevectors are related to the natural telescope units of delay
and baseline length (Parsons et al. 2014) via


pt

=k
X

2
13( )

p
l

=k̂
Y

b2
, 14( )

where n= + - -X c z H z1 2
21
1 1( ) ( ) , Y=D(z), ν21= 1.420 GHz,

H(z) is the Hubble parameter, and D(z) is the transverse

Figure 10. Redundancy decoherence test for nine redundant groups, marked by
the baseline length and angle in local array XYZ coordinates (blue dashed is
their average). This plots the difference of the coherently and incoherently
averaged power spectrum normalized by the time average of the latter. We
show the metric for the τ = 0 Fourier mode at LSTs when bright, diffuse
foregrounds fill the primary beam. On average, we see a roughly 1% power
loss, suggesting that while our final redundant visibilities are not perfect, they
are redundant enough to retain the vast majority of sky power in the main lobe
of the primary beam when forming baseline-to-baseline cross power spectra.

Table 2
Systematic Loss in Analysis Pipeline

Analysis Step Fractional Power Loss

Absolute Calibration 9% (8%)
Cross-coupling Filtering 3% (1%)
LST Time Averaging 1% (1%)
Redundant Averaging 1% (1%)

Note. Percentage loss in power for Band 1 (Band 2), which are corrected for
after forming the power spectrum. These figures are partially derived from the
validation analysis (Aguirre et al. 2022) and from this analysis (Figure 10).

30 https://github.com/HERA-Team/hera_pspec
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comoving distance (Hogg 1999; Condon & Matthews 2018).
We can further define the cosmologically dimensionless power
spectrum,

p
D =k P k

k

2
, 152

3

2
( ) ( ) ( )

which has units of mK2.
The “Fourier transform and square” delay spectrum

estimator can also be cast into the more general form of a QE,

=a aq̂ x R Q Rx
1

2
, 161 2 ( )† †

where aq̂ is the unnormalized estimate of the α bandpower, x1
and x2 are the visibility vectors we will cross-correlate, R is any
weighting matrix we may want to apply to the data (e.g., the
inverse covariance in the optimal QE case), and Qα is the
mapping from data space to power spectrum space. In general,
this mapping is given by the derivative of the covariance with
respect to bandpower α, i.e., = =a a

¶
¶ a

Q C
p

C
, . We use C to

mean the true covariance matrix of the visibilities, which in
general is never known exactly. Estimating the covariance
empirically is a subtle process, and if not done accurately risks
biasing the power spectrum estimate (Ali et al. 2018; Cheng
et al. 2018). The lack of access to the true covariance also
makes accurate error estimation tricky, as we will discuss in
more detail later in this section. For our purposes, we simply
define =a a aQ c c† , where cα is a discrete Fourier transform
operator that takes the (weighted) data to delay space. We
denote our data vectors as x1 and x2 because in this work we
opt to form cross power spectra between data vectors with
independent noise realizations, which eliminates the noise bias
term that can be difficult to estimate precisely (Dillon et al.
2014; Ali et al. 2015; Pober et al. 2016).
To normalize our power spectrum estimate we gather our

unnormalized bandpowers into a vector and form the quantity,

=p Mq, 17ˆ ˆ ( )

where M is the normalization matrix and p̂ is the normalized
bandpower estimates. Our estimated power spectra are related
to the true bandpowers by the window function matrix,

=p Wp, 18ˆ ( )

where p is a vector holding the true bandpowers. While p is
never known a priori, we can use the window function matrix
to appropriately map a theoretical EoR power spectrum to the
basis of the measured power spectrum. Relating this to our
normalization matrix we have

=W MH, 19( )

where H is the response matrix of the bandpowers, defined as

=ab a bH R Q RQ
1

2
tr . 20( ) ( )†

In the case where R=C−1, our estimator becomes the optimal
estimator, and H becomes F, the bandpower Fisher matrix
(Tegmark 1997).

The last component of our power spectrum formalism is the
bandpower covariance matrix,

S = = -p pp p pCov . 21[ ˆ ] ˆ ˆ ˆ ˆ ( )† †

Defining = åa
b ab bME R Q R1

2
† such that =a

ap x E x1 2ˆ † and
substituting this in, we get that the power spectrum covariance is

S = +ab
a b a bCE CE SE SEtr tr , 22[ ] [ ] ( )

where the total covariance, C= 〈xx†〉= S+N, can be written as
a sum of the sky signal and noise covariance (Dillon et al. 2014).
While the noise covariance of our data is straightforward to
quantify, the signal terms are considerably harder. We will come
back to how we estimate the bandpower errors in practice.
An unbiased estimate of the power spectrum is made by

building a window function matrix whose rows sum to unity,
giving the analyst some freedom on exactly how to construct M,
with statistical implications for p̂ and Σ (Tegmark 1997; Liu &
Tegmark 2011; Ali et al. 2015). ChoosingM=H−1, for example,
yieldsW= I, meaning the bandpowers are independent; however,
we also see that the bandpower errors become quite large and
correlated. In this work we choose arguably the simplest
approach, which is to set M to a diagonal matrix. This minimizes
the resultant error bars at the expense of measurements that
overlap in Fourier space and also have slightly correlated errors.
This returns us to the simple delay spectrum estimator, but framed
in the machinery of a QE, with the diagonal of M given by the
coefficients of Equation (12).
Our QE is suboptimal in the sense that we do not weight our

data by the inverse covariance matrix; however, this also
safeguards our estimator against concerns about signal loss from
empirical inverse covariance weighting (Cheng et al. 2018) and
the distortion of the window functions at low k modes due to
complicated data weighting (Liu et al. 2014b; Kern & Liu 2021).
In the meantime, we defer optimal inverse covariance weighted
power spectrum estimation to future work. Nonetheless, we still
need to account for the fact that, without foreground removal,
there exists a large dynamic range between the foreground signal
at low k modes and the EoR and noise signal at higher k modes.
To limit foreground spectral leakage in the discrete Fourier
transform, we apply a tapering (or apodization) function along the
diagonal of R. We use a Blackman−Harris function (Blackman &
Tukey 1958), which achieves 50 decibels of sidelobe suppression
in Fourier space.

4.2. Error Bar Methodology

Tan et al. (2021) discuss different kinds of error bars one can
use to quantify uncertainty on the measured bandpowers. In
summary, they find that all of the error bar methodologies
explored are in general agreement with each other and with the
true sampling distribution of the bandpowers in the ensemble
limit; however, they suggest two specific error bars that: (1)
encapsulate the full thermal noise contribution to the bandpower
uncertainty, and (2) can be computed relatively straightforwardly
without requiring a model of the signal covariance. We will
briefly summarize these here.
At minimum, one needs to encapsulate the fundamental

thermal noise uncertainty of the fully averaged power
spectrum, which is the root-mean-square (rms) of the band-
powers in the limit that they are noise dominated. However, as
Tan et al. (2021) point out, there is an additional source of
noise variance on the bandpowers in the limit of a
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nonnegligible coherent signal in the data.31 For weak, margin-
ally detectable signals the additional variance is a small
correction; however, when there is a significant detection of the
signal this correction dominates the thermal noise uncertainty
on the bandpowers, and thus should be accounted for.

An analytic expression for the root-mean-square (rms) of
noise-limited power spectra after a given amount of averaging
can be written as

=
W

P
X Y T

t N N2
, 23N

2
eff sys

2

int coherent incoherent

( )

where tint is the integration time of the data, Ncoherent is the
number of coherent averages of the data (i.e., visibility
averages), Nincoherent is the number of incoherent averages
(i.e., averaging after forming the power spectra), and Tsys is the
system temperature of the signal chain, which is the sum of the
sky and receiver temperatures. Lastly, Ωeff is the effective beam
area, defined as W = W Wp ppeff

2 , where Ωp is the sky integral of
the primary beam and Ωpp is the sky integral of the squared
beam (Pober et al. 2013a; Parsons et al. 2014; Cheng et al.
2018). A frequency and LST dependent model for Tsys is
derived from the auto-correlation visibilities of each antenna to
produce a baseline, time, and frequency dependent noise model
(e.g., Dillon et al. 2020; Kern et al. 2020a; Tan et al. 2021).
Figure 11 shows that HERA measures a system temperature in
the range of 200–400 K at 160 MHz depending on the LST.
Note that the Tsys models are used not only to compute the error
bars on the power spectrum, but also to generate realistic noise
simulations of the data that are used for null testing.

The second error bar that Tan et al. (2021) investigate
accounts for the additional sources of noise in the power
spectrum that arise in the presence of a signal, also derived in
Kolopanis et al. (2019). These extra terms come simply from
the signal−noise cross terms when squaring the visibilities to
form the power spectrum. This error bar is written as

= +P P P P2 , 24S N NSN
2 ( )

where PS is the power spectrum of the signal in the data. Note
that, like PN, PSN can be thought of as the 1σ uncertainty on the
measured bandpower. What is readily apparent is that to
compute this quantity we need the power spectrum of the
signal, which we do not have any more than we have the
covariance of the signal. In that case, we can estimate it directly
from the data, using P̂ in its place, which Tan et al. (2021)
show is a good approximation. However, for noise-limited
bandpowers where PS= PN we see that by substituting PS for
P̂ we are actually overestimating the error bar (in a sense we
are double counting the noise−noise contribution). Never-
theless, Tan et al. (2021) show that this can be corrected by
constructing a modified error bar estimator

p= + - + -P P P P P2 1 1 1 . 25S N N NSN
2˜ ( ) ( )

One downside to Equations (23), (24), and (25) is that they
make certain simplifying assumptions. Mainly, they assume
that the bandpowers are uncorrelated. In other words, they only
account for the diagonal of the bandpower covariance.
However, we expect the off-diagonal components to possibly
have nonnegligible covariance (specifically due to the apodiza-
tion function) and it should be accounted for. Tan et al. (2021)
show how the error bar estimators presented above can also be
derived by propagating a combination of the data and the
frequency−frequency noise covariance through the QE, which
conveniently yields the full bandpower covariance matrix, not
just its diagonal. Therefore, to quantify the off-diagonal
components in the bandpower covariance matrix, we use the
frequency−frequency noise covariance of the data propagated
through the QE formalism to Σ.
When quoting upper limits on the power spectrum or

presenting power spectrum measurements, we will exclusively
use the modified PSN˜ error bar as the 1σ uncertainty, which is
also the 68% confidence interval given that we expect the
bandpowers to be Gaussian distributed (see Tan et al. 2021).
We will also generally plot the PN limit as a reference for
whether the data are consistent with the thermal noise floor.
Lastly, we also use PN and the bandpower noise covariance
matrix when evaluating statistical null tests in Section 5.

4.3. Forming Power Spectra

We form power spectra from the pseudo-Stokes I visibilities
(Equation (6)) after LST binning, systematics treatment, and
coherent time averaging. We choose two spectral windows
over which to form power spectra spanning 117.1–132.6MHz
and 150.3–167.8 MHz, corresponding to redshifts of 10.4 and
7.9, respectively. We refer to these as Band 1 and Band 2,
shown in Figure 12, which were selected based on their
relatively low flag occupancy of a few percent. The shaded
curves show the extent of the Blackman−Harris tapering
function applied along the spectral window of each band.
Evolution of the cosmological signal will begin to affect the
power spectrum over large line-of-sight bandwidths, also
known as lightcone effects. Although this effect is technically
EoR model dependent, it has been found that for
Δν< 10MHz, lightcone effects on the power spectrum are
kept below 10% for k< 0.5 h Mpc−1 and 7< z< 10 (Datta
et al. 2014). Note that because we apply a Blackman−Harris
tapering function across each of our spectral windows, their

Figure 11. A frequency and LST dependent model for the system temperature
of a particular antenna that is used to compute power spectrum error bars and
also to generate realistic thermal noise realizations of the data.

31 Note that this is entirely separate from cosmic variance uncertainty, and also
by signal we mean any coherent signal in the data, be it the EoR, foregrounds,
or systematics.
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effective bandwidths are 7.75 and 8.75 MHz for Band 1 and
Band 2, respectively.

To form power spectra following Equation (16), we cross
multiply adjacent time integrations (Pober et al. 2013b)
separated by 214 s after time averaging between all baselines
in a redundant set. A redundant set is defined by all physical
baselines that share a common length and orientation. Note that
we compute the power spectrum of all baseline permutations
(i.e., we compute V1× V2 and V2× V1, where V1 and V2 are
visibilities in the same redundant set); however, we do not
compute the power spectrum of a baseline paired with itself
(i.e., V1× V1), which reduces the impact of baseline-dependent
systematics. This achieves nearly the full sensitivity of a
coherent visibility average across redundant baselines, thus the
need to account for signal loss from a coherent redundant
average (Section 3.11).

Next, we motivate the choice of the three unique “fields” in
LST over which we form power spectra. Tracking arrays like
the GMRT, the MWA, and LOFAR can pick out specific parts
of the sky where foregrounds emission is minimal (Ghosh et al.
2012; Mertens et al. 2020; Trott et al. 2020). However, HERA
is not afforded this luxury because it is a static array that
observes a uniform stripe across the sky. Nonetheless, we can
pick out certain LSTs where foreground emission is relatively
less bright. This is important because we know that systematics
like RFI and residual instrumental gains act to leak foregrounds
modes in the power spectrum to higher k∥, and thus partially
contaminate the EoR window. Furthermore, as noted in
Section 3, we do not perform any kind of foreground
subtraction in this work. Therefore, picking LSTs that avoid
the brightest foregrounds can help to minimize the impact of
residual systematics. Specifically, we pick three fields, each
spanning ∼2 hr in LST that avoid the extended radio galaxy
Fornax A at an R.A. of 3.36h and the Galactic anticenter at
∼7.5h (Figure 1). They also give a 0.5 hr buffer at the ends of
the total LST range to limit edge effects in our fringe-rate
filtering. The chosen fields span an LST range of 1.25–2.7 hr,
4.5–6.5 hr, and 8.5–10.75 hr for fields 1, 2, and 3, respectively.

Figure 13 shows a redundantly averaged power spectrum
waterfall for a single redundant set with and without
systematics treatment (Section 3.8) over the full LST range,
with the three fields marked. Based on the amplitude of the
k∥= 0 hMpc−1 mode, we can see that Field 1 has the least
amount of overall foreground power, making it an ideal
candidate for power spectrum analysis. Figure 13 also
demonstrates the ∼2 orders of magnitude of systematic
suppression achieved by our pipeline, which would otherwise
contaminate a large portion of the EoR window modes.
Next, we incoherently average the power spectra over the

redundant baseline axis and across the remaining time bins in
each field. This is equivalent to a cylindrical binning in k space
onto a k∥ and k⊥ plane. All averaging is weighted by the
squared inverse of the computed thermal noise floor, PN, which
is both a function of baseline pair and time but is independent
of k∥. Simultaneously, we also propagate the bandpower
covariance and the PSN˜ error bar through the averaging. This
leaves us with a 2D power spectrum for each band and field,
shown in Figure 14 for Band 1 and Figure 15 for Band 2. In
each figure the top panels show the real component of the
power spectrum, with negative measured bandpowers shown in
white, while the bottom panels show the ratio of the power
spectrum with the thermal noise floor. Even though the power
spectrum of a coherent signal is nonnegative by construction,
the measured power spectrum can fluctuate negative due to the
fact that we have cross-correlated data with independent noise
realizations, which is a mean-zero process with nonzero
variance.
The root-mean-square of the 2D power spectra divided by

their thermal noise floors for k∥> 0.2 hMpc−1 is consistent
with one to within ∼3%, which means that (1) we are able to

Figure 12. The average flag occupancy of each frequency channel across LST
(blue shaded), showing the two spectral windows used in the power spectrum
analysis. The orange and green shaded regions show the tapering function
applied across each spectral window for Band 1 and Band 2, which have
central frequencies of 124.8 and 159.0 MHz, corresponding to redshifts of 10.4
and 7.9, respectively.

Figure 13. A waterfall of a redundantly averaged power spectrum for a single
baseline group without systematic treatment (left) and with systematic
treatment (right). The LST cuts for each of the three fields are shown in
blue, orange, and blue, which are chosen to avoid the transiting of bright
foreground sources like Fornax A at 3.36h, the Galactic anticenter at ∼7.5h, and
to give a buffer of ∼30 minutes from both the beginning and end of the full
LST range.
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estimate the noise variance in the real data at a precision of a
few percent, and (2), as we will also demonstrate later, the data
at high k modes are largely noise dominated. The dashed line
plots the foreground horizon limit, which is the theoretical
maximum k∥ for smooth spectrum foregrounds, and the solid
line plots the horizon limit plus a buffer of 200 nanoseconds
(Δk∥= 0.11 hMpc−1 for z= 7.9 and Δk∥= 0.10 hMpc−1 for
z= 10.4). As we will discuss below, this cut at the horizon
limit plus a buffer helps to reduce foreground contamination in
the final spherically averaged power spectrum. The exact buffer
was chosen to mitigate foreground leakage beyond the horizon
limit (particularly at large k⊥ modes) while keeping some
nonzero weight at the lower k∥ modes, even though there is
some observed leakage beyond this buffer at low k⊥
(Figures 14 and 15).

The fact that the data are in rough agreement with the
expected noise at high k∥, especially given that we have
performed no foreground removal, is a testament to both the
instrument design as well as the data reduction algorithms,
which have been able to effectively contain foreground
emission to the lowest k∥ modes within the foreground wedge.
Figure 16 shows this more clearly, showing the spherically
averaged power spectrum (discussed below) without enacting a
low k∥ cut and normalizing by the peak foreground power at
k= 0 hMpc−1. This shows that the full process of measuring
the sky brightness, including the instrument itself and our
analysis pipeline, achieves a dynamic range of 109 in power
between the peak foreground emission and the thermal noise
floor at high k, which is a necessary but not quite sufficient
criterion for an eventual 21 cm signal detection. Note that a
complementary analysis of Phase I data using the bispectrum
phase also achieved a dynamic range of 108 between peak
foreground power and the recovered noise floor (Thyagarajan
et al. 2020), but used less data than what is presented here.

However, while Figures 14 and 15 show decent agreement
with the noise floor at high k∥ (a point we come back to in
Section 5), we also clearly see evidence of foreground emission
at k∥ beyond that determined by the horizon delay (termed
suprahorizon emission or foreground leakage), particularly at
low k⊥. Some of this is simply due to the frequency tapering
function’s footprint in k∥ space, which pushes k∥≈ 0 fore-
ground emission to higher k∥; however, that cannot explain the
full extent of the suprahorizon emission. Kern et al. (2020b)
speculate that this could be due to residual instrumental cross-
coupling, which is both generally most prominent and hardest
to filter off at the low k⊥ modes.
Looking at Band 2, Field 2, we also see evidence for a slight

excess beyond the foreground horizon and buffer. While it is
unclear exactly what this is due to, one possibility is that it is a
low-level spectral artifact (possibly unflagged RFI) that
exhibits a baseline dependence, which has been seen before
at a low-level in Phase I data. Future, more comprehensive
work detailing low-level spectral artifacts in the fully averaged
data, for example with the SSINS algorithm (Wilensky et al.
2019), may help us better understand these features.

4.4. Integrated Limits on the Power Spectrum

Next, we spherically average the data by binning the 2D
power spectra in bins of constant |k|, assuming statistical
isotropy of the cosmological signal, and again weighting the
average by the squared inverse of PN(k∥, k⊥) in each pixel. We
compute the spherically averaged power spectrum and
propagate our measures of uncertainty using Equations (33)–
(38) of Dillon et al. (2014). Recall that we give zero weight to
all pixels with k∥< khorizon+Δk∥, where Δk∥ is the foreground
horizon buffer. This leaves us with three spherically averaged
power spectra at each field for Band 1 and Band 2, which we

Figure 14. The 2D power spectra P(k∥, k⊥) for Band 1 (z = 10.4) at each field (top panels), and their ratio with the 1σ thermal noise floor (bottom panels). We also
plot the horizon wedge (dashed) and the horizon buffer used when spherically binning (solid).
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show in Figure 17. The vertical error bars are the 2σ PSN error
bar discussed in Section 4.2 and Tan et al. (2021), and the
horizontal error bars are the 16th and 84th percentiles of the
window functions. We also plot the theoretical 1σ thermal
noise floor (dashed), which is simply the PN error bar discussed

in Section 4.2. Bandpowers that are measured as negative are
set to zero. While coherent sky signal manifests as a purely
positive signal in the power spectrum, thermal noise and other
uncorrelated systematics are mean-zero with nonzero variance,
which can manifest as negative values in the power spectrum.
Note that in the limit that the data are nearly noise dominated,
which is true for most of the data shown in Figure 17, the 1σ
error bar is the same as the 1σ PN dashed line.
Broadly, we can evaluate whether the data are consistent

with thermal noise fluctuations if (1) the vertical error bars
reach Δ2= 0 mK2 for the majority of the data points, (2) the
measured bandpowers are roughly consistent with the PN

curve, and (3) we measure a roughly equal number of positive
and negative bandpowers. However, all of this is complicated
by the fact that the fully averaged products reduce us to a
regime of low number statistics, in addition to the fact that
there will be some amount of correlation between the
bandpowers in k, in part due to the frequency tapering function
(the bandpowers are independent across bands and fields). With
just a qualitative assessment for the time being, however, we
can see general agreement of the data with the expected thermal
noise level at high k modes, and increasing discrepancy at low
k modes.
The discrepancy at low k is easily explained as residual

foreground leakage that can be directly observed in Figures 14
and 15. The fact that this leakage is stronger for Band 1 is
largely due to the fact that the foregrounds are brighter at low
frequencies. Furthermore, we see that Field 1 exhibits the least
amount of foreground leakage at the low k modes, which is also
largely due to the fact that it sees relatively dimmer
foregrounds than the other fields (Figures 1 and 13).
Furthermore, we also see that Band 2, Field 2 sees a systematic
excess in power compared to thermal noise expectation, which
is likely due to a low-level time and frequency dependent
systematic. We speculate that this could be the effect of low-

Figure 15. The same 2D power spectra as Figure 14 but for Band 2 (z = 7.9).

Figure 16. The amplitude of the spherically binned power spectrum without
enacting a minimum k∥ cut in the binning, normalized to the foreground power
at k = 0 hMpc−1. This demonstrates that our analysis pipeline achieves a
dynamic range of ∼109 with respect to the peak foreground power.
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level RFI, due in part to its spectral and temporal transience;
however, more comprehensive work identifying low-level RFI
is required to understand this at a deeper level.

The bandpowers in Figure 17 are sampled at a cadence of
Δk= 0.64 hMpc−1, which is twice the native spacing of the
Fourier modes given our choice of spectral windows. This
helps to reduce the correlations between neighboring band-
powers, especially given that we applied a tapering function
across frequency before estimating the power spectra. This
tapering impacts both the resultant bandpower window
functions as well as the bandpower covariance matrix.
Figure 18 shows the Band 2, Field 1 power spectrum with its
associated window functions (bottom panel), which shows that
they are well behaved even without decorrelation; however,
they do show low-level overlap between neighboring modes,
which in principle should be taken into account when
comparing the data to astrophysical models. The window
functions are nearly identical for all measured modes,32 and are
also nearly identical between Band 1 and Band 2. The 16th
and 84th percentiles of the window functions are Δk=
0.031 hMpc−1 away from their 50th percentile, which is a
rough approximation of the 1σ horizontal error bar of the
bandpowers.

Upper limits on the 21 cm power spectrum (at a 95%
confidence level) are constructed by taking the measured
dimensionless power spectrum, Δ2, and adding the 2σ error
bar. In the case where the measured bandpower is negative, we
set it to zero, which is justified by our assertion that the
cosmological signal (or any coherent signal in the visibilities

for that matter) is a purely real and positive quantity in the
power spectrum by definition. In this case, the upper limit
simply becomes the 2σ error bar.
The measured bandpowers, their uncertainties, and the

derived upper limits are tabulated in Tables 3 and 4. The most
stringent upper limits at both Band 1 and 2 are achieved from

Figure 17. Spherically averaged, dimensionless power spectra for Band 1 (z = 10.4) and Band 2 (z = 7.9) at each of the three fields. The vertical error bars are 2σ,
while the horizontal error bars are the 16th and 84th percentiles of the window functions. The theoretical thermal noise floor (dashed) is also shown, which represents
the 1σ noise floor. Bandpowers that are measured to be negative are set to zero. The most sensitive limits come from Field 1 (for both Band 1 and Band 2), which is
largely due to the fact that Field 1 has the least amount of foreground power in the field of view.

Figure 18. The spherically averaged, dimensionless power spectrum from
Band 2 and Field 1, showing 2σ vertical error bars, their associated window
functions (lower panel), and the theoretical thermal noise floor (dashed). The
horizontal error bar is the distance of the 16th and 84th percentiles of the
window function from its 50th percentile, equal to Δk = 0.031 h Mpc−1 for all
the bandpowers except the lowest k mode, which is slightly asymmetric due to
the horizon buffer’s effect on spherical binning.

32 The lowest k mode in Figure 18 has no response below k = 0.128 h Mpc−1

due to the horizon buffer enacted in spherical binning.
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Field 1, yielding an upper limit of (95.74)2 mK2 at z= 10.4
and k= 0.256 hMpc−1 and (30.76)2 mK2 at z= 7.9 k=
0.192 hMpc−1. This is the most sensitive upper limit on the
EoR 21 cm power spectrum at z∼ 8 by over an order of
magnitude, achieved with only a fraction of the full sensitivity
of the HERA array. HERA’s nominal sensitivity over a year-
long observing campaign could be pushed two orders of
magnitude deeper, thus reaching the fiducial signal amplitudes
of standard EoR models; however, low-level systematics will
need to be modeled and appropriately resolved in order to reach
those sensitivities.

5. Validation of Upper Limits

Current 21 cm analysis pipelines are becoming increasingly
sophisticated in order to beat down a host of systematic effects
and reach the level of precision necessary to detect the
cosmological 21 cm signal. A key concern is that these analysis
choices could cause nonnegligible amounts of signal loss, whether

from calibration (Mouri Sardarabadi & Koopmans 2019), power
spectrum estimation (Cheng et al. 2018), or other steps. The extent
of any possible signal loss needs to be quantified in order to build
confidence that our results are not prone to signal loss. In this
analysis we use a combination of three complementary
approaches to build confidence in our analysis and the robustness
of upper limits on the power spectrum: simulation-based checks of
the pipeline, a comparative study of uncertainty quantification,
and statistical null tests on data subsets
In a companion paper, Aguirre et al. (2022) present a validation

of the Phase I analysis and power spectrum pipeline, using data
simulations with realistic sky, instrument, and systematic models.
In addition to tests on individual components of the pipelines,
such as calibration, systematic modeling, and power spectrum
estimation, they also present a near end-to-end pipeline test,
demonstrating the pipeline’s ability to accurately recover a
realistic EoR model for k� 0.192 hMpc−1 at both of the spectral
windows considered in this work. This end-to-end study is

Table 3
Band 1 Power Spectra, Errors, and Upper Limits on D =z 10.421

2 ( ) from Figure 17

Field 1 Field 2 Field 3

k Δ2 1σ DUL
2 Δ2 1σ DUL

2 Δ2 1σ DUL
2

h Mpc−1 (mK)2 (mK)2 (mK)2 (mK)2 (mK)2 (mK)2 (mK)2 (mK)2 (mK)2

0.128 (232.14)2 (36.90)2 (237.93)2 (311.36)2 (36.84)2 (315.69)2 (434.21)2 (48.03)2 (439.49)2

0.192 (124.01)2 (42.26)2 (137.66)2 (122.81)2 (34.88)2 (132.34)2 (191.00)2 (43.14)2 (200.50)2

0.256 (41.34)2 (61.07)2 (95.74)2 (73.63)2 (49.50)2 (101.60)2 (131.11)2 (61.15)2 (157.06)2

0.320 (103.46)2 (84.89)2 (158.49)2 −(81.56)2 (68.63)2 (97.06)2 (103.08)2 (84.82)2 (158.16)2

0.384 (82.64)2 (111.66)2 (178.23)2 (43.73)2 (90.51)2 (135.27)2 (47.52)2 (111.84)2 (165.15)2

0.448 (69.98)2 (141.55)2 (212.06)2 (51.61)2 (114.92)2 (170.52)2 (162.61)2 (141.37)2 (257.70)2

0.512 (167.19)2 (172.97)2 (296.30)2 −(195.21)2 (139.86)2 (197.80)2 (104.72)2 (172.32)2 (265.24)2

0.576 (364.27)2 (206.10)2 (466.52)2 −(200.33)2 (166.17)2 (235.00)2 (106.11)2 (205.11)2 (308.86)2

0.640 −(73.05)2 (240.38)2 (339.95)2 −(296.41)2 (194.00)2 (274.36)2 (195.72)2 (239.46)2 (391.14)2

0.704 (298.47)2 (277.29)2 (492.81)2 (244.19)2 (223.98)2 (399.95)2 (200.57)2 (275.83)2 (438.63)2

0.768 (259.69)2 (314.80)2 (515.40)2 (380.60)2 (254.70)2 (524.02)2 −(264.99)2 (314.01)2 (444.07)2

0.832 (270.03)2 (354.73)2 (569.72)2 (254.18)2 (286.82)2 (478.69)2 (434.40)2 (354.47)2 (663.33)2

0.896 −(326.77)2 (396.45)2 (560.67)2 −(111.95)2 (320.48)2 (453.23)2 (504.58)2 (395.78)2 (753.58)2

0.960 −(523.27)2 (439.41)2 (621.42)2 (282.52)2 (355.29)2 (576.44)2 (145.43)2 (438.38)2 (636.80)2

Note. The upper limit is the measurement plus the 2σ error bar. In the process, Δ2 is set to zero where it is measured to be negative.

Table 4
Band 2 Power Spectra, Errors, and Upper Limits on D =z 7.921

2 ( ) from Figure 17

Field 1 Field 2 Field 3

k Δ2 1σ DUL
2 Δ2 1σ DUL

2 Δ2 1σ DUL
2

h Mpc−1 (mK)2 (mK)2 (mK)2 (mK)2 (mK)2 (mK)2 (mK)2 (mK)2 (mK)2

0.128 (29.17)2 (17.39)2 (38.16)2 (54.66)2 (16.01)2 (59.17)2 (84.32)2 (19.49)2 (88.71)2

0.192 (14.55)2 (19.17)2 (30.76)2 (42.85)2 (16.74)2 (48.95)2 (54.33)2 (20.64)2 (61.67)2

0.256 (42.04)2 (25.84)2 (55.70)2 (43.60)2 (22.08)2 (53.63)2 (39.36)2 (27.25)2 (55.09)2

0.320 −(22.72)2 (35.07)2 (49.60)2 (51.11)2 (29.87)2 (66.31)2 (44.19)2 (36.84)2 (68.31)2

0.384 (82.98)2 (46.17)2 (105.59)2 (62.34)2 (39.28)2 (83.50)2 −(18.72)2 (48.42)2 (68.48)2

0.448 (77.29)2 (58.66)2 (113.39)2 (82.31)2 (49.99)2 (108.51)2 (65.69)2 (61.53)2 (109.02)2

0.512 (76.19)2 (71.90)2 (127.06)2 (91.07)2 (61.47)2 (125.90)2 (129.66)2 (75.54)2 (168.00)2

0.576 (86.08)2 (85.87)2 (148.85)2 (133.99)2 (73.20)2 (169.32)2 (83.39)2 (90.01)2 (152.18)2

0.640 −(108.73)2 (100.34)2 (141.90)2 (126.10)2 (85.39)2 (174.59)2 −(89.07)2 (104.92)2 (148.38)2

0.704 (106.66)2 (115.28)2 (194.83)2 (109.95)2 (98.06)2 (176.98)2 (85.27)2 (120.75)2 (190.87)2

0.768 (197.25)2 (131.05)2 (270.66)2 (212.69)2 (111.44)2 (264.71)2 (112.00)2 (137.38)2 (224.26)2

0.832 (221.71)2 (147.79)2 (304.69)2 (236.41)2 (125.53)2 (295.64)2 (159.84)2 (154.98)2 (271.27)2

0.896 −(43.63)2 (164.64)2 (232.84)2 (219.42)2 (140.29)2 (295.82)2 −(114.21)2 (172.95)2 (244.58)2

0.960 (166.53)2 (182.58)2 (307.25)2 (108.48)2 (155.43)2 (245.12)2 (198.43)2 (191.65)2 (335.91)2

Note. The same procedure as Table 3 is used to construct the upper limits.
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particularly important, as different steps of the pipeline could
potentially interact in nonlinear ways that introduce signal loss.
While the instrument model used in that work are complex
enough to model the most prominent systematics, there are some
areas where the models can be made more sophisticated in future
work to test more subtle features of the instrument, which may be
necessary for validating an analysis with a putative EoR detection.
In addition to testing the Phase I pipeline with simulated data sets,
Aguirre et al. (2022) also show a semiblinded analysis of the
simulated data with an independent power spectrum pipeline as a
consistency test with the Phase I power spectrum pipeline. In this
exercise, a small group of people were excluded from discussions
on the construction of the simulated data and systematics, and
applied an independent, simplified power spectrum pipeline to the
data products to test for experimenter bias in the derived limits.
Their resultant power spectra are in good agreement with the
output of the Phase I pipeline, in that they show unbiased
detection of the simulated EoR signal for k 0.2 hMpc−1.

In addition to the simulated pipeline validation from Aguirre
et al. (2022), Tan et al. (2021) present a comparative study of
uncertainty quantification in the power spectrum pipeline. They
highlight a number of techniques used in the literature for
estimating uncertainty on the 21 cm power spectrum, both analytic
and semi-empirical, and demonstrate that they all show relatively
good agreement with each other when applied to both real and
simulated HERA Phase I power spectra. Specifically, as discussed
in Section 4.1, we use the PN and PSN error bars that quantify the
root-mean-square (rms) of the power spectra due solely to thermal
noise (PN), and the rms due to thermal noise and its coupling to
residual signal terms in the data (PSN). The final error bars quoted
in Tables 3 and 4 come from this latter metric.

In the rest of this section, we discuss a series of statistical
consistency tests to better understand residual systematics
observed in the data. Some of these tests are formulated as true
null tests, where the null hypothesis is that the spherically

averaged power spectrum is consistent with noise-only fluctua-
tions, while others are better described as consistency checks that
seek to verify a particular scaling law. Such tests can help to
quantify the parts of the data that are systematic or noise limited
(e.g., Kolopanis et al. 2019).

5.1. Real and Imaginary Parts of the Power Spectrum

This test seeks to assess whether the final spherically
averaged power spectra are consistent with thermal noise. In
the absence of residual systematics, we expect the power
spectra to consist of foreground emission, EoR emission, and
thermal noise. Given that we have masked the foreground
horizon upon spherical binning, any excess power above the
predicted thermal noise variance is likely due to residual
systematics, which can take may forms. Generally, these
systematics leak foreground emission to k modes beyond the
foreground horizon modes, thereby contaminating the lowest k
modes in the EoR window. We assess whether the data are
consistent with noise by evaluating the p-value of the power
spectrum χ2 statistic for each band and field combination. The
statistic is defined as

c S= -d d, 26T2 1 ( )

where d is the power spectrum data vector and Σ is its noise
covariance. The noise covariance is nearly diagonal, with small
but nonzero neighbor-to-neighbor covariance (Figure 20). The
p-value for a particular data vector is the area under the χ2

sampling distribution that exceeds the χ2 of the data. The χ2

sampling distribution is derived in a Monte Carlo fashion by
drawing a large number (N= 106) of random noise realizations
and evaluating their χ2. For p-values below 0.001 we can only
quote an upper limit on the p-value given the discrete number
of random draws, however, this is a sufficiently small value to
enable an unambiguous rejection of the null hypothesis. Note

Figure 19. The real and imaginary components of the spherically averaged power spectrum P(k). The six plots on the left show the real component (pink dots), while
the six plots on the right show the imaginary component (blue dots). The error bars are 2σ and the shaded region is the PN theoretical noise expectation. Significant
power in the imaginary component could indicate phase calibration errors resulting from unmodeled systematics or baseline nonredundancies. We quantify the
consistency of the data with noise via p-value tests, tabulated in Table 5.
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that we do not enact a hard cut on the p-value to determine
whether the data reject the null hypothesis, but rather use the
collection of p-values for a given band and field in both the real
and imaginary components to ascertain whether the data seem
consistent with thermal noise (Figure 19).

Based on the estimator presented in Section 4.1, the power
spectrum of a noise-only data set will be a mean-zero process in

both the real and imaginary components with equal variance.
Coherent signals in the data, whether they are sky signals or
instrumental systematics, are confined to the real component of the
power spectrum. However, systematics with phase differences
between cross-multiplied visibilities can cause excess variance in
the imaginary component of the power spectrum (Kolopanis et al.
2019). Figure 19 shows the real component (pink panels) and the
imaginary component (blue panels) of the power spectra in P(k),
with their p-values tabulated in Table 5 showing the response of the
p-value with an increasingly large k cut. We see that for both bands,
most fields are inconsistent with the noise distribution at the low k
modes, evidenced by their consistently low p-values in both the real
and imaginary components. Reassuringly, the p-values for the
imaginary component are generally more consistent with noise than
the p-values for the real component, even when there is strong
evidence for systematics, like Band 2, Field 2. The interesting
exception to the rule is Band 1, Field 2, whose imaginary
component is less consistent with the noise than its real component,
possibly indicative of a low-level, baseline-dependent systematic.
Overall, the quantification provided by the p-value tests on the real
and imaginary components supports the notion that the data are
largely consistent with thermal noise at high k modes, while
confirming our intuition that residual systematics are beginning to
be detected at the lowest k modes in the EoR window.

5.2. Night-to-night Binning Split

A check on long-term temporal stability can be made by
taking the nightly data from the data set and separating them
into two groups, differencing them, and then forming the power
spectra of the differenced visibilities. To do this we take every
other night in the 18 night data set and form a set of “even”
nights and a set of “odd” nights in terms of their Julian date.
We then perform the standard night-to-night LST binning
described in Section 3.6 on both the even and odd sets
independently. Afterwards, we pass both data sets through the

Table 5
Statistical p-value Tests on the Real and Imaginary Components of the

Spherical P(k); (Figure 19)

p-value

Data Selection k � 0.192 k � 0.5 k � 1.0

Re[P], Band 1, Field 1 <0.001 <0.001 0.003
Im[P], Band 1, Field 1 0.605 0.477 0.345

Re[P], Band 1, Field 2 <0.001 0.044 0.203
Im[P], Band 1, Field 2 <0.001 0.002 0.011

Re[P], Band 1, Field 3 <0.001 0.107 0.050
Im[P], Band 1, Field 3 <0.001 0.358 0.523

Re[P], Band 2, Field 1 0.020 0.372 0.716
Im[P], Band 2, Field 1 0.232 0.216 0.504

Re[P], Band 2, Field 2 <0.001 <0.001 0.007
Im[P], Band 2, Field 2 <0.001 0.064 0.111

Re[P], Band 2, Field 3 <0.001 0.439 0.717
Im[P], Band 2, Field 3 0.036 0.292 0.733

Note. The null hypothesis is that the power spectrum is consistent with mean-
zero fluctuations drawn from the propagated bandpower noise covariance
(Figure 20). Upper limits on the p-value are quoted where it is sufficiently
small. The k cuts are in hMpc−1.

Figure 20. The normalized covariance between the k = 0.192 hMpc−1 mode
and neighboring modes used in the statistical tests of Table 5. This shows there
is a small but nonzero covariance between neighboring modes, and effectively
no covariance at larger separations.

Figure 21. The real component of the power spectrum computed from the
difference of interleaved nights for Field 1. Vertical error bars are 2σ, and the
gray shaded region is ± 2PN. The p-values for these power spectra with k cuts
of �0.192, �0.5, and �1.0 h Mpc−1 are 0.651, 0.491, and 0.643 for Band 1
and 0.585, 0.584, and 0.619 for Band 2, respectively. These are consistent with
the null hypothesis that the data are drawn from the thermal noise covariance.
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standard systematics treatment and then difference the resultant
visibilities before estimating the power spectrum. This test is
sensitive to systematics that exhibit nonnegligible variation
from night to night.

Figure 21 shows the real component of the differenced
power spectrum for Field 1. Computing the p-values of these
spectra in the same manner as in Section 5.1, we find that the
spectra for both Band 1 and Band 2 are consistent with thermal
noise for k� 0.192 h Mpc−1, which was not observed for Field
1 in the undifferenced power spectrum (Table 5). This suggests
that the low k residual systematics seen in the data are fairly
stable from night to night.

5.3. Scaling of Bandpowers under Cumulative Averaging

If delay modes outside the foreground horizon are dominated
by thermal noise, as we would expect in the absence of residual
systematics or an EoR signal detection, the measured power in
those modes should integrate down in a characteristic way as
more time samples and baseline pairs are averaged over. In this
section, we study the scaling of the measured delay spectrum
bandpowers when cumulatively averaging individual baseline
pairs in a redundant baseline group, which should in principle
measure the same sky signal but have independent noise
contributions. Note that this test is performed higher up in the
power spectrum pipeline before cylindrical or spherical binning
of the power spectra, which is necessary because we need a
large number of independent samples for computing the
cumulative average. We specifically target the east−west
14.6 meter baseline group for this test as it has the largest
number of independent baselines.

The left and center panel of Figure 22 show the scaling of the
delay spectrum bandpowers for Band 2, Fields 1 and 2, having
cumulatively averaged over the redundant baseline pairs. Each
line shows the a different bandpower, ranging from negative

delays to positive delays, while the black dashed line shows a
representative N1 scaling, where N is the number of
averaged baseline pairs. To reduce the scatter in this statistic,
we take the absolute value of the real part of the bandpower and
average across the remaining LST samples associated with
Field 1.
While low delay modes (|τ| 200 ns) are not plotted, we see

that the high delay modes are generally consistent with the
expected N1 scaling of noise. As a demonstration, the right
panel of Figure 22 shows the same procedure applied to a pure-
noise simulation for Band 2, Field 2.
The thick orange line shows the average of the bandpowers

across delays for |τ|> 500 ns (or |k∥| 0.25 hMpc−1). This
more clearly shows the marginal detection of a systematic at
deep integration levels, which is more pronounced for Band 2,
Field 2, as we would expect given our conclusions from
Figure 19. Nevertheless, this test shows that the low-level
systematics do partially integrate when averaging across
different baselines, as the mean of the bandpowers (i.e., the
orange line) still shows a downward trend. Integrating more
data will help to understand at what dynamic range these
systematics hit a plateau, if at all.

5.4. Stability with Respect to Frequency Selection

Here, we seek to assess the overall containment of
foreground structure within the foreground horizon as a
function of frequency. To do this, we compute the delay
spectrum of the data over a subband with fixed bandwidth and
then iteratively shift the center of the subband through the full
frequency range of the data, thereby probing for spectral
discontinuities in the data at particular locations in frequency.
In order to test the consistency of the measurements with noise,
we simulate mock visibilities consisting of Gaussian random
noise with the same sampling and flagging patterns as the real

Figure 22. Cumulative incoherent averaging of the delay spectra in arbitrary units within a single redundant baseline group (all 14.6 meter, east−west baselines) for
Band 2 of Field 1 (left panel), Field 2 (middle panel), and a corresponding thermal noise-only realization of Band 2, Field 2 (right panel). Each line denotes a different
bandpower that has been cumulatively averaged over the baseline pairs within the redundant group. To reduce the noisiness of the statistic, the absolute value of the
real part was then taken and averaged over all LST samples in the field. Red lines denote negative delays while blue lines denote positive delays. Note that low delay
modes of |τ|  200 ns are not shown in the plot. The black dashed line shows a theoretical -N1 baseline pair scaling, with the same arbitrary normalization in all
panels. The thick orange line shows the mean of the bandpowers for |τ| > 500 ns (k∥ ∼ 0.25 h Mpc−1), showing a slight detection of a systematic at deep integration
levels, particularly for Band 2, Field 2.

23

The Astrophysical Journal, 925:221 (27pp), 2022 February 1 Abdurashidova et al.



data. As a metric, we look at the mean bandpower within a
delay range of 2000< |τ|< 4000 nanoseconds for both the real
data and simulated noise data sets. By picking out the high
delay regime, we are constructing a test that is sensitive to
spurious spectral structure that would cause foreground power
to leak significantly beyond the foreground horizon. Similar to
Section 5.3, we perform this test with the east−west 14.6 meter
redundant baseline group to enable a large sample size, and
focus on the LST ranges associated with Field 1. Note that this
test is performed after delay-based inpainting, where the data
have been reconstructed in previously flagged channels.

We use a two-sample Kolmogorov–Smirnov (K−S) test
(Hodges 1958) to examine if the underlying probability
distribution of the measured bandpowers from the data and
noise-only simulations are different. Again, this process is
repeated as we shift the spectral window up in frequency,
where the window has a width of 100 channels, and is moved
up 20 channels every iteration. We compute the allowed range
of the metric by taking the 5th and 95th percentiles of the two-
sample K−S test, having paired two independent noise
simulations, and then repeating for all pair combinations of
the noise simulations and averaging the result. This interval is
shown as the green shaded region in Figure 23, which also
shows the two-sample K−S test between the data and the noise
simulation (blue points). This shows that for most of the total
bandwidth, the measured bandpowers at high delay are
consistent with that of pure-noise fluctuations. The Band 1
and Band 2 spectral windows are shown as gray dashed lines.

The notable exception are the band edges, which are known
to be suboptimal to due tapering effects in the process of
calibration, as well as the ORBCOMM band at ∼138 MHz,
where a large swath of channels are routinely flagged, which is
known to degrade the ability of the delay-based inpainting
algorithm.

5.5. Impact of Systematic Treatment

This null test is aimed at examining the consistency of the
bandpowers with thermal noise before and after systematic
treatment, discussed in more detail in Dibblee-Barkman &
Singh (2021). We compute the delay power spectra for a single
14.6 meter, east−west oriented baseline, this time spanning an

LST range of 5–5.4 hr overlapping with Field 2. We estimate
the cumulative probability distribution (CDF) of the band-
powers at different delays, constructing the CDF across the 30
time bins in the LST range studied here. We then perform a
one-sample K−S test between the bandpower at each delay and
the expected analytic distribution of the bandpowers under the
assumption that the visibilities are drawn from random
Gaussian noise. Additionally, we also construct bandpower
CDFs having resampled the time bins with replacement, which
gives us a sense for the inherent variation of the CDF
throughout the LST range. We compute the one-sample K−S
test for each of the resampled CDFs, and then take their
average.
The result is shown in Figure 24, where the solid line shows

the K−S statistic from the un-resampled CDF as a function of
delay mode and the dashed line shows the average K−S
statistic from the resampled CDF, showing good agreement
between the two, suggesting that variation of the K−S statistic
as a function of time is minimal. We repeat this test on the data
before systematics treatment (to panel), after systematics
treatment (middle panel), and also compute it on a pure-noise
simulation for validation purposes (bottom panel). The
horizontal black line with a K−S value of ∼0.25 is the
analytically computed 95th percentile of the K−S values
assuming the CDF is drawn from pure noise, which is validated
by the results of the bottom panel showing the vast majority of
the KS values falling below the solid black line. What we see
from the top and middle panels of Figure 24 is a clear
discrepancy between the data and the assumed noise distribu-
tion at intermediate delay modes before performing systematics
treatment (top panel), which is not surprising given that we
know those modes to be systematics dominated. After
systematics treatment (middle panel), these delay modes show
good agreement with the noise model, except for at very low
delays where we expect intrinsic foreground emission to
dominate.

6. Summary

In this work we have presented upper limits on the 21 cm
power spectrum from Phase I observations of the 50 element
HERA at redshifts 7.9 and 10.4. The most sensitive 2σ limits
achieved are (30.76)2 mK2 at z= 7.9 and k= 0.192 h Mpc−1

and (95.74)2 mK2 at z= 10.4 and k= 0.256 hMpc−1. At
z= 7.9, the limits presented here are the most sensitive to date
within the literature by roughly an order of magnitude. Along
with a series of paper describing the Phase I analysis pipeline,
including redundant calibration (Dillon et al. 2020), absolute
calibration (Kern et al. 2020a), systematic modeling (Kern et al.
2019, 2020b), uncertainty quantification (Tan et al. 2021), and
pipeline validation (Aguirre et al. 2022), this work details the
Phase I analysis and power spectrum pipelines, and discusses a
series of statistical tests that show that the data are largely
thermal noise limited for k� 0.5 hMpc−1, whereas at lower k
modes the data show evidence for low-level systematics. We
speculate that these residual systematics could be due to radio
frequency interference, as well as possibly residual gain errors
or residual instrumental coupling effects. Future work explor-
ing better RFI identification, as well as more comprehensive
systematic models, will help to better understand the origin of
these systematics.
Note that no explicit foreground subtraction or filtering was

performed in the analysis. Instead, our analysis emphasized

Figure 23. Blue points show the K−S value between data and noise-only
simulations. The green regions are 5th–95th percentile range of the K−S values
from a set of noise-only simulations. The vertical dashed lines show the
spectral window chosen for the power spectrum analysis (Section 4.1).
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strong control of spectral systematics in order to keep
foreground structure largely contained within the foreground
horizon. Ultimately, this enabled the Phase I analysis pipeline
achieved a dynamic range between the thermal noise floor and
the peak foreground power of 109 in power. Future work will
focus both on a more comprehensive analysis of low-level
systematics, and the modeling and subtraction of foreground
emission. Hardware upgrades in the HERA Phase II system
will potentially mitigate some of the observed Phase I
systematics in the field, such as cross-coupling and reflection
contamination.

The overall systematic uncertainties in this analysis come
predominately from the uncertainty on the absolute flux density
scale that is known to an accuracy of ∼10%, which is pinned to
the GLEAM catalog (Hurley-Walker et al. 2017). Furthermore,
nightly drift in the gain amplitude is not corrected for in this
work, which Kern et al. (2020a) estimate to be a roughly 3%
effect in the gains. Signal loss arising from the analysis pipeline
are explicitly derived and corrected for, but in total this
amounts to less than a 15% correction of the power spectrum
amplitude. Cosmic variance uncertainty on the 21 cm power
spectrum limits is expected to be 5.5% (1σ) given the uv
sampling of the instrument for a 2 hr integration across LST
(Aguirre et al. 2022).

Going forward, future Phase I analyses may include a ∼100
night data set that theoretically stands to improve the sensitivity
of our limits here by over a factor of 5, assuming the low k
systematics observed in this work can be further mitigated.
Additionally, Phase II commissioning and observations have
already commenced, with a new front-end receiver spanning an
increased bandwidth from 50–250 MHz. Overall, the analysis

pipeline presented in this work has laid a framework for future
analyses of HERA data as construction and commissioning is
completed.
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Software

This analysis utilized custom-built software by the HERA
Collaboration (https://github.com/hera-team) in addition to soft-
ware built by both HERA members and collaborators (https://
github.com/RadioAstronomySoftwareGroup). This analysis also
relied on publicly accessible and open-source software, including
numpy (Harris et al. 2020), scipy (Virtanen et al. 2020), and
astropy (Astropy Collaboration et al. 2018).

Appendix
Data

The data from Tables 3, 4, Figures 17, and 18 are publicly
available and can be accessed at https://reionization.org/
science/public-data-release-1/.
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