
TrustZone Enhanced Plausibly Deniable Encryption System for
Mobile Devices

Jinghui Liao
jinghui@wayne.edu

Wayne State University
Detroit, MI, USA

Bo Chen
bchen@mtu.edu

Michigan Technological University
Houghton, MI, USA

Weisong Shi
weisong@wayne.edu
Wayne State University

Detroit, MI, USA

ABSTRACT
Modern mobile devices are increasingly used to store and process
sensitive data. In order to prevent the sensitive data from being
leaked, one of the best ways of protecting them and their owner
is to hide the data with plausible deniability. Plausibly Deniable
Encryption (PDE) has been designed for such purpose. The existing
PDE systems for mobile devices however, have suffered from signif-
icant drawbacks as they either ignore the deniability compromises
present in the special underlying storage media of mobile devices or
are vulnerable to various new attacks such as side-channel attacks.

In this work, we propose a new PDE system design for mobile
devices which takes advantage of the hardware features equipped
in the mainstream mobile devices. Our preliminary design has two
major component: First, we strictly isolate the hidden and the public
data in the flash layer, so that a multi-snapshot adversary is not able
to identify the existence of the hidden sensitive data when having
access to the low layer storage medium of the device. Second, we
incorporate software and operating system level deniability into
ARM TrustZone. With this TrustZone-enhanced isolation, our PDE
system is immune to side-channel attacks at the operating system
layer.

KEYWORDS
Mobile Devices, Plausibly Deniable Encryption, TrustZone, TEE,
FTL

1 INTRODUCTION
Mobile computing devices have played an essential role in our daily
life, as we increasingly rely on them for daily communication, web
browsing, online shopping, mobile banking, etc. Especially, quite a
few people also use mobile devices to deal with professional work
or even political tasks. This, however, creates a large amount of
personally private or even mission critical data in those devices.
To protect sensitive information, major mobile operating systems
have incorporated various encryption tools which can allow users
to encrypt their critical data [6, 30]. Full Disk Encryption (FDE) has
been deployed broadly in mobile devices to defend against passive
attackers, preventing them from retrieving sensitive information
from the data storage. However, active attackers, who can physically
approach the device owner, may coerce the owner to decrypt the
sensitive information. Therefore, we need a new technique which
can protect sensitive data even if the data owner is forced to unveil
the secrecy.

SEC ’21, December 14–17, 2021, San Jose, CA, USA
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Plausibly Deniable Encryption (PDE) is such a technique designed
to address the aforementioned issue. The PDE can convincingly
deny the very existence of sensitive data, by which even the active
attackers cannot prove that sensitive data exists. The PDE typically
works as follows: Two keys, a true key and a decoy key will be gen-
erated; the original sensitive data will be encrypted into cipherthext
in such a way that, upon decryption, if the true key is used, the
ciphertext will be decrypted into the original sensitive plaintext
but, if the decoy key is used, the ciphertext will be decrypted into
some different reasonable and innocuous plaintext; therefore, upon
being coerced, the victim can simply disclose the decoy key to
avoid being tortured, while protecting the original sensitive data.
Leveraging PDE, a variety of deniable storage systems have been
designed for personal computers, which include TrueCrypt [35],
Rubberhose [25], HIVE [9], Gracewipe [37], Steganographic File
Systems [5, 29, 31], etc. Despite the success of PDE for PC platforms,
achieving deniability in mobile platforms is much more challeng-
ing, for two reasons: 1) Mobile devices are equipped with unique
hardware, creating extra attack vectors leading to compromise of
deniability [24]; 2) Mobile devices are sensitive to electricity con-
sumption and only have limited computational resources, i.e., the
PDE designed for mobile platforms has much higher requirements
in energy efficiency.

Recently, PDE systems for mobile devices have been proposed
[12–14, 19, 24, 32–34, 36]; nevertheless, the existing mobile PDE
systems still suffer from some critical drawbacks:
Deniability Compromise in Lower Storage Layer. Most existing PDE
systems [12–14, 33, 34, 36] for mobile devices are built on the block
layer and unfortunately suffer from deniability compromise in the
underlying raw flash memory. A fundamental reason is that raw
flash memory requires special internal management to handle its
unique nature [27]. Even if sensitive data have been isolated care-
fully on the block layer, they will not be carefully isolated by the
internal management of flash memory which works independently
and is transparent to the upper layer. Therefore, traces of sensitive
data may be present in the raw flash memory and observed by the
snapshot adversaries1, compromising deniability.
Side-Channel Attacks.Most existing PDE systems [9, 32] suffer from
side-channel attacks [21]. The fundamental reason is that existing
designs do not strictly isolate the public mode (in which the public
non-sensitive data is processed and stored) and the hidden mode
(in which the hidden sensitive data is processed and stored) and,
the information of the hidden mode may be leaked to the public

1The adversary may obtain a snapshot of the storage device at different points of time
and, integrating the hidden volume mechanism [24] into the flash memory cannot
defend against such a multi-snapshot adversary.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

mode, and therefore the adversary may learn the existence of the
PDE by analyzing shared resources such as memory.

The above deficiencies limit the applications of the existing PDE
systems in mainstream mobile devices and, there is an urgent need
of developing a more secure mobile PDE system. Therefore, our
primary goal is to develop a new mobile PDE system which can
defend against snapshot attackers that can compromise deniability
by: 1) exploring leaks in the lower storage layer; 2) performing
side-channel attacks over the shared resources between the two
modes.

To realize this goal, we design a novel mobile PDE system that
achieves deniability by leveraging existing hardware features of
mobile devices such as flash memory and ARM TrustZone. Our
preliminary design consists of two major components:
DataHiding in FTL. To prevent deniability compromise, the public
and the hidden data should be isolated in the external flash storage,
such that by having access to the lower storage layer, the adversary
is not able to identify the existence of the hidden sensitive data.
Prior research isolates them in the upper block layer, which cannot
prevent deniability compromise from the raw flash memory snap-
shot attacks. Therefore, we will implement data hiding techniques
in the flash translation layer (FTL), such that the public and the
hidden data can be strictly isolated in the flash memory. Our design
will eliminate any sources of deniability compromise in the flash
memory and defend against adversaries which can take a snapshot
of the flash memory at different points of time.
Strong Isolation in OS. The public and the hidden mode must
be strictly isolated when running in the device, eliminating the
possibility of information leakage. We will study novel approaches
to defend against side-channel attacks due to the shared system
software and applications. We will leverage ARM TrustZone tech-
nology to execute a secure OS and sensitive applications (i.e., apps
used in the hidden mode) in an isolated execution environment,
so that we can mitigate information leakage of the hidden mode
from flash, memory, cache, and I/O devices. Note that TrustZone is
an existing hardware feature that is compatible with mainstream
mobile devices.

2 BACKGROUND
2.1 Plausibly Deniable Encryption
Plausibly deniable encryption (PDE) is explored to maintain the
privacy of sensitive data against a coercive attacker, who can force
the data owner to reveal the decryption key. PDE allows data owners
to decrypt ciphertext to plausible and benign decoy plaintext with a
different key, such that the data owner is able to deny the existence
of the original sensitive data. In order to provide reasonableness and
plausibility, the PDE system usually requires the decoy plaintext
can be normally found on a computer and all the ciphertexts are
accounted for. Existing PDE systems rely on either steganography
or hidden volumes to achieve deniability.

With PDE, users can convincingly deny that a given data is
encrypted, or that they can decrypt the given data, or that some
specific encrypted data exists. Such denials may or may not be
genuine, and PDE can eradicate the attacker’s confidence that the
data is encrypted or that the person who owns the data can decrypt
and provide the relevant plaintext.

Figure 1: The architecture of an FTL-based flash storage sys-
tem. Applications read and write files via the file system,
while the file system do sector operations with the FTL. FTL
interacts with the 𝑁𝐴𝑁𝐷 flash with I/Os on pages and era-
sures on blocks. FTL contains address translator, wear leveler,
bad block manager, and garbage collector.

2.2 NAND Flash and Flash Translation Layer
Main-stream mobile computing devices use 𝑁𝐴𝑁𝐷 flash as ex-
ternal storage. 𝑁𝐴𝑁𝐷 stores information in an array of memory
cells, which are grouped into blocks. Each block contains a few
pages and every page usually has a small spare out-of-band (OOB)
area. 𝑁𝐴𝑁𝐷 flash usually exhibits a few special characteristics:
1) 𝑁𝐴𝑁𝐷 flash has an erase before-write design, i.e., a flash cell
needs to be erased before it can be overwritten. 2) The unit for a
read/program operation in 𝑁𝐴𝑁𝐷 is a page, but the unit for an
erase operation is a block. 3) Flash memory is update unfriendly
since updating a page requires erasing the entire encompassing
block. Therefore, it usually uses out-of-place update. 4)A flash block
usually has a finite number of program-erase cycles, and will be
worn out if the number of programs/erasures performed over it
exceeds a certain threshold.
Flash Translation Layer (FTL). To remain compatible with tradi-
tional block-based file systems (e.g., EXT4 and FAT32), flash mem-
ory is usually emulated as a block device. Therefore, most existing
flash storage media (e.g., eMMC cards, MiniSD cards) used in mo-
bile devices are used as block devices. The Flash Translation Layer
(FTL) [23, 26–28], a piece of special firmware, is introduced between
the file system and the raw NAND flash to transparently handle the
unique nature of flash memory (as shown in Figure 1). FTL usually
implements address translator, garbage collector, wear leveler, and
bad block manager. Since flash storage is emulated as a block device,
FTL needs to translate the address between block and flash memory
addresses. The address translator has an internal mapping table to
convert the page from logical block address (LBA) to physical block
address (PBA). Figure 2 is an example of how address translator
works. In the figure, the address translator accepts a write request
from file system to write data m to address b (which is an LBA),
converting b to its corresponding PBA b’.

2.3 TrustZone
ARM TrustZone technology [8] is a hardware feature that creates
an isolated execution environment since ARMv6 around 2002 [1].
Similar to other hardware isolation technologies, it provides two
environments or worlds. The Trust Execution Environment (TEE),
the secure world, and the Rich Execution Environment (REE), the

2

Figure 2: An example of the process of address translation
in FTL. The file system sends a write request (m, b) to the
𝑁𝐴𝑁𝐷 , where 𝑚 is the data and b is the target page. The
address translator of FTL convert the page from LBA b to
PBA b’ in the mapping table. Then write𝑚 to b’

Figure 3: TrustZone virtualizes the CPU into two states,
namely a Normal World and a Secure World. The Normal
World is a Rich Execution Environment (REE) and the Secure
World is a Trusted Execution Environment (TEE).

normal world. The CPU on a TrustZone-enabled ARM platform has
two security modes: secure mode and normal mode. Figure 3 shows
the processor modes in a TrustZone-enabled ARM platform. Each
processor mode has its own memory access region and privilege.
The code running in the normal mode cannot access the memory in
the secure mode, while the program executed in the secure world
can access the memory in the normal mode. As shown in Figure 3,
ARM involves different Exception Levels (EL) to indicate differ-
ent privileges in ARMv8 architecture, and lower EL owns lower
privilege. The EL3, which is the highest EL, serves as a gatekeeper
managing the switches between the normal mode and the secure
mode.

2.4 Hidden Volumes
The hidden volumes mechanism can be used to implement PDE,
which works as follows: Two volumes, a public volume and a hidden
volume, are created on a given disk. The public volume is encrypted
using a decoy key and is placed across the entire disk, while the
hidden volume is encrypted using a true secret key and is placed
towards the end of the disk from a secret offset. The sensitive data
being protected will be stored in the hidden volume. Note that the
entire disk should be filled with random data initially. Upon being
coerced by the adversary, to protect the true key, the victim can
simply disclose the decoy key. Using the decoy key, the adversary

can decrypt the public volume but cannot detect the existence of the
hidden volume, as he/she cannot differentiate the encrypted hidden
volume from the randomness filled initially. Correspondingly, a
public mode and a hidden mode are introduced to manage the two
volumes. When working in the public mode, the user can manage
(e.g., read, write, process) public non-sensitive data stored in the
public volume; when working in the hidden mode, the user can
manage (e.g., read, write, process) the sensitive data.

3 SYSTEM AND ADVERSARIAL MODEL
System Model. We consider a mobile computing device which: 1)
is equipped with a flash-based block device (e.g., a microSD card or
an eMMC card which manages 𝑁𝐴𝑁𝐷 via FTL); and 2) has built-in
TrustZone support and the ATF is the most recent version. Note that
the use of TrustZone and the secure OS itself does not compromise
deniability as it is common in real world. We assume the TrustZone
itself is secure, a reasonable assumption in the domain of TrustZone
technologies [20, 22].
Adversarial Model. We consider a computationally bounded ad-
versary which can capture a victim mobile device, having access
to the disk and the memory of the device; in addition, the adver-
sary can capture the device’s owner, forcing him/her to decrypt the
system.

The adversary is able to take a snapshot of the target device upon
capturing it. Each snapshot can include information from both the
storage medium and the memory. The snapshot on the storage
medium can be the physical image of rawNANDflash, obtainable by
forensic data recovery tools [10]. Unlike prior works [13, 24, 34, 36],
we set no limitation on the number of times the adversary can
observe the victim mobile device [9, 32]. Henceforth, the adver-
sary can either perform a single-snapshot attack or multi-snapshot
attack, such as the Evil Maid attack [3] where the adversary peri-
odically obtains multiple copies of the hard disk or memory of the
targeted device.

The users might switch between public and hidden mode often
and, henceforth, sensitive information might reside in device mem-
ory and cache. However, we assume the device owner will not work
in the secure mode upon being captured by the adversary.

4 DENIABILITY COMPROMISES
Deniability Compromises in The Flash Layer. Most existing
PDE systems are specifically built for the block layer [5, 9, 11–
14, 29, 33–36]. But they suffer from deniability compromise if the
adversary can have access to the underlying flash memory. The
unique nature of flash memory requires a special internal man-
agement (usually implemented in FTL), which leads to a different
view of data on the flash memory than that on the block layer. By
having access to the flash memory [10], the adversary may be able
to observe unexpected footprints of hidden sensitive data, compro-
mising deniability. Moving the hidden volumes mechanism to the
flash layer [10] may mitigate this compromise. However, the design
is still vulnerable to a multi-snapshot adversary which can access
the flash memory at different points of time. The multi-snapshot
adversary can have access to the flash memory multiple times over

3

time and, by comparing different snapshots captured, it can de-
tect unaccountable changes on the random data caused by writes
performed by the hidden mode, compromising deniability.
Deniability Compromises in The OS Layer. Existing PDE sys-
tems that defend against multi-snapshot adversaries like HIVE [9]
and DEFY [32] suffer from side-channel attacks [21, 34] including
leakage from the OS or applications. The fundamental reason for
the leakage is because public and hidden modes share the system
software (i.e., OS) and applications. Suppose a user opened a secret
file in the hidden mode, and edited the file in her device; then she
switched the device from the hiddenmode to the public mode before
crossing the border for inspection. If a customs officer notices that
a secret file shortcut is stored, this shows significant evidence that
hidden data exists. Additionally, besides the leakage caused by OSes
like Windows, applications could generate traces that lead to denia-
bility compromise as well. For example, Microsoft Word has an auto
backup function that prevents data loss. Supposing a user opened
MS word to edit a secret file in the hidden mode, the data might be
saved to folders that are in the public volume due to the auto backup
function. Though the saved backup files normally are deleted after
the editing finishes, researchers have shown that these files can be
recovered from the Word auto-recovery folder [2]. Additionally,
shared applications used in hidden mode might leave footprints
in memory since recent PDE systems [12–14] switch modes with-
out a power interrupt, and sensitive data may remain in memory.
We argue that, due to the shared software (deniability-unaware),
the operations on the hidden data leave footprints/artifacts in the
public mode [21], leading to a compromise of deniability.

5 OUR DESIGN
Design Overview. As shown in Figure 4, our PDE system contains
two levels of deniability, the flash layer (the𝑁𝐴𝑁𝐷 flash), protected
by the FTL, and the OS layer (the application and the OS), protected
by the TrustZone.

Figure 4: The system structure of our PDE system. The user
P has two keys, the true key K𝑡 to encrypt and decrypt the
sensitive data𝑚 in the Trusted OS, and the decoy key K𝑑 to
deal with the decoy data𝑚′ in the Rich OS. The flash has two
mode, the public mode and the hidden mode.

The flash layer is divided into two modes, the public mode and
the hidden mode. When the flash layer is in the public mode, it only
processes ordinary data request, denoted as m, from the rich OS.
Once the flash layer is in hidden mode, it handles data operations,
denoted as m’ from TA. Furthermore, to isolate the operation on m’,
we design two mapping table into FTL, the mapping table for m is

Figure 5: The raw flash blocks are divided into two parts, the
public blocks and the reserved hidden blocks. Correspond-
ingly, FTL has two modes, the public mode and the hidden
mode. While in the public mode, the mapping table only
maps the pages of the Public Blocks. The hidden blocks can
only be accessed in the hidden mode.

MAP-PUBLIC, and the other one to handle m’ isMAP-HIDDEN . two
tables work separately and are transparent to each other. Figure 5
shows an example of how those two mapping tables in the FTL.

The OS layer contains two OSes, a rich OS, Android for example,
to run the ordinary applications, and a trusted OS in the TrustZone
to run the trusted application (TA) of the PDE (see more detail in
Figure 3). The device owner creates two keys to switch between
these two OSes, one true key K𝑡 used to encrypt and decrypt the
sensitive data, and one decoy key K𝑑 to deceive the adversary. The
entry point is the place where the user types in the keys.

In the following, we elaborate our design details for the flash
layer and the OS layer, respectively. Note that a portion of the
design of the flash layer appeared as a preprint in arXiv [16].

5.1 Deniability in Flash Layer
To combat the multi-snapshot attacks using raw flash memory, we
need to carefully modify the FTL to support PDE as follows: 1) Two
modes, a public and a hidden mode, are incorporated into the FTL.
When the system enters the public mode, the user can write public
non-sensitive data and, when the system enters the hidden mode,
the user can write hidden sensitive data. For each mode, the system
should maintain a table which keeps mappings between LBAs and
PBAs. Therefore, there should be two independent mapping tables
in the FTL, MAP-PUBLIC for the public mode and MAP-HIDDEN
for the hidden mode. 2) Upon performing public data writes, the
FTL will perform additional dummy writes of random data. Deni-
ability can be achieved since the encrypted sensitive data cannot
be differentiated from randomness created by dummy writes and,
even though the multi-snapshot adversary can notice change of
randomness across flash memory, it can be denied as created by
new dummy writes. One security issue here is that, rarely, there are
no public data writes between the two snapshots captured by the
adversary. In this case, if any hidden writes are performed between
the two snapshots, the adversary will be clear that uncountable

4

changes are caused by the hidden writes, compromising deniabil-
ity. To avoid this compromise, the FTL should actively perform
a few dummy writes if there are no public data writes for a long
time. 3) The FTL places all the data (resulted from public, dummy
and hidden writes) randomly to flash memory. The random place-
ment technique is feasible for flash memory, because random seeks
on flash memory are as efficient as sequential seeks. In addition,
random placements inherently distribute data evenly among flash,
naturally achieving good wear leveling [17]. Finally, public and hid-
den data can be easily located by the user using MAP-PUBLIC and
MAP-HIDDEN . A few additional issues are addressed as follows:
Hiding The Hidden Mode Mapping Table. MAP-HIDDEN can
be stored encrypted (using the true key) and stored in a few random
locations. The existence of flash pages storing the encrypted MAP-
HIDDEN can be denied as storing dummy data. These random
locations can be derived from the true key only known to the hidden
mode. Once the user enters the hidden mode, the FTL will use the
true key to compute and locate flash pages storing MAP-HIDDEN ,
decrypt MAP-HIDDEN , and identify all flash pages storing hidden
data.
Preventing Overwriting on Hidden Data. Note that for deniabil-
ity purposes, the public mode should not be aware of the existence
of the hidden mode; otherwise, the adversary who can have access
to the public mode will trivially know the existence of hidden sensi-
tive data. To address this issue, a global bitmap should be introduced
to the FTL to keep track of the usage of flash pages. Specifically,
once a flash page is used (by either public, dummy or hidden data),
the page will be marked as used in the global bitmap. This would
not be vulnerable to the multi-snapshot adversary, since the flash
pages used by the hidden data can be denied as used by the dummy
data. Another issue is how to store and maintain the global bitmap.
Storing the bitmap in the flash memory may be problematic since
flash memory is updated unfriendly, but the bitmap needs to be
updated frequently in order to keep track of page usage. Storing the
bitmap in memory can solve the problem. However, the informa-
tion storing in memory will suffer from loss upon power failures. A
solution could be: when the mobile device is powered off normally,
the bitmap in memory will be committed to flash memory; when
the mobile device encounters a sudden power failure, the FTL will
perform a full disk scan to reconstruct the bitmap. The user should
be involved and provide both the decoy key and the true key in
order to localize the public and hidden data, reconstructing the
portion of the bitmap for them. There is no need to reconstruct the
portion of the bitmap for the dummy data and the corresponding
flash pages can be reused. Since the power failure is a rare event,
the user involvement will not create usability issues.
Preventing Garbage Collection on Hidden Data. Garbage col-
lection reclaims the space occupied by dummy data periodically
to prevent disk from filled by dummy data. Note that during each
garbage collection, the FTL should only reclaim a random portion
of flash pages occupied by dummy data to avoid deniability com-
promise. The challenge is, the public mode cannot differentiate
randomness created by the hidden writes from that created by
the dummy writes. Having observed that the hidden mode knows
where are the actual dummy data, a promising strategy could be
using a “Lazy” garbage collection in the public mode while using

an active garbage collection in the hidden mode. Specifically, the
public mode will not reclaim space occupied by dummy data if flash
memory load factor (i.e., percentage of the entire space being used)
does not exceed a large threshold and, when the user enters the
hidden mode, the FTL will actively reclaim flash blocks occupied
by dummy data and invalid data. To avoid significantly impact the
performance of the hidden mode, the garbage collection could be
performed during idle time of the hidden mode.

Due to special physical designs of flash memory, other unique
sources for flash memory that causes deniability compromise could
be present. One compromise comes from the program-erase (P/E)
cycle-based design. Since each flash block has a limited number of
P/E cycles, various flash functions like wear leveling, garbage col-
lection, bad block management are performed based on measuring
the programs/erasures on the blocks. For example, wear leveling
[15] usually requires keeping track of P/E cycles on each flash block,
and swaps blocks with large accumulative P/E cycles with those
with small accumulative P/E cycles. A PDE system has an additional
hidden mode for managing hidden sensitive data, which may sig-
nificantly increase P/E cycles on flash blocks compared to a regular
system without PDE. By comparing P/E cycles among different
snapshots, the adversary may observe this abnormality, suspecting
the existence of PDE. One mitigation could be leveraging [18],
which does not keep track of P/E cycles during the device’s lifetime,
but only during a short period (i.e., an epoch).

Another potential compromise comes fromOOB, a special area in
each flag page used to store error correction code (ECC), bad block
information, and file system-dependent data [4]. Since dummy data
created in the public mode are useless, computing error-correcting
code for them could be avoided to remove unnecessary compu-
tational overhead. However, without computing error code for
dummy data, the adversary may differentiate flash pages storing
dummy data from that storing hidden sensitive data by checking
whether the ECC relationship holds in each page, compromising
deniability. A defense for this compromise is: For hidden sensitive
data, the ECC is computed over the plaintext, rather than the cipher-
text; for dummy data, the ECC could simply be randomness (i.e., no
need to compute the actual ECC). In this way, the ECC relationship
will not hold for both the dummy data and the encrypted hidden
data, and the aforementioned attack cannot be conducted.

5.2 Deniability in OS Layer
To achieve high-level deniability, the system and applications run-
ning in the normal world should be unaware of the existence of
the PDE system. However, a PDE system that runs in the normal
world will inevitably leave footprints in the register, cache, memory,
and system log. Therefore, we need to isolate the operation of the
PDE system from the normal world. We leverage ARM TrustZone
technology as an isolated execution environment for the hidden
mode. Specifically, we install two OSs on a target mobile device.
One OS, the rich OS, will be installed for normal use in the public
mode; the other OS, the trusted OS, will be installed in TrustZone
for executing sensitive workloads of the hidden mode.
Isolation on Execution. ARM TrustZone provides an isolated ex-
ecution environment, so system software and applications running
in TrustZone will be isolated from the normal OS and applications.

5

Additionally, the trusted OS and applications running in TrustZone
are PDE-aware, not leaving any footprints in the public mode.
Isolation on Memory and Cache. The memory regions of the
normal and secure domains are also hardware-enforced isolated,
such that the trusted OS and PDE applications for hidden mode will
only be executed within the secure memory, which is inaccessible
from the OS of the public mode. The NS attribute is a TrustZone
extension to the MMU. It defines if the targeted memory region
corresponding to the page is Secure or Non-secure, that is, if this
memory region is accessed with Secure or with Non-secure rights.
This bit is ignored in the Non-secure world. While in the secure
world, if the NS Attribute is set to 1, the access is performed with
Non-secure rights. Trustzone guarantees that applications running
in the REE cannot access cache that is tagged in a secure state.
With this mechanism, only the Secure world can perform Secure ac-
cesses, and consequently is the only one permitted to access Secure
memory. The Secure world can also access Non-secure memory by
setting the NS Attribute appropriately in the corresponding descrip-
tor. The Non-secure world can only access Non-secure memory. [7]

The trusted OS and PDE applications are only allowed to save
the data into the hidden volume, which is achieved by our modified
FTL. In this case, all the saved data in the hidden mode is not aware
by the rich OS and software running in the public mode.
Isolation on Mode Switching. Switching from the public mode
to hidden mode does not have deniability concerns because the
execution the environment becomes the hidden mode, and as we
assume in Section 3 that the device owner will not work in the hid-
den mode under risk. Since all the required secure system software
are pre-installed in the TrustZone, the time for mode switching will
be the TrustZone domain switching time plus the operation that
unmounts public volume and initializes the hidden volume.

6 CONCLUSION
In this work, we have proposed a preliminary design of FTL and
Arm TrustZone enhanced plausibly deniable encryption system
for mobile computing devices. The proposed PDE system contains
two layers of deniability, the flash layer and the OS layer. In the
flash layer, we strictly isolate the data stored in the public and the
hidden volume. In the OS layer, we install two OSes, one rich OS
installed in the normal world and another trusted OS installed in
the TrustZone. To the best of our knowledge, ours is the first mobile
PDE system which can simultaneously ensure deniability in both
the lower storage layer and the OS layer.
Acknowledgments. This work was supported by US National
Science Foundation under grant number CNS-1928331 and CNS-
1928349.

REFERENCES
[1] [n. d.]. ARM White Paper, The ARM Architecture Version 6 (ARMv6)A. http:

//lars.nocrew.org/computers/processors/ARM/ARMv6.pdf. Accessed: 2021-08-23.
[2] [n. d.]. DataRecovery: freeware and made by TOKIWA. http://tokiwa.qee.jp/EN/

dr.html/. Accessed: 2021-08-23.
[3] [n. d.]. Evil Maid goes after TrueCrypt. http://theinvisiblethings.blogspot.com/

2009/10/evil-maid-goes-after-truecrypt.html. Accessed: 2021-09-15.
[4] [n. d.]. Memory technology device (mtd) subsystem for linuxA. http://www.linux-

mtd.infradead.org/doc/nand.html. Accessed: 2021-08-23.
[5] Ross Anderson, Roger Needham, and Adi Shamir. 1998. The steganographic file

system. In International Workshop on Information Hiding. Springer, 73–82.
[6] Apple. 2013. Apple FileVault. https://support.apple.com/en-us/HT204837. Ac-

cessed: 2021-08-23.

[7] ARM. [n. d.]. NS attribute. https://developer.arm.com/documentation/ddi0301/h/
memory-management-unit/memory-region-attributes/ns-attribute. Accessed:
2020-04-15.

[8] ARM-software. [n. d.]. Arm Trusted Firmware. https://github.com/ARM-
software/arm-trusted-firmware. Accessed: 2021-08-23.

[9] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. 2014.
Toward robust hidden volumes using write-only oblivious ram. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
203–214.

[10] Marcel Breeuwsma, Martien De Jongh, Coert Klaver, Ronald Van Der Knijff, and
Mark Roeloffs. 2007. Forensic data recovery from flash memory. Small Scale
Digital Device Forensics Journal 1, 1 (2007), 1–17.

[11] Anrin Chakraborti, Chen Chen, and Radu Sion. 2017. Datalair: Efficient block
storage with plausible deniability against multi-snapshot adversaries. arXiv
preprint arXiv:1706.10276 (2017).

[12] Bing Chang, Yao Cheng, Bo Chen, Fengwei Zhang, Wen-Tao Zhu, Yingjiu Li, and
Zhan Wang. 2018. User-friendly deniable storage for mobile devices. computers
& security 72 (2018), 163–174.

[13] Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. 2015. Mobipluto: File
system friendly deniable storage for mobile devices. In Proceedings of the 31st
annual computer security applications conference. 381–390.

[14] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang Tian,
Zhan Wang, and Albert Ching. 2018. Mobiceal: Towards secure and practical
plausibly deniable encryption on mobile devices. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE, 454–
465.

[15] Li-Pin Chang. 2007. On efficient wear leveling for large-scale flash-memory
storage systems. In Proceedings of the 2007 ACM symposium on Applied computing.
1126–1130.

[16] Bo Chen. 2020. Towards Designing A Secure Plausibly Deniable System for
Mobile Devices against Multi-snapshot Adversaries–A Preliminary Design. arXiv
preprint arXiv:2002.02379 (2020).

[17] Bo Chen, Shijie Jia, Luning Xia, and Peng Liu. 2016. Sanitizing data is not enough!
Towards sanitizing structural artifacts in flash media. In Proceedings of the 32nd
Annual Conference on Computer Security Applications. 496–507.

[18] Bo Chen and Radu Sion. 2015. Hiflash: A history independent flash device. arXiv
preprint arXiv:1511.05180 (2015).

[19] Niusen Chen, Bo Chen, and Weisong Shi. 2021. MobiWear: A Plausibly Deniable
Encryption System for Wearable Mobile Devices. In EAI International Conference
on Applied Cryptography in Computer and Communications. Springer, 138–154.

[20] Niusen Chen, Wen Xie, and Bo Chen. 2021. Combating the OS-Level Malware
in Mobile Devices by Leveraging Isolation and Steganography. In International
Conference on Applied Cryptography and Network Security. Springer, 397–413.

[21] Alexei Czeskis, David J St Hilaire, Karl Koscher, Steven D Gribble, Tadayoshi
Kohno, and Bruce Schneier. 2008. Defeating Encrypted and Deniable File Systems:
TrueCrypt v5. 1a and the Case of the Tattling OS and Applications.. In HotSec.

[22] Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqiang Lin, Peng Liu,
Xinyu Xing, and Luning Xia. 2017. Supporting transparent snapshot for bare-
metal malware analysis on mobile devices. In Proceedings of the 33rd Annual
Computer Security Applications Conference. 339–349.

[23] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: a flash
translation layer employing demand-based selective caching of page-level address
mappings. Acm Sigplan Notices 44, 3 (2009), 229–240.

[24] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. 2017. Deftl: Implementing plausibly
deniable encryption in flash translation layer. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. 2217–2229.

[25] Ralf P. Weinmann Julian Assange and Suelette Dreyfus. [n. d.]. Rubberhose
Filesystem. https://github.com/sporkexec/rubberhose. Accessed: 2021-08-23.

[26] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee. 2006. A superblock-
based flash translation layer for NAND flash memory. In Proceedings of the 6th
ACM & IEEE International conference on Embedded software. 161–170.

[27] Jesung Kim, Jong Min Kim, Sam H Noh, Sang Lyul Min, and Yookun Cho. 2002. A
space-efficient flash translation layer for compactflash systems. IEEE Transactions
on Consumer Electronics 48, 2 (2002), 366–375.

[28] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon Park,
and Ha-Joo Song. 2007. A log buffer-based flash translation layer using fully-
associative sector translation. ACM Transactions on Embedded Computing Systems
(TECS) 6, 3 (2007), 18–es.

[29] Andrew D McDonald and Markus G Kuhn. 1999. StegFS: A steganographic file
system for Linux. In International Workshop on Information Hiding. Springer,
463–477.

[30] Microsof. [n. d.]. BitLocker. https://docs.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-server-2012-R2-and-2012/hh831713(v=ws.
11)?redirectedfrom=MSDN. Accessed: 2021-08-23.

[31] HweeHwa Pang, K-L Tan, and Xuan Zhou. 2003. StegFS: A steganographic file
system. In Proceedings 19th International Conference on Data Engineering (Cat.
No. 03CH37405). IEEE, 657–667.

6

http://lars.nocrew.org/computers/processors/ARM/ARMv6.pdf
http://lars.nocrew.org/computers/processors/ARM/ARMv6.pdf
http://tokiwa.qee.jp/EN/dr.html/
http://tokiwa.qee.jp/EN/dr.html/
http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
http://www.linux-mtd.infradead.org/doc/nand.html
http://www.linux-mtd.infradead.org/doc/nand.html
https://support.apple.com/en-us/HT204837
https://developer.arm.com/documentation/ddi0301/h/memory-management-unit/memory-region-attributes/ns-attribute
https://developer.arm.com/documentation/ddi0301/h/memory-management-unit/memory-region-attributes/ns-attribute
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/sporkexec/rubberhose
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh831713(v=ws.11)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh831713(v=ws.11)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh831713(v=ws.11)?redirectedfrom=MSDN

[32] Timothy M Peters, Mark A Gondree, and Zachary NJ Peterson. 2015. DEFY: A
deniable, encrypted file system for log-structured storage. (2015).

[33] Adam Skillen andMohammadMannan. 2013. Mobiflage: Deniable storage encryp-
tionfor mobile devices. IEEE Transactions on Dependable and Secure Computing
11, 3 (2013), 224–237.

[34] Adam Skillen and Mohammad Mannan. 2013. On implementing deniable storage
encryption for mobile devices. (2013).

[35] TrueCrypt. [n. d.]. Free open source on-the-fly disk encryption software.version
7.1a. http://www.truecrypt.org/. Accessed: 2021-08-23.

[36] Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang, Wen Tao Zhu, and Jiwu Jing. 2014.
Mobihydra: Pragmatic and multi-level plausibly deniable encryption storage
for mobile devices. In International conference on information security. Springer,
555–567.

[37] Lianying Zhao and Mohammad Mannan. 2015. Gracewipe: Secure and Verifiable
Deletion under Coercion.. In NDSS.

7

http://www.truecrypt.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Plausibly Deniable Encryption
	2.2 NAND Flash and Flash Translation Layer
	2.3 TrustZone
	2.4 Hidden Volumes

	3 System and Adversarial Model
	4 Deniability Compromises
	5 Our Design
	5.1 Deniability in Flash Layer
	5.2 Deniability in OS Layer

	6 Conclusion
	References

