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Abstract—Function-as-a-Service (FaaS) has recently emerged
to reduce the deployment cost of running cloud applications
compared to Infrastructure-as-a-Service (IaaS). FaaS follows
a serverless ‘“pay-as-you-go” computing model; it comes at a
higher cost per unit of execution time but typically application
functions experience lower provisioning time (startup delay). IaaS
requires the provisioning of Virtual Machines, which typically
suffer from longer cold-start delays that cause higher queuing
delays and higher request drop rates. We present LIBRA, a
balanced (hybrid) approach that leverages both VM-based and
serverless resources to efficiently manage cloud resources for the
applications. LIBRA closely monitors the application demand
and provisions appropriate VM and serverless resources such
that the running cost is minimized and Service-Level Agreements
are met. Unlike state of the art, LIBRA not only hides VM cold-
start delays, and hence reduces response time, by leveraging
serverless, but also directs a low-rate bursty portion of the
demand to serverless where it would be less costly than spinning
up new VMs. We evaluate LIBRA on real traces in a simulated
environment as well as on the AWS commercial cloud. Our re-
sults show that LIBRA outperforms other resource-provisioning
policies, including a recent hybrid approach — LIBRA achieves
more than 85% reduction in SLA violations and up to 53% cost
savings.

Index Terms—EC2, Lambda, IaaS, FaaS.

I. INTRODUCTION

In recent years, fueled by increased cloud adoption, business
demands, and advances in technology (e.g. Al, edge com-
puting, etc.), public cloud providers expanded their offerings
to include a plethora of services. These services cater for a
wide spectrum of customers! from those who want to control
their own development stack to those who want to focus on
designing and delivering new features without worrying about
the underlying infrastructure. All these services come with
varying configurations and have different performance and
pricing models. Given all the service options available from the
cloud providers, choosing the best suitable service to deploy
applications is a challenging problem.

Infrastructure-as-a-Service (IaaS) is one of the most com-
mon cloud services available. It allows a tenant to lease VMs
with particular configurations to deploy a cloud application.
A customer can add or remove VM instances in response
to fluctuating demand of the application. Depending on the
VM configuration and cloud provider, it can take hundreds
of seconds to set up an instance of a VM (cold-start). This
can have an adverse effect on the performance of a cloud
application, particularly in the presence of flash-crowd traffic

'We use the terms “customer” and “tenant” interchangeably.
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demand, where the application demand increases quicker than
the VM resource provisioning time. To deal with this problem,
cloud providers offer auto-scaling service. This service mon-
itors resource utilization (e.g., CPU or memory), and scales
out (increase) or in (decrease) VM instances based on user
defined thresholds.

Function-as-a-Service (FaaS) [1] is a recent popular offering
from most cloud providers. In this model, a tenant writes the
code of the application (called serverless function) in one of
the supported languages, and submits the code to a cloud
provider along with dependencies and associated execution
triggers. On an invocation, the code is executed in a sandbox
environment, and the result is returned to the triggering event.
In the past few years, FaaS has evolved to the point that most
cloud applications [2]-[9] can be developed using FaaS, or
given the application, it can be easily translated into the FaaS
programming model [10]. A value-added of FaaS is that it
does not require explicit scaling instructions from a tenant.
The serverless platform is responsible for scaling the resources
to address fluctuating demand.

There are two distinct features that set FaaS apart from IaaS:
1) Quick provisioning: serverless functions are executed in
sandbox environments which can be provisioned within a few
milliseconds [11]. This feature makes FaaS an ideal service to
serve flash-crowd traffic demands. 2) Pricing model: While
both FaaS and IaaS follow the spirit of “pay as you go”
pricing model, FaaS promises real “pay as you go” with no
waste of resources [1]. Under the IaaS model, customers are
charged for the entire duration a VM is leased independent of
the utilization (i.e. whether or not the application is running).
Under the FaaS model, customers are only charged for the
execution time of the application function. While the cost
per unit time of execution in FaaS is comparatively higher
than IaaS with the same resources, its cost model — charging
the customer for the precise amount of time an application
is running — makes it an ideal choice for low-duty demand
cycles, where leasing a VM instance for a longer time with
little to no utilization can be expensive.

Considering the performance and pricing models for [aaS
and FaaS, in this paper we show that a combination of IaaS
and FaaS is ideal to cater to the dynamic demand of a
cloud application. Previous hybrid approaches [2], [12], [13]
have leveraged the quick-provisioning-time feature of FaaS by
directing a portion of the demand to FaaS temporarily while
scaling out [aaS based resources (i.e. VMs), which leads to
lower service-level agreement (SLA) violations. To the best



of our knowledge, no work has investigated the simultaneous
use of FaaS to reduce the overall cost by consistently directing
the low-rate bursty portion of the demand to FaaS.

In this paper, we present LIBRA, a load balancing ap-
proach for cloud applications with strict SLA requirements?.
Two contributions set LIBRA apart from previous hybrid
approaches: 1) LIBRA continually monitors the demand for
an application and procures resources in IaaS, FaaS, or both to
cater to the demand while optimizing the cost and performance
of an application. In contrast, previous hybrid approaches
employ VMs as their primary resource and only leverage
FaaS to hide VM startup delays; 2) We compare LIBRA to
Spock [12] (a recently proposed hybrid approach) and other
resource provisioning policies. Our evaluation of LIBRA on
both Amazon Web Services (AWS) and a simulated cloud
shows that LIBRA outperforms these other approaches in
lowering the overall cost of a cloud application while reducing
SLA violations in the presence of dynamic demand.

Our contributions are summarized as follows:

¢ In Section II, we present an economic model to analyze
the cost of using laaS versus FaaS to serve a given
application demand. We derive a “cost-indifference point”
(CIP) that determines an upper bound on the demand rate
to direct to FaaS that guarantees a lower cost compared
to using laaS.

o We present the architecture of LIBRA (Section III), a
hybrid load balancing approach that simultaneously uses
both FaaS and laaS, motivated by our analysis that a
portion of the demand sent to FaaS at a rate lower than
CIP can be served in a cost-effective way.

e We evaluate LIBRA in a simulated cloud environment
(Section IV) and on AWS services (Section V) with
real application demand traces to establish its efficacy.
Our results show that LIBRA outperforms other resource
provisioning policies, including Spock [12], in reducing
both cost (48% compared to FaaS, 53% compared to VM
over-provisioning, and up to 20% compared to VM auto-
scaling and Spock) and SLA violations (more than 85%
compared to auto-scaling and Spock).

Section VI summarizes related work, and Section VII con-
cludes the paper.

II. BACKGROUND & MOTIVATION

Despite development and deployment challenges, IaaS and
FaaS are popular choices for building and deploying cloud
applications. Typically, developers target one of these services
for an application deployment, but recent trends have shown
that simultaneous use of these services can improve the appli-
cation’s performance [2], [12]. We contend that simultaneously
leveraging both services (IaaS and FaaS) not only improves the
performance but can also decrease an application’s operational
cost. In particular, IaaS is more economical for supporting the
high-rate steady portion of the load of application requests,

2Examples of such applications are machine learning inference models, IoT
applications that collect/process data, etc.
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while FaaS is more economical for supporting the low-rate
bursty portion of that load.

FaaS provisions serverless functions in as little as 10s of
milliseconds [11]. This quick provisioning time of FaaS has
been leveraged in the literature to hide VM cold-start delays
and hence lowering SLA violations [2], [12], [13]. In contrast
to these previous approaches, LIBRA consistently monitors
the application load, and directs a portion of the application
load to FaaS when it is a cheaper alternative to provisioned
VMs.

In this section, we present an economic (cost) model of an
application deployed using either FaaS or IaaS cloud service.
We use this model to derive the “cost indifference point”
(CIP) as a function of the request arrival rate, where the costs
of using IaaS or FaaS for an application are equal. If the
application load is below this CIP value, it is more economical
to use FaaS. For higher loads, IaaS is more economical. This
analysis motivates the design of our LIBRA approach.

A. FaaS: Serverless Pricing Model

Serverless platforms follow a “pay as you go” pricing model
where the user is only charged for the execution time of the
serverless function based on a particular configuration (e.g.,
memory) [14].

Our previous work [15] studies the effect of configurable
resources on various types of serverless functions in AWS
Lambda. It showed that AWS Lambda’s execution time fol-
lows exponential decay (i.e., diminishing return, as shown in
Figure 1a), and can be expressed as follows:

t?aaS(m) ~ t?aas(mmaac)‘i“

(£ (mmin) = 857 (M) €7 7!

ey

where m) is the execution time of a function f when
allocated memory m MB, t§%*5 () is the running time
of f at the smallest possible memory configuration (1m,,;, =
128 MB for Amazon Lambda), t? aas (Mmaz) is the running
time at the largest possible memory configuration (Mg, =
3008 MB for Amazon Lambda), and ) is a decay constant.

Consider an application, deployed using Faa$S, that receives
N requests per second, where each request causes the execu-
tion of a serverless function f. The usage cost per second can
be calculated as follows:

N

COStFaaS = Z(t?aaS(m) X CFaaS (p7 m) + GFaaS (p)) (2)
=1

t?aaS(

where Crqqas(p, m) is the cost per unit time® of executing a
serverless function as specified by the serverless platform p
for a given configuration m, and Gra.qs(p) is the total fixed
cost charged by the cloud provider (such as API-gateway cost
for AWS Lambda [14]). This cost model also holds for other
cloud providers which follow similar pricing models for FaaS,
such as IBM Functions, Google Cloud Functions, etc.

3Serverless platforms currently charge for every 1ms or 100ms of execution
time, depending on the platform [14], [16]-[18].
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Fig. 1: Cost comparison of Amazon Lambda and EC2 instances for varying average request arrival rate

B. laaS: VM Pricing Model

In the TaaS model, a tenant leases a VM with a particular
configuration, such as memory, CPU, and storage, to deploy
an application. A tenant is charged the cost of the VM inde-
pendent of its utilization. A VM with a particular configuration
can only serve a certain number of requests in a given time
period while meeting SLA requirements.

If a VM can host at most r,,,, requests per second without
violating the SLA, and the IaaS based deployment receives [NV
requests per second, the cost per second can be calculated as
follows:

N
COStlaaS = [Ti—l X Cvm(p) (3)

max
where C.,,,(p) is the cost per second* of renting a particular
VM (vm) from a certain cloud provider p.

C. Cost Analysis

Using Equations (2) and (3), we compare the cost of
deploying an application using FaaS or laaS, respectively. We
evaluate the cost for varying demand given by N, the rate
of requests for the application, where each request causes the
invocation of application code deployed using FaaS or IaaS.

The execution model of the application/function used is
shown in Figure la and follows an exponential decay (i.e.,
diminishing return) in the running time of the function with
respect to the amount of resources (memory) allocated [15],
[22]. It gives the execution time ¢ **%(m) of the application
for different memory m settings when deployed using FaaS.
Iaa$S based deployment would follow a slightly different exe-
cution model as underlying resources can differ from FaaS.

Thus, the execution model of the TaaS based deployment
with respect to FaaS can be described as:

t¥"(m) =7 % t?aag (m)

v e
where ¢4 (m) is the execution time of the laaS based deploy-
ment when allocated memory m to each request, and 7 is a
constant whose value is a real positive number and can vary
based on the application and underlying resources. Without
loss of generality, we show results where under both IaaS and
FaaS, the application follows the same execution model (i.e.,
7 = 1), and memory is the bottleneck resource in the execution
of the function as most FaaS platforms allow only memory as

“4IaaS resources can be rented on an hourly basis, while a user can also be
charged for partial usage (per second) [19]-[21].
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a configurable resource’. Note that setting 7 to values different
than 1 does not qualitatively affect the results of our analysis.

Using t?““s(m) and m, we calculate costpq.s using
Equation (2), where the costs C'raqs(p, m) and Gpqqs(p) are
taken from AWS Lambda pricing [14].

For IaaS, the costrqqs is calculated using Equation (3),
where 7,,4., the maximum number of requests that a VM
with memory M can handle in one second, can be derived
using Little’s Law [23]:

M vm

e Tmaz X t} (m)

%, the long-term average number of concurrent requests in
the system, equals the arrival rate of these requests (rpqz)
times the (average) time that a request spends in the system
(3™ (m)). We thus have:

M
m

1
Tmaz = X o (5
f (m)

We use the AWS Elastic Compute Cloud (EC2) pric-
ing model for different types of EC2 instances (m4.large,
m3.medium, and t2.medium). The cost Cy,(p) and memory
resources M of these instances are specified in EC2 pricing
[20]. Figure 1b compares the cost of cloud usage when an ap-
plication is deployed in AWS Lambda or in various instances
of EC2 for varying request rate and memory m of 512MB. The
x-axis is drawn on a logarithmic scale for better readability.
We observe that the FaaS model is cost effective when the
request rate is below 4 requests/second for the m4.large EC2
instance (the point where the m4.large and lambda cost curves
intersect). This represents the cost-indifference point (CIP)
beyond which the IaaS model is cheaper to be used. The CIP is
obtained by equating Equations (2) and (3). Figures 1c shows
a similar behavior when each request is using memory m of
3008MB.

Though the results shown here are obtained using AWS
pricing, the cost model is applicable to other cloud services
(e.g., from IBM and Google) that follow a similar pricing
model. To summarize the key takeaways from our analysis:

o The FaaS model is cheaper to use for low duty-cycle
application, i.e. when the average request rate IV is below
the CIP. For higher values of N, IaaS is cheaper.

5Other resources, such as CPU, /O, Network, etc., can be bottleneck in
the execution of a function. These resources can be substituted here to get
similar analysis.



e The value of CIP depends on the amount of resources
used by each request and the type of VM instance. A
tenant can find the appropriate resource configuration by
profiling the application or using inference approaches,
as proposed in [15], [24].

D. LIBRA’s Motivation

Demand for an application can significantly vary across
certain hours of the day and certain days of the week. Based
on our analysis in previous sections, an ideal hybrid load
balancing approach will have two main characteristics:

(a) It would continually monitor the demand for an appli-
cation and when the demand is below CIP, it will only
provision FaaS resources to cater to the demand as they
are more cost-effective in such a scenario. This is a
feature that previous hybrid approaches [2], [12] lack, as
they only use FaaS either for transient demand, or during
scaling out VM resources to avoid SLA violations.
It should employ FaaS consistently for a low-rate bursty
portion of the demand that the system can not serve
using IaaS resources within the SLA. This would be
beneficial in two ways: first, it will reduce the SLA
violations, as sudden spikes in demand would be handled
by FaaS, which has negligible cold-start delays and can
natively scale-out. Second, consistently employing FaaS
for a certain portion of the demand can lead to significant
cost savings.

(b)

To demonstrate the cost saving of such an approach, we
leverage the cost analysis in Section II-C. Consider the sce-
nario shown in Figure 1b, where an application is running on
an EC2 instance of the type m3.medium and it has a steady
demand of 10 requests per second where each request requires
512MB of memory. In Figure 1d, we compare the cost of
serving all the demand or a certain portion of it using FaaS
while serving the rest through IaaS. We observe that a hybrid
approach, where around 20% requests are served by FaaS and
the remaining by IaaS is the most cost-effective as compared
to TaaS or FaaS only scenarios. This is because 20% of the
demand is below the CIP for this particular case and is cheaper
to be served through FaaS than spinning up a new VM which
would be underutilized.

III. LIBRA ARCHITECTURE

In this paper, we present LIBRA, a balanced approach that
leverages both IaaS and FaaS. It closely monitors the demand
from an application and provisions appropriate VM capacity
for the IaaS deployment to handle a portion of the requests
while directing the rest to be handled by the FaaS based
implementation of the application. Motivated by our analysis
in Section II, the design of LIBRA derives from the following
goals:

« An efficient load balancing approach would utilize FaaS
for bursty demand to avoid SLA violations, leveraging
FaaS’s quick provisioning time.

o As explained in Section II-C, a steady-rate of traffic
below a certain limit (CIP) can be cheaper to serve
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through serverless functions (FaaS). An efficient load
balancing approach would leverage FaaS for a steady
(low) rate of traffic consistently to reduce the overall cost
of cloud usage.

The above two goals present load balancing between FaaS
and [aaS as a marginal analysis problem [25], where a user can
direct a small/bursty portion of the demand to FaaS (additional
activity) to be served cost effectively instead of provisioning
new VMs. This would not only reduce cost, but also lead
to lower SLA violations as VMs take significantly longer to
start (cold starts). Figure 2 gives an overview of our proposed
approach. The load balancing across the IaaS and FaaS based
implementations of the application is performed through a
Load Balancer, which also updates the traffic statistics and
share them with a Traffic Monitor using the control plane.
Based on the traffic demand, a Scaling Manager provisions
VM resources for IaaS and updates the Load Balancer to
enforce appropriate forwarding rules. Henceforth, we refer to
all three components of LIBRA as LIBRA Gateway (LG).
LIBRA can be deployed by a cloud/service provider as a value-
added service or can be directly leveraged by the customers.
In what follows, we explain each component of LIBRA in
detail.

laas [ g..: ..., Scaling Faas
< Decision
A Performance E A ‘
Stats :
: response
response v
- Traffic Est.
Scaling |g-:+--q Traffic Monitor
Manager

A

'.. VMregs
'\ Traffic Stats 3
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LIBRA Gateway
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Fig. 2: LIBRA architecture

A. Traffic Monitor

The Traffic Monitor (TM) continually receives traffic up-
dates from the Load Balancer. Using the historical data
of these updates, the TM estimates the future load for the
application. The forehand knowledge of traffic is critical
particularly for the VM-based resources, because they can
take up to several minutes to start and be ready to serve
application traffic. In the current implementation, we introduce
the notion of an epoch that represents a configurable unit-
time (e.g., 10 seconds or 1 minute). The LB continually
reports the number of requests received in an epoch to the



TM, which uses this information to estimate the future load.
Currently, the TM keeps track of the Exponentially Weighted
Moving Average (EWMA) and sample deviation of requests
received in previous epochs as given in Equations (6) and
(7), where reqs.y,» is the number of requests received in the
current epoch, o and § € [0,1] are configurable based on
how quickly a user wants the system to react in the face of
traffic variations. Our experiments have shown that EWMA
and sample deviation of the number of requests track well the
traffic variation® as shown in Figure 3.

(6)
)

The TM reports the avg and std values to the Scaling Manager
every K epochs. The Scaling Manager then makes scaling
decisions as explained next.

avg = (1 — a) X avg + o X reqScyrr

std = (1 — /6) x std + ﬁ X |7"eqscurr - avg|

B. Scaling Manager

The Scaling Manager (SM) is a crucial component of
our LIBRA architecture. It periodically receives the traffic
statistics from the Traffic Monitor and orchestrates resources in
the form of VMs and serverless functions to serve application
requests.

As one of the design goals of LIBRA is to keep the
serverless load below a certain threshold (CIP) to avoid
overpaying, and send the maximum stable load to provisioned
VMs for their cost effectiveness, our SM provisions VM (IaaS)
resources that can handle a request rate equal to (avg+¢-std),
with remaining requests directed to run as serverless functions
(FaaS). ¢ € R is a configurable parameter of the LIBRA
system and is discussed later in Section I1I-D. Our experiments
(cf. Sections IV and V) have shown that any traffic above
(avg + ¢ - std) is either transient or cheaper to be served by
serverless functions. LIBRA provisions VMs cautiously based
on the estimated demand given by (avg + ¢ - std) so as to
avoid either under-provisioning VMs and then suffering from
higher startup-delays while spinning up additional VMs, or
over-provisioning VMs and paying unnecessary cost due to
VM under-utilization.

Algorithm 1 describes how the SM procures VM resources
for TaaS. In line 1, the function get_active_vms() returns the
current number of active VMs. Line 2 checks if the average
request rate is below the CIP threshold (obtained through
cost analysis). If it is, LIBRA shuts down and deallocates
all the currently provisioned VMs (line 3), as the current
demand can be met cost-effectively using only serverless
functions. In line 6, the algorithm calculates the number of
requests (7mq,) that a VM with given resources can serve
while meeting the SLA. In the case of homogeneous VM
resources and consistent workload for each request, 7p,qx
can be calculated by using Equation (5). In the case of
variable workload, adaptive controllers (e.g., PID [26]) can
be used to set r,4,. A proportional-integral-derivative (PID)
controller can adapt r,,,, based on the error between the

SA LIBRA user can employ other traffic prediction models as well.
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Algorithm 1 LIBRA’s Scaling Algorithm

Input:

avg, std: EWMA and sample deviation reported by the Traffic
Monitor (TM)

V M,..s: resources available in each VM instance

reqres: resources required to serve one application request
Teqtime: average request service time

cip: Cost Indifference Point

¢: number of sample deviations beyond average demand
Output:

VMyreqs /1 TEquest rate that provisioned VMs can handle

1: active_vms = get_active_vms()
// returns the number of active VMs
2: if avg < cip then
3:  remove_vms(active_vms)
// removes all VM instances
VMyregs = 0
return
5. end if
6: Tmaz = vm_capacity(V]V[res, T€qres, reqtime)
/I get maximum number of requests a VM can serve
70 UMyeqs = QUG + ¢ - std
8: num_instances = [(UMyeqs/Tmaz) |
9: vm_dif f = num_instances - active_vms
. if om_diff > O then
add_vms(vm_dif f) // adds VM instances
. else
remove_vms(vm_dif f) // removes VM instances
. end if

target and measured response/service time. In lines 7-8, we
obtain the number of VM instances that are needed to cater
to a demand vmg.qs = avg + ¢ - std, as instantaneous
requests beyond that value are considered transient and will
be handled by serverless functions. The functions add_vms
and remove_vms (lines 11 and 13) implement the VM-cloud
(TaaS) interface to allocate or deallocate VMs to achieve the
desired num_instances (line 8). The initial provisioning of
VMs is performed based on user configurations similar to
other autoscaling services [27]. Moreover, if the decision is
to add more VMs, the Scaling Manager waits until the VMs
are in ready state before sending a vm,..qs update to the Load
Balancer.

C. Load Balancer

The Load Balancer (LB) receives requests from the end-
users and forwards them to the appropriate resources, either
VMs (IaaS) or serverless (FaaS). It also keeps track of the
requests received in an epoch and periodically notifies the
Traffic Monitor. Moreover, whenever the Scaling Manager
makes a scaling decision, it reports the new value of VMg, tO
the Load Balancer as the Scaling Manager provisions VMs to
accommodate a request rate of vm,..qs. From queuing theory
[28], to ensure stable (predictable) performance and small



queuing delays, the request rate to the provisioned VMs should
be lower than the service rate given by the VM provisioned
rate of vm,..qs. This keeps the aggregate utilization of the
provisioned VMs below one. Consequently, our LB directs
only a fraction p of the request rate, i.e., p-UMyeqs to the VM
resources. This fraction p of provisioned VM capacity that can
be used to serve requests is a configurable parameter of LIBRA
and discussed in detail in Section III-D.

The LB adopts a forwarding approach that directs requests
to VMs (IaaS) first, which has two key benefits: 1) The VMs
are already in ready state and will not incur any cold-start
delays, and 2) ready VMs are cheaper compared to serverless.

D. LIBRA Parameters

Our LIBRA approach has the following configurable pa-
rameters that an administrator can tweak to maximize their
gain whether it is performance, cost, or both. We studied the
behavior of these parameters in simulation and experimentally,
and here we briefly summarize the effect of the following
parameters and their recommended settings.

1) EWMA Weights: The Traffic Monitor in LIBRA uses
EWMA to monitor the average rate of requests and sample
deviation. The weights o and (B given to the most recent
number of requests observed over the current epoch are
configurable parameters. A high weight value can lead to
a quick response to a sudden increase in demand, resulting
in over-provisioning of VM resources if the increase were
transient. On the other hand, a low weight value can lead
to a slow response to a sudden increase in demand, resulting
in under-provisioning of VM resources if the decrease were
persistent, which increases the usage of serverless functions
and results in a higher cost.

2) Scaling Decision Interval: The Scaling Manager makes
scaling decisions every K epochs. A smaller value of K (e.g.,
less than the startup delay of VMs) can result in back-to-
back scaling decisions without waiting for the system to react
and reach equilibrium. A large value of K results in longer
intervals between scaling decisions, hence slower adaptation
leading to missing potential cost savings. The scaling deci-
sion interval should be larger than the startup delay of the
VM instances being used. This is because when the Scaling
Manager makes the decision to scale out, it waits for the newly
added VM instances to be in ready state before informing the
Load Balancer of the newly provisioned VM capacity. In our
experiments we set the scaling decision interval to be three
times the VM startup delay.

3) VM Utilization: As described in Section III-C, the
Load Balancer only utilizes a certain proportion (p) of the
provisioned VMs. The goal is to make sure that the VMs
serve the requests without SLA violations (cf. Section III-C).
In our experiments we set this parameter p to 80%.

4) Traffic Estimation: To estimate traffic demand, LIBRA
uses the EWMA and sample deviation to obtain (avg+¢- std),
where ¢ € R and its value depends on the fluctuations in
demand. In LIBRA, IaaS resources are provisioned for (avg+
¢ - std) demand. Hence, a higher value of ¢ will cause more
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aggressive provisioning of VMs, which can potentially lead
to VM under-utilization. On the other hand, a lower value of
¢ can lead to more FaaS usage which can potentially lead to
higher cost as serving requests by FaaS is expensive.

In the next two sections, we evaluate LIBRA using simula-
tions and on Amazon AWS.

IV. SIMULATION MODEL & RESULTS

LIBRA closely monitors the demand for an application
and consequently provisions VM resources, while the tran-
sient spikes and small portion of the demand are served by
serverless functions. This approach results in little to no SLA
violations while also reduces the cost of cloud usage for
the tenant. To evaluate the long-term efficacy of LIBRA, we
modeled 7 various cloud services after Amazon Web Services
(AWS) [30]. These include IaaS, FaaS, Load Balancer, and
Autoscaler. Using real traces, we evaluated LIBRA against
different approaches: VM over-provisioning, FaaS-only, and
provisioning of VM resources using the autoscaler.

A. Modeling Cloud Services

We modeled [aaS and FaaS (and related services) after AWS
EC2 and Amazon Lambda, respectively.

1) IaaS: Our modeled IaaS has various resource types to
offer for application deployment. Different VM instance types
have different cold-start delay depending on the size of the
instance and resource such as memory. Moreover, our pricing
model follows the AWS EC2 pricing model, where users
are charged based on partial usage, i.e. on seconds basis as
specified in [20]. Any instance can host a pre-defined number
of requests based on the resources available in the instance
and desired SLA. Hosting more requests on an instance can
lead to performance degradation and potential SLA violations.
The usage cost is calculated according to Equation (3).

Load Balancer: Production-ready applications typically use
more than one VM. Incoming requests are distributed among
them in a Round Robin fashion. If all the VM instances already
have a pre-defined number of requests running, any subsequent
request is queued and served as soon as any instance can
accommodate it.

Autoscaler: Our modeled autoscaler works similarly to
Amazon EC2 Auto Scaling [27] and allows users to define
auto-scaling policies such as scale-in/scale-out thresholds,
scaling groups, and minimum/maximum number of instances.
Moreover, our autoscaler can use a threshold on metrics,
such as average memory utilization or request count on each
instance, to make scaling decisions.

2) FaaS: To model FaaS, we deployed various types of
application function on Amazon Lambda and found the re-
lationship between the configurable resources (e.g., memory)
and execution time. This follows an exponentially decay model
as given by Equation (1). Other approaches (e.g., [15], [22])
have reported similar execution patterns. We also use Amazon

7The LIBRA simulator and AWS code is available at [29].



Lambda’s pricing model where, based on the configured re-
sources and execution time, usage cost is calculated according
to Equation (2).

3) Simulation Parameters: For our evaluation, we chose
the “large” EC2 instance type m4.large, which has 8.0 GB
of memory and 0.1 dollars per hour cost. We ran multiple
instances of type m4.large and noted that the provisioning
time (cold-start delay) to obtain an instance is about 100
seconds. Each request should have at least 512MB of memory
to complete in one second (SLA) on both IaaS and FaaS 8. For
LIBRA parameters, we used 0.2 as the EWMA weight, 300
seconds as the scaling decision interval (which is 3x the cold-
start of the VM instance being used), VM utilization threshold
p = 80%, and traffic estimation parameter ¢ = 1.

B. Log Traces

We used WITS [33], Berkeley [34], and synthetic traces to
evaluate the efficacy of LIBRA. These traces have also been
used to evaluate similar approaches [12], [35]. We utilize a 12-
hour long segment from the traces to generate the workload
for our simulation. Each request is assumed to have a constant
and equal service (execution) time when served on either the
TaaS or FaaS based implementation. Our simulator takes into
account the cold-start of VMs under IaaS. We also assume that
the serverless functions under FaaS have a minimal cold-start
delay that would not affect the performance of an application
with relatively high popularity as shown in [11]. While LIBRA
produced similar results for all traces, due to space limitation,
we only present results for the WITS trace. Figure 3 shows the
12-hour snippet of a WITS trace of the number of requests per
epoch (second), along with the EWMA. Traces were generated
by counting the number of HTTP requests during every second
in TCP dumps available at [33]. Despite the high variation of
the demand, EWMA accurately tracks the dynamicity of the
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Fig. 3: WITS trace and EWMA

C. Resource Provisioning & Deployment Policies
As discussed in Section III, LIBRA’s main goal is to
utilize both FaaS and IaaS to minimize the overall cost while

8For IaaS, a user can specify resources for each container executing the
request as documented in [31], [32].
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at the same time meeting the performance (execution time)
requirement of the application. LIBRA leverages the best of
both cloud services: the quick provisioning time of serverless
functions and the low cost of provisioned VM resources. We
compare LIBRA’s balanced approach to the following policies:

1) Over-provisioning (MAX): Cloud applications have strict
SLAs and not meeting their performance constraints can result
in bad user experience and potentially loss of revenue. To
avoid potential SLA violations, the tenant could opt to over-
provision the VM resources. We simulate this scenario by
scanning the whole demand trace and provisioning the VM
resources based on the maximum number of requests received
during a second (i.e., the peak rate). While such approach
would avoid SLA violations, allocated VM resources will be
underutilized and the client would incur higher costs.

2) Autoscaling (AUTO): Autoscaling is a popular service
provided by major cloud providers. In Autoscaling, the per-
formance of the currently allocated resources (e.g., VMs), is
monitored based on some metric. The performance metrics can
vary based on the cloud provider, but some examples include
memory/CPU utilization or request/connection count on each
host. If the metric exceeds a certain threshold, new resources
are added to the system to avoid potential overloading of
current resources and subsequent degradation of performance.
If the metric falls below a certain threshold, resources are
removed to avoid under-utilization.

3) Spock: Previous approaches, such as Spock [12] and
MArk [2] reduce SLA violations due to VM start-up delays
by directing demand to serverless functions while VMs are
being provisioned. Unlike LIBRA, Spock-like schemes do not
consistently and simultaneously use serverless functions to
serve transient demand and reduce overall cost. We simulated
this by directing the excess portion of the demand to FaaS
during scale-out events.

4) FaaS$ only: The application is deployed on a serverless
platform and all requests are served by serverless functions.

D. Simulation Results

1) Cost and SLA violations: Figure 4a compares the cost
and performance of the aforementioned resource provisioning
policies with LIBRA. The x-axis represents the different
approaches described above, the y-axis (left) represents the
incurred cost normalized to that of LIBRA, and the y-axis
(right) reports the percentage of SLA violations. LIBRA’s
cost also includes the cost of the VM instance used to
deploy the LIBRA Gateway (cf. Figure 2). As expected, over-
provisioning (MAX) leads to zero SLA violations, but incurs
the highest cost. The autoscaling approach (AUTO) reduces
cost significantly but introduces significant SLA violations.
This is due to the fact that VMs have high cold-start de-
lays, and while a new VM is being set up to share the
demand, existing VM instances get saturated, which leads to
performance degradation and SLA violations. We note that we
have experimented with various thresholds for the utilization
metrics used by autoscaling. However, we have observed that
either the system performs better at the expense of a much
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higher cost or the system has lower cost at the expense of a
much worse performance (higher SLA violations). Compared
to autoscaling, Spock reduces SLA violations by more than
35% at about the same cost. Notice that consistent with the
original study [12], Spock reduces SLA violations but does
not completely eliminate them. LIBRA yields the lowest cost
— 15% less cost than autoscaling/Spock and cuts the cost by
more than half compared to serverless-only (FaaS) or over-
provisioning (MAX). In our simulation, we assume that a
serverless function has resources configured correctly so that
each request always meets the SLA [15]. Thus, a serverless-
only deployment yields zero SLA violations albeit at a higher
cost. Similarly, LIBRA yields zero SLA violations. However,
LIBRA reduces the overall cost by always directing a portion
of the demand to VMs that are provisioned to meet the SLA,
while the rest of the demand is directed to serverless functions
that are also configured to meet the SLA.

2) VM Provisioning & Request Distribution: LIBRA’s main
goal is to cautiously provision resources in the VM cloud
(IaaS) to avoid under/over-utilization while simultaneously
serving low-rate and sudden spikes in demand using serverless
functions (FaaS). Figure 4b shows how LIBRA accurately
tracks the incoming load, provisions VM resources, and avoids
over-provisioning. This is observed by the similar behavior of
LIBRA in terms of the number of VMs provisioned (green
solid curve) throughout the duration of the simulation and
the ideal (offline) case (blue dashed curve) of provisioning
the number of VM instances assuming perfect knowledge of
future demand. The points on both curves represent scaling
decisions taken every K = 300 seconds (cf. Section III-D).

Figure 4c shows the average rate of requests for the portion
of the demand forwarded to the VM instances (IaaS) and
the rest of the demand directed to serverless functions (FaaS)
every 300 seconds. We observe that a consistent majority of
the load is served by VMs (IaaS) whereas a small amount of
the load with temporary peaks is handled by serverless (FaaS).

3) VM Uptime & Cost Breakdown: In Figure S5a, we
compare the total uptime of all VMs used to run the application
under various approaches. LIBRA cuts the VM uptime by
half compared to autoscaling and Spock. This is because (1)
LIBRA only scales out when the demand persists for longer
time. LIBRA is able to identify transient demand and avoid
reacting to it by using serverless functions (FaaS) rather than
adding new VM instances (IaaS); and (2) LIBRA can add
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any arbitrary number of VMs to the active VMs when scaling
out, while autoscaling adds or removes a user-configured
number of instances (referred to as “scaling group”). Figure 5b
compares the cost breakdown across autoscaling, Spock, and
LIBRA. Autoscaling has zero FaaS cost since VMs are the
only resources used to serve the application demand. Spock
employs FaaS when scaling out, only to hide VM startup delay,
so the FaaS usage is really small (= 1%). LIBRA consistently
uses serverless functions to serve a portion of the demand. The
FaaS cost contributes around 40% of the total cost in LIBRA’s
case. Despite higher FaaS cost, the overall cost of LIBRA is
smallest. LIBRA intelligently uses FaaS for a portion of the
demand that is either below CIP or transient, since the cost of
new VM instances for that portion of the demand would have
been higher. Note that the cost of LIBRA includes that of the
LIBRA Gateway (LG), the added cost of running the LIBRA
system.
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Fig. 5: VM usage and cost breakdown

4) Traffic Estimation: Recall that LIBRA provisions laaS
resources for a request rate of vmy,eqs = (avg + ¢ - std).
The actual request rate directed to the provisioned VMs is
P - UMypegs (p < 1), while the remaining requests (in each
epoch) are directed to FaaS where they are served within the
SLA but at a higher cost. The value of ¢ can be adapted based
on the particular fluctuations in demand. Tuning ¢ affects the
cost but not the performance of an application. This is because
the SLA is met whether LIBRA directs the request to the
provisioned VMs or to FaaS, however FaaS is more costly. For
the WITS traces used in our evaluation, the effect of different
values of ¢ on the cost is shown in Figure 4d. We observe
that a lower value of ¢ leads to more FaaS usage and hence
higher overall cost, whereas a higher value of ¢ causes over-
provisioning of VMs, which leads to VM under-utilization and



hence higher cost. Here, ¢ = 1 gives the least cost.

V. LIBRA ON AWS

To validate our simulation results from Section IV, where
LIBRA was shown to be effective in reducing both cloud-
usage cost and SLA violations, we implemented LIBRA
to perform load balancing for an application deployed on
Amazon AWS Cloud, i.e. EC2 for IaaS and Lambda for FaaS.

A. Application

The application is an image manipulation application writ-
ten in Python. On Amazon Lambda, we are able to deploy
the application as a single function. While we expect similar
results for multi-function applications, our choice of single-
function application is inspired by many use cases such as
ML inference models [2], [12], [22], IoT and computer vision
applications [36] which can be usually deployed as a single
function. To deploy the application on EC2 VM instances, we
used a python multi-threaded HTTP server library. We ran it
on a t3.medium [20] EC2 instance type with Ubuntu Server
18.04 LTS operating system, two 2.5 GHz vCPU, and 4 GB
memory.

B. Application Profiling & Lambda Resources

As described in Section III-B, LIBRA’s Scaling Manager
uses the maximum number of requests, 7,,q., that a VM
instance can handle, to calculate the required number of
instances. To obtain r,,,, for this evaluation, we deployed our
application on a r3.medium instance, profiled its performance,
and obtained r,,,, that meets the SLA. We take the SLA to
be one second of execution time serving a request. Profiling
an application on a given VM instance is a one-time task and
a developer can perform this prior to production deployment.
For FaaS deployment, we invoked the function with various
memory configurations and picked the memory setting that
gave the least cost while meeting the SLA.

C. Setup & Implementation

To obtain a consistent network environment for our evalua-
tion on AWS, we deployed an application client on an EC2 in-
stance, which will generate HTTP requests for the application.
We compare LIBRA to the same four resource provisioning
and deployment strategies described in Section IV-C. We
needed to modify the implementations of LIBRA, Autoscaling,
and Spock, as follows:

1) LIBRA on AWS: We deployed the LIBRA Gateway (LG)
on an EC2 instance of the type r2.micro. The LG distributes
requests between laaS based resources (EC2 VMs) and FaaS
(AWS Lambda functions). Within IaaS, we used the AWS
Application Load Balancer (ALB) [37] to distribute requests
among the active VM instances evenly, i.e. in a Round Robin
fashion.

2) Autoscaling on AWS: We used EC2’s autoscaling ser-
vice, which is a threshold-based scaling service. The AWS
CloudWatch Alarm was used to monitor RequestCountPerTar-
get metric to make scaling decisions. Again, ALB was used
to distribute requests to the VMs.
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3) Spock on AWS: An alarm from AWS CloudWatch trig-
gers the scale-out or scale-in events. When a scale-out event
is triggered, new VM instances are provisioned. During this
VM provisioning time, the system sends the extra requests,
that cannot be served by the active VM instances, to the
serverless functions. Once the new VM instances are ready,
all requests are forwarded to the VMs. Thus, Spock attempts
to use serverless functions (FaaS) only to hide VM startup
delays.

D. Results & Discussion

For our AWS experiments, to reduce real load, we use a
scaled-down version of the first 1800 seconds of the WITS
trace shown in Figure 3. In particular, we reduce the rate of
requests by a factor of 16.
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(b) Response time distribution

1) Cost and SLA Violations: We compare the cost and
performance of LIBRA versus other resource provisioning
and deployment strategies. The results are consistent with our
simulation results. Figure 6a shows that LIBRA yields the
lowest cost with very low amount of SLA violations. LIBRA
reduces the SLA violations (by more than 85%) and cost (up
to 20%) when compared to auto-scaling and Spock. LIBRA’s
cost also includes the cost of deploying the LIBRA Gateway
on an EC2 instance. Max-provisioning and serverless-only
deployment yield the lowest SLA violations but incur up to
50% increase in cost. We observe that FaaS, LIBRA, and max-
provisioning, all have a little amount of SLA violations. This is
because unlike our simulation model, in a real setup, factors
such as co-location, cold-starts for serverless functions, and
underlying resource contention for VMs, can introduce slight
variation in the performance of an application. For LIBRA, a
lower value for the VM utilization parameter p (discussed in
Section III-D3) can mitigate these SLA violations.

While Spock reduces SLA violations by 40% compared
to autoscaling, about 15% of the requests fail to complete
within the SLA. This can be explained by Spock’s reactive
scheme, where scaling out is triggered when VM resources
are saturated, resulting in SLA violations. On the other hand,
LIBRA avoids saturating the VM instances by directing excess
load to serverless functions. If the load is not transient and the
demand stays higher for a longer period, LIBRA increases the
number of VM instances at the next scaling decision.



Figure 6b shows the CDF of completion time of each
request. The over-provisioning policy gives the best perfor-
mance in terms of keeping execution time really low, as
expected. FaaS has the most consistent performance, i.e. the
completion time is always between 0.8s to 1s. This is due to
the fact that each request is executed in a dedicated sandbox
environment with dedicated resources, such as memory, so the
chance of performance fluctuation is lower. The performance
of a serverless function is primarily affected by cold-start
delay [22], which is negligible and can be as low as 10s of
milliseconds for serverless functions written in Python [11].
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Fig. 7: VM usage and cost breakdown

2) VM Uptime & Cost Breakdown: Figure 7 confirms the
benefit of LIBRA by illustrating the cost breakdown. This
is consistent with our simulation results. Figure 7a shows
the uptime of VM instances used to run the application for
Spock, Autoscaling, and LIBRA. LIBRA is able to closely
monitor the demand and provision required VM resources
without over-provisioning, which results in lower overall VM
uptimes and cost. Figure 7b shows the cost breakdown of these
approaches. LIBRA has the lowest overall cost (including the
cost to deploy LG), with lowest IaaS cost but highest FaaS
cost. LIBRA uses serverless functions more consistently and
effectively, i.e. for transient demand or portion below CIP,
which results in higher usage of FaaS, and lower usage of
[aaS.

E. Performance Overhead & LIBRA Scalability

LIBRA works as a legacy load balancer and directs re-
quests to appropriate resources, introducing overhead no more
than legacy load balancers. At the same time, other LIBRA
operations, i.e. scaling and traffic monitoring, occur in the
background and do not impact the real-time processing of
requests. The LIBRA Gateway has a small computational
footprint, and hence a small cost. Various components of the
LIBRA Gateway can be implemented as serverless functions,
where scalability is taken care of by the cloud provider.
Alternatively, the LIBRA Gateway can be implemented as one
service and deployed using VM instances and the application
administrator can rely on the cloud provider’s scaling services
such as AWS auto-scaling.

VI. RELATED WORK

Serverless computing has been extensively studied to de-
ploy cloud applications, such as ML applications [2], [12],
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[38], video/data processing [3], [4], [39], IoT [40], scientific
workflows [5], biomedical applications [41]-[43] and to solve
various mathematical and optimization problems [44]-[46].

CherryPick [24] helps the developer find the best VM
instance type using statistical learning techniques. Previous
approaches use various ML and learning-based approaches
to configure serverless functions [15], [47], [48] to optimize
cost and performance. Costless [38] decomposes a serverless
application across edge and core cloud to minimize cost
and meet performance constraints. CloudCmp [49] performs
comprehensive measurement studies on various commercial
clouds so as to find a suitable cloud provider for a given appli-
cation. Similarly, cluster management systems, such as Google
Borg [50] and Mesos [51], orchestrate and allocate resources
in the cloud for various applications. Google has developed
a machine type recommendation system [52] that helps a
user find the suitable instance type that maximizes resource
utilization. Moreover, most of the commercial cloud providers
provide autoscaling services (reactive in nature) to manage
the virtual resources, e.g., AWS’s EC2 autoscaling [27] and
Google autoscaling [53]. Similar to LIBRA, other approaches
use various prediction models to predict the demand for an
application and orchestrate cloud resources [54]-[58]. The
aforementioned approaches only manage resources within one
type of service, while LIBRA orchestrates resources across
two different services, i.e., an laaS and a FaaS. Our analysis
extends the cost analysis in [59] of using FaaS or IaaS for an
application by introducing the dependency of execution time
on the resources allocated.

Previous works have used serverless functions to hide VM
startup delays for ML and other applications while scaling
out VM-based resources [2], [12], [13]. In contrast, LIBRA
uses serverless functions as an alternative cloud service to run
applications, and based on the demand, can decide to use either
one or both services to optimize both cost and performance.

VII. CONCLUSION AND FUTURE WORK

We presented LIBRA, a load balancing approach that si-
multaneously uses both IaaS and FaaS cloud services to cater
to the dynamic demand of applications. Our approach can be
employed by cloud providers as a value-added service or used
by end-users directly. Our evaluation of LIBRA in simulations
and on AWS shows its clear advantage over other resource
provisioning policies in reducing both cost and SLA violations.

In this paper, LIBRA utilizes IaaS and FaaS services avail-
able from one cloud provider in support of single-function
applications. Future work includes extending LIBRA to ac-
commodate applications that consist of chains of functions,
leveraging spot instances, integrating with platforms such
as Kubernetes, and utilizing services from multiple cloud
providers.
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