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ABSTRACT
We present SOCKS, a data-driven stochastic optimal control tool-

box based in kernel methods. SOCKS is a collection of data-driven

algorithms that compute approximate solutions to stochastic opti-

mal control problems with arbitrary cost and constraint functions,

including stochastic reachability, which seeks to determine the like-

lihood that a system will reach a desired target set while respecting

a set of pre-defined safety constraints. Our approach relies upon a

class of machine learning algorithms based in kernel methods, a

nonparametric technique which can be used to represent probabil-

ity distributions in a high-dimensional space of functions known as

a reproducing kernel Hilbert space. As a nonparametric technique,

kernel methods are inherently data-driven, meaning that they do

not place prior assumptions on the system dynamics or the struc-

ture of the uncertainty. This makes the toolbox amenable to a wide

variety of systems, including those with nonlinear dynamics, black-

box elements, and poorly characterized stochastic disturbances. We

present the main features of SOCKS and demonstrate its capabilities

on several benchmarks.
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1 INTRODUCTION
As modern dynamical systems increasingly incorporate learning

enabled components, human-in-the-loop elements, and realistic

stochastic disturbances, they become increasingly resistant to tra-

ditional controls techniques, and the need for algorithms and tools

which can handle such uncertain elements has also grown. Because

of the inherent complexity of these systems, control algorithms

based in machine learning are becoming ever more prevalent, and

frameworks such as reinforcement learning (RL) and deep neural

network controllers have seen widespread popularity in this area–

in part because they allow for approximately optimal controller

synthesis using a data-driven exploration of the state space and

do not rely upon model-based assumptions. Data-driven control

techniques present an attractive approach to stochastic optimal

control due to their ability to handle dynamical systems which are

resistant to traditional modeling techniques, as well as systems

with learning-enabled components and black-box elements.

We present SOCKS, a toolbox for data-driven optimal control

based in kernel methods. The algorithms in SOCKS use a technique

known as kernel embeddings of distributions, a nonparametric

technique which is rooted in functional analysis and a class of

machine learning techniques known collectively as kernel methods

[41, 43, 46]. Kernel distribution embeddings have been applied to

modeling of Markov processes [23, 44], robust optimization [57],

and statistical inference [45]. In addition, these techniques have

also been applied to solve stochastic reachability problems [50,

54], forward reachability analysis [52], and to solving stochastic

optimal control problems [29, 51]. Because these techniques are

inherently data-driven, SOCKS can accommodate systems with

nonlinear dynamics, black-box elements, and arbitrary stochastic

disturbances.

Data-driven stochastic optimal control is an active area of re-

search [17, 18], and provides a promising avenue for controls prob-

lems which suffer from high model complexity or system uncer-

tainty, such as robotic motion planning [25, 30] and model predic-

tive control [39, 40]. Recently, approaches using Gaussian processes

[16, 36] and kernel methods [23, 29, 51] have also been explored.

In SOCKS, we implement the algorithms in [51], which uses data

consisting of observations of the system evolution to compute an

implicit approximation of the dynamics in a reproducing kernel

Hilbert space (RKHS). The novelty of the approach in [51] is that

it exploits the structure of the RKHS to approximate the stochas-

tic optimal control problem as a linear program that converges in

probability to the original problem, and computes an approximately

optimal controller without invoking a model-based approach.
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The application areas of stochastic optimal control are often

stronglymotivated by a need for assurances of safety, which presents

a need for optimal control techniques which can account for pre-

defined safety constraints. In the reinforcement learning commu-

nity, this need has led to the development of learning frameworks

which enable guided state space exploration strategies [e.g. 20, 38],

as well as toolsets which implement safety constraint satisfaction

as part of the learning loop, such as Safety Gym [37]. SOCKS

can also be used to provide assurances of safety using an estab-

lished framework known as stochastic reachability [5, 49], which

seeks to determine the likelihood of satisfying a set of pre-specified

safety constraints (also called the safety probability). Numerous

toolsets for stochastic reachability have been developed, including

[11, 15, 26, 27, 42, 47, 56] (see [2–4] for a detailed comparison). In

SOCKS, we use the algorithms developed in [50, 54], which compute

an approximation of the stochastic reachability safety probability

using kernel embeddings of distributions. A recent addition to

SReachTools [56], presented in [53], implements one of the existing

stochastic reachability algorithms in SOCKS, but does not consider

the stochastic optimal control problem.

Lastly, SOCKS implements an algorithm for forward reachability

analysis presented in [52]. This technique is useful for analyzing

systems with black-box elements, such as deep neural network con-

trollers. Because it employs a data-driven approach, it is agnostic

to the structure of the network, and can be used for neural network

verification. Several toolboxes for reachability analysis and verifi-

cation of deep neural networks have been presented in [19, 24, 55].

However, many existing toolsets rely upon prior knowledge of the

network structure (such as knowledge of the activation functions),

which may not be available without prior knowledge of the sys-

tem. Because our approach is data-driven, we do not exploit the

structure of the system or the network.

The rest of the paper is outlined as follows. In Section 2, we de-

scribe the class of systems that SOCKS is designed to handle as well

as the problems we consider. In Section 3, we give an overview of

the kernel-based techniques used by SOCKS. Section 4 describes the

main features of the toolbox. In Section 5, we demonstrate the algo-

rithms in SOCKS on several examples, including a a nonholonomic

target-tracking scenario, a realistic satellite rendezvous and dock-

ing scenario, a double integrator system to demonstrate stochastic

reachability, and on a forward reachable set estimation problem

for a neural-network controlled system. Concluding remarks are

presented in Section 6.

2 PRELIMINARIES
We use the following notation throughout: Let (E, E) be an arbitrary
measurable space where E is the σ -algebra on E. If E is topological

and E is the σ -algebra generated by all open subsets of E, then E

is called the Borel σ -algebra and is denoted BX . Let (Ω,F ,P) be
a probability space, where F is the σ -algebra on Ω and P : F →

[0, 1] is a probability measure on (Ω,F ). A measurable function

X : Ω → E is called an E-valued random variable. The image of P
underX , P(X−1A),A ∈ E, is called the distribution ofX . A sequence

of E-valued random variables X = {Xt | t = 0, 1, . . .} is called a

stochastic process with state space (E, E).
We define a stochastic kernel according to [13].

Definition 1 (Stochastic Kernel). Let (E, E) and (F ,F ) be
measurable spaces. A map κ : F × E → [0, 1] is a stochastic kernel
from E to F if: (1) x 7→ κ(B | x) is E-measurable for all B ∈ F , and
(2) B 7→ κ(B | x) is a probability measure on (F ,F ) for every x ∈ E.

We define the indicator function 1A : X → {0, 1} for any subset

A ⊂ E, such that for any x ∈ E, 1A(x) = 1 if x ∈ A and 1A(x) = 0 if

x < A.

2.1 System Model & Data
Consider a discrete-time stochastic system,

xt+1 = f (xt ,ut ,wt ), (1)

where (X,BX) is a Borel space, (U,BU ) is a compact Borel space,

andwt are independent and identically distributed (i.i.d.) random

variables defined on the measurable space (W,BW ). The system

evolves over a time horizon t = 0, 1, . . . ,N , N ∈ N, from an initial

condition x0 ∈ X, which may be drawn from an initial distribution

P0 on X, with inputs chosen from a Markov policy π .

Definition 2 (Markov Policy). A Markov policy is a sequence
π = {π0,π1, . . . ,πN−1}, such that for each time t = 0, 1, . . . ,N − 1,
πt : BU × X → [0, 1] is a stochastic kernel from X to U.

We denote the set of all Markov policies as Π, and for simplicity,

we assume the policy is stationary, meaning π0 = π1 = · · · = πN−1.

We can represent the system in (1) as a Markov control process [7].

Definition 3 (Markov Control Process). A Markov control
process is a 3-tuple H = (X,U,Q), consisting of a Borel space
(X,BX), a compact Borel space (U,BU ), and a stochastic kernel
Q : BX × X ×U → [0, 1] from X ×U to X.

We consider the case where the stochastic kernel Q is unknown,

meaning we have no prior knowledge of the statistical features

of Q(· | x ,u) or the dynamics in (1), but assume that a sample S

collected i.i.d. from Q is available. We make this scenario more

explicit via the following assumptions.

Assumption 1. The stochastic kernel Q is unknown.

Assumption 2. A sample S of sizeM ∈ N taken i.i.d. from Q is
available,

S = {(x1,u1,y1), . . . , (xM ,uM ,yM )}, (2)

where xi andui are randomly sampled from a probability distribution
on X ×U and yi ∼ Q(· | xi ,ui ).

2.2 Problem Definitions
2.2.1 Stochastic Optimal Control. Consider the following stochas-

tic optimal control problem, which seeks to minimize an arbitrary,

bounded cost function subject to a set of constraints.

Problem 1 (Stochastic Optimal Control). LetH be a Markov
control process as in Definition 3, and define the functions f0 : X ×

U → R, called the objective or cost function and fi : X ×U → R,
i = 1, . . . ,p, called the constraints. We seek a policy π ∈ Π that
minimizes the following optimization problem:

min

π

∫
U

∫
X

f0(y,v)Q(dy | x ,v)π (dv | x) (3a)

s.t.

∫
U

∫
X

fi (y,v)Q(dy | x ,v)π (dv | x) ≤ 0, i = 1, . . . ,p (3b)



SOCKS: A Stochastic Optimal Control and Reachability Toolbox Using Kernel Methods HSCC ’22, May 4–6, 2022, Milan, Italy

We impose the following mild simplifying assumption which

allows us to separate the cost with respect to x and u.

Assumption 3. The cost and constraint functions fi : X×U → R,
i = 0, 1, . . . ,p, can be decomposed as:

fi (xt ,ut ) = f xi (xt ) + f ui (ut ). (4)

Several commonly-known cost functions obey this assumption,

such as the quadratic LQR cost function.

The primary difficulty in solving Problem 1 is due to Assumption

1, and also because we seek a distribution π which minimizes the

objective. Because Q is unknown, the integral with respect to Q
in (3) is intractable. Thus, we form an approximation of Problem 1

by computing an empirical approximation of the integral operator

with respect to Q using the sample S. Following [51], we can view

this as a learning problem by embedding the integral operator as

an element in a high-dimensional space of functions known as

a reproducing kernel Hilbert space. Details regarding the kernel-

based stochastic optimal control method are provided in [51] and

in Appendix A.

2.2.2 Backward Stochastic Reachability. We also consider a special

case of the stochastic optimal control problem in (3), known as the

terminal-hitting time stochastic reachability problem. As defined

in [49], the goal is to compute a policy π ∈ Π that maximizes the

likelihood that a systemH will remain within a pre-defined safe

setK ⊆ BX for all time t < N , and reach some target set T ⊆ BX

at time t = N . We define the safety probability as:

rπx0 (K,T) = Pπx0 {xN ∈ T ∧ xi ∈ K,∀i = 0, 1, . . . ,N − 1} (5)

The solution to the stochastic reachability problem is typically for-

mulated as a dynamic program using indicator functions. Define the

value functions V ∗
t : X → [0, 1], k = 0, 1, . . . ,N by the backward

recursion,

V ∗
N (x) = 1T (x), (6a)

V ∗
t (x) = sup

π ∈Π
1K (x)

∫
X

V ∗
t+1(y)Q(dy | x ,v)π (dv | x), (6b)

where x ∈ X. Then V ∗
0
(x0) = supπ ∈Π rπx0 (K,T).

Problem 2 (Terminal-Hitting Time Problem). We seek to com-
pute an approximation of the policy π ∈ Π that maximizes the safety
probabilities in (5), and converges in probability to the true solution,
π∗ = arg supπ ∈Π rπx0 (K,T).

Similar to Problem 1, the backward recursion in (6) is intractable

due to Assumption 1. We can use the same technique as Problem

1 in order to approximate the value functions in (6), and thereby

obtain an approximation of the safety probabilities in (5).

Remark 1. We note that our toolbox can be used to solve other sto-
chastic reachability problems, including the first-hitting time problem
as defined in [49] and the max and multiplicative problems defined
in [5]. We focus on the terminal-hitting time problem in the current
work for simplicity.

2.2.3 Forward Stochastic Reachability. The forward reachable set

F is defined as the set of all states that the system in (1) can reach

after N time steps from an initial condition x0 ∈ X. As shown in

[52], we can view the problem of estimating the forward reachable

set F as a support estimation problem, where the support is the

smallest closed set F ⊂ X such that PN (xN ∈ F ) = 1, where xN
is a random variable representing the state of the system at time N
and PN is the distribution of xN .

Problem 3 (Forward Reachability). We seek to determine the
support of PN , the state distribution over (X,BX) after N time steps.

We formulate Problem 3 as learning a classifier F , where

F = {x ∈ X | F (x) = 1}. (7)

The difficulty in computing the reachable set classifier is due to the

fact that the dynamics in (1) and the stochastic kernel is unknown

(by Assumption 1). Thus, we approximate the classifier function F
as an element in an RKHS, and use a sample collected from PN in

order to estimate F .

3 EMBEDDING DISTRIBUTIONS IN A
HILBERT SPACE OF FUNCTIONS

In this section, we provide an overview of the machine learning

techniques used by SOCKS to solve Problems 1 and 2. Details are

provided in [50, 51, 53]. The method used to solve Problem 3 is

based in a similar framework, with additional details in [52].

Let k : X × X → R be a positive definite kernel function.

Definition 4 (Positive Definite Kernel). A kernel k is called
positive definite if for all n ∈ N, x1, . . . ,xn ∈ X, and α1, . . . ,αn ∈ R,∑n
i=1

∑n
j=1 αiα jk(xi ,x j ) ≥ 0.

LetH denote a Hilbert space of functions fromX toR, equipped
with the inner product ⟨·, ·⟩H .

Definition 5 (RKHS, [6]). A Hilbert space H of functions X →

R is called a reproducing kernel Hilbert space if there exists a positive
definite kernelk called the reproducing kernel, such that the following
properties hold:

(1) k(x , ·) ∈ H for all x ∈ X, and
(2) f (x) = ⟨f ,k(x , ·)⟩H for all f ∈ H and x ∈ X.

Alternatively, by the Moore-Aronszajn theorem [6], for any pos-

itive definite kernel function k , there exists a unique RKHS with
reproducing kernel k . For instance, a commonly-used kernel func-

tion is the Gaussian RBF kernel k(x ,x ′) = exp(−∥x − x ′∥2
2
/(2σ 2)),

σ > 0. We define the reproducing kernel k : X ×X → R on X with

the associated RKHS H and the kernel l : U ×U → R on U.

The second property in Definition 5 is called the reproducing
property and is key to our approach. In short, it allows us to evaluate
any function in H as a Hilbert space inner product. We use this

property to evaluate the integral terms in Problems 1 and 2 by

embedding the integral operator with respect to the stochastic

kernel Q as an element in an RKHS.

We now define the following:

Definition 6. A kernel k is called bounded if for some positive
constant ρ > 0,

sup

x ∈X

√
k(x ,x) ≤ ρ < ∞. (8)

In order to embed a distribution in H , we make the following

mild assumption:
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Assumption 4. The kernel k is bounded and measurable with
respect to X.

For every (x ,u) ∈ X×U,Q(· | x ,u) is a probabilitymeasure onX.

We denote by P the set of probability measures on X conditioned

on X ×U, of which the probability measures Q(· | x ,u) generated
by Q are a part. If the following necessary and sufficient condition

is satisfied, ∫
X

√
k(y,y)Q(dy | x ,u) < ∞, (9)

which holds due to Assumption 4, then there exists an element

m(x ,u) ∈ H called the kernel distribution embedding, which is a

mapping,

m : P → H ,

Q(· | x ,u) 7→

∫
X

k(y, ·)Q(dy | x ,u).
(10)

Then by the reproducing property, we can evaluate the integral of

any function f ∈ H as an RKHS inner product,

⟨f ,m(x ,u)⟩H =

〈
f ,

∫
X

k(y, ·)Q(dy | x ,u)

〉
H

(11)

=

∫
X

⟨f ,k(y, ·)⟩H Q(dy | x ,u) (12)

=

∫
X

f (y)Q(dy | x ,u). (13)

However, in practice, we do not have access to the true em-

beddingm(x ,u) due to Assumption 1. Thus, we seek an empirical

estimate m̂(x ,u) ofm(x ,u) computed using the sample S.

3.1 Empirical Distribution Embeddings
Following [22], we can compute an estimate m̂(x ,u) using S as the

solution to the following regularized least-squares problem:

m̂ = arg min

f ∈Q

1

M

M∑
i=1

∥k(yi , ·) − f (xi ,ui )∥
2

H + λ∥ f ∥2Q, (14)

where Q is a vector-valued RKHS [31], and λ > 0 is the regulariza-

tion parameter. According to [31], by the representer theorem, the

solution to (14) has the following form:

m̂ =
M∑
i=1

αik(xi , ·)l(ui , ·), (15)

whereα ∈ RM is a vector of real-valued coefficients. By substituting

(15) into (14) and taking the derivative with respect to α , we obtain
the following closed-form solution:

m̂(x ,u) = Φ⊤(ΨΨ⊤ + λMI )−1Ψk(x , ·)l(u, ·), (16)

where Φ and Ψ are called feature vectors with elements Φi = k(yi , ·)
and Ψi = k(xi , ·)l(ui , ·).

For simplicity, letW B (ΨΨ⊤ + λMI )−1 and define

β(x ,u) BWΨk(x , ·)l(u, ·), (17)

such that m̂(x ,u) = Φ⊤β(x ,u). Then by the reproducing property,

for any function f ∈ H , we can approximate the integral of f with

respect to Q(· | x ,u) as an RKHS inner product:

⟨f ,m̂(x ,u)⟩H = f ⊤β(x ,u) ≈

∫
X

f (y)Q(dy | x ,u), (18)

where f is a vector with elements f i = f (yi ).
In addition, the empirical estimate m̂(x ,u) converges in proba-

bility to the true embeddingm(x ,u) as the sample sizeM increases

and the regularization parameter λ is decreased at an appropri-

ate rate [see 22, 46]. Additional details regarding the convergence

properties of the embedding are provided in Appendix B.

4 FEATURES
We implemented SOCKS in Python, which has several available

libraries for machine learning and reinforcement learning, such

as Tensorflow [1], Keras [12], Scikit-Learn [34], PyTorch [33], and

OpenAI Gym [10]. We utilize the Open AI Gym framework to

be compatible with several existing libraries. This makes SOCKS

comparable to several existing machine learning frameworks and

promotes a more direct comparison with state-of-the-art machine

learning and reinforcement learning algorithms.

4.1 Generating Samples
The algorithms in SOCKS are data-driven, which means they rely

upon a sample of system observations S as in Assumption 2. Thus,

we have implemented several sampling functions in SOCKS in order

to generate samples from a system via simulation when a priori

data is unavailable.

The process for generating samples consists of defining a sample
generator, a function which generates a tuple contained within the

sample S. For example, to generate a sample S = {(xi ,ui ,yi )}
M
i=1

as in (2), we use the following code:

# Setup code omitted.
state_sampler = random_sampler(env.state_space)
action_sampler = random_sampler(env.action_space)

@sample_generator
def sampler():

state = next(state_sampler)
action = next(action_sampler)

env.state = state
next_state, *_ = env.step(action)
yield (state, action, next_state)

S = sample(sampler, sample_size=100)

Here, the sample_generator function generates a single observa-

tion of the system, and the sample function computes a collection

ofM = 100 observations taken from the system.

SOCKS implements several commonly-used sample generators,

including a one-step sample generator (shown above) and a tra-

jectory generator, which generates samples of trajectories over

multiple time steps of the form S = {(xi ,υi , ξi )}
M
i=1, where xi ∈ X

are the initial conditions, ξi = {x1i , . . . ,x
N
i } is the sequence of

states at each time step over the time horizon N ∈ N, and υi =
{u0i , . . . ,u

N−1
i } is a sequence of control actions taken from a pol-

icy π .
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4.2 Stochastic Optimal Control
SOCKS can be used to solve the stochastic optimal control problem

in (3). Given a sample S as in (2), we can approximate the integrals

in (3) using an estimate m̂(x ,u) of the kernel distribution embed-

dingm(x ,u), which can then be computed as Hilbert space inner

products.

# Setup code omitted.
policy = KernelControlFwd(

cost_fn=cost_fn,
constraint_fn=constraint_fn,

)
policy.train(S, A)

Here, KernelControlFwd class defines the algorithm, where we

compute the optimal policy by minimizing the cost forward in time

at each time step. The variables S and A define a sampleS taken from

the system as in (2) and a collection of admissible control actions in

U, respectively. The cost_fn and constraint_fn are user-defined
functions which return a real value. We can also solve the stochastic

optimal control problem via dynamic programming (backward in

time) by using KernelControlBwd in place of KernelControlFwd.

4.3 Stochastic Reachability
We can solve the terminal-hitting time stochastic reachability prob-

lem using SOCKS. Given a sample S as in (2), we can compute an

empirical estimate m̂(x ,u) ofm(x ,u), and (assuming the stochastic

reachability value functions V π
t , t = 1, . . . ,N , are in H ) we can

approximate the stochastic reachability backward recursion by ap-

proximating the value function expectations in (6) via Hilbert space

inner products with the estimate m̂(x ,u). In other words, we define

the approximate value functions V̄ ∗
t : X → [0, 1], t = 0, . . . ,N ,

and form an approximation of the stochastic reachability backward

recursion, given by,

V̄ ∗
N (x) = V π

N (x), (19)

V̄ ∗
t (x) = sup

π ∈Π
1K (x)

∫
U

⟨V̄ π
t+1,m̂(x ,v)⟩H π (dv | x), (20)

where V ∗
N (x) = 1T (x), and K,T ⊆ BX are the safe set and target

set, respectively. Then as shown in [50, 54], the solution to the

approximate backward recursion, V̄ ∗
0
(x0), is an approximation of

the maximal stochastic reachability safety probabilities. See [50]

for more details.

# Setup code omitted.
alg = KernelMaximalSR(

time_horizon=time_horizon,
constraint_tube=constraint_tube,
target_tube=target_tube,
problem="THT",

)
alg.fit(S, A)
Pr = alg.predict(T)

Here, KernelMaximalSR is the stochastic reachability algorithm

class, time_horizon is the number of time steps, S is a sample

taken i.i.d. from the system, A is a collection of admissible control

actions, T is a collection of test (or evaluation) points, i.e. the points

where we seek to evaluate the safety probabilities, target_tube
and constraint_tube are sets defining T andK , indexed by time,

and "THT" specifies that we wish to solve the terminal-hitting time

problem. In order to solve the first-hitting time problem, we simply

replace "THT" with "FHT".
This means we can evaluate the safety probabilities for a system

under a given policy, and enables an analysis of the likelihood

of respecting a set of pre-defined safety constraints given by K ,

based in the same data-driven framework as the stochastic optimal

controller synthesis in (33). The primary difference between our

approach and existing tools such as [37], is that our approach is

not based in reinforcement learning, and does not guard against

unsafe exploration of the state space (while collecting the sample

S), a well-known problem in safe RL [cf. 20].

4.4 Forward Reachability
We also implemented a forward reachable set estimator in SOCKS

from [52]. Let PN be some distribution on the state space X, and

let S = {xi }
M
i=1 be a sample taken i.i.d. from PN . The approximate

forward reachable set classifier
˜F is an estimate of the support

of P and is computed as the solution to the following regularized

least-squares problem:

F̃ = arg min

f ∈H

1

M

M∑
i=1

∥k(xi , ·) − f (xi )∥
2

H + λ∥ f ∥2H , (21)

where λ > 0 is the regularization parameter, and k is a separating
kernel [see 14, 52]. An RKHS H with kernel k separates all subsets

C ⊂ X if there exists a function f ∈ H such that for all x < C ,
f (x) , 0, and f (x ′) = 0 for all x ′ ∈ C . The Abel kernel k(x ,x ′) =
exp(−∥x−x ′∥2/σ ),σ > 0, is a separating kernel, and is implemented

in SOCKS. Note that a Gaussian RBF kernel is not a separating

kernel, since constant functions are not included in a Gaussian

RKHS [48].

The approximate forward reachable set is then given by

˜F = {x ∈ X | F̃ (x) ≥ 1 − τ }, (22)

where τ is a threshold parameter, typically computed as τ = 1 −

min1≤i≤M F̃ (xi ), where xi ∈ S.

The approximate forward reachable set classifier can accommo-

date non-convex regions, and the approximation converges almost

surely to the true classifier. However, the approximation obtained

via the algorithm is not a guaranteed under- or over-approximation,

though it does admit finite sample bounds [14]. See [52] for more

details.

4.5 Batch Processing
The primary computational hurdle of the kernel-based approach

in SOCKS is the matrix inverse termW in (17), which is O(M3) in

general, where M is the sample size. Thus, the computation time

scales polynomially as a function of the sample size. In addition, the

optimal control algorithms frequently involve storing very large,

dense matrices that scale as a function of M , T (the number of

evaluation points) and P (the number of admissible control actions).

The large matrix sizes can lead to memory storage issues on systems

with low available memory. In order to account for this, SOCKS
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implements a batch processing variant for algorithms with large

sample sizes, which computes the solution in smaller “chunks”. This

does not affect the result, but leads to longer computation times,

since we must compute multiple matrix multiplications rather than

a single multiplication with a large matrix.

4.6 Dynamical System Modeling
OpenAI Gym currently implements several classical controls prob-

lems, including an inverted pendulum, a cart-pole system, and a

“mountain car”. These systems are contained within environments,
which encapsulate the dynamics, constraints, and cost for the prob-

lem. Building on OpenAI Gym’s standard framework, we have im-

plemented a new type of learning environment, DynamicalSystem,
which makes defining systems with dynamics easier. In addition,

we have implemented several benchmark systems in SOCKS that

involve classical controls problems which are not included in Ope-

nAI Gym, including: (i) a satellite rendezvous and docking problem

based on Clohessy-Wiltshire-Hill (CWH) dynamics, (ii) an n-D sto-

chastic chain of integrators, (iii) a nonholonomic vehicle, (iv) a

point-mass system, (v) a benchmark quadrotor example [21], (vi) a

planar quadrotor system, (vii) a translational oscillation with rota-

tional actuation (TORA) system. We plan to add additional bench-

marks, since OpenAI Gym can also be used to simulate hybrid

dynamics, partially observable systems, and more.

Simulating a DynamicalSystem can be done easily. For exam-

ple, we can evaluate the policy computed via the solution to the

stochastic optimal control problem.

# Setup code omitted.
env = NDIntegrator(2)
env.reset()
for t in range(time_horizon):

action = policy(env.state)
state, *_ = env.step(action)

Here, policy is the result of the stochastic optimal control algo-

rithm. Behind the scenes, the simulation solves an initial value

problem at each time step using Scipy’s ODE solver. The input

model is a zero-order hold. This means we can simulate continuous

dynamics in discrete time with different sampling times without

redefining or parameterizing the dynamics.

5 NUMERICAL EXPERIMENTS
All experiments were performed on an AWS cloud computing in-

stance. The toolbox and code to reproduce all results and analysis

is available at https://github.com/ajthor/socks.

5.1 Nonholonomic Vehicle
We consider a target tracking problem using nonholonomic vehicle

dynamics, given by:

Ûx1 = u1 cos(x3), Ûx2 = u1 sin(x3), Ûx3 = u2, (23)

where X ⊆ R3, U ⊆ R2, and we constrain the input such that

u1 ∈ [0.1, 1],u2 ∈ [−10, 10]. We then discretize the dynamics in time

with sampling time Ts and apply an affine stochastic disturbance

w ∼ N(0, Σ), Σ = 0.01I .

Figure 1: Nonholonomic vehicle trajectory using stochas-
tic optimal control (top) and using dynamic programming
(bottom) over a time horizon of N = 20. The dashed blue
line shows the target trajectory, and the orange line shows
the nonholonomic vehicle trajectory. Note that the dynamic
programming trajectory better satisfies the terminal con-
straint.

The goal is to minimize the distance to an object moving along

the v-shaped trajectory shown in blue in Figure 1. We then collect

a sample S = {(xi ,ui ,yi )}
M
i=1, of sizeM = 2500, and compute the

optimal control actions using both the optimal control and dynamic

programming algorithms in SOCKS with σ = 2. The results are

shown in Figure 1, and computation time took approximately 0.204

seconds for the optimal control algorithm and 12.003 seconds for the

dynamic programming algorithm. We can see that the system more

https://github.com/ajthor/socks
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Figure 2: Optimal control for spacecraft rendezvous and
docking problemwithCWHdynamics. The goal is to reach a
small region close to the origin (green square) while remain-
ing within a line of sight cone (blue triangle). The trajectory
of the system using the approximate stochastic optimal con-
trol algorithm is shown in blue.

closely meets the terminal constraint using the dynamic program-

ming algorithm, but the computation time increases dramatically,

since we must compute a sequence of value functions.

5.2 Satellite Rendezvous and Docking
We consider an example of spacecraft rendezvous and docking,

in which one spacecraft must dock with another while remaining

within a line of sight cone. The Clohessy-Wiltshire-Hill dynamics

are given by,

Üx − 3ω2x − 2ω Ûy = Fx /md , Üy + 2ω Ûx = Fy/md , (24)

with state z = [x ,y, Ûx , Ûy]⊤ ∈ X ⊆ R4, input u = [Fx , Fy ]
⊤ ∈ U ⊆

R2, where U = [−0.1, 0.1] × [−0.1, 0.1], and parameters ω, md .

From [28], the dynamics in (24) can be written as a discrete-time LTI

system zt+1 = Azt +But +wt with an additive Gaussian disturbance

wk ∼ N(0, Σ), where Σ = diag([1×10−4, 1×10−4, 5×10−8, 5×10−8]).

We apply the stochastic optimal control algorithm in SOCKS to

the CWH system using the kernel bandwidth parameter σ = 0.1

and with a sample S = {(xi ,ui ,yi )}
M
i=1 of size M = 2,500 with

points xi sampled uniformly in the region [−1.1, 1.1] × [−1.1, 1.1] ×

[−0.06, 0.06] × [−0.06, 0.06], ui ∈ [−0.05, 0.05]2, and yi ∼ Q(· |

xi ,ui ). The result is shown in Figure 2, and computation time was

approximately 0.203 seconds.

Figure 3: Stochastic reachability analysis of a double inte-
grator system showing the maximal stochastic reachability
safety probabilities with a safe set K = [−1, 1]2, target set
T = [−0.5, 0.5]2, and time horizon N = 16 for the terminal-
hitting time problem.

5.3 Double Integrator System
We consider a stochastic double integrator system in order to show-

case the stochastic reachability analysis. The dynamics of the sys-

tem with sampling time Ts are given by,

xt+1 =

[
1 Ts
0 1

]
xt +

[
T 2

s /2

Ts

]
ut +wt , (25)

where X ⊆ R2, U ⊂ R, and wt ∼ N(0, Σ), Σ = 0.01I , is a random
variable with a Gaussian distribution. We collect a sample S =

{(xi ,ui ,yi )}
M
i=1, M = 2,500, taken i.i.d. from Q , a representation

of the dynamics in (25) as a stochastic kernel, such that xi and ui
are sampled uniformly from X andU, respectively, with xi in the

range [−1.1, 1.1]2 and ui in the range [−1, 1], and draw yi from
Q(· | xi ,ui ). The safe set is defined as K = [−1, 1]2 and the target

set is defined as T = [−0.5, 0.5]2. We then computed the stochastic

reachability safety probabilities for both the terminal-hitting time

problem and the first-hitting time problem atT = 10,000 evaluation

points using SOCKS and validated the result using Monte-Carlo.

The computation time was ≈ 3 seconds for both problems. The

result is shown in Figure 3.

5.4 Forward Reachability
We then demonstrate the forward reachable set algorithm in SOCKS

for a translational oscillations by a rotational actuator (TORA)

system [52]. The dynamics of the system are given by,

Ûx1 = x2, Ûx2 = −x1 + 0.1 sin(x3), Ûx3 = x4, Ûx4 = u, (26)

where X ⊆ R4, U ⊂ R and u is a control input chosen by a neural

network controller [19]. We then discretize the dynamics in time

and apply an affine stochastic disturbancew ∼ N(0, Σ), Σ = 0.01I .
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Figure 4: Approximate forward reachable set computed us-
ing the algorithm in [52] with sample size M = 50 and the
Abel kernel with σ = 0.1. The solid blue lines indicate the es-
timated support boundary of the distribution at each time
step and the red lines indicate the sampled trajectories.

We presume an initial distribution that is uniform over the region

[0.6, 0.7]×[−0.7,−0.6]×[−0.4,−0.3]×[0.5, 0.6] and collect a sample

S consisting ofM = 50 simulated trajectories over a time horizon

N = 200. Then, we apply the forward reachable set estimation

algorithm and compute a classifier using (22) that estimates the

support of the distribution at each time step. The results are shown

in Figure 4, and the computation time was approximately 50.6

seconds.

5.5 Scalability & Computation Time
We now present a brief discussion of the scalability and computa-

tional complexity of the algorithms. As shown in [50, 51, 53], the

sample sizeM used to compute the empirical distribution embed-

ding m̂(x ,u) presents the most significant computational burden,

and is generally O(M3) due to the presence of the matrix inver-

sion in (16). We demonstrate this empirically for the algorithms

presented in SOCKS in Figure 5. We calculated the computation

times for the algorithms over 16 runs for different values ofM , and

computed the statistical average and the 95% confidence interval.

The black dots indicate the empirically measured times, and the

blue bars indicate the confidence interval for our algorithm. We can

see that the computation times scale polynomially with the sample

sizeM , as expected. This can be prohibitive, since the quality of the

kernel-based approximation improves as the sample size tends to

infinity. Nevertheless, several approximative speedup techniques

(e.g. [22, 35]) have been developed to alleviate the computational

burden, and have been shown to reduce the computational complex-

ity to O(M logM). These techniques are not currently implemented

in SOCKS, but we plan to include them as part of a future release.

As mentioned in [50], the complexity of the kernel-based algo-

rithms scales roughly linearly with the dimensionality of the system.

This is primarily due to the fact that the system dimensionality only

plays a role in the kernel evaluations, and does not significantly

affect the computation of the empirical embedding m̂(x ,u). We

demonstrate this empirically for an n-dimensional stochastic chain

of integrators system as in (25) (see [50]), where we choose a fixed

sample size M = 1000 and vary the system dimensionality from

n = 50 to n = 1000. The computation times are shown in Figure 6.

We can see in Figure 6 that as the system is dimensionality is in-

creased, the computation time increases roughly linearly. However,

as mentioned in [50], for high-dimensional systems, the sample

size needed to fully characterize the dynamics and the uncertainty

increases as the system dimensionality increases, which can be

prohibitive for the reasons mentioned above.

6 CONCLUSION & FUTUREWORK
In this paper, we introduced SOCKS, a toolbox for approximate

stochastic optimal control and approximate stochastic reachability

based on a data-driven statistical learning technique known as

kernel embeddings of distributions. We have demonstrated the

capabilities of the toolbox on a simple stochastic chain of integrators

example, a more realistic satellite rendezvous and docking example,

a target tracking scenario using nonlinear nonholonomic vehicle

dynamics, and on a forward reachable set estimation problem. The

approaches used in SOCKS are scalable, computationally efficient,

and model-free.

We plan to introduce additional kernel-based algorithms and

features to SOCKS, such as the capability to handle neural net-

work reachability analysis, trajectory optimization, and chance-

constrained optimization.
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A STOCHASTIC OPTIMAL CONTROL
In this section, we give an overview of the stochastic optimal control

algorithm. Additional details are provided in [51]. Given a sample

S as in (2), taken i.i.d. from Q , we can compute an empirical esti-

mate m̂(x ,u) of the conditional distribution embeddingm(x ,u). By
assumption 3, we assume that the objective and constraints can be

decomposed as fi (x ,u) = f xi (x) + f ui (u). Assuming the objective

function f0 and constraints fi , i = 1, . . . ,p, are elements of the

RKHS H , we can approximate the expectation with respect to
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Figure 5: Computation time of the stochastic optimal control algorithm (left), the dynamic programming algorithm (center),
and the maximal stochastic reachability algorithm (right) as a function of sample size M . The black dots indicate the compu-
tation time at each trial, and the blue bars indicate the 95% confidence interval over 16 trials. The computation time scales
polynomially as a function of sample size, and is generally O(M3).

Figure 6: Computation time of the stochastic optimal con-
trol algorithm for an n-dimensional integrator system as a
function of system dimensionality. The blue bars indicate
the 95% confidence interval over 16 trials. The computation
time scales roughly linearly with the dimensionality of the
system.

Q(· | x ,u) via the reproducing property of k in H ,∫
U

∫
X

fi (y,v)Q(dy | x ,v)πt (dv | x)

=

∫
U

∫
X

f xi (y)Q(dy | x ,v) + f ui (v)πt (dv | x) (27)

≈

∫
U

⟨f xi ,m̂(x ,v)⟩H + f ui (v)πt (dv | x) (28)

=

∫
U

f xi
⊤WΨk(x , ·)l(v, ·) + f ui (v)πt (dv | x), (29)

for all fi , i = 0, 1, . . . ,p. Then, following [51], we propose the

following form for the approximation of the policy. Given a set

A ⊂ U of admissible control actions, A = {ũj }
P
i=1, P ∈ N, we

have

p̂t (x) =
P∑
j=1

γ (x)l(ũj , ·). (30)

We can write (29) using the policy approximation in (30), and obtain∫
U

f xi
⊤WΨk(x , ·)l(v, ·) + f ui (v)πt (dv | x)

≈ f xi
⊤WΨϒ⊤k(x , ·)γ (x) + f ui

⊤γ (x), (31)

where ϒ is a feature vector with elements ϒj = l(ũj , ·). We use

this representation in the optimal control problem in order to ap-

proximate the objective and constraints. The following problem is

approximately equivalent to the optimal control problem in (3),

min

γ ∈RP
f x
0

⊤WΨϒ⊤k(x , ·)γ (x) + f u
0

⊤γ (x) (32a)

s.t. f xi
⊤WΨϒ⊤k(x , ·)γ (x) + f ui

⊤γ (x) ≤ 0, i = 1, . . . ,p (32b)

Furthermore, as the number of observationsM in the sample S and

the number of admissible control actions P in A tends to infinity,

the solution to the approximate problem converges in probability to

the true solution [51]. See Appendix B for amore detailed discussion

of convergence. However, the optimization problem is unbounded

below. In order to ensure feasibility, following [51], we add an

additional constraint such that γ (x) lies in the probability simplex

γ (x) ∈ {a | 1⊤a = 1, 0 ⪯ a}, where 1 is a vector of all ones. Thus,
the approximate optimal control problem becomes

min

γ ∈RP
f x
0

⊤WΨϒ⊤k(x , ·)γ (x) + f u
0

⊤γ (x) (33a)

s.t. f xi
⊤WΨϒ⊤k(x , ·)γ (x) + f ui

⊤γ (x) ≤ 0, i = 1, . . . ,p (33b)

1⊤γ (x) = 1 (33c)

0 ⪯ γ (x) (33d)

This is a linear program, and can be solved efficiently, e.g. via

several commonly-used interior point or simplex algorithms [9].

Additionally, this representation can be used to solve a backward-in-

time stochastic optimal control problem (dynamic programming).

See [51] for more details.
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B STABILITY & CONVERGENCE
We now seek to characterize the quality of the approximation and

the conditions for its convergence. The convergence properties of

kernel distribution embeddings are well-studied in literature. See

e.g. [22, 32, 45, 46] for more information. However, the nuances

of the different convergence results for kernel distribution embed-

dings means that the results do not always generalize well to all

problems under different kernel choices. For instance, the result

in [46, Theorem 6] shows that the empirical estimate m̂(x ,u) con-
verges in probability to the true embedding m(x ,u) at a rate of

Op ((Mλ)−1/2 + λ1/2), where λ is the regularization parameter in

(14) and M is the sample size, but [46] assumes that the RKHS is

finite-dimensional, which does not hold for common kernel choices

such as the Gaussian RBF kernel. Thus, we present convergence re-

sults for the approximate stochastic optimal control problem based

in the theory of algorithmic stability [8]. Our result is close to the

result presented in [32].

We first seek to characterize the convergence of the estimate

m̂(x ,u) in (16) to its actual counterpartm(x ,u) in (10). For simplicity

of notation, we define the operator kx : X → R for all x ∈ X via

kx (x
′) = k(x ,x ′).

Recall that the estimate m̂ is in a vector-valued RKHS Q and is

the solution to the regularized least-squares problem in (14). Let

J : H × H → R be a real-valued cost function, defined by

J (ky ,m̂(x ,u)) B ∥ky − m̂(x ,u)∥2H . (34)

Let Z = X ×U × X. We define the loss function υ : Q × Z → R,
given by

υ(m̂, (x ,u,y)) = J (ky ,m̂(x ,u)). (35)

The risk, denoted by R(m̂), measures the expected loss (error) of

the solution m̂ to the regularized least-squares learning problem,

and is defined as

R(m̂) B

∫
X

υ(m̂, (x ,u,y))Q(dy | x ,u). (36)

However, we cannot compute the risk directly since Q is unknown

by Assumption 1. Thus, we seek to bound the risk by its empirical

counterpart. Given a sample S ∈ ZM
as in (2), the empirical risk,

denoted by RS(m̂), also known as the empirical error, measures the

actual loss of the learning problem, and is defined as

RS(m̂) B
1

M

M∑
i=1

υ(m̂, (xi ,ui ,yi )) + λ∥m̂∥2Q (37)

=
1

M

M∑
i=1

∥kyi − m̂(xi ,ui )∥
2

H + λ∥m̂∥2Q . (38)

We use m̂ to denote the solution to the regularized least squares

problem in (14), and let m̂\i
denote the solution when a single

observation is removed from S and let m̂i
denote the solution

when the ith observation is changed. We use m̂\i
and m̂i

in the

following to assess the stability of the learning algorithm under

minor changes to the sample S used to construct the estimate m̂.

We present the following definition, modified from [8], which

allows us to characterize the stability of the learning algorithm

with respect to the regularized least-squares problem in (14).

Definition 7 (σ -admissible, [8, Definition 19]). A loss func-
tionυ onQ×Z is σ -admissible with respect toQ if the associated cost
function is convex with respect to its first argument and the following
condition holds,

|J (ky1 ,ky′) − J (ky2 ,ky′)| ≤ σ ∥ky1 − ky2 ∥H (39)

for all ky′ ∈ H and ky1 ,ky2 ∈ D, where

D = {ky | ∃f ∈ Q,∃(x ,u) ∈ X ×U, f (x ,u) = ky } (40)

is the domain of the first argument of J .

We now seek to verify that the loss function υ pertaining to the

regularized least-squares problem is σ -admissible with respect to

Q. To this aim, we present the following proposition.

Proposition 1. The loss function given by

υ(m̂, (x ,u,y)) = J (m̂(x ,u),ky ) = ∥ky − m̂(x ,u)∥2H (41)

is σ -admissible with respect to Q.

The proof follows [8, Lemma 20], which shows that the loss func-

tion using a Hilbert space norm is σ -admissible, where σ depends

on the choice of kernel and the corresponding Hilbert space of

functions H .

We now present the following definition from [8], modified to

our particular formulation, which bounds the maximum difference

in the loss function under minor variations to the sample S.

Definition 8 (uniform stability, [8, Definition 6]). A learn-
ing algorithm has uniform stability α with respect to the loss function
υ if the following holds:

∥υ(m̂, ·) − υ(m̂\i , ·)∥∞ ≤ α , (42)

for all S ∈ ZM and i = 1, . . . ,M .

In addition, an algorithmwith uniform stability has the following

property:

|υ(m̂, ·) − υ(m̂i , ·)| ≤ 2α . (43)

As a consequence of the above definitions, [8] shows that the

regularized least-squares problem in the scalar RKHS case has uni-

form stability. We modify [8, Theorem 22] to a vector-valued RKHS

in the following theorem.

Theorem 1. Let H be an RKHS with kernel k and Q be a vector-
valued RKHS of functions onX×U mapping to H . Let k be bounded
by ρ < ∞, and let υ be a σ -admissible loss function with respect to
Q. Then the learning algorithm given by

m̂ = arg min

f ∈Q

1

M

M∑
i=1

υ(f , (yi ,xi ,ui )) + λ∥ f ∥
2

Q, (44)

has uniform stability α with respect to υ with

α ≤
σ 2ρ2

2λM
. (45)

We can ensure boundedness of the kernel of Q using the princi-

ple of uniform boundedness (also known as the Banach-Steinhaus

theorem), since the kernel k is bounded by ρ. Then the proof follows
directly from [8, Theorem 22].

We use this result to show that the regularized least-squares

problem in (14) has uniform stability with respect to υ.
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Theorem 2 ([8, Theorem 12]). Let A be an algorithm with uni-
form stability α with respect to a loss function υ such that 0 ≤

υ(m̂, (x ,u,y)) ≤ B, for all (x ,u,y) ∈ Z and all sets S. Then for any
M ≥ 1 and any δ ∈ (0, 1) the following bounds hold with probability
1 − δ of the random draw of the sample S:

R(m̂) ≤ RS(m̂) + 2α + (4Mα + B)

√
log(1/δ )

2M
. (46)

Thus, using Theorem 2 with α given by (45) from Theorem 1, we

have that for anyM ≥ 1 and any δ ∈ (0, 1), with probability 1 − δ ,
the risk R is bounded by:

R(m̂) ≤ RS(m̂) +
σ 2ρ2

λM
+

(
2σ 2ρ2

λ
+ ρ

)√
log(1/δ )

2M
, (47)

which shows that as the sample size M increases, the empirical

embedding m̂(x ,u) in (16) converges in probability to the true em-

beddingm(x ,u) in (10). Thus, the approximation of the expectations

in (33) converge in probability to the true expectations, and the

approximate optimization problems computed using the estimate

m̂(x ,u) converge to the true optimization problems asM increases.

Similarly, the approximate policy p̂(x) in (30) has the form of

an empirical conditional distribution embedding as in (16), which

suggests that the approximate policy (and consequently the approx-

imately optimal control action) obtained via (33) also converges in

probability as the number of admissible control actions P in (30) is

increased.
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