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Importance of multiple endocrine cell types in
islet organoids for type 1 diabetes treatment
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Almost 50 years ago, scientists developed the bi-hormonal abnormality hypothesis,
stating that diabetes is not caused merely by the impaired insulin signaling. Instead,
the presence of inappropriate level of glucagon is a prerequisite for the development
of type 1 diabetes (T1D). It is widely understood that the hormones insulin and gluca-
gon, secreted by healthy B and « cells respectively, operate in a negative feedback
loop to maintain the body’s blood sugar levels. Despite this fact, traditional T1D treat-
ments rely solely on exogenous insulin injections. Furthermore, research on cell-based
therapies and stem-cell derived tissues tends to focus on the replacement of B cells
alone. In vivo, the pancreas is made up of 4 major endocrine cell types, that is, insulin-
producing B cells, glucagon-producing « cells, somatostatin-producing § cells, and
pancreatic polypeptide-producing vy cells. These distinct cell types are involved syner-
gistically in regulating islet functions. Therefore, it is necessary to produce a pancreatic
islet organoid in vitro consisting of all these cell types that adequately replaces the
function of the native islets. In this review, we describe the unique function of each
pancreatic endocrine cell type and their interactions contributing to the maintenance
of normoglycemia. Furthermore, we detail current sources of whole islets and techni-
ques for their long-term expansion and culture. In addition, we highlight a vast poten-
tial of the pancreatic islet organoids for transplantation and diabetes research along
with updated new approaches for successful transplantation using stem cell-derived
islet organoids. (Translational Research 2022; 000:1-16)

Abbreviations: DMSO = dimethyl sulfoxide; GABA = y-aminobutyric acid; GCGR = glucagon
receptor; GLP-1 = glucagon-like peptide-1; hAECs = human amniotic epithelial cells; HBSS =
Hanks” Balanced Salt Solution; hESCs = human embryonic stem cells; HLA = human leukocyte
antigen; HUVECs = human umbilical vein endothelial cells; IFN-y = interferon-y; iPSCs = induced
pluripotent stem cells; ILCs = islet-like clusters; LepR = leptin receptor; MAFA = V-maf musculoa-
poneurofic fibrosarcoma oncogene homolog A; NGN3 = Neurogenin-3; PDX1 = Pancreas/
duodenum homeobox protein 1; STZ = streptozotocin
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INTRODUCTION

According to the Center for Disease Control and Pre-
vention, 1.9 million Americans have type 1 diabetes
(T1D).! There are several complications associated
with diabetes including blindness, stroke, renal failure,
heart attack, and lower limb amputation.” Despite the
gravity of these complications, the most common T1D
treatment, injection of exogenous insulin, does not
address them.” Exogenous insulin injections, when
used properly, have the potential to mitigate the high
blood glucose associated with this disease. However,
insulin injections are not a cure, as they do not address
the changes in 8 and « cell number and function under-
lying the development of diabetes.

The development of T1D is rooted in improper
secretion of both insulin and glucagon.”” This is due
to the fact that the heterotypic interactions between
glucagon-secreting « and insulin-secreting 8 cells in
human islets is paramount in regulating glucose
homeostasis.®’ Therefore, it is logical to conclude that
treatments based on the injection of exogenous insulin
alone are insufficient to treat T1D or adequately repli-
cate the non-diabetic state. One major source of con-
cern associated with exogenous insulin injections for
the treatment of T1D is hypoglycemia.” Should insulin
injections lower blood glucose levels below a healthy
level (90—110 mg/dL), transport of glucose to the brain
is severely limited.®” This is hazardous and may lead
to death. Despite the dangers of hypoglycemia, patients
with T1D experience symptomatic episodes of hypo-
glycemia an average of 2 times each week.®

Even ignoring the failure to address the « cell dys-
function associated with T1D, exogenous insulin treat-
ments are unable to replicate the function of the
endogenous hormone.'’ As a matter of fact, patients
who receive several insulin injections each day experi-
ence glycemic volatility, indicating that their blood
glucose levels vary between hyperglycemic and hypo-
glycemic.'” This is due in part to the fact that injected
insulin is unable to reach the islets with sufficiently
high concentration.'’ Therefore, glucagon secretion is
not suppressed as a result of the exogenous insulin.'® A
higher dose of injected insulin is necessary to over-
come the subsequent low ratio of insulin to glucagon.'’
However, this high insulin dose may lead to hypogly-
cemia.'” Maintenance of blood glucose levels in the
non-diabetic body is a delicate balance between insulin
and glucagon. The complex interplay between these
hormones is difficult to recreate using exogenous hor-
mone injections, leading to glycemic instability.

In light of each of these limitations, islet transplanta-
tion is preferable to exogenous insulin injections. How-
ever, there too are severe limitations in the availability
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of pancreatic islets for transplantation as a means of
curing T1D. This is due to the wide gap between the
available cadaveric donors and the number of T1D
patients who would benefit from a transplant.’' Fur-
thermore, there are many T1D patients who would ben-
efit from a transplant that are not eligible for one. This
is because insulin therapy is often used preferentially
to transplantation. While pancreas and islet transplants
are the only means for restoring endogenous insulin
secretion and the fine-tuned glycemic control that
results, these methods are limited to patients who expe-
rience additional renal failure or severe hypoglycemia
and glycemic instability despite exogenous insulin
treatment.'”

An appealing solution to the organ donor shortage is
the use of stem cell-derived pancreatic islet organoids
as an alternative to cadaveric islets. Stem cells are
capable of differentiating into multiple cell types.
Human embryonic stem cells (hESCs) and induced plu-
ripotent stem cells (iPSCs) are both commonly used for
the development of pancreatic islet organoids.'” These
cells may give rise to all of the major endocrine cell
types within the islet of Langerhans: insulin-producing
B cells, glucagon-producing « cells, somatostatin-pro-
ducing § cells, and pancreatic polypeptide-producing y
cells. Because each of these cell types plays an impor-
tant role in metabolism and the establishment of nor-
moglycemia in the non-diabetic state, it is critical that
they are each present in organoids intended to treat
TI1D. In this review, we discuss the unique function of
each pancreatic islet cell subset and their roles in main-
taining normoglycemia in the body. We highlight the
sources of whole islets, techniques for their long-term
expansion and culture, and their utility for transplanta-
tion and research. In addition, we summarize updated
new approaches for successful transplantation using
stem cell-derived islet organoids. We will begin by
highlighting the critical functions of each major endo-
crine cell type within the islet of Langerhans individu-
ally. Then, the effects that each cell type exhibits on its
counterparts will be discussed.

ROLE OF HEALTHY BETA CELLS

B Cells are the most prevalent endocrine cell type
located within the pancreas in the islet of Langer-
hans.'* In human islets, B cells, accounting for approxi-
mately 50%—75% of the volume of islets, are located
in high amounts within the anterior head, body, and tail
of the pancreas.'”'® Murine islets are generally
arranged with a core of S cells surrounded by «, 6, and
y cells at the periphery.'’ In contrast to this and in con-
flict with the islet architecture described in some
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textbooks, studies suggest that B cells within human
islets are more randomly distributed among the other
endocrine cell types.'>' 7'

B Cells produce, store, and secrete the hormone insu-
lin in response to changes in blood glucose levels.'”
They secrete insulin in response to high ATP/ADP
ratios within the cells. It is in this way that the g cells
exhibit glucose responsive insulin secretions.”” When
glycemic levels are high following a meal, there is a
high concentration of glucose within the extracellular
space of A cells.”” The glucose is transported into the
cell by glucose transporters like GLUT1 in human and
GLUT2 in rodent and then metabolized.”' Further-
more, glucokinase within the S cells phosphorylates
glucose, leading to increased levels of ATP and
decreased levels of ADP.”’ Consequently, the ATP
binds to potassium channels within the g cells to depo-
larize the cell which allows calcium to flow in through
voltage-gated calcium channels, resulting in insulin
exocytosis.”’ In addition, insulin is an anti-hyperglyce-
mic peptide hormone, which functions to lower blood
glucose levels.'” Tt binds to receptors located on the
cell-membrane of target cells such as liver, fat, and
skeletal muscle cells.””** Insulin binding on receptors
of liver cells promotes the receptor-mediated endocyto-
sis of glucose and its subsequent conversion into glyco-
gen thereby decreasing circulating blood glucose
levels.” In addition to triggering glucose uptake in tar-
get cells, insulin also antagonizes several hyperglyce-
mic hormones such as glucagon, growth hormone,
glucocorticosteroids, and epinephrine.'” In this way,
insulin functions to maintain a healthy blood glucose
level following postprandial spikes in blood sugar.

Several studies have investigated pancreatic devel-
opment, with a focus on g cell differentiation.”*"
Through the use of animals, especially murine models,
scientists have established the role that several tran-
scription factors such as Pancreas/duodenum homeo-
box protein 1 (PDX1), Neurogenin-3 (NGN3), and
V-maf musculoaponeurotic fibrosarcoma oncogene
homolog A (MAFA) play in g cell development, sur-
vival, and function in vivo.”>'® MAFA is a B cell
maturation marker, as it regulates the transcription of
insulin gene in response to glucose levels.”” PDXI,
expressed early on during development, is essential for
the function and survival of A cells.””** Pdx1 null mice
and humans with homozygous PDX1 mutations exhibit
pancreatic agenesis.’” Furthermore, humans with het-
erozygous missense and frameshift PDX1 mutations
are unable to secrete insulin and exhibit maturity onset
diabetes of the young.’” In general, PDX1 is thought
to regulate B cell development by activating genes
associated with § cell identity and suppressing those
critical to « cell identity.*
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ROLE OF HEALTHY ALPHA CELLS

After B cells, the second most prevalent endocrine
cell type within the pancreatic islets is the « cell.'” The
percentage of o cells comprising the human islet is
generally 20%—40%.">'%*" These cells produce and
secrete the hormone glucagon.”' Glucagon is released
into the bloodstream in response to low blood glucose
levels. Within « cells themselves, there are voltage-
gated Ca®* channels, such as the P/Q-type Ca®* chan-
nel, that open in regard to low blood glucose levels."'
As a result, there is an influx of Ca?* into the cell, lead-
ing to glucagon exocytosis.”' This hormone increases
the amount of glucose present in the blood by interact-
ing with glucagon receptors (GCGR) on the liver and
triggering both gluconeogenesis, the synthesis of glu-
cose, and glycogenolysis, the catabolism of glycogen
into glucose.”' The regulation of glucagon secretion is
less understood than that of insulin, but it is thought to
involve a combination of intrinsic and paracrine
signals.*'"*> The dysfunction of « cells directly contrib-
utes to T1D development.*” Further involvement of «
cells in islet functionality and diabetes are described in
the following sections.

ROLE OF HEALTHY DELTA, GAMMA, AND EPSILON
CELLS

Another subtype of endocrine cells within the islet of
Langerhans is the § cell. The function and therapeutic
potential of these cells are less widely understood com-
pared to the more prevalent 8 and « cells. é cells make
up about 5%—10% of human islet cells, and they
secrete the hormone somatostatin.'”** Somatostatin,
also referred to as growth hormone inhibiting hormone,
is released by the gastrointestinal tract, the hypothala-
mus, and the central nervous system in addition to pan-
creatic 8 cells.** Somatostatin exists in 2 forms in the
body: somatostatin-28 and somatostatin-14, the latter
being secreted by pancreatic § cells.”” § cells influence
B and « cells through paracrine interactions. They do
so using long neurite-like projections that extend
between them.” Research also indicates that § and A
cells are electrically coupled, further suggesting their
interactions.”” Somatostatin secretion from & cells
is induced by glucose concentrations, beginning at a
concentration of 3 millimolar and increasing propor-
tionately as glucose concentration increases.” Somato-
statin is an inhibitor of both insulin and glucagon.*’
One study investigated this function using somato-
statin-null (sz/ ) mice.*’ They demonstrated that
Sst~'~ mice had significantly higher plasma levels of
both insulin and glucagon following intravenous
administration of glucose or arginine compared to the
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wild type mice.*” A similar difference was apparent
during ex vivo experiments done on isolated mouse
islets.* Islet isolated from Sst~'~ mice secreted
approximately twice as much insulin and glucagon in
response to the glucose and arginine compared to the
control.*> This suggests that the source of insulin and
glucagon suppression is & cell-derived somatostatin
rather than gastrointestinal, neural, or neuroendocrine
sources of the hormone.* In 8 cell destruction models
such as streptozotocin (STZ)-induced diabetic rats,
there is an observed increase in the quantity of § cells
as well as an increase in pancreatic somatostatin.*°

y Cells, also referred to as pancreatic polypeptide
(PP) cells, make up approximately 1% —2% of the islet
of Langerhans.”’ These cells secrete the hormone pan-
creatic polypeptide, a 36 amino acid peptide that is
released after eating in a biphasic manner.”” The first
phase of pancreatic polypeptide secretion is stimulated
by the vagus nerve.'’ This first phase is shorter than
the second, which occurs in response to hormones
including cholecystokinin.*” Levels of pancreatic poly-
peptide in the plasma remain elevated for up to 6 hours
following eating.*® Its release is also stimulated by
hypoglycemia and exercise via adrenergic stimula-
tion.”® Pancreatic polypeptide inhibits gallbladder
motility, pancreatic exocrine, and gastric acid
secretions.”®"” It does so by binding to dorsal vagal
complex receptors and causing changes in the vago-
vagal reflex arc.”® Additionally, the pancreatic poly-
peptide is thought to promote feelings of satiety follow-
ing a meal via the vagus nerve.”*’ Studies show that
transgenic mice that overexpress pancreatic polypep-
tide exhibit weight loss, decreased food intake, and
decreased gastric emptying.** Furthermore, when the
pancreatic islets from lean mice were transplanted into
their genetically obese littermates, their obesity was
reversed.’’ This suggests that decreased pancreatic
polypeptide levels and sensitivity can contribute to
obesity. Diabetes is sometimes associated with ele-
vated pancreatic polypeptide levels, with about 10% of
diabetes patients exhibiting high basal pancreatic poly-
peptide levels.”” However, more research on the differ-
ences between healthy and diabetic y cells would be
helpful to fully understand the function of this cell
type.5 :

In addition, there is a small proportion of epsilon (&)
cells present in the islet of Langerhans. ¢ cells make up
less than 1% of islets, and they were not discovered
until the early 2000s.”> They produce the hormone
ghrelin which is 28 amino acids in length.’> Ghrelin,
also referred to as the hunger hormone, stimulates
appetite.”” It also induces the secretion of growth hor-
mones from the pituitary.”> Even though ¢ cells make
up a very small percentage of islets, this type of cells
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are detectable in stem cell-derived pancreatic islet tis-
sue. For example, researchers performing single-cell
RNA sequencing may evaluate the expression of
GHRL which encodes a precursor to ghrelin.””

DIABETES IS A BI-HORMONAL DISORDER

There are several changes in S cell survival and
function as a result of the development of diabetes mel-
litus. T1D, also referred to as insulin-dependent diabe-
tes, is associated with a decrease in the number of S
cells.’* In T1D, the immune system attacks g cells,
leading to decreased insulin production and a failure to
maintain blood glucose levels.”* The abnormal g cell
populations and their association with the development
of diabetes mellitus often overshadow the role that o
cells play in the disease. However, the importance of
the hormone glucagon in diabetes cannot be ignored.
In 1975, the bi-hormonal abnormality hypothesis
replaced the previous unihormonal concept.” This rela-
tively newer hypothesis states that improper secretion
or function of insulin alone is not responsible for the
hyperglycemia associated with diabetes.” Insufficient
insulin levels must be coupled with the presence and
hypersecretion of glucagon for the development of dia-
betes mellitus.” This is supported by a study comparing
the results of g cell destruction on glucagon receptor-
null (GCGR ™) and wild type mice.” In this study,
100 milligrams followed by 80 milligrams per kilo-
gram of body weight of the chemical STZ was injected
intravenously in order to induce the destruction of B
cells.” This process was performed in 2 groups of
male mice, one with global glucagon receptor knockout
and one wild type group.”” Only the wild type mice
showed traditional symptoms of T1D, including hyper-
glycemia, hyperketonemia, polyuria, and cachexia.’
Through this study, researchers were able to recreate
the conditions of T1D and demonstrate the critical role
that glucagon plays in symptom development.” These
results were further supported through experiments
restoring hepatic glucagon receptors in GCGR ™/~
mice.”® Once again, this study demonstrated that STZ-
mediated S cell destruction only led to clinical symp-
toms such as hyperglycemia in wild type mice express-
ing glucagon receptors.’® After utilizing an adenovirus
containing GCGR c¢DNA to restore the glucagon recep-
tors, hyperglycemia developed in the mouse models,
further suggesting that the action of glucagon is critical
in T1D.”° Hence, T1D treatment using glucagon recep-
tor inhibition has been investigated extensively.”’ %"

The interplay between the synergetic regulation of
insulin/glucagon and hyperglycemia has been demon-
strated by a recent report showing that insulin receptor
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substrate 1 plays a crucial role in the regulation of glu-
cagon secretion. It changes glucagon transcription in
response to exogenous insulin,’' which provides a
mechanism underlying how insulin signaling regulates
glucagon secretion.”” As T1D is characterized by insu-
lin dysfunction combined with high levels of glucagon,
a diabetes treatment that can restore both 8 and « cell
function is highly desired. Okamoto et al. demonstrated
that an insulin receptor antagonist, S961, induced
symptoms of diabetes in mice, including insulin resis-
tance, hyperglycemia, and ketonemia.”” When a mono-
clonal antibody was used to block the glucagon
receptor, normoglycemia was restored. Interestingly,
the mass of B cells doubled with glucagon receptor
blocking compared to treatment with S961 alone, with
a 5.8-fold increase in S cell mass compared to the con-
trol which received no monoclonal antibody or S961.
Additionally, treatment with the monoclonal antibody
increased « cell mass by 5.7-fold.®” This study poses a
potential therapy for diabetes while demonstrating the
essential role of glucagon in symptom development. In
a clinical trial, a glucagon receptor antibody, REMD-
477, has been studied to examine its efficacy for T1D
treatment. The results indicated that this glucagon
receptor antibody improves glycaemic control in
patients with T1D and reduces insulin usage.®’

ENDOCRINE CELL INTERACTIONS THAT INFLUENCE
ISLET FUNCTION

In native pancreatic islets, there are complex interac-
tions between each endocrine cell type to maintain
healthy conditions within the body. In particular, g
cells and « cells operate in a negative feedback loop to
establish normoglycemia. In individuals without diabe-
tes, the spike in blood sugar accompanying a meal
leads to increased secretion of insulin from g cells and
decreased glucagon secretion from « cells.”* These
conditions lead to a decrease in plasma glucose levels.
Should this level dip below the healthy level and hypo-
glycemia develop, « cells will begin secreting gluca-
gon, thereby raising plasma glucose levels.”

Since human islets of Langerhans are predominantly
composed of a heterogeneous mixture of 8, «, §, and y
cells, there is an ample opportunity for paracrine signal-
ing between each cell type.””*® As opposed to the
cytoarchitecture of other species such as mice, human 8
cells are not arranged in a cluster, rather they are inter-
mingled with other islet cell types.'*®"°® Studies show
that 71% of human B cells are in contact with other
endocrine cell types, further supporting the importance
of paracrine signaling, especially with human S cells."®
These paracrine signals include hormones, peptides,

HeatonandJin 5

neurotransmitters, and metabolites.’” The majority of ,

o, and § cells are located along blood vessels within the
islet."® However, the order of cells appears random,
suggesting that the order of paracrine interactions
between these cell types is not decided by the microcir-
culation.'® Paracrine interactions play an instrumental
role in regulating the secretion of glucagon from « cells.
Both insulin and somatostatin are released under hyper-
glycemic conditions, and these hormones are capable of
inhibiting glucagon secretion.” It is hypothesized that
insulin inhibits the secretion of glucagon indirectly,
through the action of somatostatin.”” Insulin secreted
by B cells stimulates the secretion of somatostatin from
8 cells in mouse islets.®” Furthermore, the ability of
insulin to regulate glucagon release was lost in somato-
statin-secreting § cell insulin receptor knockout mice,
suggesting that the action of insulin on « cells is indi-
rect and requires the involvement of § cells.”” In addi-
tion to insulin, several factors released by g cells are
capable of inhibiting the secretion of glucagon by «
cells including y-aminobutyric acid (GABA), ATP, and
zinc ions.”” The influence of paracrine signaling on glu-
cagon regulation is apparent when « cells are studied
separately from whole islets. For instance, a study using
isolated primary rat o cells showed that glucose level
regulates K rp-channel activity in the cells, resulting in
sugar level responsive glucagon secretion. Such glucose
level responsiveness can be interrupted by means of ion
channel modulators, such as diazoxide, a potassium
channel activator. The activated signal of potassium
channel would come from tissue surrounding the «
cells.”’

Although « cells do not typically release high levels
of the hormone glucagon-like peptide-1 (GLP-1), in
circumstances such as following IL-6 treatment, j cell
regeneration after STZ treatment in neonatal rats o
cells produce GLP-1." This hormone binds with the
G-protein coupled receptors present on S cell mem-
branes, leading to increased insulin secretion.”” Fur-
thermore, in vitro studies show that glucagon
stimulates the secretion of insulin by g cells.”” Mean-
while, the pancreatic polypeptide secreted by y cells
agonizes neuropeptide Y4 receptors which are
expressed by several somatostatin-containing cells
including those in islets.”* The result of this agonism is
decreased secretion of somatostatin by § cells.”” Addi-
tionally, pancreatic polypeptide interacts with the pan-
creatic polypeptide receptor present on o cells to
regulate the secretion of glucagon.’* At lower concen-
trations (1 nM), pancreatic polypeptide decreased glu-
cagon secretion whereas it increased secretions at
higher concentrations (100 nM) in rodent islets.”* The
various paracrine interactions between S, «, §, and y
cells are visualized in Fig 1.
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SOURCES OF WHOLE ISLETS FOR CLINICAL
APPLICATIONS

Because of the crucial role each islet cell type within
pancreatic islets plays, it is important to obtain whole
islets for transplantation, as well as for use in a lab set-
ting performing drug testing, disease modeling, and
pathophysiological study. These islets can be obtained
from cadavers or differentiated from stem cells (Fig 2).
Key procedures to obtain donor islets and stem cell-
derived islet organoids are visualized in Fig 2. The first
attempt at treating T1D through pancreas transplanta-
tion was performed in the year 1966 by Richard Lille-
hei and William Kelly at the University of
Minnesota.””>’® In this surgery, a 28-year-old female
was simultaneously given a kidney and a pancreas
graft.”> Although exogenous insulin treatments were
eventually necessary, this patient did not require insu-
lin injections for an initial period of 6 days.”” Despite
this modest success, the surgery eventually failed due
to the extensive use of steroids to prevent rejection.’”
Furthermore, the patient experienced pancreatitis due
to the ligation of the duct, and the transplanted organs
were subsequently removed.”” Since then, several
advances have been made in the area of allogeneic pan-
creas transplantation. The success of subsequent pan-
creas transplants owe in part to the development of
effective immunosuppressive drugs such as cyclo-
sporin A.”°

Whole-organ pancreas transplantation is usually per-
formed in conjunction with kidney transplantation.'”
There exists a less invasive alternative for the treatment
of T1D: islet transplantation.'” The procedure for islet
transplantation, known as the Edmonton protocol, was
first outlined in the New England Journal of Medicine

Pancreatic
polypeptide

pancreatic
Po\ypepilﬂe

Insulin O
. 2
®

Somatostatin

)

— e
. B cell l"suli,, pan®Cde

: o
somatostati® »

Primary Target
after Systemic acell
Circulation
. 5 cell Islet of Langerhans
. ycell

Fig 1. Paracrine and systemic targets of -, a-, 8-, and y-cell secre-
tions, with red arrows indicating inhibitory paracrine interactions,
green arrows indicating stimulatory paracrine interactions, and black
arrows indicating concentration-dependent paracrine interactions.
GABA: y-aminobutyric acid. GLP-1: glucagon-like peptide 1. Cre-
ated with BioRender.com.

Translational Research
2022

in the year 2000.”” Before human islets can be trans-
planted, they must be digested using enzymes, purified,
and cultured.”® After this process is carried out, the
islets are infused via the portal vein.”® This is achieved
by suspending the purified cells in transplant media
containing heparin and infusing the solution using a
catheter inserted into the skin.”® Compared to the sur-
gery necessary for the whole-organ pancreas transplan-
tation, there are lower risks associated with islet
transplantation.'” However, islet transplants are limited
in that they require more donors.'” It is recommended
that a patient receive at least 5000 islet equivalents for
each kilogram of their body weight.”® This further
exacerbates the issue of donor limitations, as the num-
ber of cadaver pancreases available for transplantation
is far less than the number of patients in need of a
transplant.

Because of the severe limitations in donor availabil-
ity, researchers have focused on the potential for stem
cell-derived pancreatic islets for transplantation as well
as diabetes research. While these tissues may originate
from hESCs or iPSCs, pancreatic islet organoids
derived from autologous iPSCs are advantageous in
that they do not necessitate the lifelong use of immuno-
suppressants.”’ Furthermore, iPSCs do not face the
same ethical constraints as ESCs which require the
destruction of an embryo.””*" Studies have demon-
strated that iPSCs and ESCs exhibited similar differen-
tiation capacities for the generation of functional
tissues or organs.(’g’m'84 Hence, iPSCs became an
unlimited source for the generation of human
tissues.”"*> Although there is often a focus on the dif-
ferentiation of S cells, there exist protocols for the deri-
vation of pancreatic islet organoids containing all or
most of the major endocrine cell types, outlined in
Table L.07-0%81828688 A mentioned previously, the
development of these multi-cell type organoids is pre-
ferred for cell-based therapies rather than generating
solely B cells.

Typically, the generation of islet organoids from plu-
ripotent stem cells in vitro is carried out in a stepwise
manner that replicates the development of the native
endocrine cells.”’ The stages of this stepwise protocol
generally include the differentiation of stem cells into
the definitive endoderm (Stage 1), followed by the pos-
terior foregut (Stage 2), pancreatic progenitor cells
(Stage 3), endocrine cells (Stage 4), and ending with
the development of mature islet cells (Stage 5).”' This
protocol is recreated at varying levels of completion
for the treatment of T1D. Some approaches utilizing
stem cell-derived products to treat diabetes involve the
procurement of B cells in vitro and subsequent use in
vivo,””° the injection of pancreatic progenitor cells
for in vivo maturation,(”’98 and the development of
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Fig 2. Key procedures to obtain donor islets and stem cell-derived islet organoids for transplantation. Somatic
cells obtained from autologous or allogeneic sources are reprogrammed into pluripotent stem cells using cell
reprogramming technologies. Pancreatic islet organoids can be generated from induced iPSC differentiation.
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heterogeneous pancreatic islet organoids in vitro com-
prising some or all of the major pancreatic endocrine
cell types.67,68,81,82,87—9(),‘)0,]()0

Although several studies focus on the development
of insulin-producing S-like cells for diabetes cell thera-
pies, there is an evidence that these cells are not fully
mature as they often co-express both insulin and gluca-
gon.”® A proposed alternative is the injection of

pancreatic progenitor cells in vivo.”® Upon injection,
these pancreatic progenitors continue to mature in
vivo.” One study optimized the differentiation of
hESC line H1 into pancreatic endoderm and endocrine
precursor cells that highly expressed the marker genes
PDX1, NGN3, and NKX6.1.”® Populations of these
cells were transplanted into mice that were previously
given an intraperitoneal injection of STZ to model

Table I. Studies obtaining pancreatic islet organoids composed of multiple islet cell types

Cell Line B cells a cells s cells v cells Novelty Reference
iPSCs hiveNry Detected Detected Detected Notdetected SVA4OLT added toinduce 86
proliferation of endocrine
progenitors and removed
before differentiation
iPSCs TKDN4-M Detected Detected Detected Notdetected Suspension culture 87

hESCs HUESS, iPSC-1 Detected Detected Detected
and iPSC-2

hESCs H9 Detected Detected Detected
hESCs HUES8 Detected Detected Detected
hESCs H9 Detected Detected Detected

iPSCs IMR90, hESCs H9  Detected Detected Detected

iPSCs IMR90, hESCs H?  Detected Detected  Detected

iPSCs IMRQ0 and DF4, Detected Detected Detected
hESCs H9

Not detected  Modulation of signaling 88

pathways in each stage
of differentiation using
small molecules and
growth factors

Detected Collagen type | biomimetic
scaffold

Not detected  Dynamical regulation of
TGF-B signaling

Not detected  Isolation of CD177+ anterior
definitive endoderm cells
to inhibit Wnt signaling for
further differentiation

Detected Decellularized pancreatic
extracellular matrix in
coating substrates

Detected Collagen type V presented
in coating substrates

Detected Angiopoietin stimulation in
the middle of stepwise
differentiation

67

89

90

81

68
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T1D.”® Following implantation, the endocrine precur-
sor cells continued maturing. Instead of co-expressing
insulin and glucagon, as 40% of cells did before
implantation, they began to form islet-like clusters.”
Three months after implantation, 95% of these cells
were monohormonal, including insulin-, glucagon-,
and somatostatin-positive cells.”” The mice were
weaned off of exogenous insulin initially used to treat
their STZ-induced diabetes, and the hESC-derived
cells were eventually able to secrete insulin, as mea-
sured by C-peptide, in response to both intraperitoneal
and oral glucose.”®

In addition to investigate the maturation of pancre-
atic and endocrine progenitor cells in vivo, researches
aim to develop mature islet organoids in vitro that con-
tain B, &, 8, and y cells prior to implantation. Through
temporal treatment with signaling molecules and 3D
microenvironment, researchers have developed proto-
cols for the differentiation of pluripotent stem cells
into insulin-producing islet-like clusters (ILCs).®”'"!
For example, treatment of sodium butyrate and activin
A leads to upregulation of definitive endoderm-associ-
ated genes such as SOX17, FOXA2 and HNF4q.'"!
Eventually, these pancreatic endoderm cells begin
expressing higher levels of PDX1, PTFla, NGN3, and
NKX6.1, each of which is associated with the endo-
crine cells.'®! After maturation, characterization of
ILCs through immunocytochemical staining reveals
that they are made up of insulin, glucagon, and somato-
statin-positive cells.'®" Furthermore, these hESC-
derived ILCs showed glucose-responsive C-peptide
and insulin secretions.'”’ Wang ez al. showed that col-
lagen-based 3D scaffolds could significantly improve
the generation of ILCs with high-level expression of
C-peptide and higher sensitivity to glucose levels com-
pared with that of 2D culture microenvironment
(Table 1).°" Several research groups have developed
protocols for the development of similar islet-like orga-
noids, with variations in signaling molecules used or
adding preselection through cell sorting technique
(Table I),32:88-90:102

The goal of many studies is to identify important
microenvironmental signals during the pancreatic
development in vivo and recapitulate them in vitro so
as to effectively develop islets for treatments, disease
modeling, drug screening, and other applications. Bi
et al. demonstrated the efficacy of decellularized pan-
creatic extracellular matrix (dpECM) proteins and col-
lagen type V as critical microenvironmental cues in
islet development, showing that their presentation in
the matrix-coating substrates during differentiation of
human iPSCs and hESCs leads to the generation of
pancreatic islet organoids containing insulin-, gluca-
gon-, somatostatin, and pancreatic polypeptide-
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secreting islet organoids.”®®" This differentiation pro-
tocol leads to the formation of islet organoids with glu-
cose-responsive glucagon as well as insulin secretions
(Table 1).°**" Organ-on-a-chip techniques have also
been utilized to recreate the native pancreatic microen-
vironment, including the key cell-cell interactions and
mechanical stimuli.'” Overall, stem cell-derived pan-
creatic cells and tissues offer a promising alternative to
cadaveric islets for both research and clinical applica-
tions. However, a diverse array of chemical and molec-
ular stimuli plays a critical role during in vivo
development. More research is necessary to effectively
recreate the native tissue microenvironment in vitro in
order to improve differentiation protocols for the gen-
eration of mature islet organoids. Karanth et al. discov-
ered that angiogenic factors, angiopoietin-1 or
angiopoietin-2, facilitate the formation of islet organo-
ids from induced iPSC differentiation with the elevated
glucose responsiveness. The iPSC-derived islets gener-
ated under angiopoietin stimulation displayed glucose
synchronized calcium ion influx in repetitive glucose
challenges. Mechanistically, these islet organoids were
able to regulate insulin exocytosis through actin-fila-
ment polymerization and depolymerization in response
to glucose level change.*”

STRATEGIES FOR LONG-TERM CULTURE AND
PRESERVATION OF ISLETS

Before transplantation, cadaveric islets must be iso-
lated and purified. There is often a period of time dur-
ing which the isolated islets must be maintained in a
tissue culture before use.'”* In addition, due to the
wide supply-demand gap for cadaveric islets, it
requires the development of long-term culture and
preservation techniques to maintain maximal function
of pancreatic islets prior to clinical application. A
plethora of investigations has been performed sur-
rounding the best methods of culturing and preserving
both cadaveric islets and pancreatic islet organoids for
obtaining their flexible usage such as transplantation.
Numerous studies have been done on pancreases
obtained from animals such as mice, rats, and guinea
pigs, as well as organoids derived from rodent stem
cell lines.>'0>-113 Additionally, several researchers
have developed protocols for human islet preservation
so as to best conserve S cell function. Importantly,
some studies focus on the best means of culturing
human stem cell-derived islet organoids.

As early as the 70s, research groups like Andersson
et al. worked to develop protocols to maintain islets
within a culture.'”* By adequately purifying and cultur-
ing these islets, there is a greater potential for utilizing
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multiple donors for source tissue and avoiding compli-
cations and rejection.'” After pancreatic glands are
isolated from cadavers and perfused with a chilled
solution of Dextran 40 and electrolytes, the body and
tail are injected with Hanks’ Balanced Salt Solution
(HBSS) and cut into small pieces.'”* The pieces are
put into suspension and treated with collagenase.'**
After collagenase digestion and fat removal through
HBSS washing, the islets are added to petri dishes with
culture medium changed every 2 days starting from
day 3."" In this protocol, the culture medium is supple-
mented with 20% calf serum and antibiotics.'”* In
more recent years, efforts have been made to identify
molecules with which to supplement traditional culture
media while still maintaining serum-free conditions.''°
This helps avoid contamination, which is critical for
transplanted tissues.''” Results of preliminary studies
indicated that islets could be cultured in vitro for at
least one week with no disturbances in 8 or « cell
function.'”*

In order to best preserve pancreatic islet tissue and
function, differing conditions have been studied includ-
ing various media formulations, additional molecules
provided, and environments on which the tissues are
cultured. Islets may be cultured in suspension, on surfa-
ces coated with ECM, encapsulated or embedded in
biomaterials, on scaffolds, in bioreactors, or even in
microphysiological systems.''®''” The simplest and
the best understood culturing environment of islets and
islet organoids is the suspension culture.'® As com-
pared to an adherent culture, the suspension culture
allows the islets to maintain their three-dimensional
architecture.'' Several experiments have shown that
supplementation with insulin,'”” prolactin,'*" seri-
cin,'*” human albumin,'** ethanolamine, phosphoetha-
nolamine, transferrin, triiodothyronine, and insulin-like
growth factor 1'** leads to better preservation of islet
and g cell function. Alternative methods such as cul-
ture on ECM or in bioreactors restores the mechanical
stimuli lost in suspension cultures such as the cell-cell
and cell-ECM interactions and hydrodynamic shear
stress.''® These methods prove to be more effective in
maintaining islet cell phenotype.' "

In cases where a longer period of time passes
between obtaining and utilizing islets, cryopreservation
is often used. This technique is useful in cases where
islets are obtained from several donors. Cryopreserva-
tion of isolated and purified islets includes a supercool-
ing process to around -40°C in ethanol after adding
serum containing dimethyl sulfoxide (DMSO), a cryo-
protectant that prevents cell injury caused by the devel-
opment of intracellular and extracellular crystals.'”>'*°
Then, the tissues are kept at low temperatures such as
-196°C by submerging them in liquid nitrogen.'”’
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Studies show that after 46.5 days, cryopreserved islets
had similar insulin extraction values on the day of
thawing compared to before freezing.'>> When islet ali-
quots from cryopreserved islets and those that were
cultured overnight were perfused with Krebs bicarbon-
ate buffer containing basal (60 mg/dl) and high (300
mg/dl) concentrations of glucose, they showed similar
primary insulin secretions.'””> However, the islets
thawed after cryopreservation showed lower secondary
insulin secretions.'”> Secondary insulin secretion fol-
lows the initial short spike in insulin concentrations.'”’
This second phase of insulin secretion is characterized
by a 2—3-hour slow increase in insulin concentrations
that eventually plateaus.'”’ While the difference in sec-
ondary insulin secretion between the 2 groups was not
statistically significant, it reveals modest damage to
pancreatic islets after cryopreservation.'”” This is fur-
ther supported by the idea that secondary insulin secre-
tions are typically made up of the newly synthesized
hormone.'*’

Variables commonly altered during the optimization
of cryopreservation protocols include cryoprotectant
chemicals and freezing rate.'”*'*” Although the most
standard cryoprotectant used is DMSO, several
research groups have investigated the effects of varying
its concentration and utilizing other cryoprotectants
alone or in combination with DMSO.'**"*Y Combining
DMSO with chemicals such as hydroxyethyl starch
decreases its inherent toxicity to islets."”” Another
study found that using lower concentrations (1.5 M) of
DMSO as a cryoprotectant shows better results than
2.0 M DMSO or various concentrations of ethylene
glycol.'*® This conclusion was made on the basis of
significantly improved percentage of recovered islets
and stimulation indices.'”® Although the toxicity of
DMSO makes its use as a cryoprotectant hotly debated,
islets cryopreserved using DMSO have shown clinical
success when transplanted after thawing.'”®'*'" War-
nock et al. demonstrated that a 36-year-old patient with
T1D showed normoglycemia with the withdrawal of
exogenous insulin injection following a simultaneous
islet-kidney transplant using islets cryopreserved with
DMSO."!

As previously mentioned, one approach for the treat-
ment of diabetes is to use pancreatic or endocrine pro-
genitor cells generated in vitro and allow their
maturation in vivo or in vitro. Tanaka et al. developed
a protocol for the expansion of iPSC-derived pancreatic
islet progenitors in culture by introducing and subse-
quently removing the proliferation gene SV40LT.*
Introducing this gene to a population of endocrine pro-
genitor cells expressing NGN3 via lentiviral vector led
to cell proliferation while inhibiting their differentia-
tion into cells expressing NGN3, NEURODI and
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NKX2.2.%° After the SV4OLT gene was removed using
Cre recombinase, the proliferation ceased, and the
progenitor cells differentiated into B, o, and § cells
(Table I).*° This protocol could be applied in the future
to efficiently expand endocrine progenitors for the
eventual generation of mature islet cells and pancreatic
islet organoids both in vitro and in vivo.

UTILITY OF ISLET ORGANOIDS

The therapeutic potential of pancreatic islet organo-
ids as a source for transplantable islets is clear, and it is
highlighted in several papers.'”'**'* The utility of
islet organoids in addressing T1D has been demon-
strated in animal models.”®'"*"*” Protocols exist for
the transplantation of islet organoids that hold the
potential to remedy current challenges such as limited
availability of cadaveric islets, need for immunosup-
pressive drugs, and even engraftment failure."”’ In
addition to the potential benefits of implanting pancre-
atic islet organoids to treat diabetes and restore endoge-
nous levels of insulin, glucagon, and other pancreatic
hormones in patients, there are other applications for
these organoids in vitro. Much of the research devoted
to the potential of pancreatic organoids in diabetes dis-
ease modeling.'**'** By using islet organoids derived
from human stem cells, researchers can investigate the
mechanisms of disease progression and identify thera-
peutics without relying on animal models."*® This is a
valuable way to more accurately study human physiol-
ogy instead of generalizing between different spe-
cies.'*® Furthermore, by recapitulating the disease state
in a laboratory setting, researchers can easily investi-
gate the ability of drug candidates to ameliorate symp-
toms.'*? Moreover, this could be applied to patient-
specific personalized medicine should autologous cells
be used for organoids. By using pancreatic islet orga-
noids on microphysiological systems, researchers can
also investigate the interactions between the pancreas
and other organs, like the liver, in a more precise, con-
trolled manner.'*®'*” Multi-organ microphysiological
systems create a unique opportunity to examine the
interactions and crosstalk between organs at a level
that is more complex than a single cell culture or orga-
noid yet simpler than in vivo studies. For example, Tao
et al. utilized microfluidic organ-on-a-chip systems to
model the liver-pancreatic islet axis.'*” The pancreatic
islet organoids for this study expressed markers associ-
ated with B, «, §, and y cells, and the microfluidic
device used allowed for the exchange of media and
metabolites between the islet and liver organoids.'*"
They found that this system was effective in modeling
the ability of B cells to stimulate uptake of glucose by
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the liver in response to elevated glucose level.'*® This
represents one of many studies that makes use of pan-
creatic organoids to model healthy and diseased islet
function. Overall, pancreatic islet organoids are valu-
able beyond organ transplantation in their utility in dis-
ease progression studies and drug discovery.

CONCLUDING REMARKS

There is an urgent need to identify alternative sour-
ces for pancreatic islets as a means to treat diabetes.
Islets derived from pluripotent stem cells, including
iPSCs, are an appealing solution to the current organ
donor shortage. However, § cell treatments, like exoge-
nous insulin injections, fail to address the role of gluca-
gon in the development of diabetes. Furthermore, each
endocrine cell type in the islet of Langerhans plays its
own critical role in normal physiology, both in the pro-
duction and the secretion of their respective hormone
and in their complex interactions regulating one
another. For this reason, whole intact islets or islet
organoids are preferred to reestablish healthy physio-
logical conditions. However, there are many challenges
currently facing the generation and transplantation of
heterocellular pancreatic islet organoids.

One key challenge in the effective generation and
isolation of pancreatic islet organoids in vitro is the
absence of instrumentation and markers to reliably dis-
tinguish between islet organoids and other cell aggre-
gates after differentiation.”® Because the desired
product is multicellular and heterogenous, flow cytom-
etry cannot be used for purification. This leads to
decreased efficiency in islet organoid generation. In
contrast to the generation of uniform populations of g
cells, preselection cannot be performed for the genera-
tion of pancreatic islet organoids composed of several
endocrine cell types. During the development of mono-
hormonal insulin-producing cells, preselection is often
used to increase the final cell purity. For example,
Rezania et al. demonstrated that selection of hESC-
derived pancreatic progenitor cells that highly express
both PDX1 and NKX6.1 leads to more efficient matu-
ration into insulin-secreting cells in vivo.'’> Pancreatic
progenitor cells with high PDX1 and NKX6.1 expres-
sion were more effective in reversing diabetes in mice
when transplanted subcutaneously in macroencapsula-
tion devices compared to pancreatic progenitor cells
with the low NKX6.1 expression.'”” This preselection
often requires using a reporter stem cell line allowing
for single cell sorting through flow cytometry.'*>"'*/
For instance, reporter cell lines inserting green fluores-
cence protein into the INS locus for subsequent isola-
tion'** and transfecting cells with a plasmid containing
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both NKX6.1 promoter and neomycin-resistance genes
for the subsequent selection of NKX6.I-positive
cells'*” have been used as enrichment methods. How-
ever, increased heterogeneity and a lack of consistent
cell surface markers for islet organoids makes these
methods inapplicable to increase the purity and the effi-
ciency for the generation of pancreatic islet organoids.
Furthermore, there are resulting difficulties in quantify-
ing the relative amounts of each endocrine cell type
within islet organoids.”® Cryo-sectioning, immunos-
taining, and fluorescence microscopy may be utilized
to measure the percentage of S, «, §, and y cells, but
the presence of non-islet cell types leads to significant
challenges.”®

Despite the current shortcomings in the efficient gen-
eration of pure islet organoids containing S, «, 8, and y
cells, there are many promising areas of further
research. For example, gene editing may be used to
address limitations in islet organoid purity."”’ One
major risk of using pluripotent stem cell-derived tissues
for transplantation is the potential for teratoma forma-
tion from undifferentiated cells.””” This risk is high
upon implantation of pancreatic islet organoids due to
the aforementioned challenges in organoid purification
and characterization. By selectively expressing a sui-
cide gene in undifferentiated stem cells, this risk can
be mitigated.””” Wu ez al. accomplished this by insert-
ing the suicide gene inducible caspase-9, designated as
1C9, into the endogenous SOX2 locus of the hESC line
HI using CRISPR-Cas9 technology (Fig 3)."”" In the
resulting cell line, undifferentiated cells underwent
apoptosis following treatment with an apoptotic drug
AP1903 whereas differentiated cells were unaf-
fected."”” This approach poses a potential solution to
eliminate undifferentiated stem cells. However, it is
still challenging to apply this method to remove multi-
ple progenitors or non-islet organoids due to the nature
of heterogeneity during organoid differentiation.

Another significant challenge in the clinical use of
pancreatic islet organoids is their limited survival fol-
lowing transplantation. Due to the shortage of oxygen
at the transplantation site, organoids survival rate in
vivo without the promotion of angiogenesis is low. In
order to quickly establish a vascular network to provide
nutrients and the exchange of oxygen and carbon diox-
ide to pancreatic islet organoids, efforts have been
made focusing on using encapsulation devices that are
able to generate oxygen in site or the formation of pre-
vascularized islets before transplant.'**'37!31-159
Wang et al. designed a scaffold which provides internal
air supply continuously to deliver oxygen to the hydro-
gel encapsulated cells to support long-term function of
transplanted cells."”” This encapsulation device is
promising for transplantation requiring high cell
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Fig 3. Novel strategies to enhance the efficacy of using pancreatic
islet organoids in vivo. Created with BioRender.com

payloads. As an alternative approach, prevascularized
islets, could be achieved by fusing islet cells with
microvascular fragments'>’ or with multiple cell types
including human amniotic epithelial cells (hAECs),
and human umbilical vein endothelial cells (HUVECsS)
(Fig 3)."%%15%15% Nalbach er al. developed prevascular-
ized pancreatic islet organoids by co-culture of pancre-
atic islet cells and microvascular fragments at an
optimal ratio, allowing the formation of microvessels
before transplantation.'”” These microvascular frag-
ments were isolated by mechanic and enzymatic diges-
tion of epididymal fat pads of mice, followed by
filtration through a 500 pum filter. These organoids
demonstrate high angiogenic capabilities and restore
normoglycemia in STZ-treated mice faster than freshly
isolated islets.'”” Although the organoids developed in
this study were derived from primary murine islet cells,
a similar protocol could be applied in the future with
autologous pluripotent stem cells and liposuction-
derived microvascular fragments.'”” The prevasculari-
zation leads to favorable engraftment, increased angio-
genesis, and enhanced function of the islet organoids
following implantation in murine models.'**"*"'>*
Crosstalk between islet cells, hAECs, and HUVECs
leads to the upregulation of angiogenesis genes such as
vascular endothelial growth factor A as well as genes
associated with proper f cell function like PDX1.">

In addition, avoiding the immune system attacking
transplanted organoids is critical for graft survival.
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Methods for a successful islet transplantation have
been well discussed elsewhere.”*'*” A commonly
used approach is encapsulation of therapeutic cells
prior to the transplant. Researchers have developed
biocompatible microcapsules for cell encapsulation
that can mitigate the buildup of fibrotic tissue to
improve function of transplanted cells.'*'®* Alagpu-
linsa et al. found that encapsulating hESC-derived B
cells into microcapsules containing high concentration
of CXCL12 supports S cell function and protects
against the immune response and rejection.'®” This
study indicates that supplementation of immune-cell-
repelling protein CXCL12 improves the likelihood of a
successful transplantation. Another approach devel-
oped to protect stem cell-derived cells from immune
recognition is to induce the expression of immune
checkpoint protein programmed death-ligand 1 (PD-
L1) (Fig 3).'*'% Treatment of human islets with inter-
feron-y (IFN-y) led to a 20-fold increase in PD-L1
expression after 20 hours. 164 Furthermore, when IFN-y
was presented through multiple short exposures, the
islets exhibited no changes in glucose-stimulated insu-
lin secretions.'®* In vivo testing demonstrated that PD-
L1* islet organoids showed more prolonged effects in
diabetic mice compared to organoids without PD-L1
expression.'® Fig 3 outlines some critical methods of
improving pancreatic islet organoids for use in vivo.
Another challenge using iPSC-derived organoids for
cell-based therapy is immunological rejection if alloge-
neic stem cells were used, which requires the use of
immunosuppressants to prevent rejection. While this
can be avoided through the use of autologous stem cells
as a source for pancreatic islet organoids, it too has its
set of shortcomings. The process of reprogramming an
individual’s autologous cells into iPSCs is time-con-
suming and expensive. At the same time, the require-
ment for donor-recipient HLA compatibility is a major
challenge for use of an off-the-shelf iPSC line.'®® The
use of HLA-edited iPSCs may overcome this challenge
(Fig 3).'°*'7 Using CRISPR-Cas9, Koga et al. demon-
strated that HLA-A/B-knockout iPSCs are not rejected
by donors with HLA-C-matched natural killer and T
cells.'®® Furthermore, 12 HLA-C alleles were capable
of 95% of the global population.'®® Therefore, these 12
HLA-edited iPSC lines could serve as a semi-universal
source for stem cell-derived tissues.'® These cells
could be used as an unlimited source for pancreatic
islet organoids while still avoiding immune rejection
following implantation. Castro-Gutierrez et al. estab-
lished a PD-L1 inducible expression and HLA class I
knockout hPSC line by genome editing. Islet g-like
cells generated from this genome edited, PD-L1 over-
expressing cell line revoked CD8 T cell activation
characterized by T cell stimulation assay.'® Tt should
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be pointed out that disadvantages in the development
of immune-evasive tissues are the loss of the capability
of immune surveillance and the risk of tumorigene-
sis.'®® The use of HLA-editing inherently hinders the
ability of the immune system to monitor tissues for the
development of cancer, thereby impacting its ability to
be applied clinically.'®” Wuputra et al. summarized
approaches to manage and avoid tumorigenesis devel-
oped from iPSCs.'°® Taken together, this review
emphasizes the importance of multiple pancreatic islet
cell types in islets and the generation of the multicellu-
lar islet organoids from stem cells, particularly with
updated new strategies to improve cell-based therapies
using stem cell-derived islet organoids.
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