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Almost 50 years ago, scientists developed the bi-hormonal abnormality hypothesis,
stating that diabetes is not caused merely by the impaired insulin signaling. Instead,
the presence of inappropriate level of glucagon is a prerequisite for the development
of type 1 diabetes (T1D). It is widely understood that the hormones insulin and gluca-
gon, secreted by healthy β and a cells respectively, operate in a negative feedback
loop to maintain the body’s blood sugar levels. Despite this fact, traditional T1D treat-
ments rely solely on exogenous insulin injections. Furthermore, research on cell-based
therapies and stem-cell derived tissues tends to focus on the replacement of β cells
alone. In vivo, the pancreas is made up of 4 major endocrine cell types, that is, insulin-
producing β cells, glucagon-producing a cells, somatostatin-producing d cells, and
pancreatic polypeptide-producing g cells. These distinct cell types are involved syner-
gistically in regulating islet functions. Therefore, it is necessary to produce a pancreatic
islet organoid in vitro consisting of all these cell types that adequately replaces the
function of the native islets. In this review, we describe the unique function of each
pancreatic endocrine cell type and their interactions contributing to the maintenance
of normoglycemia. Furthermore, we detail current sources of whole islets and techni-
ques for their long-term expansion and culture. In addition, we highlight a vast poten-
tial of the pancreatic islet organoids for transplantation and diabetes research along
with updated new approaches for successful transplantation using stem cell-derived
islet organoids. (Translational Research 2022; 000:1�16)
Abbreviations: DMSO = dimethyl sulfoxide; GABA = g-aminobutyric acid; GCGR = glucagon
receptor; GLP-1 = glucagon-like peptide-1; hAECs = human amniotic epithelial cells; HBSS =
Hanks’ Balanced Salt Solution; hESCs = human embryonic stem cells; HLA = human leukocyte
antigen; HUVECs = human umbilical vein endothelial cells; IFN-g = interferon-g; iPSCs = induced
pluripotent stem cells; ILCs = islet-like clusters; LepR = leptin receptor; MAFA = V-maf musculoa-
poneurotic fibrosarcoma oncogene homolog A; NGN3 = Neurogenin-3; PDX1 = Pancreas/
duodenum homeobox protein 1; STZ = streptozotocin
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INTRODUCTION

According to the Center for Disease Control and Pre-

vention, 1.9 million Americans have type 1 diabetes

(T1D).1 There are several complications associated

with diabetes including blindness, stroke, renal failure,

heart attack, and lower limb amputation.2 Despite the

gravity of these complications, the most common T1D

treatment, injection of exogenous insulin, does not

address them.3 Exogenous insulin injections, when

used properly, have the potential to mitigate the high

blood glucose associated with this disease. However,

insulin injections are not a cure, as they do not address

the changes in b and a cell number and function under-

lying the development of diabetes.

The development of T1D is rooted in improper

secretion of both insulin and glucagon.4,5 This is due

to the fact that the heterotypic interactions between

glucagon-secreting a and insulin-secreting b cells in

human islets is paramount in regulating glucose

homeostasis.6,7 Therefore, it is logical to conclude that

treatments based on the injection of exogenous insulin

alone are insufficient to treat T1D or adequately repli-

cate the non-diabetic state. One major source of con-

cern associated with exogenous insulin injections for

the treatment of T1D is hypoglycemia.8 Should insulin

injections lower blood glucose levels below a healthy

level (90�110 mg/dL), transport of glucose to the brain

is severely limited.8,9 This is hazardous and may lead

to death. Despite the dangers of hypoglycemia, patients

with T1D experience symptomatic episodes of hypo-

glycemia an average of 2 times each week.8

Even ignoring the failure to address the a cell dys-

function associated with T1D, exogenous insulin treat-

ments are unable to replicate the function of the

endogenous hormone.10 As a matter of fact, patients

who receive several insulin injections each day experi-

ence glycemic volatility, indicating that their blood

glucose levels vary between hyperglycemic and hypo-

glycemic.10 This is due in part to the fact that injected

insulin is unable to reach the islets with sufficiently

high concentration.10 Therefore, glucagon secretion is

not suppressed as a result of the exogenous insulin.10 A

higher dose of injected insulin is necessary to over-

come the subsequent low ratio of insulin to glucagon.10

However, this high insulin dose may lead to hypogly-

cemia.10 Maintenance of blood glucose levels in the

non-diabetic body is a delicate balance between insulin

and glucagon. The complex interplay between these

hormones is difficult to recreate using exogenous hor-

mone injections, leading to glycemic instability.

In light of each of these limitations, islet transplanta-

tion is preferable to exogenous insulin injections. How-

ever, there too are severe limitations in the availability
of pancreatic islets for transplantation as a means of

curing T1D. This is due to the wide gap between the

available cadaveric donors and the number of T1D

patients who would benefit from a transplant.11 Fur-

thermore, there are many T1D patients who would ben-

efit from a transplant that are not eligible for one. This

is because insulin therapy is often used preferentially

to transplantation. While pancreas and islet transplants

are the only means for restoring endogenous insulin

secretion and the fine-tuned glycemic control that

results, these methods are limited to patients who expe-

rience additional renal failure or severe hypoglycemia

and glycemic instability despite exogenous insulin

treatment.12

An appealing solution to the organ donor shortage is

the use of stem cell-derived pancreatic islet organoids

as an alternative to cadaveric islets. Stem cells are

capable of differentiating into multiple cell types.

Human embryonic stem cells (hESCs) and induced plu-

ripotent stem cells (iPSCs) are both commonly used for

the development of pancreatic islet organoids.13 These

cells may give rise to all of the major endocrine cell

types within the islet of Langerhans: insulin-producing

b cells, glucagon-producing a cells, somatostatin-pro-

ducing d cells, and pancreatic polypeptide-producing g

cells. Because each of these cell types plays an impor-

tant role in metabolism and the establishment of nor-

moglycemia in the non-diabetic state, it is critical that

they are each present in organoids intended to treat

T1D. In this review, we discuss the unique function of

each pancreatic islet cell subset and their roles in main-

taining normoglycemia in the body. We highlight the

sources of whole islets, techniques for their long-term

expansion and culture, and their utility for transplanta-

tion and research. In addition, we summarize updated

new approaches for successful transplantation using

stem cell-derived islet organoids. We will begin by

highlighting the critical functions of each major endo-

crine cell type within the islet of Langerhans individu-

ally. Then, the effects that each cell type exhibits on its

counterparts will be discussed.
ROLE OF HEALTHY BETA CELLS

b Cells are the most prevalent endocrine cell type

located within the pancreas in the islet of Langer-

hans.14 In human islets, b cells, accounting for approxi-

mately 50%�75% of the volume of islets, are located

in high amounts within the anterior head, body, and tail

of the pancreas.14-16 Murine islets are generally

arranged with a core of b cells surrounded by a, d, and

g cells at the periphery.17 In contrast to this and in con-

flict with the islet architecture described in some
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textbooks, studies suggest that b cells within human

islets are more randomly distributed among the other

endocrine cell types.15,17,18

b Cells produce, store, and secrete the hormone insu-

lin in response to changes in blood glucose levels.19

They secrete insulin in response to high ATP/ADP

ratios within the cells. It is in this way that the b cells

exhibit glucose responsive insulin secretions.20 When

glycemic levels are high following a meal, there is a

high concentration of glucose within the extracellular

space of b cells.20 The glucose is transported into the

cell by glucose transporters like GLUT1 in human and

GLUT2 in rodent and then metabolized.21 Further-

more, glucokinase within the b cells phosphorylates

glucose, leading to increased levels of ATP and

decreased levels of ADP.20 Consequently, the ATP

binds to potassium channels within the b cells to depo-

larize the cell which allows calcium to flow in through

voltage-gated calcium channels, resulting in insulin

exocytosis.20 In addition, insulin is an anti-hyperglyce-

mic peptide hormone, which functions to lower blood

glucose levels.19 It binds to receptors located on the

cell-membrane of target cells such as liver, fat, and

skeletal muscle cells.22,23 Insulin binding on receptors

of liver cells promotes the receptor-mediated endocyto-

sis of glucose and its subsequent conversion into glyco-

gen thereby decreasing circulating blood glucose

levels.23 In addition to triggering glucose uptake in tar-

get cells, insulin also antagonizes several hyperglyce-

mic hormones such as glucagon, growth hormone,

glucocorticosteroids, and epinephrine.19 In this way,

insulin functions to maintain a healthy blood glucose

level following postprandial spikes in blood sugar.

Several studies have investigated pancreatic devel-

opment, with a focus on b cell differentiation.24-30

Through the use of animals, especially murine models,

scientists have established the role that several tran-

scription factors such as Pancreas/duodenum homeo-

box protein 1 (PDX1), Neurogenin-3 (NGN3), and

V-maf musculoaponeurotic fibrosarcoma oncogene

homolog A (MAFA) play in b cell development, sur-

vival, and function in vivo.25,31-38 MAFA is a b cell

maturation marker, as it regulates the transcription of

insulin gene in response to glucose levels.39 PDX1,

expressed early on during development, is essential for

the function and survival of b cells.25,32 Pdx1 null mice

and humans with homozygous PDX1 mutations exhibit

pancreatic agenesis.32 Furthermore, humans with het-

erozygous missense and frameshift PDX1 mutations

are unable to secrete insulin and exhibit maturity onset

diabetes of the young.32 In general, PDX1 is thought

to regulate b cell development by activating genes

associated with b cell identity and suppressing those

critical to a cell identity.33
ROLE OF HEALTHY ALPHA CELLS

After b cells, the second most prevalent endocrine

cell type within the pancreatic islets is the a cell.17 The

percentage of a cells comprising the human islet is

generally 20%�40%.15,18,40 These cells produce and

secrete the hormone glucagon.41 Glucagon is released

into the bloodstream in response to low blood glucose

levels. Within a cells themselves, there are voltage-

gated Ca2+ channels, such as the P/Q-type Ca2+ chan-

nel, that open in regard to low blood glucose levels.41

As a result, there is an influx of Ca2+ into the cell, lead-

ing to glucagon exocytosis.41 This hormone increases

the amount of glucose present in the blood by interact-

ing with glucagon receptors (GCGR) on the liver and

triggering both gluconeogenesis, the synthesis of glu-

cose, and glycogenolysis, the catabolism of glycogen

into glucose.41 The regulation of glucagon secretion is

less understood than that of insulin, but it is thought to

involve a combination of intrinsic and paracrine

signals.41,42 The dysfunction of a cells directly contrib-

utes to T1D development.4,5 Further involvement of a

cells in islet functionality and diabetes are described in

the following sections.
ROLE OF HEALTHY DELTA, GAMMA, AND EPSILON
CELLS

Another subtype of endocrine cells within the islet of

Langerhans is the d cell. The function and therapeutic

potential of these cells are less widely understood com-

pared to the more prevalent b and a cells. d cells make

up about 5%�10% of human islet cells, and they

secrete the hormone somatostatin.17,43 Somatostatin,

also referred to as growth hormone inhibiting hormone,

is released by the gastrointestinal tract, the hypothala-

mus, and the central nervous system in addition to pan-

creatic d cells.44 Somatostatin exists in 2 forms in the

body: somatostatin-28 and somatostatin-14, the latter

being secreted by pancreatic d cells.43 d cells influence

b and a cells through paracrine interactions. They do

so using long neurite-like projections that extend

between them.43 Research also indicates that d and b

cells are electrically coupled, further suggesting their

interactions.43 Somatostatin secretion from d cells

is induced by glucose concentrations, beginning at a

concentration of 3 millimolar and increasing propor-

tionately as glucose concentration increases.43 Somato-

statin is an inhibitor of both insulin and glucagon.45

One study investigated this function using somato-

statin-null (Sst�/�) mice.45 They demonstrated that

Sst�/� mice had significantly higher plasma levels of

both insulin and glucagon following intravenous

administration of glucose or arginine compared to the

https://doi.org/10.1016/j.trsl.2022.06.014
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wild type mice.45 A similar difference was apparent

during ex vivo experiments done on isolated mouse

islets.45 Islet isolated from Sst�/� mice secreted

approximately twice as much insulin and glucagon in

response to the glucose and arginine compared to the

control.45 This suggests that the source of insulin and

glucagon suppression is d cell-derived somatostatin

rather than gastrointestinal, neural, or neuroendocrine

sources of the hormone.45 In b cell destruction models

such as streptozotocin (STZ)-induced diabetic rats,

there is an observed increase in the quantity of d cells

as well as an increase in pancreatic somatostatin.46

g Cells, also referred to as pancreatic polypeptide

(PP) cells, make up approximately 1%�2% of the islet

of Langerhans.40 These cells secrete the hormone pan-

creatic polypeptide, a 36 amino acid peptide that is

released after eating in a biphasic manner.47 The first

phase of pancreatic polypeptide secretion is stimulated

by the vagus nerve.47 This first phase is shorter than

the second, which occurs in response to hormones

including cholecystokinin.47 Levels of pancreatic poly-

peptide in the plasma remain elevated for up to 6 hours

following eating.48 Its release is also stimulated by

hypoglycemia and exercise via adrenergic stimula-

tion.48 Pancreatic polypeptide inhibits gallbladder

motility, pancreatic exocrine, and gastric acid

secretions.48,49 It does so by binding to dorsal vagal

complex receptors and causing changes in the vago-

vagal reflex arc.48 Additionally, the pancreatic poly-

peptide is thought to promote feelings of satiety follow-

ing a meal via the vagus nerve.48,49 Studies show that

transgenic mice that overexpress pancreatic polypep-

tide exhibit weight loss, decreased food intake, and

decreased gastric emptying.48 Furthermore, when the

pancreatic islets from lean mice were transplanted into

their genetically obese littermates, their obesity was

reversed.50 This suggests that decreased pancreatic

polypeptide levels and sensitivity can contribute to

obesity. Diabetes is sometimes associated with ele-

vated pancreatic polypeptide levels, with about 10% of

diabetes patients exhibiting high basal pancreatic poly-

peptide levels.47 However, more research on the differ-

ences between healthy and diabetic g cells would be

helpful to fully understand the function of this cell

type.51

In addition, there is a small proportion of epsilon (e)
cells present in the islet of Langerhans. e cells make up

less than 1% of islets, and they were not discovered

until the early 2000s.52 They produce the hormone

ghrelin which is 28 amino acids in length.52 Ghrelin,

also referred to as the hunger hormone, stimulates

appetite.52 It also induces the secretion of growth hor-

mones from the pituitary.52 Even though e cells make

up a very small percentage of islets, this type of cells
are detectable in stem cell-derived pancreatic islet tis-

sue. For example, researchers performing single-cell

RNA sequencing may evaluate the expression of

GHRL which encodes a precursor to ghrelin.53
DIABETES IS A BI-HORMONAL DISORDER

There are several changes in b cell survival and

function as a result of the development of diabetes mel-

litus. T1D, also referred to as insulin-dependent diabe-

tes, is associated with a decrease in the number of b

cells.54 In T1D, the immune system attacks b cells,

leading to decreased insulin production and a failure to

maintain blood glucose levels.54 The abnormal b cell

populations and their association with the development

of diabetes mellitus often overshadow the role that a

cells play in the disease. However, the importance of

the hormone glucagon in diabetes cannot be ignored.

In 1975, the bi-hormonal abnormality hypothesis

replaced the previous unihormonal concept.4 This rela-

tively newer hypothesis states that improper secretion

or function of insulin alone is not responsible for the

hyperglycemia associated with diabetes.4 Insufficient

insulin levels must be coupled with the presence and

hypersecretion of glucagon for the development of dia-

betes mellitus.4 This is supported by a study comparing

the results of b cell destruction on glucagon receptor-

null (GCGR�/�) and wild type mice.55 In this study,

100 milligrams followed by 80 milligrams per kilo-

gram of body weight of the chemical STZ was injected

intravenously in order to induce the destruction of b

cells.55 This process was performed in 2 groups of

male mice, one with global glucagon receptor knockout

and one wild type group.55 Only the wild type mice

showed traditional symptoms of T1D, including hyper-

glycemia, hyperketonemia, polyuria, and cachexia.55

Through this study, researchers were able to recreate

the conditions of T1D and demonstrate the critical role

that glucagon plays in symptom development.55 These

results were further supported through experiments

restoring hepatic glucagon receptors in GCGR�/�

mice.56 Once again, this study demonstrated that STZ-

mediated b cell destruction only led to clinical symp-

toms such as hyperglycemia in wild type mice express-

ing glucagon receptors.56 After utilizing an adenovirus

containing GCGR cDNA to restore the glucagon recep-

tors, hyperglycemia developed in the mouse models,

further suggesting that the action of glucagon is critical

in T1D.56 Hence, T1D treatment using glucagon recep-

tor inhibition has been investigated extensively.57-60

The interplay between the synergetic regulation of

insulin/glucagon and hyperglycemia has been demon-

strated by a recent report showing that insulin receptor

https://doi.org/10.1016/j.trsl.2022.06.014
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substrate 1 plays a crucial role in the regulation of glu-

cagon secretion. It changes glucagon transcription in

response to exogenous insulin,61 which provides a

mechanism underlying how insulin signaling regulates

glucagon secretion.62 As T1D is characterized by insu-

lin dysfunction combined with high levels of glucagon,

a diabetes treatment that can restore both b and a cell

function is highly desired. Okamoto et al. demonstrated

that an insulin receptor antagonist, S961, induced

symptoms of diabetes in mice, including insulin resis-

tance, hyperglycemia, and ketonemia.60 When a mono-

clonal antibody was used to block the glucagon

receptor, normoglycemia was restored. Interestingly,

the mass of b cells doubled with glucagon receptor

blocking compared to treatment with S961 alone, with

a 5.8-fold increase in b cell mass compared to the con-

trol which received no monoclonal antibody or S961.

Additionally, treatment with the monoclonal antibody

increased a cell mass by 5.7-fold.60 This study poses a

potential therapy for diabetes while demonstrating the

essential role of glucagon in symptom development. In

a clinical trial, a glucagon receptor antibody, REMD-

477, has been studied to examine its efficacy for T1D

treatment. The results indicated that this glucagon

receptor antibody improves glycaemic control in

patients with T1D and reduces insulin usage.63
ENDOCRINE CELL INTERACTIONS THAT INFLUENCE
ISLET FUNCTION

In native pancreatic islets, there are complex interac-

tions between each endocrine cell type to maintain

healthy conditions within the body. In particular, b

cells and a cells operate in a negative feedback loop to

establish normoglycemia. In individuals without diabe-

tes, the spike in blood sugar accompanying a meal

leads to increased secretion of insulin from b cells and

decreased glucagon secretion from a cells.64 These

conditions lead to a decrease in plasma glucose levels.

Should this level dip below the healthy level and hypo-

glycemia develop, a cells will begin secreting gluca-

gon, thereby raising plasma glucose levels.64

Since human islets of Langerhans are predominantly

composed of a heterogeneous mixture of b, a, d, and g
cells, there is an ample opportunity for paracrine signal-

ing between each cell type.65,66 As opposed to the

cytoarchitecture of other species such as mice, human b

cells are not arranged in a cluster, rather they are inter-

mingled with other islet cell types.18,67,68 Studies show

that 71% of human b cells are in contact with other

endocrine cell types, further supporting the importance

of paracrine signaling, especially with human b cells.18

These paracrine signals include hormones, peptides,
neurotransmitters, and metabolites.65 The majority of b,

a, and d cells are located along blood vessels within the

islet.18 However, the order of cells appears random,

suggesting that the order of paracrine interactions

between these cell types is not decided by the microcir-

culation.18 Paracrine interactions play an instrumental

role in regulating the secretion of glucagon from a cells.

Both insulin and somatostatin are released under hyper-

glycemic conditions, and these hormones are capable of

inhibiting glucagon secretion.28 It is hypothesized that

insulin inhibits the secretion of glucagon indirectly,

through the action of somatostatin.69 Insulin secreted

by b cells stimulates the secretion of somatostatin from

d cells in mouse islets.69 Furthermore, the ability of

insulin to regulate glucagon release was lost in somato-

statin-secreting d cell insulin receptor knockout mice,

suggesting that the action of insulin on a cells is indi-

rect and requires the involvement of d cells.69 In addi-

tion to insulin, several factors released by b cells are

capable of inhibiting the secretion of glucagon by a
cells including g-aminobutyric acid (GABA), ATP, and

zinc ions.70 The influence of paracrine signaling on glu-

cagon regulation is apparent when a cells are studied

separately from whole islets. For instance, a study using

isolated primary rat a cells showed that glucose level

regulates KATP-channel activity in the cells, resulting in

sugar level responsive glucagon secretion. Such glucose

level responsiveness can be interrupted by means of ion

channel modulators, such as diazoxide, a potassium

channel activator. The activated signal of potassium

channel would come from tissue surrounding the a

cells.71

Although a cells do not typically release high levels

of the hormone glucagon-like peptide-1 (GLP-1), in

circumstances such as following IL-6 treatment, b cell

regeneration after STZ treatment in neonatal rats a
cells produce GLP-1.70 This hormone binds with the

G-protein coupled receptors present on b cell mem-

branes, leading to increased insulin secretion.72 Fur-

thermore, in vitro studies show that glucagon

stimulates the secretion of insulin by b cells.70 Mean-

while, the pancreatic polypeptide secreted by g cells

agonizes neuropeptide Y4 receptors which are

expressed by several somatostatin-containing cells

including those in islets.73 The result of this agonism is

decreased secretion of somatostatin by d cells.73 Addi-

tionally, pancreatic polypeptide interacts with the pan-

creatic polypeptide receptor present on a cells to

regulate the secretion of glucagon.74 At lower concen-

trations (1 nM), pancreatic polypeptide decreased glu-

cagon secretion whereas it increased secretions at

higher concentrations (100 nM) in rodent islets.74 The

various paracrine interactions between b, a, d, and g

cells are visualized in Fig 1.

https://doi.org/10.1016/j.trsl.2022.06.014
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SOURCES OF WHOLE ISLETS FOR CLINICAL
APPLICATIONS

Because of the crucial role each islet cell type within

pancreatic islets plays, it is important to obtain whole

islets for transplantation, as well as for use in a lab set-

ting performing drug testing, disease modeling, and

pathophysiological study. These islets can be obtained

from cadavers or differentiated from stem cells (Fig 2).

Key procedures to obtain donor islets and stem cell-

derived islet organoids are visualized in Fig 2. The first

attempt at treating T1D through pancreas transplanta-

tion was performed in the year 1966 by Richard Lille-

hei and William Kelly at the University of

Minnesota.75,76 In this surgery, a 28-year-old female

was simultaneously given a kidney and a pancreas

graft.75 Although exogenous insulin treatments were

eventually necessary, this patient did not require insu-

lin injections for an initial period of 6 days.75 Despite

this modest success, the surgery eventually failed due

to the extensive use of steroids to prevent rejection.75

Furthermore, the patient experienced pancreatitis due

to the ligation of the duct, and the transplanted organs

were subsequently removed.75 Since then, several

advances have been made in the area of allogeneic pan-

creas transplantation. The success of subsequent pan-

creas transplants owe in part to the development of

effective immunosuppressive drugs such as cyclo-

sporin A.76

Whole-organ pancreas transplantation is usually per-

formed in conjunction with kidney transplantation.12

There exists a less invasive alternative for the treatment

of T1D: islet transplantation.12 The procedure for islet

transplantation, known as the Edmonton protocol, was

first outlined in the New England Journal of Medicine
Fig 1. Paracrine and systemic targets of b-, a-, d-, and g-cell secre-

tions, with red arrows indicating inhibitory paracrine interactions,

green arrows indicating stimulatory paracrine interactions, and black

arrows indicating concentration-dependent paracrine interactions.

GABA: g-aminobutyric acid. GLP-1: glucagon-like peptide 1. Cre-

ated with BioRender.com.
in the year 2000.77 Before human islets can be trans-

planted, they must be digested using enzymes, purified,

and cultured.78 After this process is carried out, the

islets are infused via the portal vein.78 This is achieved

by suspending the purified cells in transplant media

containing heparin and infusing the solution using a

catheter inserted into the skin.78 Compared to the sur-

gery necessary for the whole-organ pancreas transplan-

tation, there are lower risks associated with islet

transplantation.12 However, islet transplants are limited

in that they require more donors.12 It is recommended

that a patient receive at least 5000 islet equivalents for

each kilogram of their body weight.78 This further

exacerbates the issue of donor limitations, as the num-

ber of cadaver pancreases available for transplantation

is far less than the number of patients in need of a

transplant.

Because of the severe limitations in donor availabil-

ity, researchers have focused on the potential for stem

cell-derived pancreatic islets for transplantation as well

as diabetes research. While these tissues may originate

from hESCs or iPSCs, pancreatic islet organoids

derived from autologous iPSCs are advantageous in

that they do not necessitate the lifelong use of immuno-

suppressants.79 Furthermore, iPSCs do not face the

same ethical constraints as ESCs which require the

destruction of an embryo.79,80 Studies have demon-

strated that iPSCs and ESCs exhibited similar differen-

tiation capacities for the generation of functional

tissues or organs.68,81-84 Hence, iPSCs became an

unlimited source for the generation of human

tissues.80,85 Although there is often a focus on the dif-

ferentiation of b cells, there exist protocols for the deri-

vation of pancreatic islet organoids containing all or

most of the major endocrine cell types, outlined in

Table I.67,68,81,82,86-88 As mentioned previously, the

development of these multi-cell type organoids is pre-

ferred for cell-based therapies rather than generating

solely b cells.

Typically, the generation of islet organoids from plu-

ripotent stem cells in vitro is carried out in a stepwise

manner that replicates the development of the native

endocrine cells.91 The stages of this stepwise protocol

generally include the differentiation of stem cells into

the definitive endoderm (Stage 1), followed by the pos-

terior foregut (Stage 2), pancreatic progenitor cells

(Stage 3), endocrine cells (Stage 4), and ending with

the development of mature islet cells (Stage 5).91 This

protocol is recreated at varying levels of completion

for the treatment of T1D. Some approaches utilizing

stem cell-derived products to treat diabetes involve the

procurement of b cells in vitro and subsequent use in

vivo,92-96 the injection of pancreatic progenitor cells

for in vivo maturation,97,98 and the development of

https://doi.org/10.1016/j.trsl.2022.06.014
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heterogeneous pancreatic islet organoids in vitro com-

prising some or all of the major pancreatic endocrine

cell types.67,68,81,82,87-90,99,100

Although several studies focus on the development

of insulin-producing b-like cells for diabetes cell thera-

pies, there is an evidence that these cells are not fully

mature as they often co-express both insulin and gluca-

gon.98 A proposed alternative is the injection of
Table I. Studies obtaining pancreatic islet organoids composed

Cell Line β cells a cells d cells g

iPSCs hIveNry Detected Detected Detected N

iPSCs TkDN4-M Detected Detected Detected N
hESCs HUES8, iPSC-1
and iPSC-2

Detected Detected Detected N

hESCs H9 Detected Detected Detected D

hESCs HUES8 Detected Detected Detected N

hESCs H9 Detected Detected Detected N

iPSCs IMR90, hESCs H9 Detected Detected Detected D

iPSCs IMR90, hESCs H9 Detected Detected Detected D

iPSCs IMR90 and DF4,
hESCs H9

Detected Detected Detected D
pancreatic progenitor cells in vivo.98 Upon injection,

these pancreatic progenitors continue to mature in

vivo.98 One study optimized the differentiation of

hESC line H1 into pancreatic endoderm and endocrine

precursor cells that highly expressed the marker genes

PDX1, NGN3, and NKX6.1.98 Populations of these

cells were transplanted into mice that were previously

given an intraperitoneal injection of STZ to model
of multiple islet cell types

cells Novelty Reference

ot detected SV40LT added to induce
proliferation of endocrine
progenitors and removed
before differentiation

86

ot detected Suspension culture 87

ot detected Modulation of signaling
pathways in each stage
of differentiation using
small molecules and
growth factors

88

etected Collagen type I biomimetic
scaffold

67

ot detected Dynamical regulation of
TGF-b signaling

89

ot detected Isolation of CD177+ anterior
definitive endoderm cells
to inhibit Wnt signaling for
further differentiation

90

etected Decellularized pancreatic
extracellular matrix in
coating substrates

81

etected Collagen type V presented
in coating substrates

68

etected Angiopoietin stimulation in
the middle of stepwise
differentiation

82
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T1D.98 Following implantation, the endocrine precur-

sor cells continued maturing. Instead of co-expressing

insulin and glucagon, as 40% of cells did before

implantation, they began to form islet-like clusters.98

Three months after implantation, 95% of these cells

were monohormonal, including insulin-, glucagon-,

and somatostatin-positive cells.98 The mice were

weaned off of exogenous insulin initially used to treat

their STZ-induced diabetes, and the hESC-derived

cells were eventually able to secrete insulin, as mea-

sured by C-peptide, in response to both intraperitoneal

and oral glucose.98

In addition to investigate the maturation of pancre-

atic and endocrine progenitor cells in vivo, researches

aim to develop mature islet organoids in vitro that con-

tain b, a, d, and g cells prior to implantation. Through

temporal treatment with signaling molecules and 3D

microenvironment, researchers have developed proto-

cols for the differentiation of pluripotent stem cells

into insulin-producing islet-like clusters (ILCs).67,101

For example, treatment of sodium butyrate and activin

A leads to upregulation of definitive endoderm-associ-

ated genes such as SOX17, FOXA2 and HNF4a.101

Eventually, these pancreatic endoderm cells begin

expressing higher levels of PDX1, PTF1a, NGN3, and

NKX6.1, each of which is associated with the endo-

crine cells.101 After maturation, characterization of

ILCs through immunocytochemical staining reveals

that they are made up of insulin, glucagon, and somato-

statin-positive cells.101 Furthermore, these hESC-

derived ILCs showed glucose-responsive C-peptide

and insulin secretions.101 Wang et al. showed that col-

lagen-based 3D scaffolds could significantly improve

the generation of ILCs with high-level expression of

C-peptide and higher sensitivity to glucose levels com-

pared with that of 2D culture microenvironment

(Table I).67 Several research groups have developed

protocols for the development of similar islet-like orga-

noids, with variations in signaling molecules used or

adding preselection through cell sorting technique

(Table I).82,88-90,102

The goal of many studies is to identify important

microenvironmental signals during the pancreatic

development in vivo and recapitulate them in vitro so

as to effectively develop islets for treatments, disease

modeling, drug screening, and other applications. Bi

et al. demonstrated the efficacy of decellularized pan-

creatic extracellular matrix (dpECM) proteins and col-

lagen type V as critical microenvironmental cues in

islet development, showing that their presentation in

the matrix-coating substrates during differentiation of

human iPSCs and hESCs leads to the generation of

pancreatic islet organoids containing insulin-, gluca-

gon-, somatostatin, and pancreatic polypeptide-
secreting islet organoids.68,81 This differentiation pro-

tocol leads to the formation of islet organoids with glu-

cose-responsive glucagon as well as insulin secretions

(Table I).68,81 Organ-on-a-chip techniques have also

been utilized to recreate the native pancreatic microen-

vironment, including the key cell-cell interactions and

mechanical stimuli.103 Overall, stem cell-derived pan-

creatic cells and tissues offer a promising alternative to

cadaveric islets for both research and clinical applica-

tions. However, a diverse array of chemical and molec-

ular stimuli plays a critical role during in vivo

development. More research is necessary to effectively

recreate the native tissue microenvironment in vitro in

order to improve differentiation protocols for the gen-

eration of mature islet organoids. Karanth et al. discov-

ered that angiogenic factors, angiopoietin-1 or

angiopoietin-2, facilitate the formation of islet organo-

ids from induced iPSC differentiation with the elevated

glucose responsiveness. The iPSC-derived islets gener-

ated under angiopoietin stimulation displayed glucose

synchronized calcium ion influx in repetitive glucose

challenges. Mechanistically, these islet organoids were

able to regulate insulin exocytosis through actin-fila-

ment polymerization and depolymerization in response

to glucose level change.82
STRATEGIES FOR LONG-TERM CULTURE AND
PRESERVATION OF ISLETS

Before transplantation, cadaveric islets must be iso-

lated and purified. There is often a period of time dur-

ing which the isolated islets must be maintained in a

tissue culture before use.104 In addition, due to the

wide supply-demand gap for cadaveric islets, it

requires the development of long-term culture and

preservation techniques to maintain maximal function

of pancreatic islets prior to clinical application. A

plethora of investigations has been performed sur-

rounding the best methods of culturing and preserving

both cadaveric islets and pancreatic islet organoids for

obtaining their flexible usage such as transplantation.

Numerous studies have been done on pancreases

obtained from animals such as mice, rats, and guinea

pigs, as well as organoids derived from rodent stem

cell lines.3,105-115 Additionally, several researchers

have developed protocols for human islet preservation

so as to best conserve b cell function. Importantly,

some studies focus on the best means of culturing

human stem cell-derived islet organoids.

As early as the 70s, research groups like Andersson

et al. worked to develop protocols to maintain islets

within a culture.104 By adequately purifying and cultur-

ing these islets, there is a greater potential for utilizing

https://doi.org/10.1016/j.trsl.2022.06.014
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multiple donors for source tissue and avoiding compli-

cations and rejection.104 After pancreatic glands are

isolated from cadavers and perfused with a chilled

solution of Dextran 40 and electrolytes, the body and

tail are injected with Hanks’ Balanced Salt Solution

(HBSS) and cut into small pieces.104 The pieces are

put into suspension and treated with collagenase.104

After collagenase digestion and fat removal through

HBSS washing, the islets are added to petri dishes with

culture medium changed every 2 days starting from

day 3.104 In this protocol, the culture medium is supple-

mented with 20% calf serum and antibiotics.104 In

more recent years, efforts have been made to identify

molecules with which to supplement traditional culture

media while still maintaining serum-free conditions.116

This helps avoid contamination, which is critical for

transplanted tissues.117 Results of preliminary studies

indicated that islets could be cultured in vitro for at

least one week with no disturbances in b or a cell

function.104

In order to best preserve pancreatic islet tissue and

function, differing conditions have been studied includ-

ing various media formulations, additional molecules

provided, and environments on which the tissues are

cultured. Islets may be cultured in suspension, on surfa-

ces coated with ECM, encapsulated or embedded in

biomaterials, on scaffolds, in bioreactors, or even in

microphysiological systems.118,119 The simplest and

the best understood culturing environment of islets and

islet organoids is the suspension culture.118 As com-

pared to an adherent culture, the suspension culture

allows the islets to maintain their three-dimensional

architecture.118 Several experiments have shown that

supplementation with insulin,120 prolactin,121 seri-

cin,122 human albumin,123 ethanolamine, phosphoetha-

nolamine, transferrin, triiodothyronine, and insulin-like

growth factor 1124 leads to better preservation of islet

and b cell function. Alternative methods such as cul-

ture on ECM or in bioreactors restores the mechanical

stimuli lost in suspension cultures such as the cell-cell

and cell-ECM interactions and hydrodynamic shear

stress.118 These methods prove to be more effective in

maintaining islet cell phenotype.118

In cases where a longer period of time passes

between obtaining and utilizing islets, cryopreservation

is often used. This technique is useful in cases where

islets are obtained from several donors. Cryopreserva-

tion of isolated and purified islets includes a supercool-

ing process to around -40˚C in ethanol after adding

serum containing dimethyl sulfoxide (DMSO), a cryo-

protectant that prevents cell injury caused by the devel-

opment of intracellular and extracellular crystals.125,126

Then, the tissues are kept at low temperatures such as

-196˚C by submerging them in liquid nitrogen.125
Studies show that after 46.5 days, cryopreserved islets

had similar insulin extraction values on the day of

thawing compared to before freezing.125 When islet ali-

quots from cryopreserved islets and those that were

cultured overnight were perfused with Krebs bicarbon-

ate buffer containing basal (60 mg/dl) and high (300

mg/dl) concentrations of glucose, they showed similar

primary insulin secretions.125 However, the islets

thawed after cryopreservation showed lower secondary

insulin secretions.125 Secondary insulin secretion fol-

lows the initial short spike in insulin concentrations.127

This second phase of insulin secretion is characterized

by a 2�3-hour slow increase in insulin concentrations

that eventually plateaus.127 While the difference in sec-

ondary insulin secretion between the 2 groups was not

statistically significant, it reveals modest damage to

pancreatic islets after cryopreservation.125 This is fur-

ther supported by the idea that secondary insulin secre-

tions are typically made up of the newly synthesized

hormone.125

Variables commonly altered during the optimization

of cryopreservation protocols include cryoprotectant

chemicals and freezing rate.128,129 Although the most

standard cryoprotectant used is DMSO, several

research groups have investigated the effects of varying

its concentration and utilizing other cryoprotectants

alone or in combination with DMSO.128-130 Combining

DMSO with chemicals such as hydroxyethyl starch

decreases its inherent toxicity to islets.130 Another

study found that using lower concentrations (1.5 M) of

DMSO as a cryoprotectant shows better results than

2.0 M DMSO or various concentrations of ethylene

glycol.128 This conclusion was made on the basis of

significantly improved percentage of recovered islets

and stimulation indices.128 Although the toxicity of

DMSO makes its use as a cryoprotectant hotly debated,

islets cryopreserved using DMSO have shown clinical

success when transplanted after thawing.126,131 War-

nock et al. demonstrated that a 36-year-old patient with

T1D showed normoglycemia with the withdrawal of

exogenous insulin injection following a simultaneous

islet-kidney transplant using islets cryopreserved with

DMSO.131

As previously mentioned, one approach for the treat-

ment of diabetes is to use pancreatic or endocrine pro-

genitor cells generated in vitro and allow their

maturation in vivo or in vitro. Tanaka et al. developed

a protocol for the expansion of iPSC-derived pancreatic

islet progenitors in culture by introducing and subse-

quently removing the proliferation gene SV40LT.86

Introducing this gene to a population of endocrine pro-

genitor cells expressing NGN3 via lentiviral vector led

to cell proliferation while inhibiting their differentia-

tion into cells expressing NGN3, NEUROD1 and
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NKX2.2.86 After the SV40LT gene was removed using

Cre recombinase, the proliferation ceased, and the

progenitor cells differentiated into b, a, and d cells

(Table I).86 This protocol could be applied in the future

to efficiently expand endocrine progenitors for the

eventual generation of mature islet cells and pancreatic

islet organoids both in vitro and in vivo.
UTILITY OF ISLET ORGANOIDS

The therapeutic potential of pancreatic islet organo-

ids as a source for transplantable islets is clear, and it is

highlighted in several papers.13,132-136 The utility of

islet organoids in addressing T1D has been demon-

strated in animal models.98,102,137 Protocols exist for

the transplantation of islet organoids that hold the

potential to remedy current challenges such as limited

availability of cadaveric islets, need for immunosup-

pressive drugs, and even engraftment failure.137 In

addition to the potential benefits of implanting pancre-

atic islet organoids to treat diabetes and restore endoge-

nous levels of insulin, glucagon, and other pancreatic

hormones in patients, there are other applications for

these organoids in vitro. Much of the research devoted

to the potential of pancreatic organoids in diabetes dis-

ease modeling.138-144 By using islet organoids derived

from human stem cells, researchers can investigate the

mechanisms of disease progression and identify thera-

peutics without relying on animal models.138 This is a

valuable way to more accurately study human physiol-

ogy instead of generalizing between different spe-

cies.138 Furthermore, by recapitulating the disease state

in a laboratory setting, researchers can easily investi-

gate the ability of drug candidates to ameliorate symp-

toms.139 Moreover, this could be applied to patient-

specific personalized medicine should autologous cells

be used for organoids. By using pancreatic islet orga-

noids on microphysiological systems, researchers can

also investigate the interactions between the pancreas

and other organs, like the liver, in a more precise, con-

trolled manner.138,139 Multi-organ microphysiological

systems create a unique opportunity to examine the

interactions and crosstalk between organs at a level

that is more complex than a single cell culture or orga-

noid yet simpler than in vivo studies. For example, Tao

et al. utilized microfluidic organ-on-a-chip systems to

model the liver-pancreatic islet axis.138 The pancreatic

islet organoids for this study expressed markers associ-

ated with b, a, d, and g cells, and the microfluidic

device used allowed for the exchange of media and

metabolites between the islet and liver organoids.138

They found that this system was effective in modeling

the ability of b cells to stimulate uptake of glucose by
the liver in response to elevated glucose level.138 This

represents one of many studies that makes use of pan-

creatic organoids to model healthy and diseased islet

function. Overall, pancreatic islet organoids are valu-

able beyond organ transplantation in their utility in dis-

ease progression studies and drug discovery.
CONCLUDING REMARKS

There is an urgent need to identify alternative sour-

ces for pancreatic islets as a means to treat diabetes.

Islets derived from pluripotent stem cells, including

iPSCs, are an appealing solution to the current organ

donor shortage. However, b cell treatments, like exoge-

nous insulin injections, fail to address the role of gluca-

gon in the development of diabetes. Furthermore, each

endocrine cell type in the islet of Langerhans plays its

own critical role in normal physiology, both in the pro-

duction and the secretion of their respective hormone

and in their complex interactions regulating one

another. For this reason, whole intact islets or islet

organoids are preferred to reestablish healthy physio-

logical conditions. However, there are many challenges

currently facing the generation and transplantation of

heterocellular pancreatic islet organoids.

One key challenge in the effective generation and

isolation of pancreatic islet organoids in vitro is the

absence of instrumentation and markers to reliably dis-

tinguish between islet organoids and other cell aggre-

gates after differentiation.68 Because the desired

product is multicellular and heterogenous, flow cytom-

etry cannot be used for purification. This leads to

decreased efficiency in islet organoid generation. In

contrast to the generation of uniform populations of b

cells, preselection cannot be performed for the genera-

tion of pancreatic islet organoids composed of several

endocrine cell types. During the development of mono-

hormonal insulin-producing cells, preselection is often

used to increase the final cell purity. For example,

Rezania et al. demonstrated that selection of hESC-

derived pancreatic progenitor cells that highly express

both PDX1 and NKX6.1 leads to more efficient matu-

ration into insulin-secreting cells in vivo.102 Pancreatic

progenitor cells with high PDX1 and NKX6.1 expres-

sion were more effective in reversing diabetes in mice

when transplanted subcutaneously in macroencapsula-

tion devices compared to pancreatic progenitor cells

with the low NKX6.1 expression.102 This preselection

often requires using a reporter stem cell line allowing

for single cell sorting through flow cytometry.145-147

For instance, reporter cell lines inserting green fluores-

cence protein into the INS locus for subsequent isola-

tion148 and transfecting cells with a plasmid containing

https://doi.org/10.1016/j.trsl.2022.06.014
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both NKX6.1 promoter and neomycin-resistance genes

for the subsequent selection of NKX6.1-positive

cells149 have been used as enrichment methods. How-

ever, increased heterogeneity and a lack of consistent

cell surface markers for islet organoids makes these

methods inapplicable to increase the purity and the effi-

ciency for the generation of pancreatic islet organoids.

Furthermore, there are resulting difficulties in quantify-

ing the relative amounts of each endocrine cell type

within islet organoids.68 Cryo-sectioning, immunos-

taining, and fluorescence microscopy may be utilized

to measure the percentage of b, a, d, and g cells, but

the presence of non-islet cell types leads to significant

challenges.68

Despite the current shortcomings in the efficient gen-

eration of pure islet organoids containing b, a, d, and g

cells, there are many promising areas of further

research. For example, gene editing may be used to

address limitations in islet organoid purity.150 One

major risk of using pluripotent stem cell-derived tissues

for transplantation is the potential for teratoma forma-

tion from undifferentiated cells.150 This risk is high

upon implantation of pancreatic islet organoids due to

the aforementioned challenges in organoid purification

and characterization. By selectively expressing a sui-

cide gene in undifferentiated stem cells, this risk can

be mitigated.150 Wu et al. accomplished this by insert-

ing the suicide gene inducible caspase-9, designated as

iC9, into the endogenous SOX2 locus of the hESC line

H1 using CRISPR-Cas9 technology (Fig 3).150 In the

resulting cell line, undifferentiated cells underwent

apoptosis following treatment with an apoptotic drug

AP1903 whereas differentiated cells were unaf-

fected.150 This approach poses a potential solution to

eliminate undifferentiated stem cells. However, it is

still challenging to apply this method to remove multi-

ple progenitors or non-islet organoids due to the nature

of heterogeneity during organoid differentiation.

Another significant challenge in the clinical use of

pancreatic islet organoids is their limited survival fol-

lowing transplantation. Due to the shortage of oxygen

at the transplantation site, organoids survival rate in

vivo without the promotion of angiogenesis is low. In

order to quickly establish a vascular network to provide

nutrients and the exchange of oxygen and carbon diox-

ide to pancreatic islet organoids, efforts have been

made focusing on using encapsulation devices that are

able to generate oxygen in site or the formation of pre-

vascularized islets before transplant.133,137,151-155

Wang et al. designed a scaffold which provides internal

air supply continuously to deliver oxygen to the hydro-

gel encapsulated cells to support long-term function of

transplanted cells.155 This encapsulation device is

promising for transplantation requiring high cell
payloads. As an alternative approach, prevascularized

islets, could be achieved by fusing islet cells with

microvascular fragments137 or with multiple cell types

including human amniotic epithelial cells (hAECs),

and human umbilical vein endothelial cells (HUVECs)

(Fig 3).133,153,154 Nalbach et al. developed prevascular-

ized pancreatic islet organoids by co-culture of pancre-

atic islet cells and microvascular fragments at an

optimal ratio, allowing the formation of microvessels

before transplantation.137 These microvascular frag-

ments were isolated by mechanic and enzymatic diges-

tion of epididymal fat pads of mice, followed by

filtration through a 500 mm filter. These organoids

demonstrate high angiogenic capabilities and restore

normoglycemia in STZ-treated mice faster than freshly

isolated islets.137 Although the organoids developed in

this study were derived from primary murine islet cells,

a similar protocol could be applied in the future with

autologous pluripotent stem cells and liposuction-

derived microvascular fragments.137 The prevasculari-

zation leads to favorable engraftment, increased angio-

genesis, and enhanced function of the islet organoids

following implantation in murine models.133,137,154

Crosstalk between islet cells, hAECs, and HUVECs

leads to the upregulation of angiogenesis genes such as

vascular endothelial growth factor A as well as genes

associated with proper b cell function like PDX1.154

In addition, avoiding the immune system attacking

transplanted organoids is critical for graft survival.
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Methods for a successful islet transplantation have

been well discussed elsewhere.156-159 A commonly

used approach is encapsulation of therapeutic cells

prior to the transplant. Researchers have developed

biocompatible microcapsules for cell encapsulation

that can mitigate the buildup of fibrotic tissue to

improve function of transplanted cells.160-163 Alagpu-

linsa et al. found that encapsulating hESC-derived b

cells into microcapsules containing high concentration

of CXCL12 supports b cell function and protects

against the immune response and rejection.162 This

study indicates that supplementation of immune-cell-

repelling protein CXCL12 improves the likelihood of a

successful transplantation. Another approach devel-

oped to protect stem cell-derived cells from immune

recognition is to induce the expression of immune

checkpoint protein programmed death-ligand 1 (PD-

L1) (Fig 3).164,165 Treatment of human islets with inter-

feron-g (IFN-g) led to a 20-fold increase in PD-L1

expression after 20 hours.164 Furthermore, when IFN-g
was presented through multiple short exposures, the

islets exhibited no changes in glucose-stimulated insu-

lin secretions.164 In vivo testing demonstrated that PD-

L1+ islet organoids showed more prolonged effects in

diabetic mice compared to organoids without PD-L1

expression.164 Fig 3 outlines some critical methods of

improving pancreatic islet organoids for use in vivo.

Another challenge using iPSC-derived organoids for

cell-based therapy is immunological rejection if alloge-

neic stem cells were used, which requires the use of

immunosuppressants to prevent rejection. While this

can be avoided through the use of autologous stem cells

as a source for pancreatic islet organoids, it too has its

set of shortcomings. The process of reprogramming an

individual’s autologous cells into iPSCs is time-con-

suming and expensive. At the same time, the require-

ment for donor-recipient HLA compatibility is a major

challenge for use of an off-the-shelf iPSC line.166 The

use of HLA-edited iPSCs may overcome this challenge

(Fig 3).166,167 Using CRISPR-Cas9, Koga et al. demon-

strated that HLA-A/B-knockout iPSCs are not rejected

by donors with HLA-C-matched natural killer and T

cells.166 Furthermore, 12 HLA-C alleles were capable

of 95% of the global population.166 Therefore, these 12

HLA-edited iPSC lines could serve as a semi-universal

source for stem cell-derived tissues.166 These cells

could be used as an unlimited source for pancreatic

islet organoids while still avoiding immune rejection

following implantation. Castro-Gutierrez et al. estab-

lished a PD-L1 inducible expression and HLA class I

knockout hPSC line by genome editing. Islet b-like

cells generated from this genome edited, PD-L1 over-

expressing cell line revoked CD8 T cell activation

characterized by T cell stimulation assay.165 It should
be pointed out that disadvantages in the development

of immune-evasive tissues are the loss of the capability

of immune surveillance and the risk of tumorigene-

sis.168 The use of HLA-editing inherently hinders the

ability of the immune system to monitor tissues for the

development of cancer, thereby impacting its ability to

be applied clinically.167 Wuputra et al. summarized

approaches to manage and avoid tumorigenesis devel-

oped from iPSCs.168 Taken together, this review

emphasizes the importance of multiple pancreatic islet

cell types in islets and the generation of the multicellu-

lar islet organoids from stem cells, particularly with

updated new strategies to improve cell-based therapies

using stem cell-derived islet organoids.
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