
  

 

Abstract— In this study, we develop a data pipeline 
incorporating automated data quality checking, data 
imputation, and spatiotemporal visualization of large-scale 
traffic data to understand the changes in traffic patterns during 
hurricane evacuation as it unfolds. We collect large-scale 
Microwave Vehicle Detection System (MVDS) data during 
Hurricane Irma from four highways in Florida: I-75, I-95, I-4, 
and Florida Turnpike that served majority of the evacuation 
traffic. Based on an extensive analysis, we provide insights on 
network wide spatiotemporal evacuation traffic patterns of 
Hurricane Irma. Such insights will help transportation agencies 
recognize the utility of large-scale real-time data, previously 
unused, to better understand the extent and spatiotemporal 
distribution of evacuation traffic. To demonstrate this, we 
analyze the processed data to understand the influence of 
different spatiotemporal factors on the changes in evacuation 
traffic pattern. Our results show at least an 18-hour 
(approximately) time lag between the time of issuing an 
evacuation order and the time when people first started to 
evacuate in large numbers. Such findings have potential 
implications to deal with the challenges of mass evacuation in 
real time and allows us to develop large-scale network level 
evacuation traffic prediction model. 

I. INTRODUCTION 

In recent times, coastal regions of the United States have 
faced major hurricanes such as Hurricanes Matthew, Harvey, 
Irma, and Dorian. Devastating experiences from these recent 
hurricanes, for instance, extensive damage to property and loss 
of lives [1], have induced a major concern to improve the 
efficiency of evacuation management systems. During 
Hurricane Irma, about 6.5 million residents of Florida 
evacuated, from major cities including Key West, Miami, and 
Tampa. With only two major interstate highways (I-75 and I-
95) available for leaving Florida, evacuation caused a 
significant amount of traffic congestion and crashes affecting 
the physical and mental health of evacuees. Under a hurricane 
evacuation, it is critical for emergency agencies to ensure 
smooth operations of infrastructure systems and emergency 
services. Efficient traffic operations can maximize the 
utilization of existing transportation infrastructure, reducing 
evacuation time and stress due to massive congestion.  

Efficient evacuation traffic management requires detailed 
evacuation plan [2] including proactive measures to overcome 
unexpected events such as traffic incidents, a change of 
hurricane path causing unexpected demand surge etc. Failure 
to address these factors could result in potentially sub-optimal 
traffic operation causing severe traffic congestion and delay. 
For example, during hurricane Katrina, only 60% of the 
projected vulnerable people were able to evacuate, while 
during Hurricane Rita enormous response to evacuation orders 
created excessive traffic problems (e.g., 100-mile-long traffic 
jams, out of fuel etc.) and dozens of accidents or heat related 
deaths [3]. Optimal evacuation planning largely depends on 

better understanding of evacuation traffic behavior from 
historical data, proactive measures incorporating real-time 
data, and reliable models to project evacuation travel demand.  

However, previous hurricane evacuation studies mainly 
focused on understanding the factors relating to evacuation 
decisions [4]–[9], mobilization time [10], departure time [11], 
[12], and destination choice [13], [14]. Although many studies 
have been conducted on individual-level evacuation decision 
making [8], [15]–[20] to forecast evacuation demand, these 
approaches highly depend on survey data that are difficult to 
collect as a hurricane unfolds in real time. Although traffic 
detectors have widely been deployed in major highways in the 
USA, previous studies did not explore the capacity of these 
detectors data for network level traffic analysis and modeling 
for real time evacuation traffic prediction. Lack of confidence 
on the reliability of these data sources, lack of tools to 
automatically test the data quality, and challenges to deal with 
such massive multiresolution data, may discourage 
transportation agencies and researchers to utilize these data 
sources for large-scale traffic modeling. 

In this study, we build a data pipeline incorporating 
automated data quality checking, data imputation, and 
spatiotemporal visualization of network wide traffic to 
understand the changes in traffic patterns during hurricane 
evacuation. We collect Microwave Vehicle Detection System 
(MVDS) data for four major highways in Florida: I-75, I-95, 
I-4 and Florida Turnpike, these routes serve most of the 
evacuation traffic during Hurricane Irma and extensively 
analyze these data to understand the nature and extent of 
Hurricane Irma’s evacuation traffic and the quality of these 
data for evacuation traffic modeling. Moreover, different 
factors such as time and place of evacuation order, population 
under evacuation order, location of the evacuees, evacuation 
start time, and traffic congestion are critical to predict 
evacuation traffic demand in future hurricanes. Since MVDS 
detectors are widely deployed in major highways of Florida, 
we perform an empirical analysis to understand the impact of 
these spatiotemporal factors on evacuation traffic patterns. 
Thus, this study has made several contributions for evacuation 
traffic analysis and modeling using large-scale traffic detector 
data:  

• It identifies a new data source to understand evacuation 
traffic in real time.  

• It develops a data pipeline incorporating extensive data 
assessment approaches to examine the quality of the 
network wide traffic detectors’ data including imputation 
techniques for evacuation traffic analysis and modeling.  

• It analyzes large-scale traffic detector data during 
Hurricane Irma’s evacuation, providing insights on 
network wide spatiotemporal patterns of evacuation 
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traffic. The data and insights obtained will help 
emergency agencies better understand the extent and 
spatiotemporal distribution of evacuation traffic.    

• It assesses the influence of different spatiotemporal 
features on changes in evacuation traffic patterns.  

The findings of this study have potential implications to deal 
with the challenges in large-scale network level evacuation 
traffic management.  

II. DATA DESCRIPTION 

Hurricane Irma made its landfall at Florida Keys on 
September 10, 2017 at category 4 intensity; then it passed over 
several regions of Florida between September 10, 2017 and 
September 12, 2017. Prior to the landfall, the authorities 
started ordering mass evacuation from September 6, 2017 for 
different evacuation zones based on the location and projection 
of hurricane path. A massive demand surge was seen on the 
highways after these evacuation orders were issued. To 
understand major evacuation routes, we observed previous 
evacuations patterns, which show that a large portion of 
residents living in Florida evacuates to Georgia or adjacent 
States. Thus, two major highways I-75, I95 and other two 
highways I-4 and Florida Turnpike connecting them were 
expected to serve a substantial amount of evacuation traffic 
during Hurricane Irma.  

To analyze evacuation traffic patterns, we have collected 
traffic data for the northbound direction of I-95, I-75, Florida 
Turnpike, and eastbound direction of I-4 (Fig. 1). We have 
collected data form Regional Integrated Transportation 
Information System (RITIS) from September 4, 2017 to 
September 9, 2017. RITIS gathers data from Microwave 
Vehicle Detection System (MVDS) detectors deployed by the 
Florida DOT, giving real-time information on traffic speed, 
volume, and occupancy at a very high resolution (20 to 30s 
frequency).  For analysis purpose, we aggregate the data over 
5 min interval. 

 
Figure. 1. Distributions of the 1426 detectors in the study network 

In general, MVDS detectors have a minimum 200-feet 
range and the capability to detect 8 lanes of traffic. These 
detectors cover multidirectional traffic and most of the entry 
and exit ramps; the distance between two consecutive 

detectors varies between 0.5 and 1.5 miles. We extract 
information from 1426 detectors without any entry or exit 
ramp detectors (Fig. 1).   

III. DATA PRE-PROCESSING 

The raw data collected from traffic detectors are subjected 
to errors. Several factors such as detector’s malfunctioning, 
false encoding during storing the data into the server, 
overlapping of multiple entries, duplicate entries, bad weather 
conditions etc. can cause errors. Moreover, during congested 
stop and go traffic conditions, sometimes microwave radar 
detectors fail to detect vehicles, hence provide misleading 
information. Therefore, before proceeding to any data 
analysis, we need an extensive data cleaning and quality 
checking. Fig. 2 shows the framework for the data processing 
steps.  

 
Figure 2. Framework for data processing 

To check the quality of the data, we followed several steps 
starting with checking the percentage of missing data for 
different detectors. We consider the detectors having a higher 
percentage of missing values as unreliable ones. Moreover, 
data imputation is not feasible for the detectors with too many 
missing values as it will produce unrealistic data distribution. 
Considering this issue, we retain the detectors having missing 
values less than 20% of total data samples. Moreover, we find 
a few detectors with higher percentage of zero entries. 
Considering the regular traffic pattern on freeways, we expect 
near zero or minimal traffic flow during nighttime, especially 
from 10 pm to 5 am, which means about 25% of the total 
entries per day per detector could be zero. However, during 
evacuation, mostly from September 06 – September 08, 2017, 
we may not see this trend, there will be a large number of 
vehicles throughout the day regardless of the time. 
Additionally, since Hurricane Irma made its landfall on 
September 10, we expect minimal traffic on September 9, 
2017. Thus, it is likely that 30-40% data for each detector 
might have zero entries. However, we observe that some 
detectors have between 40% and 100% zero values, which 
indicates anomaly in vehicle detection. Therefore, we remove 
the detectors with more than 40% zero entries.  

We also consider the lane capacity of the highways. In 
regular periods under free flow condition, the capacity of a 
highway segment varies from 2,000 to 2,400 vehicle per hour 
per lane (vphpl) depending on the prevailing traffic speed. 
However, during evacuation there could be a significant 
reduction in traffic speed. We analyzed the traffic speed for I-
75 during Hurricane Irma’s evacuation and found average 



  

traffic speed varying from 50 mph to 65 mph.  Thus, overall 
capacity of the highways (2,000 vphpl) should be less than 
theoretical values. However, we cannot directly estimate 
actual highway capacity, it depends on many factors such as 
incidents, traffic crashes, lane closures etc. which can 
substantially reduce capacity. On the other hand, emergency 
shoulders use (ESU) during evacuation can increase overall 
capacity. During Hurricane Irma’s evacuation ESUs were used 
from September 7- September 9, 2017 to help evacuating 
traffic along I-75. Such ESUs increase the overall throughput 
of the roadways by 25% [21]. Thus, we consider the maximum 
possible capacity of the highway as 2500 vphpl. For each 
detector data sample, we divide the total traffic volume per 
hour by the number of lanes to obtain vehicles per hour per 
lane (vphpl), these values should remain close to the maximum 
capacity (2500 vphpl).  

 
Figure. 3. Distribution of data samples based on vehicles per hour per lane 

Fig. 3 shows the distribution of vphpl values combining all 
the detectors’ data. Almost all the data samples except a few, 
have vphpl less than 2500. A few data samples show 
unrealistic values, nearly 25,000 vphpl. We check all the 
detectors individually and find that, for most of the detectors, 
less than 5% of data samples show higher values of vphpl 
compared to per lanes capacity. For each detector, the 
erroneous volume (corresponding to vphpl > 2500) is replaced 
with “NaN” values.  

Later, we use a technique known as multivariate iterative 
imputation adapting Bayesian ridge regression as estimator to 
impute the missing or “NaN” values. To fit the estimator, we 
use time of the day (hour), day of the week (day), and volume 
with missing values as inputs. For each imputation the 
algorithm takes a sample from gaussian posterior of the fitted 
estimator. We use Python scikit learn [22] library to implement 
the algorithm. The details about the data imputation algorithm 
are provided in reference [23].   

IV. DATA EXPLORATION 

In this section, we determine the size of the population 
under mandatory evacuation orders for different evacuation 
zones to understand the impact of evacuation order on traffic 
demand. Previous studies found that households are more 
likely to evacuate under a mandatory evacuation order; hence 
the spatiotemporal traffic patterns are likely to depend on the 
timing of evacuation declaration and type of evacuation order.  

A. Spatiotemporal Pattern of Population Under Evacuation 
We collect the time and location of evacuation orders issued 
for different areas for Hurricane Irma from the Florida 
Division of Emergency Management. However, the 

declaration dates of evacuation order for all the zones are not 
available in a single source, thereby, in a few cases, we collect 
the declaration date by manually checking the emergency 
management agency’s social media posts (e.g., Twitter, 
Facebook) of the respective county and contemporary news 
article available online. Fig. 4 shows the mandatory evacuation 
zones with declaration time. We observe that most of the 
evacuation zones are by the coast; smaller zones in the central 
part of Florida mainly represent mobile homes or low-lying 
areas vulnerable to inland flooding.   

 
Figure 4. (a) Zone wise mandatory evacuation orders with corresponding 

declaration dates (b) Population of mandatory evacuation zones 

Florida Keys and other low-lying zones such as Everglades 
were issued mandatory order in early September 5, 2017. 
Evacuation zones in the east coast, such as Miami-Dade, 
Daytona were issued evacuation order on September 7, 2017 
(Hurricane Irma was supposed to hit the east coast of Florida 
until Sep. 7, 2017). After September 7, 2017, as the projected 
path shifted from the east coast to the west coast, evacuation 
zones of Naples, Cape Corals, Tampa, Levy, Jacksonville, 
were ordered mandatory evacuation on September 7, 2017 and 
onward (see Fig. 4(a)). We have collected population data for 
the mandatory evacuation zones to understand how many 
people were under mandatory evacuation order. Since, 
population data is not available for the evacuation zones, we 
collect block group level population data from 2017 5-year 
American Community Survey and sum the population that 
falls within an evacuation zone to retrieve the population for 
the zone. The light grey boundaries of Fig. 4(a) and 4(b) 
represent the block group boundary within Florida. Spatially 
most people under mandatory evacuation are from Miami, Fort 
Meyer, and Tampa area during Hurricane Irma (see Fig. 4(b)); 
the highest number of people were under a mandatory 
evacuation order on Sept. 8, 2017 (about 3,420,271 people), 
followed by Sept. 9, 2017 (about 2,629,161 people). 

B. Spatiotemporal Patterns of Evacuation Traffic  
In a normal operating condition, traffic state shows 

predictable patterns such as heavy traffic demand during peak 
hours (e.g., 4pm to 8pm) and comparatively lighter traffic 
demand during off peak hours (e.g., 8pm to 12 am). However, 
during an emergency event such as hurricane evacuation, 
overall traffic condition has to bear severe disruption due to a 
drastic increase in traffic demand [24]. To compare the 
evacuation traffic volume with non-evacuation period traffic 
volume, we have collected traffic data from May 1 to August 
31, 2017. For each detector, we calculate the average hourly 
traffic volume for different time periods (1 to 24 hr.) and days 
(weekdays and weekends). Finally, we calculate the difference 
between hourly traffic volume during evacuation period and 
non-evacuation period. Fig. 5 shows the difference between 
evacuation traffic and regular traffic for I-75 and I-95. From 



  

the figure, we find that during Hurricane Irma’s evacuation 
from September 6 to September 8, 2017, overall traffic flow is 
higher all the time regardless of whether it is a peak hour or 
not; there is a significant amount of traffic congestion on the 
major interstates even after peak hours (4pm - 8pm).  

We also explore the spatial patterns of evacuation traffic to 
understand the impact of mandatory evacuation orders on 
traffic demand variations (Fig. 6). During Hurricane Irma, 
mandatory evacuation order was placed at different evacuation 
zones of Florida from September 5, 2017 to onwards 
depending on the predicted time and intensity of hurricane 
landfall. Initially the projected path showed south east coastal 
region of Florida (Miami, West Palm, Fort Lauderdale etc.) as 
the most critical zones: these areas were supposed to take 
major impact from Hurricane Irma. From September 5 - 
September 7, 2017 nearly 3.5 million people were under 
mandatory evacuation from these regions including some 
major cities such as Miami, West Palm Beach, Fort Lauderdale 
etc. and other low-lying areas such as Florida Keys, 
Everglades. Thus, from September 6, 2017 to September 7, 
2017, we observe a drastic increase in traffic demand on I75 
and I95, two major highways connecting south east and south 
west regions with the rest of Florida and the neighboring states 
such as Georgia and Alabama. However, since after 
September 7, 2017 Irma’s projected path shifted from the east 
coast to the west coast, many cities such as Naples, Cape 
Corals, Tampa, Levy, Jacksonville became the most 
vulnerable area. Nearly 6 million people were under 
mandatory evacuation from these regions. The added traffic 
from these population caused a severe congestion on 
downstream of I75 and I95. To serve this increased demand, 
emergency shoulder use (ESU) was activated in I-75 on 
September 7, 2017 from Ocala towards Georgia. On Sept 9, 
2017 before the hurricane landfall day we observe a large 
volume of traffic at downstream of I-75 and I-95 (Fig. 6), while 
in the upstream zones traffic volumes were nearly zero.  
Traffic volumes started to decrease after 1pm on September 9. 

One of the major challenges in evacuation traffic 
management is to deal with such unexpected events, especially 
when there is severe traffic congestion at the last moment close 
to hurricane landfall. To make thing worst, all the shelters may 
be full. Another important issue with evacuation management 
is late response of the evacuees to evacuation orders. Most of 
the cases people wait for the last moment before taking 

evacuation decisions, thus causing severe traffic congestion at 
the eleventh hours. To deal with such unexpected events, 
evacuation plans should learn from the experiences of previous 
hurricanes and prepare accordingly.  

 

 
Figure 5. Spatiotemporal traffic flow distribution, here we plot the traffic 

detectors based on (latitudes, longitudes)/unique zone ids 

V. EMPIRICAL ANALYSIS 

In this section, we demonstrate the application of such 
network-wide traffic data by estimating the influence of 
different spatiotemporal factors on variations of evacuation 
traffic patterns.   

A. Linear Regression 
We implement a simple linear regression model to estimate 

the influences of different factors on spatiotemporal variations 

Figure 6. Spatial traffic flow pattern during hurricane Irma’s evacuation period over different days (Sep. 06- Sep. 09, 2017) 



  

of evacuation traffic flow. We consider several exogenous 
variables such as whether the detector located in an evacuation 
zone or not, distance of the detector from nearest evacuation 
zone, county wise population with respect to detector location 
and time period of the day (i.e., Late Night, Early Morning, 
Morning, Noon, Evening, Night), hour left before hurricane 
landfall and cumulative total of population under mandatory 
evacuation from September 5 to onwards aggregated over one-
hour period. We also use average traffic volume for each of 
the detectors over different hour (1 -24 hr.) and different days 
(weekdays and weekends) to capture the usual traffic demand 
for different locations over the transportation network, it will 
capture the importance of different detectors (or location) 
based on its position inside the network. Table 1 reports all the 
significant variables based on t-stat. The variables are 
significant at 95% confidence interval (P-value < 0.05).    

TABLE I. Estimates from linear regression model. 

Variables Estimates t-stat P-value 
Constant 311.97 23.79 <0.001 
Average flow in non-
evacuation condition 

0.59 263.64 
<0.001 

Distance from the nearest 
evacuation zone 

-4.90 -17.90 
<0.001 

Population (in 10,000) under 
mandatory evacuation (shifted 
by 18 hr) 

0.24 11.39 

<0.001 
Hours before landfall 7.37 80.40 <0.001 
Early Morning 292.75 22.93 <0.001 
Morning 302.09 22.22 <0.001 
Noon 338.64 25.42 <0.001 
Evening 167.07 11.69 <0.001 
Night -116.21 -9.41 <0.001 
Late Night (reference) - - - 
In the table, the variable “Average flow in non-evacuation 

condition” indicates the average hourly traffic volume (i.e., 1 
to 24 hr.) for different locations on the network and different 
days of the week (i.e., Mon., Tues. etc.) over a period of May 
1 to August 31, 2017. From the model estimates, we find that 
the coefficient corresponding to this variable is positive, 
which means that during evacuation period traffic flow will 
be higher at the locations with high traffic volume in non-
evacuation periods. The reason is that roadway segments with 
high capacity accommodates more traffic hence overall traffic 
flow will be higher regardless of evacuation or non-
evacuation period. Additionally, some of the roadways 
connect highly populated major cities (i.e., Miami, Tampa, 
Orlando etc.), consequently they serve heavy traffic demand 
during non-evacuation period. Likewise, they have to 
accommodate large volume of traffic during evacuation 
period due to mass evacuation from these populated cities.  

The coefficient corresponding to the variable “distance 
from the nearest evacuation zone” is negative, indicating that 
if a detector is located far away from evacuation zone it will 
be less impacted by evacuation traffic. We observe that the 
central part of the interstate network (I-4) is far away from 
evacuation zones, they are less impacted from evacuation 
traffic. In case of the variable “population under mandatory 
evacuation” we consider the time lag between declaration of 
evacuation order and the time when people start to evacuate. 
To capture this time lag we continuously shift the cumulative 
population by one (t+1) hour interval and estimate the 
coefficient of that variable by running the model. We do not 

see any significant value of associated coefficient (estimated 
value remains negative) till 17 hr., however after that time 
period which means from 18 hour to onwards, we observe that 
the coefficient associated with the variable total population 
under mandatory order is positive; moreover, it gradually 
increases with the increase in lag time (from 18 to onwards). 
It means that after the declaration of evacuation order it takes 
approximately 18 hr. for the people to start evacuating, 
thereby increase total traffic on the roadway. We also find 
that, the coefficient associated with variable “hours before 
hurricane landfall” is positive, which means that closer to 
landfall time the chances of evacuation is lower, as a result 
total traffic flow during this time period will also remain low. 
From the spatiotemporal analysis, we observe similar 
patterns. In the first three days of evacuation period, traffic is 
significantly higher, whereas close to landfall time traffic 
flow is lower except some downstream location of the 
network.  Moreover, from the estimated results we find that 
people are less likely to evacuate during nighttime.            

B. Tree Based Model to Estimate the Feature Importance  
We further analyze the importance of these features running 

tree-based models such as decision tree, random forest, 
gradient boosting and extreme gradient boosting regression 
models. Fig. 7 (a) demonstrates the importance of all the 
significant features running different models. From the figure 
we find that two features: average traffic volume for a given 
detector under regular condition and hours left before 
hurricane landfall are the two most important variables when 
predicting evacuation traffic.   

 

 
Fig 7. Illustrates (a) features importance (b) Root Mean Square Error 

(RMSE) and (c) R2 Score for the tree-based models 
We also check the performance of the models for 

evacuation traffic prediction considering two performance 
measures: root mean square error (RMSE) and R2 score. As 
shown in figure 7(b) and (c)., extreme gradient boosting 
algorithm performed best (RMSE = 450) compared to other 
three models.  Although we do not consider any information 
on individual evacuation decision, the model performed 
reasonably well indicating the importance of these features in 
developing evacuation traffic prediction model.   



  

VI. CONCLUSIONS AND DISCUSSION 
In this paper, we present an extensive analysis to 

understand the coverage and quality of MVDS detectors’ data 
(i.e., traffic volume) for evacuation traffic analysis and 
modeling for hurricane Irma. We have made some reasonable 
assumptions in this study to clean the data. Traffic agencies 
can make different assumptions about the threshold values. 
However, we believe that these assumptions will not 
significantly impact the amount of data to be available for 
understanding hurricane evacuation patterns.  

We conduct spatiotemporal data analysis to understand the 
changes in evacuation traffic pattern during Hurricane Irma. 
The analysis reveals that although evacuation order was 
placed early (September 6,2017), still a significant traffic 
congestion occurred at the downstream of I-75 and I-95 just 
before the landfall day. This happened because of the changes 
in hurricane path from the east coast to the west coast, forcing 
more people from south Florida and Jacksonville to evacuate 
at the last moment. The empirical analysis further reveals that 
there is at least about an 18-hr. time lag between the time of 
evacuation order and the time when people started to 
evacuate. Moreover, the location of the detectors with respect 
to evacuation zone, time left before hurricane landfall and 
time period of the days influence the variations of evacuation 
traffic. Such findings have potential implications in large 
network-scale evacuation traffic modeling. 

 Evacuation traffic management is a complex process that 
requires rapid responses from emergency management 
agencies to address unexpected events. Hence, it is important 
that transportation agencies utilize available real-time data 
sources to understand the responses from evacuees as 
evacuation unfolds over time. This study serves this purpose 
by identifying a new data source, providing valuable insights 
on the quality of the data, and their capacity to model 
spatiotemporal correlation among traffic state to predict 
network level evacuation traffic demand at different zones.     
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