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Abstract— 1In this study, we develop a data pipeline
incorporating automated data quality checking, data
imputation, and spatiotemporal visualization of large-scale
traffic data to understand the changes in traffic patterns during
hurricane evacuation as it unfolds. We collect large-scale
Microwave Vehicle Detection System (MVDS) data during
Hurricane Irma from four highways in Florida: 1-75, I-95, 1-4,
and Florida Turnpike that served majority of the evacuation
traffic. Based on an extensive analysis, we provide insights on
network wide spatiotemporal evacuation traffic patterns of
Hurricane Irma. Such insights will help transportation agencies
recognize the utility of large-scale real-time data, previously
unused, to better understand the extent and spatiotemporal
distribution of evacuation traffic. To demonstrate this, we
analyze the processed data to understand the influence of
different spatiotemporal factors on the changes in evacuation
traffic pattern. Our results show at least an 18-hour
(approximately) time lag between the time of issuing an
evacuation order and the time when people first started to
evacuate in large numbers. Such findings have potential
implications to deal with the challenges of mass evacuation in
real time and allows us to develop large-scale network level
evacuation traffic prediction model.

I. INTRODUCTION

In recent times, coastal regions of the United States have
faced major hurricanes such as Hurricanes Matthew, Harvey,
Irma, and Dorian. Devastating experiences from these recent
hurricanes, for instance, extensive damage to property and loss
of lives [1], have induced a major concern to improve the
efficiency of evacuation management systems. During
Hurricane Irma, about 6.5 million residents of Florida
evacuated, from major cities including Key West, Miami, and
Tampa. With only two major interstate highways (I-75 and I-
95) available for leaving Florida, evacuation caused a
significant amount of traffic congestion and crashes affecting
the physical and mental health of evacuees. Under a hurricane
evacuation, it is critical for emergency agencies to ensure
smooth operations of infrastructure systems and emergency
services. Efficient traffic operations can maximize the
utilization of existing transportation infrastructure, reducing
evacuation time and stress due to massive congestion.

Efficient evacuation traffic management requires detailed
evacuation plan [2] including proactive measures to overcome
unexpected events such as traffic incidents, a change of
hurricane path causing unexpected demand surge etc. Failure
to address these factors could result in potentially sub-optimal
traffic operation causing severe traffic congestion and delay.
For example, during hurricane Katrina, only 60% of the
projected vulnerable people were able to evacuate, while
during Hurricane Rita enormous response to evacuation orders
created excessive traffic problems (e.g., 100-mile-long traffic
jams, out of fuel etc.) and dozens of accidents or heat related
deaths [3]. Optimal evacuation planning largely depends on

better understanding of evacuation traffic behavior from
historical data, proactive measures incorporating real-time
data, and reliable models to project evacuation travel demand.

However, previous hurricane evacuation studies mainly
focused on understanding the factors relating to evacuation
decisions [4]-[9], mobilization time [10], departure time [11],
[12], and destination choice [13], [14]. Although many studies
have been conducted on individual-level evacuation decision
making [8], [15]-[20] to forecast evacuation demand, these
approaches highly depend on survey data that are difficult to
collect as a hurricane unfolds in real time. Although traffic
detectors have widely been deployed in major highways in the
USA, previous studies did not explore the capacity of these
detectors data for network level traffic analysis and modeling
for real time evacuation traffic prediction. Lack of confidence
on the reliability of these data sources, lack of tools to
automatically test the data quality, and challenges to deal with
such massive multiresolution data, may discourage
transportation agencies and researchers to utilize these data
sources for large-scale traffic modeling.

In this study, we build a data pipeline incorporating
automated data quality checking, data imputation, and
spatiotemporal visualization of network wide traffic to
understand the changes in traffic patterns during hurricane
evacuation. We collect Microwave Vehicle Detection System
(MVDS) data for four major highways in Florida: 1-75, 1-95,
I-4 and Florida Turnpike, these routes serve most of the
evacuation traffic during Hurricane Irma and extensively
analyze these data to understand the nature and extent of
Hurricane Irma’s evacuation traffic and the quality of these
data for evacuation traffic modeling. Moreover, different
factors such as time and place of evacuation order, population
under evacuation order, location of the evacuees, evacuation
start time, and traffic congestion are critical to predict
evacuation traffic demand in future hurricanes. Since MVDS
detectors are widely deployed in major highways of Florida,
we perform an empirical analysis to understand the impact of
these spatiotemporal factors on evacuation traffic patterns.
Thus, this study has made several contributions for evacuation
traffic analysis and modeling using large-scale traffic detector
data:

e [t identifies a new data source to understand evacuation
traffic in real time.

e [t develops a data pipeline incorporating extensive data
assessment approaches to examine the quality of the
network wide traffic detectors’ data including imputation
techniques for evacuation traffic analysis and modeling.

e It analyzes large-scale traffic detector data during
Hurricane Irma’s evacuation, providing insights on
network wide spatiotemporal patterns of evacuation



traffic. The data and insights obtained will help
emergency agencies better understand the extent and
spatiotemporal distribution of evacuation traffic.

e It assesses the influence of different spatiotemporal
features on changes in evacuation traffic patterns.

The findings of this study have potential implications to deal
with the challenges in large-scale network level evacuation
traffic management.

II. DATA DESCRIPTION

Hurricane Irma made its landfall at Florida Keys on
September 10, 2017 at category 4 intensity; then it passed over
several regions of Florida between September 10, 2017 and
September 12, 2017. Prior to the landfall, the authorities
started ordering mass evacuation from September 6, 2017 for
different evacuation zones based on the location and projection
of hurricane path. A massive demand surge was seen on the
highways after these evacuation orders were issued. To
understand major evacuation routes, we observed previous
evacuations patterns, which show that a large portion of
residents living in Florida evacuates to Georgia or adjacent
States. Thus, two major highways [-75, 195 and other two
highways 1-4 and Florida Turnpike connecting them were
expected to serve a substantial amount of evacuation traffic
during Hurricane Irma.

To analyze evacuation traffic patterns, we have collected
traffic data for the northbound direction of 1-95, I-75, Florida
Turnpike, and eastbound direction of 1-4 (Fig. 1). We have
collected data form Regional Integrated Transportation
Information System (RITIS) from September 4, 2017 to
September 9, 2017. RITIS gathers data from Microwave
Vehicle Detection System (MVDS) detectors deployed by the
Florida DOT, giving real-time information on traffic speed,
volume, and occupancy at a very high resolution (20 to 30s
frequency). For analysis purpose, we aggregate the data over
5 min interval.
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Figure. 1. Distributions of the 1426 detectors in the study network

In general, MVDS detectors have a minimum 200-feet
range and the capability to detect 8 lanes of traffic. These
detectors cover multidirectional traffic and most of the entry
and exit ramps; the distance between two consecutive

detectors varies between 0.5 and 1.5 miles. We extract
information from 1426 detectors without any entry or exit
ramp detectors (Fig. 1).

III. DATA PRE-PROCESSING

The raw data collected from traffic detectors are subjected
to errors. Several factors such as detector’s malfunctioning,
false encoding during storing the data into the server,
overlapping of multiple entries, duplicate entries, bad weather
conditions etc. can cause errors. Moreover, during congested
stop and go traffic conditions, sometimes microwave radar
detectors fail to detect vehicles, hence provide misleading
information. Therefore, before proceeding to any data
analysis, we need an extensive data cleaning and quality
checking. Fig. 2 shows the framework for the data processing
steps.
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Figure 2. Framework for data processing

To check the quality of the data, we followed several steps
starting with checking the percentage of missing data for
different detectors. We consider the detectors having a higher
percentage of missing values as unreliable ones. Moreover,
data imputation is not feasible for the detectors with too many
missing values as it will produce unrealistic data distribution.
Considering this issue, we retain the detectors having missing
values less than 20% of total data samples. Moreover, we find
a few detectors with higher percentage of zero entries.
Considering the regular traffic pattern on freeways, we expect
near zero or minimal traffic flow during nighttime, especially
from 10 pm to 5 am, which means about 25% of the total
entries per day per detector could be zero. However, during
evacuation, mostly from September 06 — September 08, 2017,
we may not see this trend, there will be a large number of
vehicles throughout the day regardless of the time.
Additionally, since Hurricane Irma made its landfall on
September 10, we expect minimal traffic on September 9,
2017. Thus, it is likely that 30-40% data for each detector
might have zero entries. However, we observe that some
detectors have between 40% and 100% zero values, which
indicates anomaly in vehicle detection. Therefore, we remove
the detectors with more than 40% zero entries.

We also consider the lane capacity of the highways. In
regular periods under free flow condition, the capacity of a
highway segment varies from 2,000 to 2,400 vehicle per hour
per lane (vphpl) depending on the prevailing traffic speed.
However, during evacuation there could be a significant
reduction in traffic speed. We analyzed the traffic speed for I-
75 during Hurricane Irma’s evacuation and found average



traffic speed varying from 50 mph to 65 mph. Thus, overall
capacity of the highways (2,000 vphpl) should be less than
theoretical values. However, we cannot directly estimate
actual highway capacity, it depends on many factors such as
incidents, traffic crashes, lane closures etc. which can
substantially reduce capacity. On the other hand, emergency
shoulders use (ESU) during evacuation can increase overall
capacity. During Hurricane Irma’s evacuation ESUs were used
from September 7- September 9, 2017 to help evacuating
traffic along I-75. Such ESUs increase the overall throughput
of the roadways by 25% [21]. Thus, we consider the maximum
possible capacity of the highway as 2500 vphpl. For each
detector data sample, we divide the total traffic volume per
hour by the number of lanes to obtain vehicles per hour per
lane (vphpl), these values should remain close to the maximum
capacity (2500 vphpl).
Distribution of Vehicle Per Hour Per Lane Combining All the Detectors
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Figure. 3. Distribution of data samples based on vehicles per hour per lane

Fig. 3 shows the distribution of vphpl values combining all
the detectors’ data. Almost all the data samples except a few,
have vphpl less than 2500. A few data samples show
unrealistic values, nearly 25,000 vphpl. We check all the
detectors individually and find that, for most of the detectors,
less than 5% of data samples show higher values of vphpl
compared to per lanes capacity. For each detector, the
erroneous volume (corresponding to vphpl > 2500) is replaced
with “NaN” values.

Later, we use a technique known as multivariate iterative
imputation adapting Bayesian ridge regression as estimator to
impute the missing or “NaN” values. To fit the estimator, we
use time of the day (hour), day of the week (day), and volume
with missing values as inputs. For each imputation the
algorithm takes a sample from gaussian posterior of the fitted
estimator. We use Python scikit learn [22] library to implement
the algorithm. The details about the data imputation algorithm
are provided in reference [23].

IV. DATA EXPLORATION

In this section, we determine the size of the population
under mandatory evacuation orders for different evacuation
zones to understand the impact of evacuation order on traffic
demand. Previous studies found that households are more
likely to evacuate under a mandatory evacuation order; hence
the spatiotemporal traffic patterns are likely to depend on the
timing of evacuation declaration and type of evacuation order.

A. Spatiotemporal Pattern of Population Under Evacuation

We collect the time and location of evacuation orders issued
for different areas for Hurricane Irma from the Florida
Division of Emergency Management. However, the

declaration dates of evacuation order for all the zones are not
available in a single source, thereby, in a few cases, we collect
the declaration date by manually checking the emergency
management agency’s social media posts (e.g., Twitter,
Facebook) of the respective county and contemporary news
article available online. Fig. 4 shows the mandatory evacuation
zones with declaration time. We observe that most of the
evacuation zones are by the coast; smaller zones in the central
part of Florida mainly represent mobile homes or low-lying
areas vulnerable to inland flooding.
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Figure 4. (a) Zone wise mandatory evacuation orders with corresponding
declaration dates (b) Population of mandatory evacuation zones

Florida Keys and other low-lying zones such as Everglades
were issued mandatory order in early September 5, 2017.
Evacuation zones in the east coast, such as Miami-Dade,
Daytona were issued evacuation order on September 7, 2017
(Hurricane Irma was supposed to hit the east coast of Florida
until Sep. 7, 2017). After September 7, 2017, as the projected
path shifted from the east coast to the west coast, evacuation
zones of Naples, Cape Corals, Tampa, Levy, Jacksonville,
were ordered mandatory evacuation on September 7,2017 and
onward (see Fig. 4(a)). We have collected population data for
the mandatory evacuation zones to understand how many
people were under mandatory evacuation order. Since,
population data is not available for the evacuation zones, we
collect block group level population data from 2017 5-year
American Community Survey and sum the population that
falls within an evacuation zone to retrieve the population for
the zone. The light grey boundaries of Fig. 4(a) and 4(b)
represent the block group boundary within Florida. Spatially
most people under mandatory evacuation are from Miami, Fort
Meyer, and Tampa area during Hurricane Irma (see Fig. 4(b));
the highest number of people were under a mandatory
evacuation order on Sept. 8, 2017 (about 3,420,271 people),
followed by Sept. 9, 2017 (about 2,629,161 people).

B. Spatiotemporal Patterns of Evacuation Traffic

In a normal operating condition, traffic state shows
predictable patterns such as heavy traffic demand during peak
hours (e.g., 4pm to 8pm) and comparatively lighter traffic
demand during off peak hours (e.g., 8pm to 12 am). However,
during an emergency event such as hurricane evacuation,
overall traffic condition has to bear severe disruption due to a
drastic increase in traffic demand [24]. To compare the
evacuation traffic volume with non-evacuation period traffic
volume, we have collected traffic data from May 1 to August
31, 2017. For each detector, we calculate the average hourly
traffic volume for different time periods (1 to 24 hr.) and days
(weekdays and weekends). Finally, we calculate the difference
between hourly traffic volume during evacuation period and
non-evacuation period. Fig. 5 shows the difference between
evacuation traffic and regular traffic for I-75 and 1-95. From



the figure, we find that during Hurricane Irma’s evacuation
from September 6 to September 8, 2017, overall traffic flow is
higher all the time regardless of whether it is a peak hour or
not; there is a significant amount of traffic congestion on the
major interstates even after peak hours (4pm - 8pm).

We also explore the spatial patterns of evacuation traffic to
understand the impact of mandatory evacuation orders on
traffic demand variations (Fig. 6). During Hurricane Irma,
mandatory evacuation order was placed at different evacuation
zones of Florida from September 5, 2017 to onwards
depending on the predicted time and intensity of hurricane
landfall. Initially the projected path showed south east coastal
region of Florida (Miami, West Palm, Fort Lauderdale etc.) as
the most critical zones: these areas were supposed to take
major impact from Hurricane Irma. From September 5 -
September 7, 2017 nearly 3.5 million people were under
mandatory evacuation from these regions including some
major cities such as Miami, West Palm Beach, Fort Lauderdale
etc. and other low-lying areas such as Florida Keys,
Everglades. Thus, from September 6, 2017 to September 7,
2017, we observe a drastic increase in traffic demand on 175
and 195, two major highways connecting south east and south
west regions with the rest of Florida and the neighboring states
such as Georgia and Alabama. However, since after
September 7, 2017 Irma’s projected path shifted from the east
coast to the west coast, many cities such as Naples, Cape
Corals, Tampa, Levy, Jacksonville became the most
vulnerable area. Nearly 6 million people were under
mandatory evacuation from these regions. The added traffic
from these population caused a severe congestion on
downstream of 175 and 195. To serve this increased demand,
emergency shoulder use (ESU) was activated in 1-75 on
September 7, 2017 from Ocala towards Georgia. On Sept 9,
2017 before the hurricane landfall day we observe a large
volume of traffic at downstream of I-75 and I-95 (Fig. 6), while
in the upstream zones traffic volumes were nearly zero.
Traffic volumes started to decrease after 1pm on September 9.

One of the major challenges in evacuation traffic
management is to deal with such unexpected events, especially
when there is severe traffic congestion at the last moment close
to hurricane landfall. To make thing worst, all the shelters may
be full. Another important issue with evacuation management
is late response of the evacuees to evacuation orders. Most of
the cases people wait for the last moment before taking

evacuation decisions, thus causing severe traffic congestion at
the eleventh hours. To deal with such unexpected events,
evacuation plans should learn from the experiences of previous
hurricanes and prepare accordingly.
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V. EMPIRICAL ANALYSIS

In this section, we demonstrate the application of such
network-wide traffic data by estimating the influence of
different spatiotemporal factors on variations of evacuation
traffic patterns.

A. Linear Regression

We implement a simple linear regression model to estimate
the influences of different factors on spatiotemporal variations
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of evacuation traffic flow. We consider several exogenous
variables such as whether the detector located in an evacuation
zone or not, distance of the detector from nearest evacuation
zone, county wise population with respect to detector location
and time period of the day (i.e., Late Night, Early Morning,
Morning, Noon, Evening, Night), hour left before hurricane
landfall and cumulative total of population under mandatory
evacuation from September 5 to onwards aggregated over one-
hour period. We also use average traffic volume for each of
the detectors over different hour (1 -24 hr.) and different days
(weekdays and weekends) to capture the usual traffic demand
for different locations over the transportation network, it will
capture the importance of different detectors (or location)
based on its position inside the network. Table 1 reports all the
significant variables based on t-stat. The wvariables are
significant at 95% confidence interval (P-value < 0.05).

TABLE 1. Estimates from linear regression model.

Variables Estimates t-stat P-value
Constant 311.97 23.79 <0.001
Average flow in non- 0.59 263.64

evacuation condition <0.001
Distance from the nearest -4.90 -17.90

evacuation zone <0.001
Population (in 10,000) under 0.24 11.39

mandatory evacuation (shifted

by 18 hr) <0.001
Hours before landfall 7.37 80.40 <0.001
Early Morning 292.75 22.93 <0.001
Morning 302.09 22.22 <0.001
Noon 338.64 25.42 <0.001
Evening 167.07 11.69 <0.001
Night -116.21 -9.41 <0.001
Late Night (reference) - - -

In the table, the variable “Average flow in non-evacuation
condition” indicates the average hourly traffic volume (i.e., 1
to 24 hr.) for different locations on the network and different
days of the week (i.e., Mon., Tues. etc.) over a period of May
1 to August 31, 2017. From the model estimates, we find that
the coefficient corresponding to this variable is positive,
which means that during evacuation period traffic flow will
be higher at the locations with high traffic volume in non-
evacuation periods. The reason is that roadway segments with
high capacity accommodates more traffic hence overall traffic
flow will be higher regardless of evacuation or non-
evacuation period. Additionally, some of the roadways
connect highly populated major cities (i.e., Miami, Tampa,
Orlando etc.), consequently they serve heavy traffic demand
during non-evacuation period. Likewise, they have to
accommodate large volume of traffic during evacuation
period due to mass evacuation from these populated cities.

The coefficient corresponding to the variable “distance
from the nearest evacuation zone” is negative, indicating that
if a detector is located far away from evacuation zone it will
be less impacted by evacuation traffic. We observe that the
central part of the interstate network (I-4) is far away from
evacuation zones, they are less impacted from evacuation
traffic. In case of the variable “population under mandatory
evacuation” we consider the time lag between declaration of
evacuation order and the time when people start to evacuate.
To capture this time lag we continuously shift the cumulative
population by one (#+1) hour interval and estimate the
coefficient of that variable by running the model. We do not

see any significant value of associated coefficient (estimated
value remains negative) till 17 hr., however after that time
period which means from 18 hour to onwards, we observe that
the coefficient associated with the variable total population
under mandatory order is positive; moreover, it gradually
increases with the increase in lag time (from 18 to onwards).
It means that after the declaration of evacuation order it takes
approximately 18 hr. for the people to start evacuating,
thereby increase total traffic on the roadway. We also find
that, the coefficient associated with variable “hours before
hurricane landfall” is positive, which means that closer to
landfall time the chances of evacuation is lower, as a result
total traffic flow during this time period will also remain low.
From the spatiotemporal analysis, we observe similar
patterns. In the first three days of evacuation period, traffic is
significantly higher, whereas close to landfall time traffic
flow is lower except some downstream location of the
network. Moreover, from the estimated results we find that
people are less likely to evacuate during nighttime.

B. Tree Based Model to Estimate the Feature Importance

We further analyze the importance of these features running
tree-based models such as decision tree, random forest,
gradient boosting and extreme gradient boosting regression
models. Fig. 7 (a) demonstrates the importance of all the
significant features running different models. From the figure
we find that two features: average traffic volume for a given
detector under regular condition and hours left before
hurricane landfall are the two most important variables when
predicting evacuation traffic.
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Fig 7. lllustrates (a) features importance (b) Root Mean Square Error
(RMSE) and (c) R? Score for the tree-based models

We also check the performance of the models for
evacuation traffic prediction considering two performance
measures: root mean square error (RMSE) and R? score. As
shown in figure 7(b) and (c)., extreme gradient boosting
algorithm performed best (RMSE = 450) compared to other
three models. Although we do not consider any information
on individual evacuation decision, the model performed
reasonably well indicating the importance of these features in
developing evacuation traffic prediction model.



VI. CONCLUSIONS AND DISCUSSION

In this paper, we present an extensive analysis to
understand the coverage and quality of MV DS detectors’ data
(i.e., traffic volume) for evacuation traffic analysis and
modeling for hurricane Irma. We have made some reasonable
assumptions in this study to clean the data. Traffic agencies
can make different assumptions about the threshold values.
However, we believe that these assumptions will not
significantly impact the amount of data to be available for
understanding hurricane evacuation patterns.

We conduct spatiotemporal data analysis to understand the
changes in evacuation traffic pattern during Hurricane Irma.
The analysis reveals that although evacuation order was
placed early (September 6,2017), still a significant traffic
congestion occurred at the downstream of I-75 and 1-95 just
before the landfall day. This happened because of the changes
in hurricane path from the east coast to the west coast, forcing
more people from south Florida and Jacksonville to evacuate
at the last moment. The empirical analysis further reveals that
there is at least about an 18-hr. time lag between the time of
evacuation order and the time when people started to
evacuate. Moreover, the location of the detectors with respect
to evacuation zone, time left before hurricane landfall and
time period of the days influence the variations of evacuation
traffic. Such findings have potential implications in large
network-scale evacuation traffic modeling.

Evacuation traffic management is a complex process that
requires rapid responses from emergency management
agencies to address unexpected events. Hence, it is important
that transportation agencies utilize available real-time data
sources to understand the responses from evacuees as
evacuation unfolds over time. This study serves this purpose
by identifying a new data source, providing valuable insights
on the quality of the data, and their capacity to model
spatiotemporal correlation among traffic state to predict
network level evacuation traffic demand at different zones.
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