
PHYSICAL REVIEW A 104, 053311 (2021)

Complex collisions of ultracold molecules: A toy model
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We introduce a model to study the collisions of two ultracold diatomic molecules in one dimension interacting
via pairwise potentials. We present results for this system and argue that it offers lessons for real molecular
collisions in three dimensions. We analyze the distribution of the adiabatic potentials in the hyperspherical
coordinate representation as well as the distribution of near-threshold four-body bound states, systematically
studying the effects of molecular properties, such as interaction strength, interaction range, and atomic mass. It
is found that the adiabatic potential’s nearest-neighbor energy level distribution transitions from significant level
repulsion characteristic of chaos (Brody distribution) to nonchaotic (Poisson distribution) as the two molecules
are separated. For the near-threshold four-atom bound states, the case where all atoms have equal masses shows a
Poissonian spacing distribution, while the unequal-mass system exhibits significant level repulsion characterized
by a nonzero Brody parameter. We derive a semiclassical formula for the density of states and extract from
it simple scaling laws with potential depth and range. We find good agreement between the semiclassical
predictions for the density of states and the full quantum mechanical calculations.
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I. INTRODUCTION

Ultracold molecules have emerged as a new platform for
quantum science and technology [1,2]. They combine the
unique, tunable, and coherent setting of ultracold matter
with strong dipolar interactions and numerous stable rota-
tional and vibrational states. Consequently, this platform has
wide-ranging applications, including exploring new phases
of matter and nonequilibrium behavior [3–25,25–35] (for re-
views, see Refs. [1,2,36–39]), enabling quantum computation
[40–45], performing precision measurements, such as measur-
ing the electron electric dipole moment [46–50], and studying
chemical reactions in the quantum regime [51–60].

To fully realize these applications, it is necessary to theo-
retically understand the collisional behavior of molecules. For
example, the density of bimolecular bound states at the colli-
sion energy is important in determining the lifetime of a cloud
of molecules [51,53,61,62], the many-body physics in an op-
tical lattice [63–66], and chemical reaction rates. In addition
to being necessary for applications, understanding molecular
collisions is of fundamental scientific interest. Molecules are
an intermediate step between atoms, which are mostly simple
and nonchaotic, and thermodynamically large systems, which
frequently exhibit chaotic behavior. The important question
then arises of whether and how quantum chaos occurs in
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molecular collisions. It is believed that quantum systems
which become chaotic in the classical limit display spectral
fluctuations identical to those of random matrices generated
from certain classes of statistical ensembles in random matrix
theory [67–69]. A chaotic time-reversal symmetric system is
expected to be described by a Gaussian orthogonal ensem-
ble (GOE), with a characteristic level repulsion described by
the Wigner-Dyson distribution. On the other hand, levels of
nonchaotic, integrable systems follow a Poisson distribution.
Manifestations of random matrix theory are well studied in
nuclear spectra and collisions [70–72].

Molecular collisions are significantly more complex than
atomic collisions because molecules have a much denser col-
lection of electronic, rotational, vibrational, and hyperfine
states, resulting in a density of resonances that is several
orders of magnitude higher. This was suggested by Mayle
et al. [73,74], and recently estimated by Christianen et al. [75]
to be 0.124 μK−1 for NaK + NaK collision complexes, with-
out including the hyperfine states that will further increase
the resonance density. Thus, there will exist many accessible
closed-channel bound states around the collision energy—
even at the coldest available experimental temperatures.
Consequently, while scattering resonances are routinely mea-
sured in ultracold atoms [76], even for atoms with the densest
resonance spectra, such as those explored in lanthanide atoms
(Dy and Er) [77–86] and predicted in alkaline-earth-like
atoms (Yb) [87], it is much harder to resolve the resonances
in molecular collisions due to the significantly higher density
of states. In addition to being difficult to experimentally mea-
sure, molecule-molecule collisions are extremely challenging
to model, and quantitative calculations remain impossible
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for most diatomic molecules, including bialkali molecules.
Recent work has emphasized the high resonance density in-
herent to bialkali (and heavier) atom-molecule [63–65,88–93]
and molecule-molecule [94–96] collisions, building on earlier
research on molecules formed from lighter atoms [61,97–
105].

More recently, Christianen et al. [106] theoretically
demonstrated that in addition to sticky collisions, photoexci-
tation by the trapping laser can significantly contribute to the
collisional loss of ground-state bialkali dimers. Since then,
a series of recent experiments confirm such photoinduced
loss in both reactive and nonreactive molecule-molecule and
atom-molecule collisions [107–109]. Experiments studying
different bialkali species [110–112] suggest that the complex
lifetime may be underestimated or that there are unknown loss
mechanisms beyond photoinduced loss. The control of dipolar
interactions via microwave dressing [113,114] and electric
fields [115–118] is being studied, including the interaction
effects on molecule loss.

Despite the collisional loss from photoexcitations, open
questions remain in current studies of sticky collisions, such
as the following: Is chaos universal in molecule collisions?
What is the effect of the molecular size, the mass of the
constituent atoms, and the type of interactions?

In this paper, we present a highly simplified model of the
collision of two identical molecules, which can shed light on
the questions above, while at the same time being amenable
to straightforward numerical calculation. The principal sim-
plification is to restrict the atoms to move in one dimension,
interacting via a simple model potential (either Morse or
Pöschl-Teller). This potential is chosen to be deep enough to
harbor many two-atom bound states, mimicking the situation
in real molecules. For concreteness, we choose each molecule
to be composed of two distinguishable fermionic isotopes.

We find several results that may have implications for
scattering of real molecules in three dimensions. These results
can be divided into three categories: (1) results associated
with the statistics of the adiabatic potential curves, (2) results
associated with the statistics of four-body bound states, and,
finally, (3) results stemming from a semiclassical analysis of
the four-atom density of states.

First, we find that the statistics of the adiabatic potentials
transition from chaotic to nonchaotic as the intermolecular
separation increases, similar to results observed for atom-
molecule scattering in calculations using realistic potential
energy surfaces [92]. We characterize how the detailed be-
havior of this crossover depends on the parameters of the
model potential. We also show that there are clear trends in the
average spacing of the adiabatic potentials and the chaoticity
of their level-spacing statistics as a function of hyper-radius,
collision energy, molecular mass, and length scale of the
potential. We expect that these qualitative trends persist to
three-dimensional systems.

The second, more surprising, finding results from cal-
culating the four-body bound states. We find that for the
equal-mass case, four-body level statistics show no apparent
chaos even when the adiabatic potentials are strongly chaotic.
We trace the resulting Poisson statistics to the presence of
a symmetry that is broken when the masses are taken to be
different. For the unequal-mass case, we observe strong level

repulsion in the four-body spectrum, resulting in a nonzero
Brody parameter. The case with emergent symmetry suggests
caution when interpreting the level statistics of adiabatic po-
tentials, which may not correspond to the statistics in the
spectrum of the four-body bound states. Lastly, and perhaps
most interestingly, we derive a analytic semiclassical relation
between the four-body density of states and the two-atom
interaction parameters. We show that although the derivation
relies on approximations, they accurately capture the scaling
with interaction parameters and mass ratio. This suggests that
the analogous expressions for the three-dimensional system
will allow one to simply estimate the effects of changing
molecular species or other experimental parameters on com-
plex molecule-molecule collisions.

The structure of this paper is as follows. Section II de-
scribes the problem we solve and the tools associated with
the hyperspherical coordinates we use to numerically obtain
the adiabatic potentials. Section III presents the results for
the adiabatic potentials. Section IV shows the density of four-
body bound states and their nearest-neighbor level statistics
obtained by numerically solving the four-particle Schrödinger
equation using a slowly variable discretization [119] (SVD)
approach with the radial coordinate treated using a discrete
variable representation (DVR). It derives approximate ana-
lytic expressions for the scaling of the four-body density of
states and shows that despite the approximations involved,
they agree well with the numerical results. Section V summa-
rizes the results and gives an outlook, including the relevance
of these results to real three-dimensional molecule-molecule
scattering.

II. MOLECULE-MOLECULE SCATTERING
AND HYPERSPHERICAL COORDINATES

We study a system of two identical diatomic molecules
in one dimension. Each molecule consists of two fermionic
atoms, giving two sets of identical fermions in total, labeled
as (1, 2) and (3, 4). We take 1 and 3 to be distinguishable from
2 and 4. The masses of the distinguishable atoms are either
set to be equal or different by a small amount. Throughout the
paper, we fix the mass of atom 1 (and 2), i.e., m1 = m2 = 1,
and vary the mass of atom 3 (and 4) by setting m3/m1 = 1,
1.3, or 1.5.

We choose a system of dimensionless variables in all that
follows. Distances such as atom separation r and hyper-radius
R are scaled by an arbitrary length scale L. Energy scales
such as the two-body potential depth D are scaled by EL =
h̄2/(m1L2).

We present results for pairwise atom-atom interactions
with two potentials, i.e., Morse and Pöschl-Teller potentials,

UMorse(r) = D[1 − e−a(r−r0 )]2 − D, (1a)

UPöschl−Teller (r) = − D

cosh2(r/r0)
, (1b)

where r � 0 is the interatomic distance, D is the depth of the
potential, r0 is the width of the potential, and a is set to 1/r0,
so that U (0)/D is independent of r0. In either case, the model
potential is assumed to be identical for all pairs of atoms.
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Before continuing, we comment on the drastic simplifica-
tions being made, the first of which is our choice of model
potentials. Although these potentials are highly simplified
compared to realistic interatomic interactions, they capture
characteristic short-range repulsion and a finite bond distance,
which are crucial qualitative features. Of course, many po-
tentials satisfy these simple requirements and these two are
chosen somewhat arbitrarily and for simplicity.

The primary limitation of these potentials is that they fail to
capture the long-range van der Waals C6/r6 behavior. Adding
such a potential can qualitatively affect the near-threshold
behavior of bound states and scattering (even beyond that
described by effective range theory; see, e.g., Ref. [120]), but
it has little effect on bound states that are bound more deeply
than the van der Waals energy. While such near-threshold
physics is an important component of ultracold scattering, a
simpler treatment ignoring theC6/r6 tail still offers a valuable
perspective for two reasons. Most importantly, there is a rich
and experimentally relevant bound state spectrum away from
the near-threshold energy window.

The second, and by far the most drastic, simplification is
the dimensionality one dimension (1D) versus 3D for real
molecules. Its most important qualitative differences are the
expected greater density of states in 3D and the existence of
more symmetry sectors (e.g., angular momentum, as well as
internal states such as hyperfine states). A smaller difference is
the modification of the Wigner threshold laws [121], but these
are expected to play a relatively small role in the physics we
focus on, as argued above. While these limitations make any
direct comparison with real molecules impossible, the payoff
of the simplifications is rendering the problem tractable, while
allowing qualitative features—scaling of the four-body bound
state density of states, and level statistics of the adiabatic
channels and four-body bound states—to be studied, provid-
ing indirect insights into possible behaviors to explore in real
molecules.

We use hyperspherical coordinates to solve the
Schrödinger equation and interpret its eigenstates.
Hyperspherical coordinates have been used widely [89,122–
132] to study few-body physics and provide an efficient and
powerful method for studying the full scattering and bound
state problem. In this representation, the particle coordinates
are rewritten into one hyper-radial coordinate and a collection
of angular coordinates (defined below). In addition to these
calculations, in Sec. IV B we employ a SVD [119] approach,
treating the radial coordinate using a DVR [133], which
allows us to obtain the full four-body eigenstates.

In one dimension, the position and the mass of particle i in
the laboratory frame are labeled by ri and mi, respectively. By
setting the center-of-mass coordinate to zero, the remaining
three degrees of freedom can be expressed in terms of Jacobi
coordinates y1, y2, and y3, defined as

y1 =
√

μ12

μ
(r1 − r2), (2a)

y2 =
√

μ34

μ
(r3 − r4), (2b)

y3 =
√

μ12,34

μ

(m1r1 + m2r2

m1 + m2
− m3r3 + m4r4

m3 + m4

)
, (2c)

FIG. 1. Jacobi coordinates y1, y2, and y3 for the four-fermion
system in one dimension, where the center-of-mass coordinate is set
to 0. Particles 1 and 2 are indistinguishable, and particles 3 and 4
are indistinguishable. When (1,3) and (2,4) are coincident, and the
separation between these molecules is large, the hyperspherical co-
ordinates approach (φ, θ ) → (π/4, π/2) for m1 = m2 = m3 = m4.

where

μ12 = m1m2

m1 + m2
, (3a)

μ34 = m3m4

m3 + m4
, (3b)

μ12,34 = (m1 + m2)(m3 + m4)

m1 + m2 + m3 + m4
, (3c)

μ = (m1m2m3m4)1/4. (3d)

Figure 1 illustrates these Jacobi coordinates for the system
studied in this paper. The hyperspherical coordinates (R, φ, θ )
are related to the Jacobi coordinates by

y1 = R cos φ sin θ, (4)

y2 = R sin φ sin θ,

y3 = R cos θ,

where the hyper-radius is defined as

R =
√
y2

1 + y2
2 + y2

3. (5)

In this formalism, the hyper-radius R effectively characterizes
the size of the system, and the angular coordinates θ and φ

describe the relative distances between pairs of atoms. For
example, as (φ, θ ) → (π/4, π/2), the system is separated
into two constituent parts, (1,3) and (2,4). When the system
is in a state of two well-separated molecules, R measures
the intermolecular separation. In this coordinate system, the
exchange and parity symmetries of the system can also be
readily imposed via boundary conditions for θ and φ, as
discussed in Appendix A. For further information on the hy-
perspherical representation, refer to Ref. [132].

With the hyperspherical coordinates, the Schrödinger equa-
tion of the four-body system in 1D can be decomposed into a
hyperangular component and a hyper-radial component, giv-
ing the hyperspherical Schrödinger equation for the reduced
wave function ψ (R, θ, φ) = R �(R, θ, φ) [where �(R, θ, φ)
is the wave function, and we set h̄ = 1 throughout this paper],[

− 1

2μ

∂2

∂R2
+ Ĥad(R, θ, φ)

]
ψ (R, θ, φ) = Eψ (R, θ, φ), (6)

where Ĥad is the adiabatic Hamiltonian,

Ĥad(R, θ, φ) = L̂2(θ, φ)

2μR2
+ V̂ (R, θ, φ), (7)

L̂ is the (hyper)angular momentum operator, and V̂ is the
interaction between the particles. V̂ is obtained by summing
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up all the pairwise interactionsU (r) for each pair of molecules
with separation r, i.e., V (R, θ, φ) = ∑

i> j U (ri j ). The hyper-
spherical adiabatic potentials are defined as the eigenvalues of
the adiabatic Hamiltonian Had,

Ĥad(R, θ, φ)�ν (R; θ, φ) = Uν (R)�ν (R; θ, φ). (8)

Such hyperspherical adiabatic curves play a large role in un-
derstanding few-body scattering. Section III offers an analysis
of these adiabatic potentials.

To solve the Schrödinger equation for the four-body eigen-
states, we build an exact reformulation in terms of the
adiabatic potentialsUν (R) using a slow variable discretization
[119] (SVD). The essence of the method is to treat the radial
coordinate first using a discrete variable representation (DVR)
[133], then solve the rest of the problem in terms of these.

We expand the full wave function as a sum over DVR basis
functions with 
-dependent coefficients,

�(R,
) =
∑
i

χi(R)�̃i(
). (9)

Here, the radial basis functions χi(R) are constructed from the
Gauss-Lobatto shape functions. They are defined in terms of
rescaled Gauss-Lobatto integration weights wi and nodes Ri

[133–136],

χi(R) = w
−1/2
i

∏
j �=i

R − Rj

Ri − Rj
. (10)

When evaluated at any of the NR integration points, Rj , these
radial basis functions have the remarkable DVR property
χi(Rj ) = δi j . Only the i = 1 and i = NR basis functions are
nonzero at the boundaries, so to impose boundary condi-
tions �(R = 0,
) = �(R = Rmax,
) = 0, one simply omits
those functions from the basis set. The resulting radial set
has NR − 2 members. The 
-dependent coefficient �̃i(
) in
Eq. (9) is expanded in the adiabatic basis �ν (R; 
) at each of
the Gauss-Lobatto integration points Rj as

�̃ j (
) =
∑

μ

Cjμ�μ(Rj ; 
), (11)

resulting in a set of coupled equations,∑
j,μ

Ti jOiν, jμCjμ +Uν (Ri )Ciν = ECiν, (12)

where

Oiν, jμ = 〈�ν (Ri )|�μ(Rj )〉, (13)

and the matrix elements

Ti j = h̄2

2μ

∫ rmax

0

dχi

dR

dχ j

dR
dR (14)

are calculated by the NR-point Gauss-Lobatto quadrature rule.
The derivatives of the basis functions are calculated at each of
the integration points according to the formula [135–137]

[
dχi

dR

]
R=Rj

=
⎧⎨
⎩

w
−1/2
i

Ri−Rj

∏NR
k �= j,i

R j−Rk

Ri−Rk
(i �= j)

δi,NR−δi,1

2ω
3/2
i

(i = j).
(15)

Solutions to Eq. (12) yield the four-body bound state spec-
trum, from which we obtain the four-body density of states
and level-spacing distribution. Our numerical calculations

FIG. 2. (a) Bound states of the two-atom interaction between
atoms 1 and 3 in a Morse potential, given by Eq. (1a), for D =
50, a = 1/r0, and r0 = 1. Energy levels for m3/m1 = 1 (solid) and
m3/m1 = 1.3 (dashed) are shown. (b) Probability distribution p(s)
of the scaled nearest-neighbor spacing of adiabatic potential curves.
s is defined as the nearest-neighbor spacing scaled by the aver-
age spacing, at hyper-radius R = 3.8. Here, D = 100, r0 = 1, and
m3/m1 = 1.3. States are included from an energy range −Eb ± Eδ ,
where Eb is the magnitude of the average lowest dimer-dimer energy
at large separation, here and for all the statistical analyses in this pa-
per. For this panel, Eδ = 30. The dashed curves are the distributions
for the Gaussian orthogonal ensemble and the Poisson distribution,
respectively. The solid curve plots the kernel density estimator from
the level-spacing distribution data, using a Gaussian kernel with
bandwidth 0.2. (c) The calculated hyper-radial adiabatic potentials
(solid lines) as a function of hyper-radius R at r0 = 1, m3/m1 = 1.3.
D = 10 (left plot) and D = 100 (right plot) for the Morse potential.
The right plot corresponds to the probability distribution plotted in
(b). All length and energy variables are dimensionless, as discussed
in Sec. II.

produce converged statistical distributions for potential depths
up to D ∼ 75, for which we retain 160 adiabatic states
�μ(Rj ; 
) at each of the NR = 140 Gauss-Lobatto nodes
Rj . To solve the hyperangular equation (8), B-splines are
used as basis functions in both θ and φ coordinates. A de-
tailed description is included in Appendix B. Depending on
the potential depth, the basis in each angular coordinate is
of size 80–160 over the symmetry-restricted domain (see
Appendix A).

We first concentrate on the statistical properties of the adia-
batic potential curves in the vicinity of the lowest dimer-dimer
scattering threshold (Sec. III), and then consider the energy
levels of fully bound four-body states (Sec. IV).

III. NUMERICAL RESULTS FOR ADIABATIC
POTENTIALS

Figure 2(a) displays the two-atom bound states of Morse
potential with D = 50 and r0 = 1 for mass ratios m3/m1 = 1
and m3/m1 = 1.3. For each case, there are 14 bound states.
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Figure 2(c) shows the adiabatic potential curves Uν (R)
obtained by numerically solving the adiabatic equation at each
hyper-radius R and imposing even-parity boundary conditions
(see Appendix A for more explanations on the parity sym-
metry of the system). The left and right plots in Fig. 2(c)
correspond to the Morse potential with D = 10 and D =
100, respectively. The density of adiabatic potential curves
increases as the number of bound states for the two-atom
interaction increases. Since our interest is in collisions of
ground-state molecules, the vertical axis is scaled by Eb,
which is the absolute value of the average lowest dimer-
dimer energy at large R. Eb is the average of |E12 + E34| and
|E13 + E24|, i.e., the energies of two possible dimer-dimer
configurations. The density of adiabatic potentials increases
dramatically as the depth of the model potential increases,
predicting a high density of four-body bound states. This will
be discussed in detail later.

The statistical distribution of adiabatic potentials Uν (R) as
a function of R is particularly important for understanding
quantum chaos [138–140], and one of the most informa-
tive and basic measures of the adiabatic potential statistics
is shown in Fig. 2(b). Figure 2(b) shows the probability
distribution of nearest-neighbor spacing of the adiabatic po-
tential curves at R = 3.8, for the D = 100 case shown in
Fig. 2(c). The horizontal axis s is defined as s = S/S̄, where
S is the nearest-neighbor level spacing, and S̄ denotes the
average over S. At the hyper-radius shown, the level dis-
tribution is close to a chaotic distribution, with significant
level repulsion readily apparent. 144 curves in an energy
range −Eb ± Eδ are included in the statistics, where Eb =
181.7 and Eδ = 30, so that the density of states is approx-
imately uniform over the energy window. The solid curve
is the kernel density estimation of the probability distribu-
tion given by p(s) = 1/(

√
2πnh)

∑n
i=1 e

−[(s−si )/h]2/2, where
si are data values and h = 0.2, an alternative useful to the
histogram to estimate p(s). Both methods give consistent
p(s) and are relatively insensitive to the bandwidth h and
histogram bin size near the values chosen, and none of
the conclusions of the paper depend on the details of the
choice of method used. The Wigner-Dyson distribution corre-
sponding to a Gaussian orthogonal ensemble and the Poisson
distribution, which are predicted to describe chaotic and in-
tegrable systems, respectively, are drawn in dashed curves
for comparison.

We note that the analysis of the adiabatic potentials Uν (R)
is a different application of random matrix theory (RMT) than
the conventional analysis of the bound state or scattering spec-
trum [70–72]. One should not necessarily expect, in general,
a direct connection between the level statistics of the Uν (R)
and the bound states. Nevertheless, the level statistics of these
curves is worth investigating, for at least two reasons. The
first is that it is interesting to search for possible relationships
of the Uν (R) and the bound state distributions. The second is
that the Uν (R) are interesting in their own right: for decades,
adiabatic hyper-radial potentials have provided both a quali-
tative and numerical understanding of atomic and molecular
scattering. For example, Efimov predicted his now-famous
universal three-body states by analyzing these curves [141].

Figure 3 compares the level densities ρa of the adiabatic
potential curves as a function of hyper-radius for different

FIG. 3. Illustrations of the level density of adiabatic potential
curves ρa as a function of hyper-radius R for different two-atom
interactions. Each plot examines the change in ρa by varying one
parameter of the two-atom interaction. The default nonvarying pa-
rameters for (a)–(f) are set to D = 100, r0 = 1.0, m3/m1 = 1.3. The
energy range of the included curves is −Eb ± Eδ , where Eb = (E12 +
E34 + E12 + E34)/2 = 181.7, and Eδ = 30. The Morse potential is
used in (a)–(e); r0 = 2 for the Pöschl-Teller potential curve is used
in (f). (d) m3/m1 = 1. The offset in (e) is defined as the center of the
energy range. All length and energy variables are dimensionless, as
discussed in Sec. II.

two-atom interactions, and demonstrates a universal trend of
ρa first increasing as R increases, attaining a maximum, and
then decreasing to a constant value at long range. The Morse
potential was used for Figs. 3(a)– 3(e), where it is revealed that
ρa is independent of D and r0 for small R. This occurs because
the kinetic energy dominates in this region, and therefore ρa

is independent of the two-atom interactions. As R increases,
ρa first increases as a result of the decreasing splitting be-
tween eigenvalues of the kinetic energy (∝ 1/R2), and then
decreases and converges to a constant value as the spectrum
converges to that of two independent molecules. The peak
appears at around R = 6 for the Morse potential with r0 = 1.
Figures 3(a) and 3(b) shows that ρa decreases (increases) as
the depth (width) of the potential increases. For reference,
the number of the two-atom bound states for D = 100 and
D = 200 are 20 and 28, respectively. Figure 3(c) demonstrates
that ρa is independent of the width of energy range Eδ over
which the density is calculated for a range of widths from
Eδ = 5 to 30. In Fig. 3(d), no significant shift of ρa is observed
with a change in mass difference. Figure 3(e) shows that ρa

increases as the center of the energy window used to calculate
it shifts from low to high (−1.2Eb to −0.8Eb). This suggests
the increase of the complexity of the adiabatic potential curves
as the system shifts to higher energies. Figure 3(f) shows the
similarity of these features for the Morse and Pöschl-Teller
potentials.
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FIG. 4. Probability distribution p(s) of nearest-neighbor spacing
of adiabatic potential curves, where s is the scaled spacing, at differ-
ent hyper-radii R. (Kernel density estimator obtained from data with
a normal kernel of bandwidth 0.2.) The semitransparent curves are
for R = 1.6 to R = 10 in steps of �R = 0.2; the bold curves plot
p(s) at R = 9.9 and R = 2.0. The dashed curves are the Poisson
and GOE distributions in comparison. (a) The result for the Morse
potential with D = 100, r0 = 1, and m3/m1 = 1.3. The energy range
of included curves is taken to be −Eb ± Eδ , and Eδ = 30. (b)–(e)
Various cases where one parameter (indicated in each plot) of the
two-atom interaction in (a) is modified. (b) The width of the potential
characterized by r0 is set to r0 = 2. (c) D = 200. (d) m3/m1 = 1. (e)
The center of the included curves is shifted from Eb to E ′

b = 1.2Eb =
217.6. (f) Using the Pöschl-Teller potential with the same D, m3/m1,
and Eδ as (a). r0 = 2 is used to keep the numbers of bound states
of the two-atom interactions the same for (f) and (a). All length and
energy variables are dimensionless, as discussed in Sec. II.

Figure 4 reveals that the nearest-neighbor spacing distribu-
tion of adiabatic potentials evolves from the Wigner-Dyson
distribution at R = 3.8 towards a Poisson distribution as R
increases. For each panel in Fig. 4, two curves are highlighted
by thick lines to represent cases of small and large R, and
the other lighter curves show other values of R from 1.6 to
10. Each panel shows a different choice of model potential
parameters or masses corresponding to the panels in Fig. 3.
The chaotic to nonchaotic crossover is clear in Figs. 4(a)–4(c)
and 4(e), though with some deviations to be examined later.
In Fig. 4(d), a similar trend is visible, with level repulsion
and a somewhat Wigner-Dyson-like distribution emerging at
small R, but at large R the distribution deviates dramatically
from Poisson, showing a bunching of levels. Figure 4(f) is the
only case where the level repulsion at small R is questionable,
showing only a modestly stronger repulsion than for large R.
We will examine the origins of the features in Figs. 4(d) and
4(f) shortly. (Notice that in these plots, the small dips near
s = 0 that persist to large hyper-radii are artifacts of the Gaus-
sian smooth kernel distribution fitting. A more quantitative

FIG. 5. Brody parameter q as a function of hyper-radius R for
different two-atom interactions. Each plot examines the change in q
by varying one parameter of the two-atom interaction. The default
parameters are the same as those in Fig. 3. Note that the horizontal
axis origin starts from R = 2. Results for different parities are shown
in (c). The plots are smoothed via a moving average with weights
from a Gaussian distribution. All length and energy variables are
dimensionless, as discussed in Sec. II.

measure of the chaoticity of the statistical distribution will be
presented later.)

A few other features emerge from close examination of
Figs. 4(a)–4(f). In Fig. 4(d), where m3/m1 = 1, a spike near
s = 0 arises for large R. This is the result of near degeneracies
that occur for large R when m3/m1 = 1. In Fig. 4(f), which
shows a Pöschl-Teller potential with r0 = 2, chosen to have
the same number of two-atom bound states as Fig. 4(a), there
is still a visible level repulsion at small R relative to large
R, but the shape of the curves is always less well described
by both the Wigner-Dyson and Poisson distributions. The dif-
ference in the short-range behavior for the Pöschl-Teller case
stems from the formation of bands of the adiabatic potential
curves at short range. Since at small R the value of the Pöschl-
Teller potential does not vary rapidly, the potential energy
surface is nearly constant in the hyperangular coordinates θ

and φ. Hence, the adiabatic potentials separate into bands,
where each band is composed of potentials with the same
kinetic energy eigenvalue, and the bandwidth—the separation
among these potential curves—results from the small differ-
ences in their potential energy.

Figure 5 shows a more detailed evaluation of the evolu-
tion of chaoticity observed in the level spacing statistics as a
function of R, by plotting the Brody parameter q [72,142] as a
function of the hyper-radius [143]. The Brody distribution is a
statistical distribution characterized by q ∈ [0, 1] that can be
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expressed as

PBrody(s) = �
(2 + q

1 + q

)q+1

(1 + q) sq exp(−bsq+1). (16)

It reduces to the standard Poisson distribution at q = 0 and to
Wigner-Dyson at q = 1. The q plotted in Fig. 5 is determined
by a goodness-of-fit hypothesis test to Eq. (16).

Again, all cases shown in Fig. 5 are broadly similar. Take
Fig. 5(a) as an example: q smoothly decreases as R increases,
at some point falling to zero. The maximum q occurs for
small R, peaking around q ∼ 0.5 for D = 100. Figure 5(a)
also shows no significant change in q by changing the two-
atom interaction strength over a range from D = 50 to 200.
Figure 5(b) conveys a similar message that q is unaffected
by a change in the width of the two-atom potential from
r0 = 0.5 to 1.5, after R is rescaled by width r0. Figure 5(c)
shows that q is roughly independent of parity, and that when
adiabatic curves of both even and odd parities are included,
they become doubly degenerate for R � 4, leading to a zero
effective q. At small R, the value of q is approximately cut
in half when both even and odd parity are included because
those sets of spectral lines are uncorrelated with each other,
and thus the characteristic level repulsion present in each set
separately is not present in the combined set. Figure 5(d)
exhibits an increase in q as the difference in the mass of
distinguishable fermions increases. Figure 5(e) shows that
there is a small increase of q as the system is examined at
a higher energy. Figure 5(f) shows that the trends in q for
the Pöschl-Teller potential are roughly similar, but q is larger,
and with very large oscillations. However, the Pöschl-Teller
results are poorly behaved and caution must be exercised in
interpreting the results.

IV. FOUR-BODY DENSITY OF BOUND STATES:
NUMERICAL RESULTS AND ANALYTIC ESTIMATES

This section calculates the four-body eigenstates and ana-
lyzes their density of states and nearest-neighbor level spacing
distributions. For the density of states, we first develop a
semiclassical theory, then present the numerical results and
compare with the semiclassical theory.

A. Semiclassical analytic estimate of four-body bound
state density

We proceed in the spirit of Ref. [75], with a semiclassical
expression for the density of states in all relative degrees of
freedom for our four-atom problem. The four-body density of
states at energy E classically is

ρ4(E ) = 1

S

∫
dydp
h3

δ

[
E −

∑
i

p2
i

2μ
−V (y)

]
. (17)

S is a symmetry factor that accounts for identical particle
symmetry in circumstances where the integral is taken over
all phase space. If the integral is restricted to only one region
of phase space corresponding to a particular permutation of
identical particles, then we set S → 1. Note that the choice for
the four-body reduced mass μ = (m1m2m3m4)1/4 in Eq. (3d)
preserves the volume element going from r j to y j coordinates.

FIG. 6. The hyperspherical potential energy surface in units of
the two-body depth V (R, θ, φ)/D at R = 8r0 for the Morse pairwise
potential for (a) equal masses and (b) m3/m1 = 1.5.

It is insightful to evaluate Eq. (17) in (hyper)spherical
coordinates (see Sec. II) since all particle permuta-
tions leave the hyper-radius invariant. Therefore, dydp =
R2dRd
 p2d pd
p is the six-dimensional phase-space vol-
ume element expressed in spherical polar coordinates. Per-
forming the momentum integral,

ρ4(E ) = (2μ)3/2

S4π2 h̄3

∫
R2dRd


√
E −V (R,
). (18)

According to the analysis in Appendix A, coordinate space
integrals are reduced to one octant of the total 4π solid
angle: θ ∈ [0, π/2] and φ ∈ [0, π/2]. This accounts for the
(2!)2 ways that identical fermions may be rearranged among
themselves, and parity inversion, so with this phase-space
restriction, we set S = 1.

Equation (18) immediately implies two scaling laws:
ρ4(E ) ∝ √

D (at fixed E/D) and ρ4(E ) ∝ r3
0 , where D is the

depth of the two-body potential and r0 is the range of the
two-body potential. These can be seen by rewriting in terms
of the dimensionless variables ξ = R/r0, E/D, and V/D:

ρ4(E ) = μ3/2
√
D r3

0

∫
I (E , ξ )ξ 2dξ, (19)

where

I (E , ξ ) = 1√
2π2h̄3

∫ √
E

D
− V (ξr0,
)

D
d
. (20)

The remaining integrals must be evaluated numerically
over classically allowed regions in phase space, but note
that Eq. (20) is independent of D (at fixed E/D) since
V (ξr0,
)/D is independent of D. It is also independent of
r0 since each of the interatomic potentials depends on r0 only
in the combination r/r0. The integral evaluated at each E/D
therefore gives the prefactor of the D and r0 scaling laws.
Figures 6(a) and 6(b) show the potential energy surfaceV (R =
ξr0,
)/D on the hypersphere at ξ = 8 for the equal-mass and
unequal-mass cases, respectively. The most important aspect
of the R dependence is the behavior as R → ∞, where the
minimum of V (R,
) approaches a multiple of the two-body
potential depth D. For Morse pairwise potentials, this min-
imum turns out to be Vmin(R → ∞,
) → −2.7D. For E <
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FIG. 7. The hyper-radial function I(E = −2.7D, ξ ) defined in
Eq. (20) for m3 = m1 (dashed red) and m3 = 1.5m1 (solid black).

−2.7D, the integral I (E , r) → 0 rapidly at sufficiently large
R � 4r0. For E � −2.7D, the integral is dominated by the
region R � 4r0, but has some small contribution from R � 4r0

due to the density of the continuum states in open scattering
channels.

The four-body density of states at the classical threshold,
E = −2.7D, for atoms interacting with the Morse potential,
is of particular interest. Figure 7 shows a plot of I (E =
−2.7D, ξ ) for the equal-mass (dashed red) and unequal mass
(solid back) cases, revealing that I (E , ξ ) is very nearly in-
dependent of the mass ratio. The mass dependence in ρ4 is
almost entirely captured by the factor of μ3/2 that appears in
the prefactor of Eq. (19). Note that this near independence
of I (E , ξ ) on mass arises because changing the masses only
changes the shape of the curves describing particle coales-
cence in Fig. 6, and not the depth or width of the potential
energy valleys. This is expected to persist even if we choose
different pairwise interactions between identical particles and
distinguishable particles.

B. Numerical calculation of the four-body bound states

We now compare the semiclassical predictions to our nu-
merical calculations of the four-body bound state density of
states. Details regarding the numerical calculation such as the
number of Gauss-Lobbato DVR points used and the size of
the hyperangular basis set are given in Appendix B.

For Morse pairwise potentials, the integral in Eq. (19) eval-
uates to

∫ ∞
0 I (E = −2.7D, r)r2dr ≈ 0.79. For the case m3 =

1.5m1, the integral evaluates to 0.78, due to the slight differ-
ence in the curves shown in Fig. 7, and μ3/2

∫
I (r)r2dr =

1.06. The resulting scaling laws with
√
D and r3

0 are plotted
in Fig. 8 for both the equal- and unequal-mass cases. The data
points show the density of states calculated from numerical
solutions to the Schrödinger equation as ρ4 = S̄−1, where S̄
is the nearest-neighbor level spacing averaged over an energy
range E = −2.7D ± 10. The error bars indicate the standard
error in the mean δρ4 = σS/(

√
NS̄2), where σS is the stan-

dard deviation in the set of N level spacings included in the
average. Figure 8 clearly demonstrates that all three scaling
laws predicted by the semiclassical analysis are confirmed by
numerical solutions to the Schrödinger equation. We expect
the scaling laws to retain their essential form for the bosonic
counterpart to the present two-component Fermi system. The

(a) (b)

FIG. 8. (a) The agreement between the quantum mechanical
four-body bound state density of states and the

√
D scaling law

predicted by the semiclassical theory described in the main text.
(b) The scaling with r3

0 . In both panels, the red dashed line and filled
circles describe the equal-mass case, while the black solid line and
filled squares describe the case m3/m1 = 1.5. The Morse potential
was used in all of these calculations, and for (a), we assume r0 = 1,
while for (b), we assume D = 40. All length and energy variables are
dimensionless, as discussed in Sec. II.

angular integrals would be carried out over a different domain
consistent with bosonic symmetry, but the basic structure of
Eq. (19) would remain unchanged.

Finally, we examine the distribution of nearest-neighbor
energy level spacings of four-body bound states, and extract
a Brody parameter that may serve as a measure of chaos
for the four-body collision complex. The fitting to determine
this parameter is done using the same procedure as for the
adiabatic potential curves.

Figure 9 shows adiabatic potential energy curves, four-
body energy levels, and level spacing statistics for both the
equal-mass and unequal-mass problems, both with a pairwise
Morse potential of depth D = 75 and range r0 = 1. Fig-
ures 9(a) and 9(b) are for m3 = m1, while Figs. 9(c) and 9(d)
are for m3 = 1.5m1. Adiabatic potentials are shown as blue
curves. Horizontal lines are four-body energy levels. Black
(red) lines lie inside (outside) the energy range E = −2.7D ±
10 for the statistical analysis for the energy level spacings. The
equal-mass problem yields a fairly Poissonian distribution
with a Brody parameter q = 0.14, while the unequal-mass
problem yields q = 0.68.

Since our model uses the same two-body potential for all
six interaction terms, the potential energy exhibits an addi-
tional symmetry for the equal-mass case that is broken only
when the masses are taken to be different. Examination of
Fig. 6 reveals that the Hamiltonian for the equal-mass case is
invariant under the transformation that takes φ → π/2 − φ.
This operation amounts to interchanging the magnitudes of
the two Jacobi vectors y1 and y2. The result is that for the
equal-mass system, the adiabatic solutions �ν (R,
) can be
divided into two symmetry classes: those that are even upon
φ → π/2 − φ and those that are odd under that operation.
The overlap matrix Oiν, jμ from Eq. (13) vanishes between
states belonging to different symmetry classes, and one ob-
tains a four-body spectrum that is essentially constructed by
overlaying the levels from each class. The resulting distribu-
tion shown in Fig. 9(b) looks uncorrelated and accurately fits
a Poisson distribution.
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FIG. 9. (a) The adiabatic potentials (blue curves) and the four-
body bound state energy levels (horizontal lines) for the equal-mass
case m1 = m3. Energy levels used to calculate the density of states
and the Brody distribution are shown in black, while the remaining
energy levels are shown in red. (b) The probability density P(s)
of nearest-neighbor energy spacings of four-body bound states, as
calculated using the method of slow variable discretization for the
equal-mass case. (Black straight lines: histogram; black smooth
curve: kernel density estimator.) (c),(d) Corresponding plots for the
case m3 = 1.5m1. The Brody distribution that maximizes the log-
likelihood function for the kernel density estimator is shown as the
red curve, and panels labeled with the correspondingly fit q value.
The blue dotted curves in (b) and (d) show the Wigner-Dyson distri-
bution, while the green dashed curves show the Poisson distribution,
included here for comparison. All calculations shown use the Morse
pairwise potential with D = 75, r0 = 1 and with energy levels in the
range E ± Eδ = −2.7D ± 10. All length and energy variables are
dimensionless, as discussed in Sec. II.

Taking the masses to be different means the potential is no
longer symmetric under φ → π/2 − φ, as seen in Fig. 6(b).
Now, even and odd states under reflection about φ = π/4
couple together. Four-body bound energy levels previously
belonging to these separate symmetries are pushed apart by
the coupling, resulting in a depletion of small level spacings
observed in Fig. 9(d).

V. CONCLUSIONS

We have introduced a toy model to understand molecu-
lar collisions by considering a 1D system of two identical
molecules with identical interactions between each pair of
molecules. This allows us to explore a molecular system
which has a large density of states in a numerically straight-
forward fashion. We demonstrate that the hyperspherical
adiabatic potentials transition from chaotic (Wigner-Dyson) to
nonchaotic (Poisson) with increasing intermolecular separa-
tion for certain model potentials, despite the simplicity of the
potentials and the reduced dimensionality, and even though
the number of two-atom bound states is only ∼20.

We further studied the dependence of the four-atom sys-
tem’s properties on the two-atom interaction by exploring the

parameter space of the model potential. We show that the
system at short range becomes more Wigner-Dyson-like as
the mass ratio of distinguishable particles m3/m1 increases.
For both the case of m3/m1 = 1 and the case including both
inversion parities, the short-range chaos is suppressed by the
extra degeneracy in the system. It is found that changing the
depth D or width r0 of the two-atom interaction within the
order of magnitude does not affect the chaoticity of collisions
measured by the Brody parameter. The Brody parameter is
found to be greater at higher collision energy.

We also calculated and analyzed the four-body density of
states ρ4 using a full quantum mechanical calculation and a
semiclassical approximation. Three scaling laws, governing
dependence on μ, D, and r0, emerge from the semiclassi-
cal analysis, encapsulated in Eq. (19). We found remarkable
agreement with the full quantum mechanical calculations.

It will be illuminating to explore realistic collisions in three
dimensions. Nevertheless, there are several implications of
this study for real molecule scattering. Simple (power-law)
relations between the four-body bound state density and two-
atom interaction are found and can be explained by a simple
theory. We can speculate based on this evidence that the
analogous power laws derived in Ref. [65] may accurately
predict ρ4 for realistic molecule scattering in 3D. If so, this
can provide a potent guide for understanding and guiding
molecule experiments.
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APPENDIX A: SYMMETRY AND BOUNDARY
CONDITIONS

The exchange symmetry of fermions and spatial inversion
symmetry can be used to simplify the problem, by reducing
the range of angular coordinates of the Schrödinger equation,
and to determine the proper boundary conditions. We can
define an operator P̂i j that exchanges the particles i and j.
Acting P̂12 on each of the Jacobi coordinates yi gives

P̂12y1 = −y1,

P̂12y2 = y2, (A1)

P̂12y3 = y3.

The hyperspherical coordinates (R, θ, φ) transform as

P̂12R = R,

P̂12θ = θ, (A2)

P̂12φ = π − φ.

Since particles 1 and 2 are identical fermions, the wave
function �(R, θ, φ) must be antisymmetric upon exchanging
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particles 1 and 2. Thus,

P̂12�(R, θ, φ) = �(R, θ, π − φ) = −�(R, θ, φ). (A3)

Similarly, for P̂34,

P̂34�(R, θ, φ) = �(R, θ,−φ) = −�(R, θ, φ). (A4)

From the above two equations, the wave function defined
on φ ∈ [−π, π ) can be determined by knowing its value for
φ ∈ [0, π/2] since, based on Eq. (A4), the value of �(R, θ, φ)
for φ ∈ [−π, 0] can be determined by that for φ ∈ [0, π ], and
based on Eq. (A3), �(R, θ, φ) for φ ∈ [π/2, π ] can be de-
termined by that for φ ∈ [0, π/2]. From Eqs. (A3) and (A4),
the boundary conditions on this reduced region are derived by
letting φ → 0 or φ → π/2, resulting in �(R, θ, φ = 0) = 0
and �(R, θ, φ = π/2) = 0.

Spatial inversion symmetry �̂ also reduces the coordinate
region. This symmetry yields yi → −yi for i = 1, 2, 3, which
corresponds to (θ, φ) → (π − θ, π + φ). The wave function
must be invariant up to a phase under this symmetry, and
�̂2 = 1, so

�̂�(R, θ, φ) = p�(R, θ, φ) = �(R, π − θ, π + φ), (A5)

where p = −1 for odd parity and p = 1 for even parity. By
arguments similar to those above for the fermionic exchange,
Eq. (A5) implies that the range of θ can be reduced from
[0, π ] to [0, π/2].

Lastly, an inversion of the system’s geometry, y3 → −y3,
while fixing y1 and y2 (equivalent to applying �̂P̂12P̂34),
should not alter the boundary conditions for the reduced re-
gion, i.e.,

�̂P̂12P̂34�(R, θ, φ) = p�(R, θ, φ) = �(R, π − θ, φ). (A6)

Setting θ = π/2, we arrive at another boundary
condition: �(R, θ, φ)|θ=π/2 = 0 for odd parity and
∂
∂θ

�(R, θ, φ)|θ=π/2 = 0 for even parity.

APPENDIX B: SOLVING THE SCHRÖDINGER EQUATION

The hyperangular Schrödinger equation,

− 1

2μR2

( 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

)
�(R, θ, φ)

+V (R, θ, φ)�(R, θ, φ) = U (R)�(R, θ, φ), (B1)

is solved with B-spline bases [144] for R, θ , and φ, by writing

�(R, θ, φ) =
∑
n

∑
m

cn,mun(φ)vm(θ ). (B2)

Here, un(φ) and vm(θ ) are B-spline functions. First, we insert
the B-spline expansion in Eq. (B2) into Eq. (B1) and integrate
both sides with

∫
d
 over the unit sphere, yielding

∑
n

∑
m

cn,m

{
− 1

2μR2

[
sφ (n′, n)tθ (m′,m)

+ rθ (m′,m)tφ (n′, n)
]

+
∫

d
 un′ (φ)vm′ (θ ) V (R, θ, φ) un(φ)vm(θ )

}

=
∑
n

∑
m

cn,mU (R)sφ (n′, n)sθ (m′,m), (B3)

where

sφ (n′, n) =
∫

dφ un′ (φ)un(φ)

sθ (m′,m) =
∫

dθ sin θ vm′ (θ )vm(θ )

rθ (m′,m) =
∫

dθ
vm′ (θ )vm(θ )

sin θ

tφ (n′, n) =
∫

dφ un′ (φ)
∂2

∂φ2
un(φ) (B4)

tθ (m′,m) = −
∫

dθ sin θ
∂vm′ (θ )

∂θ

∂vm(θ )

∂θ
.

The expression of tθ (m′,m) is obtained from integration by
parts. Values in Eq. (B4) are numerically integrated. B-splines
are of the order of 5, and all numerical integrals such as
those in Eq. (B4) are evaluated with a Gaussian quadrature
with 10 nodes. We choose the numbers of B-splines in the
θ and φ directions such that the error of the adiabatic po-
tential curves at the largest plotted hyper-radius is � 1% of
the average spacing; the number in each direction varies from
100 to 160 depending on the specific parameters of the two-
atom interaction. We numerically calculate the eigenvalues
and eigenvectors in Eq. (B3) using the Arnoldi algorithm in
ARPACK for banded matrices [145].

The four-body bound states are calculated by solving
Eq. (12). For a typical calculation with D = 75 such as the
one shown in Fig. 9, we use NR = 120 radial Gauss-Lobatto
grid points (resulting in 118 radial basis functions), and retain
N� = 160 adiabatic eigenstates at each DVR point in Eq. (11),
leading to a full (not banded) matrix of size 18 880. Each
of the N� = 160 adiabatic eigenstates is calculated with a
product-state B-spline basis as solutions to Eq. (B3). In our
convergence tests, we have used values as large as NR = 180
and N� = 200, but this results in a negligible change in the
density of states and level spacing distribution.
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