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ABSTRACT

Recommender systems are complex. They integrate the individ-
ual needs of users with the characteristics of particular domains
of application which may span items from large and potentially
heterogeneous collections. Extensive experimentation is required
to understand the multidimensional properties of recommenda-
tion algorithms and the fit between algorithm and application.
librec-auto is a tool that automates many aspects of off-line
batch recommender system experimentation. It has a large library
of state-of-the-art and historical recommendation algorithms and a
wide variety of evaluation metrics. It further supports the study of
diversity and fairness in recommendation through the integration
of re-ranking algorithms and fairness-aware metrics. It supports
declarative configuration for reproducible experiment management
and supports multiple forms of hyperparameter optimization.

CCS CONCEPTS

• Information systems→Recommender systems;Relevance
assessment; • Human-centered computing → Collaborative

filtering; • Social and professional topics → User character-

istics; • Software and its engineering → Software libraries and

repositories.
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1 INTRODUCTION

librec-auto is a Python-based tool for recommender systems ex-
perimentation1. It is designed to support researchers by automating
experimental methodology, thereby making experimental results
more reproducible, and allowing simplified access to the large col-
lection of algorithm implementations found in the LibRec platform.
The system supports off-line batch evaluation in which ratings data
(either explicit or implicit) are divided into training and test sets
and the algorithm is evaluated on test set performance. Although
other evaluation methods are gaining currency, particularly those
that support reinforcement learning [25–27], this type of evaluation
is still extremely common in research practice and in educational
settings.

1.1 Reproducibility in Recommender Systems
Research

Reproducibility remains a challenge in recommender systems re-
search [7, 38, 45], particularly in the areas that are notwell-established
such as fairness-aware recommendation. Even minor differences
in parameters and experimental settings can yield incompatible
results, which make it difficult to provide definitive answers about
the relative properties of different algorithms. Additionally, many
of the existing libraries are not comprehensive. They mostly sup-
port experimentation for a very specific class of algorithms, making
it difficult to readily re-use their capabilities for general research
purposes.

We believe that progress towards reproducibility is best sup-
ported by providing a platform on which comparative experiments
can be conducted using declarative experimental configuration (so
that experimental settings can be easily shared), with pre-implemented
methodological workflows, and with a large library of algorithms
for easy of benchmarking against prior work. librec-auto is such
a platform and it has been steadily enhanced over multiple years to
meet the needs of researchers.

1https://librec-auto.readthedocs.io/en/latest/quickstart.html
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1.2 Contributions

This paper represents the first full discussion of librec-auto. The
system was introduced through a demo at the ACM Recommender
Systems conference in 2018 [32] and also presented to the audience
of the ACM Conference on Fairness, Accountability and Trans-
parency as a tutorial in 2020 [42]. In this paper, we provide a de-
tailed account of the capabilities of librec-auto in its current 0.2
release, the typical usage of the system, and description of plans
for future releases.

2 LIBREC AND LIBREC-AUTO

librec-autowas originally designed as an open-source command-
line Python package providing a wrapper for the LibRec recom-
mender systems algorithm library2. LibRec is a Java-based recom-
mendation generation platform, available under the GPL 3.0 open-
source license. It was introduced in 2015 [22], and is maintained by
a group led by Professor Guibing Guo at Northeastern University,
Shenyang, China. The group has implemented a large library of
recommendation algorithms including deep learning algorithms
(more than 70 as of this writing) drawn from the recommender
systems research literature. In addition to numerous algorithms,
the LibRec platform supports a variety of evaluation metrics and
evaluation methodologies.

Despite the significant capabilities of LibRec, we found that for
practical experimentation and reproducibility research, the system
by itself is not sufficient. For example, intermediate computational
outputs, such as recommendation results, cannot be reused as input
for new evaluation metrics. If an experimenter runs an experiment
and then wishes to follow-up and explore additional properties of
the results, LibRec would require re-execution of the entire set of
recommendation computations. In addition, result re-ranking is not
supported because of the close tie between algorithm execution
and result evaluation built into LibRec. This makes it difficult to use
LibRec as it is to explore the areas of fairness-aware and diversity-
enhanced recommendation.

librec-auto was conceived and implemented as a wrapper for
core aspects of LibRec’s functionality, in particular, to control and
organize inputs (experiment configuration) and outputs (predic-
tions and metric calculations), while preserving an experimenter’s
ability to access the large collection of implemented algorithms
and metrics found in LibRec. Based on our internal research needs,
we have extended this platform in a number of ways, particularly
to support research in fairness-aware recommendation. We have
also enhanced LibRec with a suite of metrics for measuring the
fairness of recommendation outcomes. In addition, the tool now
supports recommendation re-ranking, a common approach to en-
hancing fairness, diversity, and other non-accuracy properties of
recommendation outcomes.

Except for a small chunk of Java wrapper code, librec-auto is
implemented in Python and (because it inherits heavily from Li-
bRec) is available under the same GPL 3.0 license. It can be installed
using the pip package manager or by downloading the source
package from GitHub3. Because of its ease of configuration and use,
librec-auto also supports students and teachers in learning about

2https://guoguibing.github.io/librec/index.html
3https://github.com/that-recsys-lab/librec-auto

recommendation algorithms and their evaluation. The system has
been used for courses at the Technical University of Eindhoven and
the University of Colorado, Boulder.

3 KEY FEATURES

A sketch of the functionality of librec-auto is provided in Figure 1.
As the figure indicates, LibRec is encapsulated by librec-auto,
and its various component elements are used to execute particular
portions of the experimental workflow. The user experience of the
system is organized around the concept of a study, which involves
experimentation with a single data set and a single recommendation
algorithm. Multiple hyperparameters may be investigated as part
of a study, either through grid search or black-box optimization
as described in Section 3.3. Each combination of hyperparameters
is evaluated through an experiment, which may entail multiple
training / test iterations if cross-validation is used. Although the
figure indicates a straight-line of execution, parallelism is built into
librec-auto at the level of experiment execution. Because experi-
ments can have lengthy execution times, the post-processing phase
allows for integration with messaging platforms, including Slack,
so that experimenters are notified when their tasks are complete.
These messages can include visualizations of experimental output,
to provide a quick overview of results.

We can follow the workflow of a study through the processes
depicted in Figure 1.

XML configuration The experimenter designs a study and
crafts a configuration file. The librec-auto release includes
a simple set-up wizard to automate some aspects of this
process.

Configuration processing The system processes the config-
uration file and produces internal data sources necessary for
the study. These include folders for the experiments to be
run, experiment-specific configuration files, and a transla-
tion of the LibRec-specific parts of the configuration into the
key-value properties file that LibRec consumes.

CV split The ratings data file is processed, and cross-validation
train / test splits are produced. Ratings data is assumed to be
in the form of a CSV file of sparse 〈𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚, 𝑟𝑎𝑡𝑖𝑛𝑔〉 triples.
Unlike vanilla LibRec, split files are saved, so that they can be
used for further analysis, calculation of training data proper-
ties, for example, or for use by non-LibRec recommendation
libraries, a feature under active development.

Algorithm The configured recommendation generation algo-
rithm from LibRec is run, producing predictions over the
training data. Depending on the nature of the evaluation met-
ric, it will either generate a prediction for each training data
triple or it will generate a ranked list of recommendations
for each user in the training data.

Re-ranking (optional) If the study uses a re-ranking algorithm,
the output of the (list-generating) recommender is input to
this algorithm, and a new list of re-ranked results is pro-
duced for each user. The system includes a set of re-ranker
implementations (see below), written as Python scripts.

Evaluation The metrics established in the configuration file
are executed over the recommendation results. As is the case
with LibRec, multiple metrics can be applied to the results
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Figure 1: Schematic of experimentation workflow with librec-auto. The LibRec library (Java, shown in grey) is encapsulated

by librec-auto (Python, shown in purple), which manages configuration, experimental outputs and post-processing. Added

from [32] is the new re-ranking module shown in red.

of a study. These metrics can be the ones implemented in
LibRec or, as the figure indicates, can be implemented in
Python and executed by the librec-auto process.

Post-processing (optional) Once a study is complete, post-
processing operations are available to put the results of
a study into human-readable form through visualizations,
or export to forms that can be read by other tools. These
may lead to revisions in the experimental protocol or to the
launching of additional studies.

Note that librec-auto supports incremental updating of study
execution. Later portions of the experimental pipeline can be exe-
cuted without re-computing earlier steps, a capability not available
in vanilla LibRec. For example, a re-ranker implementation can
be tweaked and tested or an additional evaluation metric can be
applied without having to generate new results.

3.1 Study structure

A study is organized in a multi-directory file structure. Some parts
of the structure are managed by librec-auto itself, others are set
up by the experimenter. Figure 2 shows an example of the file layout
for a study called “demo01”. In this case, the data is being used in
more than one study, so it is stored in a directory outside of the
study structure. As the shaded region in figure indicates, most of
the study files are managed by librec-auto itself.

Key files in the study structure include:

Data files Ratings files and files with user and item meta-data.
Configuration files XML-based study configuration (described

in detail below).
Properties files Input to the LibRec library.
Log files Output from the LibRec execution.
Output files Summary files for individual experiments and

the study as whole.

Figure 2: Directory structure for a librec-auto study. The

shaded directories are experiment outputs managed by the

system.

Post-processing outputs These can take a variety of forms
including image, CSV and others.

For reproducibility, it is sufficient for experimenters to distrib-
ute their data and configuration files (conf directory). All other
aspects of a study can be reproduced by running the librec-auto
application.

3.2 Fairness-aware recommendation

With the extensive research in literature focusing on the assessment
and mitigation of unfair outcome of algorithms, several toolkits for
fair machine learning have recently emerged to make such methods
widely accessible. Examples of such toolkits include: AI Fairness
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360 – an open source toolkit for mitigating bias in AI application
lifecycle designed by IBM [8], Fairlearn – a toolkit for assessing and
improving fairness in AI designed by Microsoft [12], Aequitas – an
open-source bias audit toolkit that allows auditingmachine learning
models for discrimination and bias [39], LinkedIn Fairness Toolkit
(LiFT) [48], and FairSight: Visual Analytics for Fairness in Decision
Making [2], just to name a few. However these toolkits have been
proposed to address issues of unfairness in classification, and the
metrics and approaches they encode are not always applicable to
recommender systems research.What distinguishes librec-auto’s
fairness extensions from other toolkits is its focus on evaluating
and mitigating unfairness in recommender system algorithms in
particular.

Although librec-auto has been under development since 2018,
the latest release incorporates several key advances that specifically
support common tasks in the study of recommendation fairness.
These specific fairness-aware capability of librec-auto are (1)
evaluation metrics that report on fairness aspects of recommen-
dation output, (2) support for working with user (demographic)
and item (content) features in algorithms and metrics, and (3) an
optional re-ranking step in the experiment pipeline, to support
what is one of the most common category of fairness enhancing
techniques. With these features, librec-auto can support a wide
range of research activities in fairness-aware recommendation, and
we will be adding additional capabilities in future releases.

3.2.1 Fairness metrics. There are two types of assumptions behind
fairness-aware systems Friedler et al. [20]: (1) What you see is what

you get (WYSIWYG), and (2)We’re all equal. Having aWYSIWYG as-
sumption in a systemmeans that the observations of features do not
encode bias, therefore the system uses that unbiased information to
make decisions about individuals in a way that similar individuals
are treated similarly. WYSISYG seeks to achieve fairness for individ-
uals rather than a group of users. However, the second assumption
(WAE) acknowledges that the biases in the society are reflected
in data which lead to disparate treatment of different groups with
different sensitive features. Therefore WAE supports group fairness.
In librec-auto, we have concentrated on fairness-aware metrics
that measure group fairness. However, some individual fairness
metrics are also included. We intend to extend the coverage of both
types of metrics in future releases.

In addition to the group vs individual fairness distinction, rec-
ommender system fairness is also distinguished by the fact that
fairness concerns may be formulated relative to multiple differ-
ent stakeholders [1, 13]. In particular, we may be concerned about
fairness towards consumers of recommendations (end-users) and
providers of items being recommended. Consumer-side group fair-
ness asks whether the system is fair to different groups of users:
for example, male, female and non-binary job seekers getting rec-
ommendations of job listings. Provider-side group fairness asks
whether the system is fair to different groups of item providers: for
example, male, female and non-binary musical artists whose tracks
are being recommended. We have included metrics for both types
of stakeholders in librec-auto.

The WEA assumption is concerned with equitable treatment
of users in protected groups. The WAE assumption requires that
recommender systems provide individuals of a protected group

Table 1: Fairness metrics in librec-auto.

Metric Stakeholder Focus Fairness Type

Calibration consumer individual
DPF consumer group
Error-based consumer group
Gini Index provider individual
PPR consumer & provider group
Statistical Parity provider group

(regardless of stakeholder position) to experience a similar quality
of service as those in the unprotected group, according to some
objective or metric deemed important to that group [18, 19, 44, 51].
For consumers, the common approach to measure the quality of
recommendations is using accuracy-based metrics. These values
are computed and compared across groups. As an example, [51]
measures and compares different types of errors among user groups.
[14] also compared the statistical parity of the precision of recom-
mendations for different demographic groups. A WSIWYG assump-
tion asserts that all users should get similar quality of service and
does not make use of a protected / unprotected group assumption.
[44] uses a diversity-based metric (KL-divergence) to measure the
discrepancy between the distribution of item categories in user
profile and that of her recommendations. A system that scores well
on this calibration measure is considered fair in that it is providing
recommendations well matched to the tastes of individual recom-
mendation consumers, even when those tastes vary widely from
the average user.

Similarly for providers, we provide metrics appropriate under ei-
ther of theWAE orWYSIWYG assumptions. Under the first assump-
tion, we concentrate on the results associated with protected vs un-
protected provider groups. A simple way to compare these results is
to look at exposure, the likelihood that particular providers will have
their items displayed in the recommendation lists of consumers
[30, 43]. However, displaying a recommendation to an uninterested
user might not be of much value, so a utility-based (or hit-based)
alternative considers both how often items are displayed and the
quality of match between the user and the item and compares these
utilities between protected and unprotected providers [11, 41]. An
example of individual fairness metrics for providers is the Gini index
metric, where a high (unfair) value indicates that recommendation
results are highly concentrated among a few providers.

As this discussion suggests, fairness metrics for recommender
systems form a fairly complex space with many different proposals
[9, 11, 16, 29, 44, 47, 50, 51]. We implement the following metrics
in librec-auto and where possible, include both consumer-side
and provider-side versions of the metric, as listed in Table 1. All
metrics listed here are implemented in Java and integrated with the
LibRec code base:

• Calibration [44], a distribution-based metric that uses KL-
Divergence to measure the difference in item category distri-
bution between the preferences of users and their respective
recommendation lists.

• Discounted Proportional Fairness (DPF), a hit-based fair-
ness metric similar to the metric offered in [16] where it
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measures the ranking utility (nDCG) of the protected group
with respect to the other groups.

• Error-based metrics proposed in Yao et al. [51] including
value-unfairness, absolute unfairness, underestimation un-
fairness, overestimation unfairness. Non-parity unfairness
as defined by Kamishima et al. [28] is also in this group.

• Gini Index calculated over the exposure of all the providers
in all recommendation lists.

• P-Percent-Rule (PPR) discussed in [10], is a two-sided ex-
tension of statistical parity [6].

• Statistical parity, based on the ideas discussed in [36, 53],
measuring the difference in outcomes between protected
and unprotected groups relative to various recommendation
outcomes. Both ranking and prediction accuracy measures
are supported.

In addition to this set of fairness metrics, we provide an imple-
mentation of the Intra-List Distance (ILD) measure [55], a pairwise
distance between all the item features in each user’s recommen-
dation list. This is a user-focused measure of the diversity that a
recommender system provides.

3.2.2 Item and user metadata. LibRec does not directly support
algorithms that use item and user metadata: content-based or demo-
graphic recommendation. The ability to make use of such data is an
enhancement that was made in order to implement fairness-aware
algorithms and metrics: it is clear, for example, that you need to
know if a user is in a protected group to know how to apply metrics
like statistical parity or value unfairness.

Our enhancements allow the algorithms and metrics to access
data stored in user and item feature files. These files have a simple
sparse triple format: item id (or user id), feature name, feature value.
Because it is a sparse format, rows with zero values can be omitted.
If the value for a feature is binary, the feature value can also be
omitted and all 〈𝑖𝑡𝑒𝑚, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒〉 pairs that appear in the file will
have a feature value of 1.

For the specific case of group fairness algorithms and metrics,
the feature file must contain a feature with a binary value that
represents the protected / unprotected group distinctions. Items
with a value 1 for this feature will be considered protected for
the purposes of metrics or algorithms. We plan to generalize this
capability in future releases.

3.2.3 Re-ranking. A re-ranking algorithm takes the ranked output
of a base system (usually an information retrieval or recommender
system) and performs a permutation of the ordering (and usually a
truncation) before sending the list to an end user. A typical applica-
tion of these techniques is to enhance output diversity or fairness
when the list of top candidates returned by the base system lacks
these properties.

Re-rankers strive to achieve a reasonable balance between ac-
curacy and other output properties, like fairness or diversity, by
offering a tunable tradeoff between boosting protected or diverse
items and including items ranked highly by the base system.

librec-auto includes implementations of the following re-ranking
algorithms:

• FAR, defined in [30], combines a personalization-induced
and fairness-induced scores with hyper-parameter 𝜆;

• PFAR, from [30], adds a personalized weight to FAR, calcu-
lated based on item-features in user profile, representing the
tolerance of the user for diverse results

• OFAiR is based on PFAR and allows fine-grained control
of protected group promotion when there are multiple pro-
tected groups [43].

• FA*IR [52] builds a queues of protected and unprotected
items and draws from each queue to build the final re-ranked
list.

• MMR diversifies result lists by greedily adding items with
maximal marginal relevance [15].

• XQuAD defined in [40] has similar goal to MMR algorithm,
but it enhances diversity with respect to specific aspects.

• Calibrated Recommendations, an algorithm closely tied
to the Calibration metric above, which re-ranks recommen-
dations to ensure a close match to the user’s distribution of
interests in item features [44].

The re-ranking methods are part of librec-auto and are im-
plemented in Python. A re-ranking script loads the original set
of (large) recommendation lists computed for each user and then
computes new re-ranked sub-lists for output. As noted above, re-
rankers can participate in the optimization process. However, it
would be inefficient to compute LibRec results multiple times if the
only parameters changing were within the re-ranker. librec-auto
detects this situation and only computes results once for a given
set of algorithm parameters.

3.3 Optimization

As noted above, librec-auto supports grid search, an exhaustive
method of checking each combination of values specified in order
to find the optimal value. The number of experiments is determined
by a cross-product of the variables. The syntax to run grid-search
involves specifying specific values for a given metric. For example,

<item-reg><value>0.01</value>
<value>0.05</value></item-reg>

While grid search is guaranteed to find the optimal result within
the specified parameter-value combinations, it can be expensive and
time-consuming to run, particularly with a large number of vari-
ables, and depends heavily on experimenter expertise in choosing
specific parameter values to sample. To overcome these difficul-
ties, we have introduced Bayesian black-box optimization (using
optuna), which aims to reduce the time to find an optimal com-
bination of values [3]. The optuna package includes a number of
optimization methods including the Tree Of Parzen Estimators
(TPE) method, which makes probabilistically sampled estimates of
optimal parameter values based on prior experimental results. In
our experiments, this method outperformed other options that we
considered.

In order to use this system, an optimize element must be added
to the configuration file (see below), and instead of the value syntax
used to indicate possible values for grid search, the experimenter
includes lower and upper elements indicating the legal range for
each variable. If the metric being used is a LibRec metric then the
direction of optimization is automatically determined. For user-
defined metrics, the experimenter must specify the direction of
optimization.
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4 STUDY CONFIGURATION

librec-auto uses an XML configuration file to specify all aspects
of the experimental pipeline. As noted above, a configuration file
defines a study, which computes evaluation results for a single
algorithm and a single data set, possibly over multiple choices
of hyperparameters, each combination of which constitutes an
experiment. The configuration file is divided into sections, some
of which are optional. We devote some attention here to this file
because a study of its components gives a good overview of the
capabilities and flexibility of librec-auto. A sample configuration
file is shown in Figure 3.

XML was chosen because configuration files need to be managed
both by human experimenters and by the system itself. The un-
structured key-value properties format used by LibRec was found
to be difficult for experimenters to manage as it does not impose a
natural structure on the different aspects of the configuration and
makes it difficult to re-use and adapt configurations. JSON was also
considered, but XML is more self-describing, which is important
when the configuration must provide documentation for what ex-
periments were performed. XML enables configuration files to be
easily modularized, so that, for example, multiple studies can share
the same methodology elements, preventing inadvertent miscon-
figuration. XML also provides facilities for validating configuration
files against an XML schema, which in future versions will allow us
to provide error checking of configuration files before processing
them.

4.1 Global elements (all optional)

The global elements establish conditions under which all aspects of
the configuration file interpretation and study execution will take
place.

random-seed : An integer that will be used as the seed for
any randomized actions that the platform takes. This ensures
repeatability for experiments.

thread-count : If this is greater than zero, librec-auto will
spawn multiple threads for various tasks, including parallel
execution of experiments.

library : There can be multiple library elements, from which
algorithms, metrics and other elements can be imported.
There is a default system library for algorithms (referenced
in the example). An element from the library can be imported
using the ref attribute.

In the example file in Figure 3, <alg ref="alg:biasedmf"/>‘
refers to the biasedmf (Biased Matrix Factorization) algorithm as
implemented in LibRec with the default hyperparameters given
in the library. The library file is also a useful reference for experi-
menters to see what hyperparameters a given algorithm accepts.
These can be overridden by local declarations in the configuration
file.

4.2 Data Section

The data section indicates where the data for the study can be found.
The data can be in any convenient place. However, librec-auto

<librec-auto>
<random-seed>202001</random-seed>
<thread-count>1</thread-count>
<library src="system">default-algorithms.xml</library>

<data>
<data-dir>../data</data-dir>
<format>UIR</format>
<data-file format="text">ratings.csv</data-file>

</data>

<splitter>
<model count="3">kcv</model>
<dim>userfixed</dim>
<ratio>0.8</ratio>
<save>true</save>

</splitter>

<alg ref="alg:biasedmf">
<similarity type="item">pcc</similarity>
<iterator-max>25</iterator-max>
<item-reg><value>0.01</value>

<value>0.05</value></item-reg>
<num-factors>20</num-factors>

</alg>

<metric>
<ranking>true</ranking>
<list-size>10</list-size>
<class>precision</class>
<script lang="python3" src="system">

<script-name>ndcg_metric.py</script-name>
<param name="list_size">10</param>

</script>
</metric>

<post>
<script lang="python3" src="system">

<script-name>results_to_csv.py</script-name>
<param name="option">all</param>

</script>
</post>
</librec-auto>

Figure 3: Sample configuration file

will need to be able to write to this directory since it will by default
add new data split directories here. 4

4.3 Feature Section (optional)

LibRec is heavily focused on collaborative algorithms, so the basic
form for input data is the user/rating matrix. However, as noted
above, for content-oriented algorithms and for fairness-aware al-
gorithms and metrics, it may be necessary to have item metadata

4Note that, for LibRec compatibility, there are two different places where the label
“format” is used. The format element indicates the columns in the ratings file. The
format attribute of the data-file element is the file format of the ratings file: LibRec
supports text and AIFF file formats.
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and/or user demographic data. The feature element allows experi-
menters to include either item or user features as input to a study’s
algorithm or metrics.

4.4 Splitter Section

A variety of different evaluation strategies are employed by recom-
mender systems researchers to evaluate algorithms. K-fold cross-
validation is a common one, and LibRec supports multiple variants
on this approach.

The example in Figure 3 directs librec-auto to perform five-
fold cross-validation using 80% of each user’s data for training and
20% for testing in each fold. The splits will be saved to the data
directory, and can be re-used in subsequent experimentation.

The configuration file also supports fixed training and test files
supplied by the experimenter and temporal splitting (when dates
are available for ratings).

4.5 Algorithm Section

LibRec supports more than 70 recommendation algorithms, each
linked to a paper from the scientific literature that it implements. A
default algorithms library contains a number of the most common
algorithms and complete lists of their hyperparameters with default
values.

Typically, a study will consist of multiple experiments over differ-
ent algorithmhyperparameters. As noted in Section 3.3, librec-auto
supports both grid search and Bayesian black-box optimization In
Figure 3, the weight for the item regularization term (item-reg)
is being varied across two values, 0.01 and 0.05. This information
tells the system to conduct two experiments using the given weight
values. Any number of hyperparameters can be searched over. The
system will conduct an experiment for every combination of values
(Cartesian product), so the number of experiments can be quite
large.

4.6 Optimize Section (optional)

The black-box optimization capability requires the use of a separate
optimize element to specify what metric is used for optimization
and how many iterations are to be performed. For example,

<optimize><metric>precision</metric>
<iterations>25</iterations></optimize>

This option cannot be combined with grid search. If it is used,
instead of providing a list of values associated with a parameter
(the value element), we provide an upper and lower bound to the
search range.

<item-reg><lower>0.01</lower>
<upper>0.05</upper></item-reg>

4.7 Metrics Section

A study can employ multiple metrics. LibRec supports over 20 dif-
ferent metrics for evaluating recommender system performance.
There are two basic types: error metrics, which compare the pre-
dictions produced by an algorithm with known ratings from the
test set, (for example, RMSE), and ranking metrics, which evaluate a
ranked list of results produced for each user in the training data (for
example, Precision@10). Although multiple metrics can be used,

only one type of metric can be used at a time since these methodolo-
gies are quite different in how they make use of the training data.
Ranking metrics (like Precision@10 shown in the example) require
the ranking element to be true and a list-size to be specified.

Fairness-aware metrics require a protected-feature element.
As described in Section 3.2, the current release requires this to be a
binary feature drawn from the item or user feature file. Items (or
users) associated feature value of 1 will be considered protected
for the purposes of a fairness metric. This value is also used by
fairness-aware algorithms in LibRec.

librec-auto supports custommetrics defined as Python scripts,
similar to re-ranking scripts described below. Implementers can
make use of generic error or ranking metric abstract classes for
building their metrics, minimizing the amount of implementation
effort. This eliminates the need to program such metrics in Java
and re-compile the LibRec executable.

If black-box optimization is used, the optimizer needs to know
which direction of a metric is considered “good”: note that large
RMSE is bad, but large nDCG is good. This property is pre-defined
for built-in metrics, but for custom metrics, a flag must be included
in the metric script declaration to indicate whether to optimize
for larger or small values of the metric.

4.8 Rerank Section (optional)

For a study that includes re-ranking, the re-ranking script is speci-
fied in a rerank element. Note that all re-ranking is done by script
resources and these can be easily customized by experimenters.
Currently, only Python scripts are supported.

The configuration for a re-ranker indicates the parameters to be
passed. In the following example, we see that the far-rerank.py
script is being used, which implements the re-ranker described in
[30]. The max_len parameter tells the script how many items will
be returned for each user from the re-ranked set. Other parameters
are algorithm-specific controls on the re-ranking process. The FAR
algorithm defined in [30] uses the lambda and binary parameters
shown here.

<rerank>
<script lang="python3" src="system">

<script-name>far-rerank.py</script-name>
<param name="max_len">10</param>
<param name="lambda">

<value>0.3</value>
<value>0.0</value>

</param>
<param name="binary">False</param>

</script>
</rerank>

Note that a re-ranking step can participate in the optimization
aspects of librec-auto. In the example above, we explore two
different values of lambda in combination with whatever other
hyperparameters are being searched. (Black-box optimization is
not yet available for re-ranker parameters, but is a planned feature.)

4.9 Post-Processing Section (optional)

librec-auto supports the post-processing of study results. There
are existing scripts for producing simple visualizations (see Fig-
ure 4), for producing CSV files for further analysis, and for posting
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experimental results to Slack and Dropbox (see Figure 5). The latter
are useful for experiments with longer run-times. There is a script
provided for encrypting application API keys so that they do not
need to be shared (insecurely) in the configuration file.

Figure 4: Sample auto-generated study output visualizations.

These simple plots support experimenters in providing a

quick analysis of study outcomes.

Figure 5: Sample auto-generated Slack posts. Such notifica-

tions provide experimenters and research teams with asyn-

chronous notifications of study progress.

5 RELATEDWORK

With the rapid growth of published recommendation algorithms,
the concern about reproducibility of models in the research commu-
nity has given rise to the need of having standard implementations
for models and evaluation metrics. Many of the recommendation
algorithms lack public implementations or those that have one, are
inconsistent in details. librec-auto is a response to this need, but
it should be noted that there many other recommender systems
libraries have been created and offered to the research community,
beginning with earlier systems such as MyMediaLite [21] and con-
tinuing through newer releases such as Microsoft Recommenders
[4] and RecBole [54]. However, none of these libraries offer the
precise combination of features that are found in librec-auto and
some are no longer being maintained.

One of the key aspects of librec-auto is its incorporation of
fairness-aware metrics and algorithms. As noted above, the plat-
form has strong support for re-ranking, perhaps the most com-
mon fairness-aware recommendation technique, and it includes
examples of re-ranking algorithms from the research literature, as
described in Section 3.2.3. Also, librec-auto supports metrics for
both consumer- and provider-side fairness as noted in Section 3.2.1.
No other existing library has these capacities.

Another important difference between librec-auto and exist-
ing libraries is its large collection of algorithms ( 70) drawn from Li-
bRec itself. Many existing libraries, for example, RecommenderLab
[23], LKPY [17], and Surprise [24] concentrate on a relatively small
handful of algorithms. Microsoft Recommenders [4] and RecBole
[54] have large algorithm libraries including dozens of implemen-
tations, but these have almost no overlap with those included in
LibRec and so can be thought of as useful complements. We plan
to integrate the algorithms from the Microsoft library in particular
as part of our next major release, as described below.

Finally, librec-auto stands apart for its use of explicit algo-
rithm configuration and support for unattended operation. While
Jupyter notebooks are very convenient for interactive exploration
of algorithm properties, we have found that large-scale experimen-
tation (especially for researchers on limited compute budgets) is
best supported through the ability to configure and run batch pro-
cesses and this has been considered a primary use case since the
project’s inception.

6 DISCUSSION AND FUTURE DIRECTIONS

The librec-auto project is driven by the needs of recommender
systems experimentation and education and continues to evolve. Its
key features (explicit configuration, built-in parameter optimization,
computationally-efficient result handling) were all requirements
that surfaced within our research work. Newer capabilities in the
area of fairness-aware recommendation and re-ranking have a sim-
ilar genesis and proven practical value.

We note that librec-auto does not directly support all popular
methodologies for recommender systems evaluation. In particular,
it supports only batch evaluation, and not iterative evaluation as
required by bandit and reinforcement learning paradigms. There
are other platforms, for example RecoGym [37] and RecSim NG
[33], that support this type of methodology andwe do not anticipate
the need to evolve our system in this direction.

6.1 Algorithm integration

One of the key requirements for future releases is that the plat-
form makes it easy to experiment with algorithms other than those
implemented in LibRec. By the time of publication, we expect to
have released interfaces to two popular recommendation libraries:
LibFM [35] and Microsoft’s Recommenders library [5].

LibFM[35] is a factorization machine (FM) software tool writ-
ten in C++, that features stochastic gradient descent (SGD) and
alternating least-squares (ALS) optimization, as well as Bayesian
inference using Markov Chain Monto Carlo (MCMC) for regression
and classification tasks. It also contains methods for optimizing an
FM model with respect to ranking.
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As noted above, Microsoft Recommenders [4] is an open-source
platform for recommender systems development and evaluation.
This Python-based tool includes 31 recommendation algorithms
including some recent deep learning algorithms, for example, Neu-
ral Recommendation with Multi-Head Self-Attention (NRMS) [49].
While the platform includes many capabilities for data handling and
evaluation, these are handled by librec-auto in our integration.
We draw only from the algorithm implementations.

An experimenter accesses non-LibRec platforms through custom
wrapper scripts to which parameters are passed. For example, the
algorithm configuration element below invokes the xDeepFM algo-
rithm using the msrec-wrapper.py and passing arguments needed
by this algorithm.

<alg>
<script lang="python3" src="system">

<script-name>msrec-wrapper.py</script-name>
<param name="model">xdeepfm</param>
<param name="epochs">200</param>
<param name="batch_size">256</param>
<param name="learning_rate">1e-3</param>
<param name="cross_reg">0.0001</param>
<param name="embed_reg">0.0001</param>
<param name="num_factors">100</param>
<param name="feature_count">1000</param>
<param name="field_size">10</param>

</script>
</alg>

6.2 Fairness-aware aspects

librec-auto is unique in its library of recommendation re-ranking
algorithms, and this aspect of the project is being actively developed.
The current library of re-rankers only includes listwise re-rankers
that optimize one recommendation list at a time. There is a thread of
fairness- and diversity-aware research that studies batch re-rankers
that optimize over the entire collection of recommendation lists at
once: see, for example, [31, 34, 46]. We plan to extend our library
of re-rankers to include this class of algorithm, and, as we have
with the listwise class, provide base implementations with which
researchers can construct their own.

Similarly, while librec-auto has a large variety of fairness met-
rics and supports both consumer-side and provider-side analysis,
this capability will be enhanced in future versions. There remain
some fairness definitions in the literature that we have not yet
implemented, and some of our existing implementations are not as
flexible as might be desired. In particular, we note that currently
all fairness-aware aspects of any given study must be focused on
a single side of the analysis (consumer or provider) and all group
fairness aspects are controlled by the same definition of what is
protected. We are extending this capability to allow (for example)
re-ranking under one fairness definition and evaluating based on
another. We are also planning to relax the constraint that protected
groups must be defined by binary features, so that experimenters
can control how protected groups are defined without having to
produce new feature files in which the distinction is encoded.

6.3 Other enhancements

While the system supports experimenters in planning, executing
and evaluating individual studies, it does not support more general
research workflows that might involve the comparison of multiple
algorithms. For this higher-level support, we are working to inte-
grate ClearML5, an open-source machine learning management
platform. A prototype of this integration is already in use.

librec-auto also does not currently support Bayesian optimiza-
tion in combination with re-ranking. We anticipate adding support
for this in the near future.

Finally, we are seeking to make librec-auto more accessible
to new users through the development of a setup wizard that au-
tomates the creation of study directories and configurations for
typical use cases. The initial version of this wizard is part of the
current codebase and we have plans for its continued enhancement.
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