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Abstract

We theoretically show that the optical chiral properties of tightly focused laser

beams can be characterized by means of force detection. To measure the chiral proper-

ties of a beam of given handedness in the microscopic focal volume, we determine the

photo-induced force exerted on a sharp tip, which is illuminated first by the beam of in-

terest and second by an auxiliary beam of opposite handedness, in a sequential manner.

We show that the difference between the force measurements is directly proportional to

the chiral properties of the beam of interest. In particular, the gradient force difference

∆〈Fgrad,z〉 is found to have exclusive correspondence to the time-averaged helicity den-

sity of the incident light, whereas the differential scattering force provides information

about the spin angular momentum density of light. We further characterize and quan-

tify the helicity-dependent ∆〈Fgrad,z〉 using a Mie scattering formalism complemented

with full wave simulations, underlining that the magnitude of the difference force is

within an experimentally detectable range.
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Introduction

Light can exist in a chiral state, and this property makes it possible to study chiral ob-

jects, such as molecules and nanostructures, in an optical manner.1–6 Optical detection of

chirality is important in a variety of scientific fields, with key applications in molecular biol-

ogy and pharmacology.7–10 In common applications, the specimen is illuminated sequentially

with left-handed and right-handed circularly polarized light (LCP and RCP), and the chi-

ral information is inferred from the differential response of the material. The chiral state

of circularly polarized light is well understood, which facilitates the analysis of such mea-

surements. However, performing similar measurements at dimensions beyond the diffraction

limit can be challenging,11–13 because the chiral state of light in the near zone cannot always

be assessed with far-field measurements.

The chiral state of light is related to the curled character of the electric and magnetic

fields. The quantity commonly used for quantifying this ‘degree of curliness’ is the time-

averaged helicity density,13–15 which is defined as h = 1
2ωc

Im(E ·H∗), where E and H are the

phasor electric and magnetic field at angular frequency ω, and c is the speed of light (∗ de-

notes complex conjugation).16,17 The helicity density is a time-even, pseudo-scalar conserved

quantity; when using CP light, it corresponds to the difference between the numbers of RCP

and LCP photons.14,15,18 The flux of the helicity density, i.e. the chiral momentum density,

is related to the spin angular momentum of the beam.14,18 The latter quantity is a time-odd,

pseudo-vector quantity15 and its density is defined as σ = − ε0
4ωi

(E×E∗)− µ0
4ωi

(H×H∗), where

ε0 and µ0 are the absolute permittivity and permeability of free space,15,19 respectively. Al-

though both quantities describe angular momentum associated with the polarization state

of light,14 only the time-averaged helicity density is classified as a conserved property of the
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electromagnetic field,1,20 and, therefore, considered to be the proper descriptor of optical

chirality.

In this work, we are interested in characterizing the helicity density in the focal volume of

a tightly focused laser beam. The question arises whether a quantity like the helicity density

can be properly measured at dimensions beyond the diffraction limit of light. Although near-

field and scanning nanoparticle methods have been used to probe the electric and magnetic

components of vector fields at sub-diffraction limited resolution,21–25 a direct measurement

of the helicity density in the near-field of tightly focused laser fields has so far remained out

of reach. Unlike quantities such as energy, mechanical force and torque carried or performed

by the electromagnetic field, properties like linear and angular momentum of light are more

difficult to measure and are commonly deduced from other measurable quantities.26 Helicity

density of light falls into the latter category, and measuring it requires a connection to a

quantity that can be experimentally assessed.

It has been shown that, by scanning a Si nanoparticle through focus and analyzing its

scattered light in the far-field, it is possible to extract information about the transverse spin

density of the focused field,27 yet no general approach for mapping the helicity density in

focus has been reported thus far. One possibility is to detect helicity density through photo-

induced force, which is what we propose here. For instance, the technique of photo-induced

force microscopy (PiFM) has been used to map electric and magnetic field distributions

of focused Gaussian as well as vector beams through the optical force exerted on a metal-

lic tip28,29 or a specially designed magnetic nanoprobe.25 The photo-induced force has also

been used for sorting and trapping of chiral nanoparticles.30–34 In addition, PiFM has been

employed to determine enantioselective chirality of nanosamples,35 for measuring the geo-

metric chirality of broken symmetry structures with differential force measurements under

RCP/LCP illumination36 and for measuring enantioselective optical forces .37

We theoretically investigate the connection between the photo-induced forces felt by

a chiral tip under differential RCP/LCP illumination and the chiral state of light at the
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nanoscale. Using image dipole theory, we have found a direct relation between the measured

differential force and the chiral properties of the incident electromagnetic field in terms of

the time-averaged helicity density and spin-angular momentum density. The exp(−iωt) time

notation is implicitly assumed throughout the paper. We further model the chiral tip as an

isotropic chiral sphere to examine several design considerations and validate our dipole model

with full-wave, finite element method (FEM) simulations.

Theoretical Analysis
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Figure 1: (a) Schematic of the PiFM system with a chiral tip with illumination from the
bottom. (b) Photo-induced chiral tip dipole and image dipole according to image dipole
theory.

We are interested in detecting the mechanical force that acts on the chiral tip due to the

presence of the electromagnetic field, as shown schematically in Figure 1(a). We can model

the tip as particle and write the time-averaged force exerted on this particle as38,39

〈F〉 =
1

2
Re
{∫

S

[
ε(E · n̂)E∗ + µ−1(B · n̂)B∗ − 1

2

(
ε|E|2 + µ−1|B|2

)
n̂

]
dS
}

(1)

where the integration is over the arbitrary surface S that encloses the tip-particle of volume

V , n̂ is the unit vector normal to this surface, and E and B are the phasors of the total electric

field and magnetic flux density, which include both the incident light and the scattered light

contributions. It is assumed that the particle is embedded in a non-dissipative medium with

4



permittivity ε and permeability µ. To simplify this expression, we next assume that the tip

can be described as a dipolar particle with an electric and magnetic dipole moment in free

space, written as ptip (Cm) and mtip (Am2), respectively. The phasors of the dipole moments

are defined as ptip =
∫
rρ(r)dV and mtip = 1

2

∫
[r × J(r)]dV , where ρ(r) and J(r) are the

induced charge and current densities in the particle. Assuming the tip-particle’s response is

dominated by its electric and magnetic dipole moments, the expression for the time-averaged

electromagnetic force reduces to40,41

〈F〉 =
1

2
Re
{(
∇Eloc(rtip)

)∗ · ptip +
(
∇Hloc(rtip)

)∗ · µ0mtip

−cµ0k
4

6π
(ptip ×m∗tip)

} (2)

where Eloc(rtip) and Hloc(rtip) are the local electric and magnetic field at the tip dipole

position. Here, ∇E and ∇H are the gradient of electric and magnetic field vectors. This

is of dyadic form and defined as ∇E =
∑

i

∑
j
∂Ej

∂xi
x̂ix̂j where i and j stands for x, y and z

components of cartesian coordinates.42 Note that sometimes in the literature the µ0 factor in

the second and third term of equation (2) is included in the definition of the magnetic dipole

moment (mtip).
35,43,44 The notation used in this paper is the same as that in Refs.12,13,17,25,45

The time-averaged force has three distinct contributions: the first term on the right hand

side of equation (2) is recognized as the electric dipolar force 〈Fe〉, the second term is known

as the magnetic dipolar force 〈Fm〉, and the last term is called the interaction force 〈Fint〉.

To calculate the force, we require expressions for the induced electric and magnetic dipole

moments. Assuming that the tip is an isotropic and reciprocal chiral object, the dipole

moments can be related to the local fields through polarizabilities as46
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ptip = αeeE
loc(rtip) + αemH

loc(rtip) (3)

mtip = −µ−10 αemE
loc(rtip) + αmmH

loc(rtip) (4)

where αee, αmm and αem are the electric, magnetic and electro-magnetic polarizabilities,

respectively. We have considered that αme = −µ−10 αem because of reciprocity. The local

fields at the tip dipole position can be obtained from image dipole theory.38,47,48 We model

the effect of the substrate by substituting the substrate response by the image of the photo-

induced (chiral) dipole in the tip, written as pimg and mimg and shown in Figure 1(b). The

local electric and magnetic fields at the tip position can then be expressed as

Eloc(rtip) = Einc(rtip) + Esca
img→tip(rtip) (5)

Hloc(rtip) = Hinc(rtip) + Hsca
img→tip(rtip) (6)

where Einc(rtip), Hinc(rtip) are the incident electric and magnetic field at the tip dipole

location, and Esca
img→tip(rtip), H

sca
img→tip(rtip) are the scattered electric and magnetic field by

the image dipoles at the tip dipole location.

The scattered fields, which include nearfields, are defined through the image dipole mo-

ments and their Green’s functions as38,47

Esca
img→tip(rtip) = Gee(rtip − rimg) · pimg + Gem(rtip − rimg) ·mimg (7)

Hsca
img→tip(rtip) = Gme(rtip − rimg) · pimg + Gmm(rtip − rimg) ·mimg (8)

where G(r) = Gxx̂x̂+Gyŷŷ+Gzẑẑ is the dyadic Green’s function in Cartesian coordinates.

The Green’s functions that appear in equations (7) and (8) are approximated in the nearfield
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as49

Gee(r) =
1

4πε0|r|3
(3r̂r̂− I) (9)

Gmm(r) =
1

4π|r|3
(3r̂r̂− I) (10)

Gem(r) = − 1

iωε0
∇×Gmm(r) (11)

Gme(r) =
1

iωµ0

∇×Gee(r) (12)

where I is unit dyad (tensor) and r̂ is the unit vector from the source point to the point of

observation.

In the same fashion, we can also define the image dipole moments and the local fields

at the image location. Our goal is to obtain self-consistent approximate expressions for the

local fields at the tip location and for the dipole moments in terms of the incident light

components. To achieve this, consistent with the nearfield approximation of the Green’s

function, we first ignore any phase retardation effects in the fields between the tip and image

dipole position. Second, we will only consider terms in the polarizability up to second order

(full derivation is provided in the Supplementary Information). With these assumptions, we

may use equations (3)-(6) to determine the longitudinal (z) component of the time-averaged
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force in the dipole approximation as written as

〈Fz,grad〉 = 〈Fz,e〉+ 〈Fz,m〉

=
3

2π|z |4

[
1

2

(
− |αee|

2

ε0
+ µ0|µ−10 αem|2

)
(1
2
|Einc
‖ |2 + |Einc

z |2)

+
1

2

(
− |αem|

2

ε0
+ µ0|αmm|2

)
(1
2
|Hinc
‖ |2 + |Hinc

z |2)

− Re

{(
αeeα

∗
em

ε0
+ α∗mmαem

)
(1
2
Einc
‖ ·Hinc∗

‖ + Einc
z ·Hinc∗

z )

}]

+
6ω

πk2|z |5

[
2ωRe

{
αeeα

∗
em

ε0

}
[σinc

E ]z − 2ωRe
{
αemα

∗
mm

}
[σinc

H ]z

− 2Im
{

(|αem|2 − µ0αeeα
∗
mm)[Sinc]z

}]
(13)

〈Fz,int〉 = − ck4

12π

[
Re
{
− α∗emαee

}
Re
{

[Einc
‖ × Einc∗

‖ ]z

}
+ Re

{
µ0α

∗
mmαem

}
Re
{

[Hinc
‖ ×Hinc∗

‖ ]z

}
+ 4ωIm

{
− α∗emαee

ε0

}
[σinc

E ]z + 4ωIm
{
− α∗mmαem

}
[σinc

H ]z

+ 2Re
{
α∗emαem[Sinc∗]z

}
+ 2Re

{
µ0α

∗
mmαee[S

inc]z

}]
(14)

where Einc
‖ = E inc

x x̂ + E inc
y ŷ, Hinc

‖ = H inc
x x̂ + H inc

y ŷ and Einc
z = E inc

z ẑ, Hinc
z = H inc

z ẑ are

the transverse and longitudinal components of the incident fields at the tip dipole location,

the notation (rtip) has been avoided here for brevity; Sinc = 1
2
Einc × (Hinc)∗ is the Poynting

vector of the incident field; σinc
E and σinc

H are the electric and magnetic parts of the time-

averaged total spin angular momentum density of the incident light; and z is the vertical

distance between the tip dipole and its image. See the Supporting Information for a detailed

derivation of equations (13) and (14).
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Equation (13) describes the force due to the combined electric and magnetic dipolar

response of the tip. This force shows a distance dependence on the tip-sample distance

which scales as z−4, similar to the distance dependence of the gradient force that is typically

measured in PiFM.38,50 The first two lines of equation (13) are recognized as the purely

electric and purely magnetic dipolar force contributions to the gradient force, whereas the

third line describes the force that arises from a nonzero scalar product of the electric and

magnetic fields, i.e. the helicity density. In addition, this force also exhibits a z−5 distance

dependence, expressed in the last two lines of equation (13). This part carries information

about the longitudinal component of the spin angular momentum density and the Poynting

vector of the incident light.

Equation (14) accounts for the interaction force, which lacks a direct dependence on the

tip-sample distance. In addition to the purely electric and magnetic contributions to the

interaction force, described by the first two lines in equation (14), the latter two lines add

force contributions that scale with the longitudinal component of the spin angular momentum

density and with the Poynting vector. Because these latter terms depend on the momentum

of the incoming field, the interaction force shows similarity with the scattering force38,50 in

PiFM.

We are interested in using the force as a way to measure the helicity density hinc of

an incident beam. To measure this quantity, we will use a second incident beam that is

similar to the original beam but is of opposite handedness. Hence, if we define the helicity

density of the original beam as hinc = hinc+, then the helicity density of the auxiliary beam

is given as hinc−. For this purpose, we assume two states for the incident light, indicated

by Einc+, Hinc+ and Einc−, Hinc−, describing the input fields of different handedness. The

two illumination states have the same energy densities, |Einc+|2 = |Einc−|2 and |Hinc+|2 =

|Hinc−|2, but exhibit opposite helicity densities, Im(Einc+ ·Hinc+∗) = −Im(Einc− ·Hinc−∗), i.e.

hinc+ = −hinc−. Note that the longitudinal spin angular momentum density components are

related as [σinc+
E ]z = −[σinc−

E ]z and [σinc+
H ]z = −[σinc−

H ]z. We also find that Sinc+ = Sinc−,
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and that the following relations hold

Re
{

[Einc+
‖ × Einc+∗

‖ ]z

}
= Re

{
[Einc−
‖ × Einc−∗

‖ ]z

}
Re
{

[Hinc+
‖ ×Hinc+∗

‖ ]z

}
= Re

{
[Hinc−
‖ ×Hinc−∗

‖ ]z

} (15)

We next determine the differential force, obtained by measuring the force under illumi-

nation with incident light of (+) and (−) handedness, and taking the difference. Under

these conditions, the differential gradient force ∆〈Fz,grad〉 = 〈Fz,grad〉+ − 〈Fz,grad〉− and the

differential interaction force ∆〈Fz,int〉 = 〈Fz,int〉+− 〈Fz,int〉− can be obtained from equations

(13) and (14) as

∆〈Fz,grad〉 =
6ωc

π|z |4
Im
{α∗em
ε0

(αee − αmmε0)
}(

1
2
h inc‖ + h incz

)
+

24ω2

πk2|z |5

[
Re

{
αeeα

∗
em

εo

}
[σinc

E ]z − Re {αmmα∗em} [σinc
H ]z

] (16)

∆〈Fz,int〉 =
2ωck4

3π

[
Im
{α∗emαee

εo

}
[σinc

E ]z + Im
{
αmmα

∗
em

}
[σinc

H ]z

]
(17)

where h inc‖ = 1
2ωc

Im
{
Einc
‖ ·Hinc∗

‖

}
and h incz = 1

2ωc
Im {Einc

z ·Hinc∗
z } are the tangential and

longitudinal helicity density, respectively. We find that the differential force is proportional

to the difference in helicity density between the incident light and the auxiliary beam, i.e.

hinc+ − hinc− = 2hinc. Since we had defined hinc = hinc+, we observe that the differential

gradient force measured in this procedure is directly proportional to the desired hinc of the

incident chiral light. From equation (16) we see that the differential gradient force depends on

the helicity density of the incident light, whereas (17) predicts that the differential interaction

force carries only information on the spin angular momentum of the incident light. When

using optimally chiral light17 satisfying the relation E = ±iη0H with η0 =
√
µ0/ε0, the two

spin angular momentum densities are such that σinc
H = σinc

E . Note that circularly polarized

light is a particular case of optimally chiral light.
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When analyzing the first and the second terms in equation (16), we note that the pre-

factor containing z−5 grows larger than the corresponding z−4 pre-factor for sub-wavelength

distances. The magnitude of the two contributions to the differential gradient force are,

however, also determined by the material polarizabilities. In this context, we must observe

that for nanoparticles made of low loss materials like silicon, the values for the polarizabilities

αee and αmm are mainly real when the particle is much smaller than the optical wavelength

(i.e., at the quasistatic limit). Assuming the same particle has chirality, we also observe

that αem is mainly imaginary (see for example the expression (9) in Ref.35 or (7) in Ref.44).

Therefore, when the chiral tip is made of a low-loss material and much smaller than the

optical wavelength, the term Im {αeeα∗em} is larger than the term Re {αeeα∗em}. Similarly, we

find that Im {αmmα∗em} � Re {αmmα∗em}. Taken together, even though the considered tip

size is not deeply sub-wavelength, we find that for practical sizes and material properties of

the tip, as shown in Section (see also Supporting Information section 6), the first term in

equation (16) is dominant over the second term. For this reason, we may approximate the

differential gradient force as

∆〈Fz,grad〉 ∼
6ωc

π|z |4
Im
{α∗em
ε0

(αee − αmmε0)
}(

1
2
h inc‖ + h incz

)
(18)

and the validity of such approximation will be confirmed by the numerical results. It is clear

that the strength and sign of the differential gradient force depends on α∗em and thus relies on

the chiral properties of the tip. For small tip-sample distances, the differential gradient force

is expected to constitute the dominant contribution to the measured force, thus offering a

means of experimentally extracting information about the helicity density. Unless otherwise

stated, we will use equation (18) to determine the differential force.
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Mie Scattering Formalism

We next study the characteristics of the differential gradient force. We see from equation

(18) that ∆〈Fz,grad〉 depends on the polarizability of the tip material, including the electro-

magnetic polarizability. To model the tip polarizability, we assume that the tip can be

described as a spherical chiral nanoparticle (NP). We also assume that the following con-

stitutive relations hold: D = ε0εrE + i
√
ε0µ0κH and B = µ0µrH − i

√
ε0µ0κE, where εr

and µr are the relative permittivity and relative permeability, respectively.17,46 The chirality

parameter κ is an empirical quantity that provides the chiral strength of the material under

consideration. We can next relate the electric, magnetic and electro-magnetic polarizabilities

through the material parameters by using Mie scattering theory as:17,35,51 αee = −6πiε0b1/k
3
0,

αmm = −6πia1/k
3
0 and αem = 6πic1/(ck

3
0) where c is the free space speed of light, k0 is the

wavenumber in free space and b1, a1, c1 are the Mie coefficients. In our calculations, the

material parameters of the isotropic chiral NP such as εr and µr are those of crystalline

silicon52 with µr = 1.

We next place the sphere (i.e., the tip) just above a flat and transparent dielectric

substrate such that the distance between the sphere’s surface and the substrate surface

is 5 nm. The system is subsequently illuminated from the bottom with a plane wave of

field strength 1.5× 106 Vm−1 (incident intensity of 3.0 mW/µm2) that is either in the LCP

(Einc+ = E incx̂ + iE incŷ) or RCP (Einc− = E incx̂ − iE incŷ) state, and which propagates

through the transparent dielectric material toward the sphere. The CP wave induces an

electric and magnetic dipole in the chiral sphere, and the presence of the substrate can sub-

sequently be modeled by including an image of the induced electric and magnetic dipoles,25,28

analogous to the procedure used for the point dipole model in section . For simplicity, it is

assumed that the image dipole strength is identical to the induced dipole in the sphere. In

the current configuration, the distance between the location of the dipole and its image is

2(rNP + 5 nm), where rNP is the radius of the sphere. We calculate the differential gradient

force spectrum with the aid of equation (18) and plot it as a function of sphere radius and
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Figure 2: (a) Differential gradient force spectrum in pN. (b) Normalized magnitude spectrum
of αee − ε0αmm for different radii of the chiral NP. The material properties of the chiral NP,
εr and µr are considered the same as silicon with µr = 1 and κ = 0.1. In all calculations, the
tip-image dipole center-center distance is |z| = 2rNP + 10 nm. Black dashed lines indicate
resonance condition of c1 and white dashed lines indicate the local minima in the plot, which
approach the Kerker condition.

excitation wavelength in Fig. 2(a). In all calculations, the value of the bulk chirality κ of

the sphere is considered real and set to 0.1.53,54 It is clear that nonzero ∆〈Fz,grad〉 is achieved

under certain experimental conditions. In particular, the maxima are seen to co-localize with

the resonant spectral position of the electro-magnetic Mie coefficient c1 of the chiral NP. The

black dotted lines show the location of the peak values of Im(c1). Changing κ does not alter

the spectral resonances, but instead changes the sign and magnitude of the differential force

proportionally.

A careful inspection of equation (18) suggests that, for any chosen rNP and κ of the tip,

∆〈Fz,grad〉 may approach zero when the first Kerker condition of the chiral NP is met, irre-

spective of helicity density of the incident light. The Kerker condition is αee = ε0αmm,12,55,56
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and the magnitude of the quantity αee − ε0αmm is plotted in log scale in Figure 2(b) as a

function of radius and excitation wavelength, while κ is fixed at 0.1. The white dotted lines

depict the conditions where the logarithm of |αee − ε0αmm|(normalized to maximum) has a

value below -1.5 and the relation αee = ε0αmm is approximately satisfied whereas the black

dotted lines show the resonant position of electro-magnetic Mie coefficient c1 as found in

panel (a). The finite separation between the two curves assures that the Kerker condition

is less likely to have any impact on helicity density measurements if the force difference

measurement is properly maximized.

Full Wave Simulations

To further validate our analytical findings, we perform 3D full wave simulations to determine

the force exerted on a chiral tip when it is placed above a dielectric substrate. We use the

finite element method implemented in COMSOL Multiphysics. In the simulation, the tip

is modeled as an isotropic chiral sphere39,57,58 with the same material parameters as used

above in Mie scattering formalism. Indeed, εr and µr of the sphere are same as that of silicon

with µr = 1 and the bulk chirality parameter is κ = 0.1. As shown in figure 3(a), the sphere

is placed above a semi-infinite glass substrate (n = 1.5) and the distance between the glass

surface and the sphere surface is 5 nm. The system is then sequentially illuminated by LCP

and RCP plane waves of field strength 1.5 × 106 Vm−1, corresponding to 3.0 mW/µm2, in

the bottom illumination scheme. The force exerted on the chiral sphere is determined by

integrating the Maxwell’s stress tensor over the outer surface of the tip (i.e., the sphere).59

Figures 3(b), (c), and (d) show the time averaged-force difference spectrum for spheres

of radius of 50 nm, 60 nm, and 70 nm, respectively. The blue solid and dotted curves show

the analytical result using equation (18) and equation (16), whereas the full-wave FEM

result is indicated by the black solid line. For all three cases, the FEM simulation closely

follows the analytical result obtained for the main dipolar mode, which is found at the longer
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(b) 

(c) (d) 

NP
r 60 nm=

NP
r 70 nm= NP

r 80 nm=

(a) 

Figure 3: (a) Schematic of the chiral tip sphere above a glass substrate (n = 1.5) with radius
rNP and tip-surface and glass surface distance of 5 nm used in the FEM simulation. The
material properties of the sphere, εr and µr are the same as silicon, with µr = 1 and κ = 0.1.
The system is illuminated by an incoming plane wave (first LCP then RCP) from below.
Time-averaged differential gradient force from analytical calculation using equation 18 (blue
solid) and equation 16 (blue dotted) and total force from full-wave simulations (black solid
curve), for a chiral NP radius with radius (b) rNP = 50 nm, (c) rNP = 60 nm, and (d)
rNP = 70 nm.

wavelength and peaks with the Mie resonance of the c1 coefficient. On resonance, the dipolar

differential gradient force (blue curves) constitutes the dominant contribution to the total

force difference (black curve). The dominance of the dipolar contribution grows more obvious

as the radius is increased. The difference between the FEM simulation and the analytical

results can be attributed to higher order multipole contributions, which are not considered

in the dipolar approximation. The small difference between the solid and dotted blue curves

is due to the contribution of z−5 distance dependent force term in equation (16). This term

does not carry any information on the helicity density and its significance decreases for larger

radii, as is evident in Figures 3(b)-(d). Near resonance, the differential force is of the order

of 0.25 pN for the 80 nm radius tip (κ = 0.1). Although such forces are near the noise floor
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of a typical PiFM microscope, sensitive experiments are likely able to resolve the targeted

differental force under optimized conditions.60

The dip at lower wavelengths (black curve) for the 70 nm and 80 nm radius tips in

Figure 3(c) and (d) is attributed to the differential interaction force, as defined in equation

(17). This is because, equation (18) is positive-valued whereas (17) and the z−5 dependent

term of equation (16) are negative-valued in the considered wavelength range. In the same

lower wavelength region, the magnitude of ∆〈Fz,grad〉 is comparatively much smaller than

the magnitude of ∆〈Fz,int〉 for the 70 nm and 80 nm radius tips.

Force Map of Helicity Density

Finally, we present the differential force map of the helicity density for a focused chiral beam,

a scenario of direct relevance to microscopy applications. The situation is schematically

shown in Figure 4(a) where an isotropic chiral sphere of radius rNP = 80 nm is scanned

over the focal region of the incident beams above glass substrate. We assume a circularly

polarized Gaussian beam of 2 mW average power at a wavelength of λ = 641 nm as the

incident light source, which is focused by a 1.4 NA oil (n = 1.518) objective lens. The

focal plane electric and magnetic field components used in the simulation are obtained from

reference [32], page 62. We first calculate the normalized helicity density distribution at

the focal plane for a focused LCP beam, which is shown in 4(b). We next calculate the

differential force ∆〈Fz,grad〉 using equation (18). In Figure 4(c), ∆〈Fz,grad〉 is shown for the

case of a tip of radius rNP = 80 nm. As equation (18) suggests, the force difference has the

same spatial dependence as the non-zero helicity density of the focused LCP beam shown in

Figure 4(b).

Last, we consider a chiral nanoprobe with properties as those of a helical carving of

regular achiral tips.37 Such chiral tips display dominant longitudinal chirality61 and in the

dipolar approximation this is reflected in the polarizabilty tensors as46,61
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αee = αzzee ẑẑ;

αmm = αzzmmẑẑ

αem = αzzemẑẑ

(19)

Here we have ignored the non-diagonal components of the polarizability tensors for brevity.

Such an approximation is reasonable as long as the helical axis is aligned along the main

propagation axis. We note that even though the finite number of helical turns introduces

non-zero elements of the polarizability tensor, such contributions are negligible compared to

the dominant diagonal elements.61 Under these conditions, the differential gradient force for

the helical-shaped tip turns out be

∆〈Fz,grad〉 ∼
6ωc

π|z |4
Im
{αzz∗em
ε0

(αzzee − αzzmmε0)
}
h incz (20)

The details of the derivation can be found in Supporting Information (SI Section 3). In-

terestingly, the differential gradient force for the helical-shaped tip is only sensitive to the

longitudinal component of the helicity density. In contrast, the isotropic chiral tip measures

both the transverse and longitudinal components in the differential force measurement, as

expressed in equation (18).

To demonstrate these features, we consider a helical-shaped tip that is placed above a

glass substrate, and subsequently scanned over the focal region as sketched in Figure 4(d).

Figure 4(e) shows the calculated longitudinal component of the helicity density, revealing a

donut shaped profile. Next, to calculate the differential force we use the same polarizability

values of the isotropic chiral sphere in Figure 4(a) for αzzee , α
zz
mm and αzzem. The map of

∆〈Fz,grad〉 for the helical-shaped tip is depicted in figure 4(f), showing the expected donut

profile that replicates the longitudinal component of the helicity density of the incident LCP

beam. In the Supporting Information, we also present the helicity density maps determined

through the differential force of a focused azimuthally radially polarized beam (ARPB).17,38,44
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We note that in principle, a proper design of the nanoprobe should also allow for mapping the

transverse components of the helicity density. This would require a probe with polarizability

elements αxxem 6= 0 and/or αyyem 6= 0 with αzzem = 0, which can be accomplished if the chiral

probe exhibits a helical current path in the transverse direction.

Conclusion

We have studied the information contained in the photo-induced force exerted on a chiral tip

(modeled as a chiral nanosphere) when it is illuminated by chiral light. Our theoretical anal-

ysis reveals that the differential force is directly sensitive to the chiral properties of light. In

particular, the dominant component to the differential gradient force is directly proportional

to the helicity density of the incident chiral light, whereas the differential scattering force is

sensitive solely to the spin angular momentum of the applied light. Using realistic values for

the illumination intensity, tip dimension, and the chirality parameter of the tip, we find that

the differential force can reach detectable values of several hundreds of fN, just above the

noise floor of common scan probe microscopy systems. These findings are significant because

a direct characterization of optical chirality at the nanoscale has hitherto been challenging.

The observation that the differential gradient force can map out the local helicity density

of the light is relevant for applications where knowledge of the chiral state of light at sub-

diffraction-limited dimensions is important, including for sorting of chiral enantiomers with

spatially confined light.
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Figure 4: (a) Sketch of an isotropic chiral scatterer being horizontally scanned over a glass
substrate through the focus of a circularly polarized (LCP/RCP) beam. (b) The focal plane
distribution of total normalized helicity density (hinc = 1

2ωc
Im{Einc ·Hinc∗}) of the incident

circularly polarized (LCP) light focused by a 1.4 NA oil objective. (c) The differential force
map, ∆〈Fz,grad〉 at the focal plane for a chiral isotropic tip of radius rNP = 80 nm. (d)
Sketch of a helical-shaped tip in the same configuration as in (a). (e) Spatial dependence of
the longitudinal component of the normalized helicity density (hincz = 1

2ωc
Im{E inc

z H inc∗
z }) in

(b). (f) Differential force map for the helical-shaped tip. The polarizability strength of the
isotropic and helical-shaped tip has been set to the same value.

26


