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Hierarchical dynamic PARCOR models for

analysis of multiple brain signals

WENJIE ZHAO*T AND RAQUEL PRADO

We present an efficient hierarchical model for inferring
latent structure underlying multiple non-stationary time se-
ries. The proposed model describes the time-varying be-
havior of multiple time series in the partial autocorrela-
tion domain, which results in a lower dimensional represen-
tation, and consequently computationally faster inference,
than those required by models in the time and/or frequency
domains, such as time-varying autoregressive models, which
are commonly used in practice. We illustrate the perfor-
mance of the proposed hierarchical dynamic PARCOR mod-
els and corresponding Bayesian inferential procedures in the
context of analyzing multiple brain signals recorded simul-
taneously during specific experimental settings or clinical
studies. The proposed approach allows us to efficiently ob-
tain posterior summaries of the time-frequency characteris-
tics of the multiple time series, as well as those summarizing
their common underlying structure.

KEYWORDS AND PHRASES: Multiple non-stationary time se-
ries, Partial autocorrelation, Hierarchical Bayesian models,
Dynamic linear models.

1. INTRODUCTION

Neuroscience studies typically involve simultaneous
recording of multiple non-stationary brain signals — e.g.,
multi-channel electroencephalogram (EEG) recordings or
fMRI - on subjects undergoing a treatment or experimental
condition. This often results in datasets that consist of mul-
tiple time series with a common underlying structure that
can be described via hierarchical models. Typically, interest
lies in inferring the time-frequency characteristics of the in-
dividual time series, as well as those of their latent common
structure. For instance, in some studies a given subject may
undergo repeated trials under a given experimental condi-
tion, resulting in multiple brain recordings. In such cases, re-
searchers may need to summarize the information provided
by the subject-specific repeated measurements, taken under
a given experimental condition, for comparison with results
for other subjects who were on the same experimental con-
dition. Often the brain signals are averaged over trials for a
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given subject and a given condition, which is typically prob-
lematic, as this results in over-smoothing and information
loss in the time-frequency domain. Instead, our approach al-
lows us to jointly analyze multiple brain signals recorded on
a subject using a single model that is able to infer the com-
mon time-frequency characteristics underlying such signals
(Section 4.1 illustrates this in a non-clinical EEG study).
The proposed hierarchical PARCOR, approach can also be
used to efficiently infer the latent structure underlying mul-
tiple signals recorded at different locations on a subject dur-
ing a single trial (Section 4.2 illustrates this with data from
a clinical EEG study).

Hierarchical time-domain models such as autoregressions
(ARs) and vector autoregressions (VARs) — as well as ver-
sions of these models that allow for changes in the param-
eters over time to capture non-stationary behavior, such as
time-varying ARs (TVARs) and time-varying VARs (TV-
VAR) — have been used to infer latent structure from mul-
tiple brain signals [e.g., 16, 18, 13, 12, 5, 6]. Some of these
approaches consider a hierarchical structure in the AR or
VAR coefficients, while others consider latent factor models
within a Bayesian framework coupled with sophisticated and
flexible prior structures. Approaches involving multivariate
models are often used to infer features related to the behav-
ior of individual time series, as well as those that provide
information about relationships across multiple time series
such as coherence, partial coherence and/or partial directed
coherence [e.g., 5, 6]. Other modeling frameworks such as
those based on factor models, focus on discovering the la-
tent structure underlying multiple time series [e.g., 18, 13].
Frequency domain and time-frequency domain hierarchical
models are also available to analyze multiple time series [e.g.,
10, 3, among others].

The sophisticated modeling approaches described above
are powerful and have been successfully used in practice to
model multiple time series. However, they are usually very
computationally expensive, often requiring simulation-based
methods (e.g., Markov chain Monte Carlo) for inference,
which limits their use in practical settings that involve si-
multaneous modeling of a large number of time series. Here
we extend the univariate dynamic partial autocorrelation
(PARCOR) model of [24] to obtain a hierarchical dynamic
PARCOR model that is able to simultaneously describe the
time-frequency behavior of multiple related time series and
characterize their common underlying features, while also
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having the advantages of the PARCOR representation in
terms of dimension reduction and computational efficiency,
particularly when compared to other time or frequency-
domain hierarchical models used in practice, such as those
based on AR, TVAR, VAR, and TV-VAR representations.

The paper is structured as follows. Section 2 discusses
the hierarchical PARCOR representation and its connection
with TVAR models, as well as the algorithm for posterior
inference and tools for model selection. Section 3 presents
a simulation study. Section 4 illustrates the performance of
the proposed model for analysis of multiple brain signals
recorded in two EEG studies. Finally, Section 5 presents a
summary and discusses some future directions.

2. HIERARCHICAL PARCOR MODELS

Assume we observe a set of n time series {x;} for
t=1,...,n,and t = 1,...,T, where i is the index of the
time series. A time-varying autoregressive (TVAR) model of
order P [see e.g., 17] for time series i is given by

P
— (P)
Tig = g a; ;4 %it—j + €it,
Jj=1

where a( ) denotes the ith series-specific TVAR coefficient
assomated w1th lag j at time t, and €;; is the correspond-
ing innovation. Typically, the innovations are assumed to be
independent mean-zero Gaussian random variables.

Yang et al. (2016) [24] develops a Bayesian dynamic linear
model (DLM) approach for computationally efficient mod-
eling of univariate non-stationary time series that takes ad-
vantage of the partial autocorrelation (PARCOR) represen-
tation of the TVAR model. Such approach is based on a lat-
tice structure formulation of the univariate Durbin-Levinson
algorithm [see, e.g., 2, 20] used in [8]. More recently, [25] pro-
posed a multivariate version of the model developed in [24].
Here we extend the approach of [24] by adding hierarchi-
cal latent structure to the dynamic PARCOR model using
the hierarchical dynamic linear structure of [4]. This allows
us to jointly model multiple time series (instead of a sin-
gle time series) to infer the time-frequency characteristics of
each time series and also to extract their common underly-
ing structure. We note that unlike the multivariate dynamic
PARCOR model of [25], the hierarchical model proposed
here is not meant to infer the relationships across multi-
ple time series, but instead focuses on inferring their latent
shared characteristics via the hierarchical structure.

One of the main advantages of the PARCOR represen-
tation of TVARs and TV-VARs is that it results in lower
dimensional models, making posterior inference in the PAR-
COR domain much more computationally efficient. In the
univariate case, the DLM representation of a TVAR model
of order P leads to a state-space vector of dimension P,
therefore, inference requires inverting matrices of dimension
P x P at each time ¢ for posterior filtering and smoothing.
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Instead, the PARCOR representation of a TVAR(P) [24] re-
sults in 2P DLMs (P for the forward and P for the backward
PARCOR coefficients), each with a univariate state parame-
ter and so, no matrix inversions are needed for the posterior
filtering and smoothing algorithms. This leads to substantial
computational gains in the case of univariate and multivari-
ate PARCOR models as shown in [24] and [25]. Similarly,
in the case of a hierarchical TVAR DLM for joint modeling
of n time series, inversion of nP x nP matrices is required
at each step of the filtering and smoothing algorithms. In-
stead, the dynamic hierarchical PARCOR model proposed
here requires the inversion of n x n matrices of the filtering
and smoothing algorithms for P stages for the forward and
backward coefficients, which results in a significant reduc-
tion in computation time, particularly when P is moderate
or relatively large.

In order to proceed with the hierarchical dynamic PAR-
COR model specification, let fl-(tp) and bgf ) be the predic-
tion error of the ith time series at time t for the forward and
backward TVAR(P) model respectively, where,

g azjtxzt E
(P)
i _E di,j,txi,tﬂ-
j=1

(1)

_xl

(2)

(P)t and d( ) denote, respectively, the time-varying for-

ward and backward TVAR( ) coefficients for jth lag, where
j=1,...,P and ¢ = 1,...,n. Similarly, (Tt and d
denote the time-varying forward and backward TVAR( )
coefficients for j = 1, ..., m. Then, the m-stage of the PAR-
COR lattice filter can be written in terms of the pair of
input-output relations between the forward and backward
prediction errors, as follows,

(3)

m—1 m m—1 m m—1
fi(t ) g,m?t i,t— m)+f( )7 f )

= ~ N(O’ U?,i,m,t)’
(4)
m—1 m m—1 —1
bz('t = 5;‘(,7;)tf(t+m) (m)v bgn )~ N(O, O—l?,i,m,t)v
where a( ™) ., and B( )t are, respectively, time-varying for-

ward and backward PARCOR coefficients at stage m, with
m =1,..., P. Note that for stationary AR(P) models, the
forward and backward PARCOR coefficients are constant
over time and equal, that is aE m) =p; m) for all m.

Then, at each stage m of the lattice structure above, we
can obtain the forward and backward TVAR coefficients of

each time series i, a( ]1 and d\™), from the PARCOR co-

7,7,t7
efficients, a( )t and ,B t using Durbin-Levison algorithm
[see, e.g., Brockwell and Davis, 1991 2] as follows
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m m—1 m—1 .
(6) d(»])t_d(dt : dEmta’z(m j)t7 j=1,...,m—1,
with aE m)t al(-?;g’t and d;m) 51 e form=1,..., P.

2.1 Model specification and inference

The first level of our proposed hierarchical model spec-
ification uses (3) and (4) as observational level equations
of univariate DLMs [22, 17] on the forward and backward
PARCOR time-varying coefficients.

The next level of the hierarchical model requires speci-
fying the structural equations [4]. For this level we assume
that the forward and backward PARCOR coefficients at lag
m and time ¢ for each series ¢ are decomposed as follows
(7) 1 m,t N’f,m t + ’yf,i,m,t + Vfim,t
(8) 51(7::1)1‘ Hp, nz ¢ T ’yl(),rz)m,t + Vbi,m s

o™ (m) (m)

where the structural innovations vf; .+ and vp; ¢+ fol-
low zero-mean normal distributions. Further assumptions
regarding these distributions are provided below. ,u;m)

,ul() denote the common underlying forward and backward

effects across all the time series, respectively. In addition,
'y](c";)m , and 'yb i.m.¢ respectively denote forward and back-
ward effects that are specific to time series ¢. To avoid iden-
tifiability issues, we add restrictions on these parameters
for both, forward and backward coefficients, i.e., we assume
S 'y,(;'j‘,)mt =0 for all £ and m.

The final level of the hierarchical model requires specifi-
cation of the system equations that describe the variation of
the parameters over time. We specify random walk system

equations for both forward and backward common effects
(m) (m)

, and

1 ,m,. and also for the series-specific effects v, , as fol-
OWS,
(9) ,LLEC’TZ t = ,Ufgftnni,t_1 + Wy, fm ot
(10) Hmt = Hz(innl,m + Wybm,t;

'Yf,z‘ mt = Vfimt—1 T Wy, fiimts 2= Ly )
(12) ,ylg,l,Zn t ’ng?,zn,tq + Wy pimt, 1=1,...,m =1,

where the forward and backward system innovations wy, . m. ¢
and ws,. ;, m ¢ follow normal zero-mean distributions. In addi-
tion, conjugate normal priors are assumed for fiy o, fy, 05

'yj(f?)m o and 'YEEZL,)m,O for all m and i. We further discuss these

distributions below when we summarize the model in matrix
form.

In the case of a normal DLM, posterior inference is avail-
able in closed form via the DLM filtering and smoothing
equations [22], however, this is not the case in hierarchical
DLMs when the observational, structural and system vari-
ance are unknown. A conjugate model structure is available
[4, 22], if the observational, structural and system variances
are scaled by a single observational variance, and the scaling

factors are assumed to be known. In our model we assume
that the forward prediction errors of the time series at each
stage m in equation (3) independently follow normal distri-
butions with the observational innovation variance scaled by
the parameter U%m at the different stage m. Similarly, the
backward prediction errors of all time series (4) are assumed
to independently follow normal distributions with the obser-
vational innovation variances scaled by Uf m- I other words
we set crfz it afm and O’b,L mit = me for each stage m
and all t, and further assume conjugate prior distributions
of Uf,m and o7, as follows:

Tfo hfo
13 2 |Dfmo~T L2 L2
13 oalDrma~10 ("5
(14) amemeNIQ(ngo h;“).

Here Dy .+ and Dy, ¢ denote, respectively, all the infor-
mation available for the forward and backward models at
stage m and time t.

We can then rewrite the hierarchical forward and back-
ward PARCOR models above in matrix form as below.

e Observation equations:

(15)
S T N L N A
(16)
m—1 m—1 m m
bg )= Fl(bng( b)mt + b( ™ b§ ) NN(Oagg,mIn) )
where f(m - ( 1(;”_1)7 f(m 1)), Ff?ml?t =
m—1 m—1
dlag(bz(tt m)w-wbgz,tfnz)a 01fmt = (agnitv--'v
m—1 m—1 m—1 m—1
affma)s b = Y ey B =
1 1 m
dlag(fl(zler)? . fT(LT;L-‘rTn)) %,bl,)m,t = y;lr)b,tv ERE)
B )
e Structural equations:
(17)
05 f)m t F20§ JJfom,t + Vj(cn*z v Vfmt ™ N(Ov ‘/27f,77l7t) )
(18)
9%’;@1)}5 F20§ b)m t + V(E m)t7 Vb m,t ™~ N (07 ‘/Q,b,m,t) )
where
1 1 0 0
1 0 1 0
e EE R
1 0 0 1
1 -1 -1 -1
é,n-l,)m,t = (M("ﬁtﬂ(,l,zn TRRE 77(7:) 1,m, ) V-(,T::z),t =
Votmts - Vonmt)s Varime = 02, Vo' 1 The scale-

free structural innovation variance-covariance matrices

Hierarchical PARCOR 71



V3. m, are controlled by structural discount factors

81...m for each stage m. Discount factors are widely used

in practice to specify variance-covariance matrix [22].
e System equations:

(19)

957,'}?m,t = 957},)m71 + Wt Whm,e ~ N (0, W),

(20)
géwl:,)m t oénl;b)m t—1 + Wy m,t, Wh,m,t ~ N (07 Wb,m,t) ;

where w. m t = (wu,~,m,t7 Wy 1,myts - - - 7w’y,~,n—1,m,t)/a
Wt = 0 W* . The scale-free system innovation
variance-covariance matrices W, are controlled by
system discount factors dz . ,,, for each stage m.

e Finally, in addition to the priors (13) and (14) on the
innovation variances, we also assume

(m) 2 *
927f,m,0|Df7m70 ~N (mf7m70’ Uf,77LCf,77L,O) )

(m 2
02,b,)m,0|Db;m=0 ~N (mb,m,O’ Ub,mcg,mﬁ) :

Given the model structure above we obtain the filtering
equations below for closed-form inference in the hierarchical
TV-PARCOR model as follows.

e Prior distributions conditional on a m at time ¢,
(m)
k,- nlt‘D,mt 1,0 NN(ak, ,m,ty O Rk ,m,t)7
k=1,2,
where
az..m,t = M. mt—1,
* _ * *
R i =C5 i1 T Wit
1—46o
* _ P
W,m,t 5 Cz, sm,t—19
2,-m

a1, mt = Foas. mt,
>!1<,~,m,t = FQR;;,m,tFé + ‘/2>':~,m,t7
. 1—d1,, .

VYt = TmF2R2,~,m,tF2/'
Py LL
The values of forward and backward structural discount
factors, d;,.,,, and the system discount factors, ds,. n,
are determined by maximizing log-likelihoods resulting
from (15) and (16). Details about the selection of dis-
count factors are discussed in Section 2.2.

e One-step ahead predictive distributions conditional

2
ono’,,

-1 2 2 *
t(m )\Dﬁm,tfl, Ofm ™ N (gf,m,ta Uf,me,m,t) )
—1 *
b§m )|Db,m,t—17 Ulam ~N (gb7m,t7 O-l%,meﬂTL,t) ’
where

_ pm=1)
gmt=Fi mia

1,-,m,t>
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(m—1)
1,-m,t"

Qim,t — In + Fl(m 1)

m,t 1,-,m,t

e Posterior distributions conditional on O’ m at time ¢ for

k=12,
(m) 2
k,-m, t|D m,ts T N (mk, mty O Ck ,m,t) 5
where
(m—1)
ma fmt = A2 f.m, t+52 ,fym, thm t ( —gfmit ]
x,—1 (m—1)
Mo b m,t = A2.b,m,t + SQ,b,TTL,th}m’t (bt - gb,m,t) )

* * *,—1
G =Ry e = S2,.m Qo 152, m i

1
SQ,-,m t = R2, m, t(Fl(mm t)F2)/,
M fomt = @1 om0 .t Qo (ft(mfl) - gf,m7t) ,

(b(m Y - gb,m,t) )
Cy =R}

*,—1
1,-,m,t 1,-,m,t Sl me Sl smts

_ * (m—1)
Sl,~,m,t - Rl,‘,m,t (F1,~,m,t) .

My pmt = Q1 bm,t + S1,bm th

e Innovation variances o2,

2 n. —
02 |D.ps1 ~ TG <

2 n. ¢ h~t
D""L ~1 -5 |
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where 7y = nu_1 +n, hyy = hyio1 + (f;

gf,m,t)/Q;,l’* (.ft(mil) — Gfme) and hyy = hppo1 +
B = Gom ) Qi (b = G )-

e Unconditional on a%m we obtain Student-t dis-
tributions for 0k mt|D-,m,tv ft(mfl)|Df’m,t,1, and

(m—1)
bt |Db,m,t—1 .

(m—=1)

After computing the filtering equations up to time 7', it is
possible to obtain the closed-form smoothing distributions
for the forward and backward models as follows:

(m _
0 k, ,m t|D m, T ™ 7;1T (mk, ,m,t|T» Ck:, ,m, t\T) ak - 172a
where
mk,‘,m,t\T = Mg . .mt + Bk,',m,,t (m2,~,m,t|T - a’k,~,m,t) y

drmy
Ck,-,m,t\T (Ck, myt Ek,-,m,t) )
an

Ey . it =By mt (Rk,-,m,t+1 —

-1
Bk ymyt — Ak, -m, tRk,-,m,t+1’

A2,~,m,t = C2,-,m,ta Al,-,m,t = FQC2,-,m,tG~,m,t7

/
/ A,—1
G o= {(In - ‘/2-,'7m»tF1,<,m,t‘/2,-,m,tF17'7m7t> F2} ;

dtnTCk,',m,t+1|T B
nth k,-m,t>



A _ * /
Vit =In + F1om Vo o i Bt

and initialized at t =
CT’ it = = C},.m,:- Finally, the algorithm for posterior esti-
mation is as follows.

T with mzﬁm,t = My, m, and

Algorithm
1. Given  hyperparameters  {P, 0k fm;Okbm}  for
m = LPy ko= 1,2 set ft(o) = b§°) =
(T1ty v yxpe), fort=1,...,T.

2. Use {ft(o)} and {bff“} as vectors of responses in the ob-
servational level equations (15) and (16), respectively,
which, combined with structural equations (17) and
(18), the random walk system equations (19) and (20)
and the priors, define the PARCOR forward and back-
ward hierarchical models. Then, use the sequential fil-
tering equations along with the smoothing equations
to obtain a series of estimated parameters {0,2 it

{Hk b1t for t =1:T. In addition, use the sequential
ﬁltermg equations to obtain estimated 62 1. These esti-
mated parameters are set at the posterlor means of the
smoothing distributions.

3. Use the observational equations (15) and (16) to ob-
tain the new series of forward and backward prediction
errors, {ft(l)} and {b,gl)}7 fort=1,...,T.

4. Repeat steps 2-3 above until {é,gm)m 3, {6 b it
{67,,} and {67,,} have been obtained for all m =
1 P.

5. Finally, use {ng})m .} and {ég?mt ,form=1,...,P,
as well as equations (5) and (6) to obtain estimates of
the forward and backward TVAR coefficients {aZ . t}

and {d”t} fori =1,...,n, 5 =1,...,m—1, and
t=1,...,T via the Durbin-Levinson algorithm.
6. (Optional) Use the estimated ,u( )t and ,uz(wit, for
m=1,...,P,t=1,...,T, and equatlons (5) and (6)
to obtaln the forvvard and backward baseline TVAR
coefficients {a t } and {d } for j = 1,..., P, and

t=1,...,T using the Durbm Levinson algorithm.

PR

2.2 Model selection and time-frequency
representation

[25] develops an approach to select discount factors by
maximizing log-likelihood functions derived from the one-
step ahead predictive density functions for the case of mul-
tivariate PARCOR models. We apply a similar idea in this
hierarchical model. We start with a potential maximum
value of P, say Ppax, for the model order. At level m we
search for the optimal values of the forward discount factors
Ok, r,m and the backward discount factors dy p m, for £ =1, 2.
At level m = 1 we search for the combination of values
of 91,71 and 02 1 maximizing the log-likelihood resulting
from (15) with m = 1. Similarly, we can obtain the optimal

combination of values of 0131 and d2 51 by maximizing the
log-likelihood resulting from (16). Using the selected opti-
mal 0y, 1 and dp,1, we can obtain the corresponding series

{ft@)} and {bff)}, fort=1,...,T, as well as the maximum
log-likelihood value of the one-step ahead predictive density
function for the forward model, which we denote as Ly ;.
Then, we repeat the above search procedure for stage two,
that is, m = 2, using the output {ft(2)} and {ng)} obtained
from implementing the filtering and smoothing equations
with previously selected hyperparameters 0y 1 and g p. 1.
We obtain optimal 0y, r.2, 0k,p,2, as well as {ft(g)} and {b§3)},
fort =1,...,T. We also obtain the value of the correspond-
ing maximum log-likelihood L. We repeat the procedure
until the set {5k,f,m76k,b,m7£f,'m}7 m = 1,..., Phax, has
been selected. We then consider methods for selecting the
optimal model order as described below. Note that one can
also obtain the optimal likelihood values from the backward
model, L4, for m =1,..., Ppax.

Method 1: Scree plots. This method was used by [24] in
the univariate context to select the model order visually by
plotting Ly ., against the order m. The idea is that, when
the observed time series truly follows a model of order P,
the values of Ly, will stop increasing after m = P, ap-
propriately indicating the model order. Another version of
this method can also be implemented by computing the per-
cent of change in the likelihood going from Ly 1 to Ly,
however, we use scree plots only as a visualization tool and
use the model selection criterion below to find an optimal
model order, as the methods that do not include a penaliza-
tion for the number of model parameters do not work well
in multivariate settings [25].

Method 2: DIC model selection criterion. We con-
sider an approach based on the deviance information crite-
rion (DIC) to choose the model order [see 21, and references
therein]. In general, the deviance of a model given parame-
ters @ is defined as D(0) = —2log p(y|0), where y denotes
the data. DIC is computed as DIC = D(éBayes) + 2pprc,
where éBayes is the Bayes estimator of @ and ppjc is the
effective number of parameters. The effective number of pa-
rameters is given by pprc = Epost (D (0)) — D(0Bayes)s
where the expectation in the first term is an average of 6
over its posterior distribution. The expression above is typ-
ically estimated using samples 6%, s = 1,...,5, from the
posterior distribution as

el

In DLM settings, it is computationally intensive to com-
pute the conventional deviance directly. Therefore, follow-
ing [11], we compute the one-step-ahead DIC, which uses a

gBayes)

0:»|>—‘

Pprc =
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pseudo deviance that conditions on the state at the previous
time point, i.e.,

T
D*(6) = —2log Hp(ytlf)tfl) :

t=1

For a given model order m we compute the one-step ahead
pseudo deviance using the forward filtering distributions as
explained below. Also, note that, fitting a PARCOR model
at stage m requires fitting all the models of the previous
m — 1 stages. Therefore, the effective number of parameters
at stage m is computed by adding the estimated effective
number of parameters of stage m plus the estimated effective
number of parameters for all previous m — 1 stages. In other
words, for each stage m:

— Compute the estimated implied log-likelihood from
equation (15) for t = 1,...,T, using éit'}?m)t and 67 ..
In this way we obtain estimated D*(0payes) for model
order m.

— Obtain samples, Oéﬁ?m,m, fors=1,...,9, from the se-
quential filtering equations with distributions and use
these samples to compute the estimated number of pa-
rameters related only to stage m which we denote as
Phic,m- Note that, as mentioned above, stage m re-
quires fitting all the PARCOR models for the previous
(m — 1) stages and so, in the final DIC calculation at
stage m the total estimated effective number of param-
eters is computed as

m
~m _ Al
Ppic = E Pprc,-
=1

We /dglote the final estimated DIC for model order m
as DIC,,.

2.3 Posterior summaries

Time-frequency representations summarized by estimates
of the spectral densities can be obtained as follows. For each
time series [ and time ¢, the time-frequency representation
associated with a time-varying autoregression of order P can
be obtained via

(21)
o2 p

(P)

si(t,w) = 5 :
[1=2>75-1 aj ;4 exp(—2mimw)|

S -1/2<w <12,

where i = \/—1 [see, e.g. 9]. Using estimates &l(?)t and 67 p,
we can obtain the estimated spectral density §;(¢,w). Note
that we can also compute the underlying baseline spectral

density, which we denote by 3(¢,w), using estimates dg-i) )=
1,...,P and 6]%7 p, benefiting from the hierarchical model

structure.
Uncertainty measures for the estimates of the spectral
density of each time series can be obtained by sampling from
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the filtering and smoothing posterior distributions of the
forward and backward hierarchical PARCOR models. Each
posterior sample of the model parameters is transformed
into the corresponding spectral density using equation (21),
leading to a posterior sample of the spectral density for time
series [ at time ¢. Uncertainty measures for these functions
are then computed based on the samples.

3. SIMULATION STUDY

We illustrate our proposed approach in the analysis of
simulated data. More specifically, we simulated 51 datasets,
each with 5 time series of length T" = 1024 from the following
TVAR(2) model:

Yit = Qi tYit—1 + Pi2,tYit—2 + €it, € ~ N(0,0.64),

2
$i1,6 = 21 COS (/\—W> , Giat = —7’?, 7":&2 = 0.9 for all ¢,
it
15¢

Nt ~ N(0,0.01), A\ = — +5,

Ait = A¢ + v + Nt T

where 71 =7 =73 =0, 74 =1, 75 =5.

We fit hierarchical TV-PARCOR models to each of the
51 simulated datasets. We set a maximum model order
Prax = 5. The discount factors d; ¢, and &;p m, for i =
1,2 are chosen from a grid of values in (0.99,0.999). We
set the prior hyperparameters to be nyo = npo = 1,
hf70 = hb70 = 10, Mimo = Mfmo = (0,0,0,0,0)/ and
C5 0 = Cpmo = 10I5. The left column of Figure 2 shows
the true log spectral densities for 3 of the series, namely,
fl(ta W)a f4(tvw) and f5(ta OJ).

Figure 1 shows the BLF-scree plots obtained from the
hierarchical PARCOR approach for each of the 51 datasets
for model orders m = 1,...,5. We can see that model order
2 is adequately chosen as the optimal model order, as after
model order 2 the relative change of L¢,, is quite small.
We also computed the DIC as explained in the previous sec-
tion for each model order m = 1,...,5. DIC computations
(not shown) also adequately identify 2 as the optimal model
order.

Simulation 1

-6000
L

-7000
L

log(likelihood)

-8000
L

-9000
|

model order

Figure 1. BLF-scree plots of the 51 realizations of simulation.



To illustrate the performance of the hierarchical TV-
PARCOR model, we also fit TVAR(2) models to each uni-
variate time series in each dataset to obtain some bench-
mark results. We computed the mean and standard devi-
ations of the average squared error (ASE) for each of the
models and each of the five time series averaging over the
51 datasets. The ASFE for each time series [ is defined as
follows [14]

(22)
T K
-1 ZZ log 81 1 (1, w) — log 8.1 (t,w))?,

t=1 k=1

ASE; =

where w € [0,0.5]. Note that we have K = 51 datasets.

Table 1. Mean ASE values and corresponding standard
deviations (in parentheses) for the log-spectral densities
obtained from TV-VPARCOR and TVAR models of order 2
for the TVAR(2) simulated data fort = 1 : 1024

Model
Time Series (1) TV-HPARCOR
1 0.0857(0.0135)
0.0882(0.0124)
0.0899(0.0135)
0.0779(0.0110)
0.0649(0.0101)

TVAR
0.1217(0.0279)
0.1209(0.0293)
0.1135(0.0304)

)
)

0.1163(0.0319
0.1067(0.0395

T W N

Table 1 summarizes the mean and standard deivations of
the ASFE based on ASE; for each simulated time series. Our
proposed model outperforms TVAR models for estimating
log spectral densities.

Figure 2 summarizes posterior inference obtained from
the hierarchical TV-PARCOR approach using model order
of 2. Estimated spectral densities were obtained from the
posterior means of the smoothing distributions of the for-
ward and backward PARCOR coefficients over time. The
estimated log-spectral densities displayed in the figures cor-
respond to those that led to the median ASE. The hierar-
chical TV-PARCOR model clearly captures the structure of
the individual spectral densities. In addition, a key feature
of the hierarchical model is that it allows us to infer the
latent /baseline log spectral density for all time series and
compare it to the true baseline process used to generate the
datasets. In this case the true baseline TVAR process has
coefficients ¢y, = 2r; cos(27:> and ¢o, = —rZ,72 = 0.9
for all . We can also obtain measures that quantify the
uncertainty around the model estimates. Figure 3 shows
the posterior inference obtained from the hierarchical TV-
PARCOR model using the common underlying forward and
backward effects across all the time series from a single data
set. Once again, we see that the model adequately captures
the baseline structure underlying the five simulated time se-
ries. Figure 4 shows the estimated 95% posterior interval of

log SD: s4 log SD: §1

°
S

°
w

frequency

frequency

frequency

frequency

Figure 2. Left: True log-spectral densities s1(t,w) (top),

s4(t,w) (middle) and s5(t,w) (bottom). Right: estimated

log-spectral densities §1(t,w) (top), 54(t,w) (middle) and
35(t,w) (bottom).

the log-spectral density of the first time series. The main
structure of the individual spectral density can be captured
in the lower and upper bound. There is more uncertainty at
the beginning of process.

4. CASE STUDIES

4.1 Analysis of group-level EEG data

A key feature of the proposed hierarchical PARCOR
model is that it can be used to detect a common under-
lying structure of multiple times series recorded in a set-
ting that involves repeated trials. Here we analyze multiple
EEG data recorded from subjects walking at or standing
on a wide balance beam mounted to a treadmill. During
the experiment, subjects were perturbed physically or visu-
ally. There were 30 healthy, young adults (15 females and 15
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Figure 3. Left: True baseline of log-spectral density 5(t,w).
Right: Estimated baseline of log-spectral density 5(t,w).
log SD: §;

log SD: §, log SD: §,

frequency

Figure 4. Left: Lower bound of a 95% posterior interval of
the log-spectral densities s1(t,w). Middle: Estimated mean of
the log-spectral densities s1(t,w). Right: Upper bound of
a 95% posterior interval of the log-spectral densities s1(t,w).

males, age 22.514.8 years) performing this experiment. De-
tails regarding the data collection methodology and analysis
via autoregressive models are available in [15]. The dataset
used here is also publicly available [see references in 15].

The data contains 136-channel EEG recordings per sub-
ject with a sample rate of 512 Hz. After data pre-processing
and independent component analysis, the information pro-
vided by the 136-channel EEG was summarized in terms
of 8 cortical clusters. For each subject, each of the cortical
regions, each experimental condition, and each trial within
such condition, the dataset contains time series that corre-
spond to epochs going from —1 s to 2 s, centered around
perturbation onset, leading to an average of 146 £+ 1 epochs
for stand pull, 145 + 5 epochs for walk pull, 144 + 9 epochs
for stand rotate, and 146 & 1 epochs for walk rotate (mean
+ SD) for each subject.

We use the hierarchical PARCOR model to analyze data
from Subject 25 that has the complete 8 cortical clusters
and 146 epochs for each type of perturbation. We fit our
hierarchical model on each cortical cluster under the phys-
ical stand pull perturbation. For each case, we considered
a maximum model order P,,,, = 10 and discount factor
values on a range of (0.9,0.99) (with equal spacing of 0.01)
for structure and system levels. The initial parameters n¢ o
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Figure 5. Cortical event-related spectral perturbations
(ERSPs) to physical pulls.

and ng o are set to be 1 and hyo and hy o are set to be 10
for all m. In addition, we set the initial prior parameters as
Mfmo = Mymo = 0 and C;,m,O = l;k,m,o = 10146 for
all m. The model orders selected by DIC are 6 £ 1 (mean
=+ SD) for different cortical clusters and perturbation types.
The discount factors are mostly selected at 0.99, which sug-
gests the time-varying coefficients change slowly over time.

Figure 5 shows the estimated relative change of the log
power of spectral density (PSD) over time during the stand-
ing pull condition with respect to the estimated log power
spectral density at time —0.5 s for the same condition. In
other words, we fit the hierarchical model to all the epochs
for each cluster for the entire time period and summarize the
results obtained in terms of the baseline estimated effects for
each cluster. Instead of presenting the summaries in terms of
the estimated log PSD at each time, we compute estimated
log PSD at time —0.5 s before perturbation onset then sub-
tracted its value from the estimated log PSD at each of the
remaining times to obtain estimates of the relative changes.
Positive values (red) in the figure indicate increased spec-
tral power compared to the baseline, while negative values
(blue) indicate decreased spectral power with respect to the
baseline. The vertical dashed lines show that the pull pertur-
bation begins at 0 second and ends at 1 second. We present
results for only three clusters, namely, supplementary motor,
left sensorimotor and right sensorimotor. For the supplemen-
tary motor cluster, we observe increased spectral power at
frequencies in the range of 4-8 Hz after the pull perturbation
onset. The spectral power returns to the baseline level after
the perturbation offset at 1 second. For the left and right
sensorimotor clusters, there is decreased spectral power oc-
curring between 10 and 15 Hz after the pull perturbation
onset. Similar cortical spectral fluctuation patterns can be
found in [15]. Our model found no clear activity patterns
at low gamma power (30-50 Hz), either. We provide esti-
mated mean and uncertainty measures of relative change of
the log PSD of cluster supplementary motor in Figure 6.
The increased spectral power at frequencies in the range of
4-8 Hz after the pull perturbation onset is also observed in
the lower and upper uncertainty bands.

A key advantage of using the proposed hierarchical PAR-
COR model is that it jointly models all the 146 epochs cor-
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Figure 6. Left: Lower bound of a 95% posterior interval of the
log-spectral density of supplementary motor cluster. Middle:
Estimated mean of the log-spectral density of supplementary

motor cluster. Right: Upper bound of a 95% posterior interval

of the log-spectral density of supplementary motor cluster.

responding to different trials for Subject 25, and is able to
infer their latent time-frequency structure without having to
average these signals over the different trials, and also with-
out fitting different models individually to each of the series
and then averaging the results from those models. We also
note that posterior computations in the proposed PARCOR
hierarchical approach are very fast, allowing us to jointly
model 146 time series.

4.2 Analysis of multi-channel EEG data

The hierarchical PARCOR model can also be used to
capture common underlying features across different EEG
channels recorded simultaneously on the same subject. We
analyze multi-channel EEG data recorded on a patient that
received electroconvulsive therapy (ECT) as a treatment for
major depression. These data are part of a larger dataset an-
alyzed in [23] using univariate TVARs and in [18] and using
dynamic regression models. [13] presents an analysis of these
data latent threshold TV-VAR models. [25] also analyzes
these data using a multivariate dynamic PARCOR model,
focusing on inferring time-frequency measures of associa-
tion, such as time-varying coherence and partial-coherence,
across multiple channels.

As an illustration, we use the hierarchical PARCOR
model to analyze 9 channels, specifically channels F3, F.,
Fy, Cs3, C,, C4, P3, P, and Py. We chose these channels
because they are closely located and because based on pre-
vious analyses we expect strong underlying similarities in
their temporal structure over time. The original record-
ings of about 26,000 observations per channel were sub-
sampled every sixth observation from the highest ampli-
tude portion of the seizure, leading to a set of time series of
3,600 observations (corresponding to 84.375 s) per channel
[18].

We analyzed the K = 9 series listed above jointly us-
ing a hierarchical PARCOR model. We considered a max-
imum model order P,,,, = 15 and discount factor values
on a grid in the (0.99,0.999) range (with equal spacing of
0.001). We set nyo = npo = 1 and hyg = hpo = 10 for
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Figure 7. Estimated log-spectral densities for channels Cz, Pz
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Figure 8. Left: Lower bound of a 95% posterior interval of
the baseline log-spectral density. Middle: Estimated mean of
baseline log-spectral densities. Right: Upper bound of a 95%

posterior interval of the baseline log-spectral density.

all m. In addition, we set the same initial prior parameters
Mfmo = Mpmo = 0 and C;,m,O = Cl;k,m,O = 10Iy. The
optimal model order was found to be 11. The results shown
in this paper correspond to a hierarchical PARCOR, model
with this model order. Higher-order models were also fitted
leading to similar but slightly smoother results in terms of
the estimated spectral densities.

Figure 7 displays estimated log spectral densities of chan-
nels Cz, Pz, and F4. We note that the multi-channel EEG
data are dominated by frequency components in the lower
frequency band (below 15 Hz). Each EEG channel shows
a decrease in the dominant frequency over time, starting
around 5 Hz and ending around approximate 3 Hz. This
decrease in the dominant frequency was also found in [23]
and [25]. Channels Cz and Pz are more similar to each other
than to channel F4 in terms of their log spectral densities.
The three channels show the largest power around the same
frequencies; however, channel F4 displays smaller values in
the power log-spectra than those for channels Cz and Pz.
Unlike the multivariate model of [25], the hierarchical PAR-
COR model allows us to obtain an estimate of the baseline
spectral density underlying the 9 EEG channels. The esti-
mated mean and 95% posterior interval of the baseline log-
spectral density is shown in Figure 8 and provides a time-
frequency summary of the features underlying the EEG time
series.
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5. DISCUSSION

We present a dynamic hierarchical approach to model
multiple times series in the PARCOR domain. This PAR-
COR model is more parsimonious than alternative time and
frequency domain approaches often used in practice for the
analysis of multiple time series, particularly for cases that in-
volve modeling a relatively large number of time series with
non-stationary time-dependency structure. We develop and
implement algorithms for posterior inference in the hierar-
chical PARCOR setting that are computationally efficient
and do not require the use of time consuming simulation-
based approaches such as MCMC. We illustrate the perfor-
mance of the proposed model and posterior inference algo-
rithms in a simulation study and highlight its advantages
in the analysis of two datasets consisting of multiple brain
signals recorded under specific clinical /experimental condi-
tions. The dynamic hierarchical structure in the PARCOR
model allows us to infer the time-frequency characteristics of
the individual time series, as well as those of their common
underlying structure, which is of significant practical rele-
vance in many practical settings, as illustrated in Section 4.
Future developments include incorporating additional prior
structures, such as sparsity priors and time-varying sparsity
priors [e.g., 1, 12, 13, 19, 7, among other], that can further
reduce the dimensionality of the PARCOR model, poten-
tially also in a dynamic and adaptable fashion.
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