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Abstract
We propose a model-based approach that combines Bayesian variable selection
tools, a novel spatial kernel convolution structure, and autoregressive processes
for detecting a subject’s brain activation at the voxel level in complex-valued func-
tional magnetic resonance imaging (CV-fMRI) data. A computationally efficient
Markov chainMonte Carlo algorithm for posterior inference is developed by tak-
ing advantage of the dimension reduction of the kernel-based structure. The pro-
posed spatiotemporal model leads to more accurate posterior probability activa-
tion maps and less false positives than alternative spatial approaches based on
Gaussian processmodels, and other complex-valuedmodels that do not incorpo-
rate spatial and/or temporal structure. This is illustrated in the analysis of sim-
ulated data and human task-related CV-fMRI data. In addition, we show that
complex-valued approaches dominate magnitude-only approaches and that the
kernel structure in our proposed model considerably improves sensitivity rates
when detecting activation at the voxel level.
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1 INTRODUCTION

Functional magnetic resonance imaging (fMRI) indirectly
measures neuronal activity by detecting changes in the
blood oxygen level-dependent (BOLD) signal. Task-related
experiments typically lead to multiple slices of images,
each consisting of thousands of voxels observed every 1–3
s with hundreds of time points for each subject. In addi-
tion, the voxel time course signals are complex-valued due
to phase imperfections after Fourier encoding and inverse
Fourier image reconstruction, leading to complex-valued
fMRI (CV-fMRI) data consisting of magnitude and phase,
or real and imaginary components.
Tools forCV-fMRI analysis have beenproposed in the lit-

erature. Rowe and Logan (2004) and Rowe (2005a, 2005b)
model the phase directly to estimate the phase angle using

a polar coordinates representation, while Lee et al. (2007,
2009) and Rowe (2009) use Cartesian representations for
modeling CV-fMRI. Autoregressive (AR) complex-valued
models have also been developed (Kociuba and Rowe,
2016; Adrian et al., 2018). Recently, Yu et al. (2018) pro-
posed Bayesian variable selection tools to improve detect-
ing brain activation at the voxel level, particularly in cases
of low signal-to-noise ratio (SNR), when compared to alter-
native complex-valued and magnitude-only models used
in the majority of fMRI analyses. However, Yu et al. (2018)
did not incorporate a spatial structure that models the fact
that neighboring voxels tend to behave similarly and be
activated in clusters (Lu et al., 2003; Lazar, 2008).
On the other hand, a wide range of Bayesian spatiotem-

poral models have been developed for magnitude-only
fMRI data. Smith and Fahrmeir (2007) proposed an Ising
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prior to spatially smooth the variable selection indicator
variables representing whether or not a given voxel is acti-
vated. Lee et al. (2014) extended the model by including
temporal dependence. Bowman et al. (2008) considered a
two-stage hierarchical model with an AR temporal struc-
ture and spatial dependency. Xu et al. (2009) proposed a
hierarchical spatial model to draw inferences at the pop-
ulation, individual, and voxel levels, and they used Gaus-
sian mixtures to infer activations. Zhang et al. (2014) used
a Markov random field prior to detect activations in a
nonparametric way. A number of Bayesian spatiotempo-
ral approaches are summarized in Zhang et al. (2015, 2016)
and Chiang et al. (2017). Recently, Bezener et al. (2018) pro-
posed a Bayesianmodel for detecting activation that incor-
porates spatial dependence by areal parcellation of voxels.
All thesemodels arewell constructed, but they only use the
magnitude information and assume normally distributed
errors, which may be problematic in practice. As shown in
Gudbjartsson and Patz (1995) and Rowe and Logan (2004)
, if both the real and imaginary parts of CV-fMRI signals
have independent Gaussian errors with the same variance,
the magnitude signals follow a Ricean distribution that
is approximately normal only for large SNRs. Magnitude-
only models have been shown to have lower power than
complex-valued models when the normality is not well
approximated (Rowe and Logan, 2004). In practice, SNRs
may not be large enough to hold this approximate normal-
ity, particularly in cases of images with higher voxel reso-
lutions.
We propose a flexible and computationally feasible

Bayesian approach combining variable selection tools and
a low-rank spatial kernel convolution (KC) for detect-
ing activation in CV-fMRI. A complex-valued AR struc-
ture is used for modeling temporal dependence on the
errors at the observational level. TheKC spatial structure is
added to the underlying indicator variables that determine
voxel activation.
Our approach infers the parameters of spatial kernel

functions, providing a flexible framework for determining
the strength and range of the spatial dependency across
voxels in the context of brain activation. The kernel-based
approach utilizes a small set of spatial locations to achieve
dimension reduction. Unlike other approaches based on
areal parcellations, it does not require assigning voxels
to specific parcels. Instead, our model is able to discover
the underlying spatial structure of the activation process
by convolving a latent process over a small set of loca-
tions with voxel and region-dependent kernel functions.
Such latent structure leads to dimension reduction and
efficient posterior inference. Kernel convolution provides
increased spatial flexibility by capturing potential depen-
dencies across neighboring voxels in the same region, as

well as those between voxels in brain regions that are far-
ther away.
We refer to our generalmodel as the complex-valued ker-

nel convolutionwithAR error (CV-KC-AR)model.We also
develop a complex-valued model with a spatial Gaussian
process (GP) structure based on areal parcellation with
AR noise, referred to as CV-GP-AR. We show that both
spatial models outperform the complex-valued nonspatial
model of Yu et al. (2018) in terms of activation detection.
We also show that CV-KC-AR outperforms CV-GP-AR by
providing more accurate posterior probability activation
maps and less false positives. Using a KC spatial structure
increases the detection power when activation strength is
weak. Kernel-based spatial structures eliminate or signif-
icantly reduce the number of isolated voxels incorrectly
labeled as activated by encouraging clusters of brain acti-
vation while avoiding increased false positives, in contrast
to other magnitude-only spatial approaches implemented
in common software packages (Eklund et al., 2016).
The paper is organized as follows. Section 2 describes

the CV-KC-AR and CV-GP-ARmodels. Section 3 discusses
the algorithms for posterior inference. Section 4 illustrates
the performance of the proposed methods in simulation
studies. Section 5 discusses the analysis of a human CV-
fMRI dataset, and Section 6 presents a discussion and
future extensions.

2 BAYESIAN SPATIOTEMPORAL
MODELS FOR BRAIN ACTIVATION IN
CV-fMRI

We consider a spatiotemporal model for detecting brain
activation at the voxel level in CV-fMRI. The temporal
dependence is captured by an AR(1) noise process that
has been shown to be sufficient, effective, and well bal-
anced between detecting performance and computational
efficiency (Penny et al., 2003; Lindquist, 2008; Lee et al.,
2014). A spatial dependence structure is induced on acti-
vation probabilities by means of voxel-specific spatial ran-
dom effects that are expressed as a convolution of a kernel
function andGaussian variables at a coarse set of locations.

2.1 Kernel convolution methods

Kernel convolution has been widely used for spatial mod-
eling in environmental sciences and geostatistics (Hig-
don, 1998; Fuentes, 2002; Higdon, 2002; Lee et al., 2005).
Consider a kernel function !(";#), with " ∈  a spatial
location and parameter #. Let %(") be a white noise pro-
cess with mean 0, variance &2, and Cov(%("),%("′)) = 0.
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Then, the (kernel-convoluted) process ((") = ∫ !(" −*;#)%(*)+* is a stationary Gaussian process that has
mean zero, Var(((")) = &2 ∫ !2(" − *;#)+* and ,(ℎ) =Cov((("),(("′)) = &2 ∫ !(.;#)!(. − ℎ;#)+., ℎ = " − "′. In
practice, a finite sum approximation to ((") is applied, that
is, for a set of sites *1, … ,*/ in  , the process is defined as((") = ∑/+=1 !(" − *+;#)%(*+). This provides dimension
reduction and allows us to simplify the computational bur-
den for posterior inference, since a relatively small number/ will effectively capture the spatial process ((").
A popular kernel is the Gaussian radial basis function

due to its analytical and computational properties; how-
ever, its covariance function and corresponding random
field are infinitely smooth, which is not realistic for fMRI.
We use the Bezier kernels (Brenning, 2001):

!(01 − *+;#) = (1 − ‖01 − *+‖2#2 )2, ‖01 − *+‖ < #,
(1)

with 2 > 0 a smoothing parameter and range parameter# > 0. In fMRI analysis, 01 is the location of voxel 1, and*+ can be seen as the location of the spatial region + in the
image. The representation in (1) includes commonly used
kernels such as the parabolic (2 = 1), quartic (biweight)
(2 = 2), or the triweight kernel (2 = 3) up to some con-
stant. Bezier kernels have compact support. This avoids
unrealistically relating any two voxels in the image and
does not require one to prespecify a neighboring structure.
Instead the model learns the neighboring structure from
the data by inferring the range parameter #. A comparison
between Bezier and Gaussian kernels is provided in Sup-
porting Information.

2.2 A complex-valued linear model for
task-based CV-fMRI

Without loss of generality, we assume that the fMRI sig-
nals have been centered and detrended and that (3,. corre-
sponds to the discretized convolution of the on-and-off sig-
nal of the stimulus sequence for task 3, 3 = 1,… ,4, with a
given hemodynamic response function (HRF) that models
the hemodynamic delay in the magnetic resonance signal
(Friston et al., 2007). Following Yu et al. (2018), let 51. =51.,67 + 851.,9: ∈ ℂ be the CV-fMRI measurement at time .
and voxel 1, for . = 1,… ,< and 1 = 1,… ,=. We consider
a model of the form y1 = X>1 + ?1, with y1 = (511 , … , 51<)′,>1 = >167 + 8>19:, where >167 = (@167,1, … , @167,4)′, and >19: =(@19:,1, … , @19:,4)′, and with X = (A′1, … ,A′<)′, where A. =((1,., … ,(4,.)′. Models that infer voxel or region-specific
HRFs (see, e.g., Rowe, 2001; Yu et al., 2016) can be consid-

ered, but this significantly increases computational cost.
Instead, we assume that the HRF is known for all . and1 and study the sensitivity of our posterior results with
respect to changes in the HRF. Overall, we found no
major differences across the results under different HRFs
if we optimize the parameters that define each particular
HRF class.
Coefficients @13 = @167,3 + 8@19:,3 represent activation

amplitude or strength of voxel 1 under task 3. We view the
identification of activated voxels as a variable selection
problem and adopt a spike-and-slab prior on @13 , that is,@13 ∼ C13 D(@13 ) + (1 − C13 )9(@13 = 0), where D(⋅) denotes a
nonsingular complex-valued distribution. The variableC13 is a binary variable, with C13 = 0 indicating that voxel1 is not activated under task 3 leading to @13 = 0 andC13 = 1 indicating that the voxel is active under task 3. LetF1 = (C11 , … ,C14)′. Then >1(F1) is the vector of nonzero
coefficients from >1 and G(F1) is the corresponding
design matrix. Therefore, the model can be rewritten
to emphasize the explicit dependence on the indicator
variables as

y1 = X
(F1)>1(F1) + ?1, ?1 iid∼ HI<(0, 2&21J1, 0). (2)

HIK(L,M,C) denotes a complex-normal distribution of
dimension K with complex-valued mean L, Hermitian and
nonnegative definite covariance matrix M, and complex-
valued symmetric relation matrix C. Note that the dimen-
sions of X(F1) and >1(F1) vary according to the nonzero
elements in F1, that is, the columns of X and elements of>1 are only those corresponding to nonzero C13 s, and so
the notation X(F1) and >1(F1) above emphasizes that X
and >1 are functions of F1. However, for simplicity, we use
X1 and >1 instead. We assume that the noise vector ?1 =(N11 , … , N1<)′ follows a complex-valued AR(1) structure with
autocorrelation matrix J1 such that the real and imagi-
nary parts have the same AR coefficient, O1, and they are
independent a priori through a circular normal structure.
We further assume that the O1s are voxel specific and use
empirical Bayes estimates, Ô1s, to reduce computational
burden as in Bezener et al. (2018), with Ô1 ∈ (−1, 1) for sta-
tionarity.
Below we focus on the prior for the indicators F1, as

spatial dependence is introduced through these binary
variables. For the remaining parameters, we choose
prior distributions that optimize the computational effi-
ciency of the posterior inference. More specifically, we
assume Q(R2) = Q(&21, … ,&2=) = ∏=1=1 Q(&21), with &21 iid∼9S(T&, U&). In practice, we use a popular weakly informa-
tive prior 9S(1∕2, 1∕2). We use a complex circular normalD-prior on >1 andwith D = < (the length of the time course
of the CV-fMRI signal) for both, the real and imaginary
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parts, which results in

>1 ∣ F1,&21 ind∼ HI(>̂1, 2<&21(X′1Ĵ−11 X1)−1, 0), (3)

with >̂1 = (X′1Ĵ−11 X1)−1X′1Ĵ−11 y1. The dimension of the
prior equals the number of nonzero indicators C13 s, with@13 = 0 if C13 = 0, as explained above. This circular com-
plex normal prior allows >1 to be easily integrated out
and hence makes the computation more efficient. It cor-
responds to a common unit information prior, that is, a
weakly informative prior that contains the same amount
of information that would be contained in a single obser-
vation.

2.3 Hierarchical spatial priors on FX
Due to the large number of voxels in the images, it is com-
putationally challenging to perform spatialmodeling at the
voxel level. To overcome this challenge, we construct a
latent spatial random process based on / ≪ = locations
that are generally but not necessarily, chosen to be equally
spaced along a coarse grid over the full high-resolution
image. In general, a larger / leads to better detecting per-
formance but also imposes a heavier computation. Thus,
it is important to select a prior that is relatively insensitive
to the choice of /. This can be achieved by specifying the
spatial structure via kernel convolution as described below.
Let F(3) be the set of indicator variables for task 3 and

all the voxels 1, that is, F(3) = (C13 , … ,C=3 ). Define Z(3) =([13 , … , [=3 ) as a collection of voxel-specific spatial random
effects for task 3. The spatial prior for this model assumes
that the indicator variables are conditionally independent
given the spatial random effects as follows:

Q(F(3) || Z(3)) = =∏
1=1Q(C13 || [13),

where C13 || [13 ind∼ Bernoulli
( 11 + 7−[13

). (4)

Let %+3 be the latent spatial random effect for task 3
and site +, 01, … , 0= denote the locations of the voxels,
and !(01 − "+;#) denotes a specific kernel function. Then,
the voxel-specific spatial random effects in Z(3) are mod-
eled as [13 = ∑/+=1 !(01 − "+;#)%+3 , where "+ is the loca-
tion of site +. The latent low-resolution spatial effects %+3
are assumed to be Gaussian such that %+3 ∣ \23 ind∼ I(0, \23 ),
and \23 iid∼ 9S(T\, U\), or equivalently, Z(3) = K(#)w(3) fol-

lows I(0, \23K(#)K(#)′), where K(#) = [!(01 − "+;#)] is
the = × / matrix whose (1, +)-th element is !(01 − "+;#)
andw(3) = (%13 , … ,%/3 ). The parameter # could be a com-
mon scalar for all regions or a region-specific vector,# = (#1, … ,#/). It controls the shape of kernels and the
smoothness of activation maps. Different priors can be
assigned depending on whether # is a scalar or a vector.
For example,#+ iid∼ ST(T#, U#). Region-specificT#+ and U#+
can also be considered if one has any prior information
about how the spatial effect %+ contributes to the spatial
structure in other regions.
Another alternative is to use a GP spatial prior structure

summarized as

Q(F(3) || Z(3)) = S∏
D=1

∏
1∈D Q

(C13 || [D3),
C13 ∣ [D3 ind∼ Bernoulli

( 11 + 7−[D3
),

(5)
(Z(3) ∣ ^23 , _3) ind∼ I(0, ^23Γ3(⋅, ⋅ || _3)),
Γ3(8, ! || _3) = exp(−‖"8 − "!‖_3 ), (6)

Q(^23) ∝ ^−23 , _3 ∼ ST(T3 , U3). (7)

This model requires the specification of S spatial regions,
each denoted as D, and a preassignment of voxels to
these regions. Furthermore, voxels in the same region
share the same region-level spatial effect [3 and hence
the same probability of activation. The KCmodel achieves
spatial dependence by relating C13 , … ,C=3 via kernel
convolution on Z(3), which leads to dimension reduc-
tion, as only a small number of latent spatial effects are
needed to describe the underlying spatial process. The
KC model can capture dependence between voxels that
are spatially close as well as those from distant regions.
Each voxel is allowed to borrow information from any
other voxel through the convolution process, leading to
higher resolution latent spatial effects and more precise
posterior probability activation maps, as illustrated in
simulations and human data analyses. In fact, posterior
probability activation maps obtained from the KC model
do not display the “probability inflation” commonly seen
in the GP model. In the GP model when a given region
contains a nonnegligible number of activated voxels,
other nonactivated ones in the region will get artificially
inflated probabilities of activation. On the other hand, two
voxels next to each other may have significantly different
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probabilities of activation due to their different region
assignment. This usually occurs when the correlation
between regions decays fast, and it highly depends on how
large S is, and on how similar is the behavior of voxels
that belong to the same region. The KC model does not
have this limitation because of the “spillover effect” of
the convolution structure. Thus, as shown below, while
the GP method is very sensitive to the parcellation and
the number of regions S, the KC approach is much less
sensitive to the number of latent spatial sites /.
3 POSTERIOR INFERENCE

In this section, we focus on posterior inference for
the CV-KC-AR model via a Markov chain Monte Carlo
(MCMC) scheme. The algorithm for posterior sampling
in CV-GP-AR is similar to this and generalizes the algo-
rithm of the magnitude-only GP model in Bezener et al.
(2018).
Let y = (y1, … , y=) be the observed complex-valued

image, > = >(F) = (>1(F1), …, >=(F=)), F = (F(1), … ,F(4)), w = (w(1), … ,w(4)), w(3) = (%13 , … ,%/3 ), b2 =(\21, … , \24), the model parameters, and Z(3) = K(#)w(3).
Without loss of generality, we assume that the smoothness
parameter 2 is fixed with 2 = 2. This value generally
provided the best performance in our simulation studies,
but we also found that posterior results were not very
sensitive to the choice of 2 for values of 2 ≤ 5 (see the
Supporting Information). We assume that # is a scalar
with # > 0. Then, the posterior density of the CV-KC
model is given by

c(> ,F,w, b2,R2 ∣ y) ∝ 4(y ∣ > ,F,R2)Q(> ∣ F,R2)Q(R2)Q
(F ∣ w,#) × Q(w ∣ b2)Q(b2)Q(#). (8)

This model is high dimensional with =(24 + 1) + /4 +4 + 1 parameters, even for single-subject analysis. To fur-
ther improve computational efficiency, we take advantage
of the conjugate priors and integrate out > ,R2, and b2 to
obtain the marginal posterior distribution

c(F,w,# ∣ y) ∝ 4(y ∣ F)Q(F ∣ w,#)Q(w)Q(#). (9)

Let ỹ1 = (511,67, … , 51<,67, 511,9:, … , 51<,9:)′, >̃1 = (@̂11,67, … ,@̂14,67, @̂11,9:, … , @̂14,9:)′, X̃1 = X̃(F1) = blockdiag(X1,X1),
and J̃1 = blockdiag(Ĵ1, Ĵ1) whose elements are a func-
tion of Ô1 which is fixed at its empirical Bayes estimate
obtained as follows. We first fit the model y1 = X1>1 + ?1
with an IID noise assumption to obtain >̂1 and compute
the empirical residual ?̂1 = y1 − X1>̂1. The empirical

Bayes estimate Ô1 is then given by Ô1 = ∑<.=2 67((N1. )∗(N1.−1))∑<.=2 |N1.−1|2
(Yu et al., 2018).
In the circular normal case, after integrating > and R2

out, the real representation of the marginal 4(ỹ ∣ F) in the
complex-valued model becomes

4(ỹ ∣ F) = ∫ 4(ỹ ∣ >̃ ,F,R2)Q(>̃ ∣ F,R2)Q(R2)+>̃+R2
= =∏

1=1 (1 + <)−c1 |J̃1|−1∕2f(F1)−(<+T&),
(10)

with c1 = ∑43=1 C13 and f(F1) = ((ỹ1)′J̃−11 ỹ1 − (ỹ1)′J̃−11 X̃1(X̃′1J̃−11 X̃1)−1X̃′1J̃−11 ỹ1 + 2U&). Then, the marginal
posterior is c(F,w, b2,# ∣ y) ∝ 4(ỹ ∣ F)Q(F ∣ w,#)Q(w ∣b2)Q(b2)Q(#). Each \23 can be integrated out to arrive at
the marginal distribution ofw(3) ∶

Q(w(3)) = ∫ Q(w(3) ∣ \23)Q(\23 ∣ T\, U\)+\23
= ∫

/∏
+=1I(%+3 || \23)9S(\23 ∣ T\, U\)+\23

= UT\\Γ(T\) × Γ(/∕2 + T\)
( 12 ∑/+=1 (%+3 )2 + U\)(/∕2+T\) .

(11)

As a result, we now have c(F,w,# ∣ y) ∝ 4(ỹ ∣ F)Q(F ∣
w,#)Q(w)Q(#) and can propose an MCMC algorithm to
sample from this distribution. First, note that the condi-
tional distribution for F is
c(F ∣ w,#, y) ∝ Q(F ∣ w,#)4(ỹ ∣ F) ∝ Q(F ∣ w,#) =∏

1=1(1 + <)−c1f(F1)−(<+T&), (12)

with Q(F ∣ w,#) = ∏43=1 Q(F(3) || #,w(3)) = ∏43=1∏=1=1Q(C13 ∣ K′1(#)w(3)), where K1(#) is the 1th row vector
of K. Similarly, we obtain the conditional distributions
for w and # from c(w ∣ F,#, y) ∝ Q(F ∣ w,#)Q(w) andc(# ∣ F,w, y) ∝ Q(F ∣ w,#)Q(#).
The marginal posterior c(F,w,# ∣ y) has dimension4(= + /) + 1. We generate its posterior samples sequen-

tially by samplingw, F, and #. Random walk normal pro-
posals with an adaptive variance are used for sampling%+3 and log(#). The MCMC algorithm is summarized in
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ALGORITHM 1 MCMC algorithm for CV-KC-AR

Algorithm 1, and the detailed sampling scheme is pro-
vided in the Supporting Information. Once posterior sam-
ples {(F(:),w(:),#(:))}f:=1 are obtained, we can estimate
the posterior probabilities of activation, h_(C13 = 1 ||| y), by
computing 4̂13 = 1f ∑f:=1(C13 )(:).
We monitor MCMC convergence via the estimated

potential scale reduction factor 6̂ (Gelman and Rubin,
1992; Brooks and Gelman, 1997). 6̂ < 1.1 is generally used
(Gelman et al., 2004). We consider five chains with dif-
ferent initial values and continue simulation runs until
all spatial effects w and # have individual or multivariate6̂ < 1.1.
4 SIMULATION STUDIES

4.1 Simulation study I

We simulated 50 datasets consisting of 20 × 20 CV-fMRI
slices with a constant baseline signal and a single expected
BOLD signal (i.e., 4 = 1). Three activation regions were
simulated using the function specifyregion in the R
package neuRosim (Welvaert et al., 2011). Both AR and
independent error structures are considered. Specifically,
for 1 = 1,… , 20 × 20, and . = 1,… , 50, the time series with
AR(1) noise for each voxel 1 were simulated as follows:

51.,67 = (j1,0 + j1,1(.) cos (k0) + N1.,67, N1.,67= ON1.−1,67 + l1.−1,67, l1.−1,67 ∼ I(0,&2),51.,9: = (j1,0 + j1,1(.) sin (k0) + N1.,67, N1.,9:= ON1.−1,9: + l1.−1,9:, l1.−1,9: ∼ I(0,&2), (13)

where (. is the expected BOLD signal, which is obtained
as a convolution of a given HRF and a stimulus indica-
tor function that is on for 1 ≤ . ≤ 16 and off for 16 < . ≤50 (Lindquist, 2008). For the time series with indepen-
dent noise, the simulation scheme is the same except that

N1.,67 and N1.,9: simply follow I(0,&2) independently. The
expected BOLD signal, true activation map, and a par-
cellation of the image into S = 25 regions are shown in
Figure 1. The simulated image and coefficient setting are
similar to those in the benchmark example in Bezener
et al. (2018). (j1,0, j1,1) = (300, 2) and (300, 5), correspond-
ing to low and high contrast to noise ratios (CNR). We setk0 = Q∕4, &2 = 3 and O = 0.5.
4.1.1 Fitted complex-valued models

We fitted three models to the simulated AR data: CV-
KC-AR, CV-GP-AR, and C-EMVS-AR. The C-EMVS-AR
model is model (vi) in Section 4 of Yu et al. (2018) that
assumes voxel-specific variances and AR coefficients. We
also fitted CV-KC, CV-GP, and C-EMVS models to data
simulatedwith independent noise (O1 = 0) to study perfor-
mance improvements purely due to the spatial structure of
the KC and GP models.
We use the centroids of parcellated regions shown in

Figure 1 as our spatial locations for KC models in order
to provide a fair comparison to the GP models since this
implies / = S, but note that KC models do not require us
to use locations on a regular grid. Specifically, we consid-
ered a CV-KC-ARmodel with the likelihood (2) and theKC
spatial prior described above, with \2 ∼ 9S(1∕2, 1∕2),&21 iid∼9S(1∕2, 1∕2), 2 = 2 and # ∼ 9S(1∕2, 1∕2). The CV-GP-AR
model has the same likelihood and the GP prior structure
described above, with _3 ∼ m28 . CV-KC and CV-GP have
the same hyperparameter settings as CV-KC-AR and
CV-GP-AR, but assume O1 = 0 for all 1. Finally, C-EMVS-
AR is given by the same likelihood and priors @1 ∣ C1 ∼(1 − C1)HI1(0, 210&21, 0) + C1HI1(0, 2&21, 0),&21 ∼ 9S(1∕2,1∕2),C1 ∣ n ∼ o7_pq*rr8(n), n ∼ o7.T(1, 1), and O1 ∼ s(−1, 1). C-EMVS has the same specification as C-EMVS-
AR, but sets O1 = 0.
For both KC and GP models, after warming up

the first 1000 samples and thinning the sequences by
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F IGURE 1 Left: Expected BOLD signal with the canonical HRF used in the simulation. Middle: Activation map of a 20 × 20 image.
Right: Activation map with white spatial region grid lines. The number of regions is S = 25. Each region is of size 4 × 4 containing 16 voxels.
Yellow dots represent the centroids of regions. Yellow numbers are region numbers. This figure appears in color in the electronic version of
this article, and any mention of color refers to that version

keeping every 25th draw, 2000 draws were used for analy-
sis. Such posterior samples have criteria 6̂ < 1.1 for all spa-
tial effectsw and kernel parameter#, which approximately
indicates convergence. The effective sample size of the ker-
nel parameter # is about 400. The EM algorithm in the
C-EMVS approach converges when ‖t(r) − t(r−1)‖ < 10−3,
where t(r) denotes the full parameter vector at the rth iter-
ation.
We detect activation and construct activation maps

from posterior probabilities with voxel 1 classified as
active if h_(C1 = 1 ∣ y) > .∗. The threshold .∗ = 0.5 cor-
responds to the so-called “median probability model,”
which has been shown to be the optimal predictive model
under certain assumptions for the squared error loss
(Barbieri and Berger, 2004). .∗ = 0.8722 has been used
in some Bayesian spatial approaches for magnitude-only
data (Smith and Fahrmeir, 2007; Lee et al., 2014). This
threshold corresponds to a 4-value 0.05 for the likeli-
hood ratio statistic −2 log((1 − h_(C1 = 1 ∣ y))∕h_(C1 =1 ∣ y)) (Raftery, 1996). Alternative .∗ values based on
a Bayesian decision theoretic approach can be used.
Müller et al. (2004, 2006) show that when a loss func-
tion of the form ,E(u/ ∣ y) + E(uI ∣ y) is considered,
where u/ is false discoveries and uI is false nega-
tives, the optimal .∗ that minimizes this loss function
is ,1+, .
4.1.2 Results of the analysis of the
complex-valued simulated data

We consider .∗ = 0.5 for detecting activation. The activa-
tion performance with different .∗ values can be examined
by looking at the resulting receiver operating characteristic
(ROC) curves (see the Supporting Information).

Inmany applied settings, fMRI signals have been shown
to be temporally correlated. Failing to model such tem-
poral structure may result in false activation detection as
shown in Figure 2. Withoutmodeling such temporal struc-
ture of the simulated datawithARnoise, theCV-KCmodel
leads to more false positives and reduced power in activa-
tion detection. In fact, although not shown here, its false-
positive rate goes up with the strength of temporal corre-
lation. Among the three AR models, CV-KC-AR balances
true positives and negatives well and is overall the best.
Although CV-KC-AR has lower sensitivity (91.8%) than C-
EMVS-AR (95.6%), it greatly reduces false positives and
hence has a better overall measure accuracy rate of 98.6%,
compared to 98.2% for C-EMVS-AR and 96.9% for CV-GP-
AR. In fact, CV-GP-AR has significantly lower sensitivity
(82.1%).
To purely focus on the benefits of adding a spatial mod-

eling structure, we fitted nontemporal models to non-AR
simulated data. The models CV-KC, CV-GP, and C-EMVS
all led to nearly perfect detecting performancewhen j1,1 =5 so we focused on the low CNR case with j1,1 = 2. We
found that the proposed CV-KChas sensitivity 78.7%, accu-
racy 86.2%, F1 score 87.3%, compared to 57.7%, 93.3%, and
72.5% for CV-GP and 66.1%, 94.0%, and 77.0% for C-EMVS.
We also found that KC models with site-specific #+s had
similar performance measures to KC models with a com-
mon #.
The intuition behind the improved performance of KC

models is that they lead to a higher resolution latent spa-
tial process [1, as shown in Figure 3. The posterior effectZ is computed via K(#̃)w̃, where #̃ and w̃ are the pos-
terior means of # and w. The spatial process map cor-
rectly identifies three activation areas. The probabilities of
activation are obtained from the posterior means of Z via
logistic transformation. These estimated probabilities of
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F IGURE 2 Activation plots for the simulated dataset with AR(1) noise. A threshold value of 0.5 was used. Left to right: CV-KC-AR,
CV-GP-AR, CV-EMVS-AR, CV-KC. This figure appears in color in the electronic version of this article, and any mention of color refers to that
version

F IGURE 3 Posterior mean of spatial random effects and corresponding logistic transformation for the CV-KC and CV-GP with j1,1 = 5
(high CNR). White dots represent the location of latent spatial sites used for KC. This figure appears in color in the electronic version of this
article, and any mention of color refers to that version

activation are close to one for voxels that are truly acti-
vated. On the other hand, as shown in Figure 3B, GP mod-
els require voxels in the same region to share the same spa-
tial effect. In fact, these region-specific probabilities can
be seen as the overall mean probability of activation in a
region. For example, the probability of activation for region
18 is estimated at the posterior mean of [18, [̃18, as 1∕(1 +7−[̃18 ) ≈ 0.626 which approximates the proportion of acti-
vated voxels in the region, 10∕16 = 0.625. Hence, based on
the region-specific spatial effects, the GP model says that
there are about 10 voxels out of 16 being activated in region
18, but it cannot further specify which voxels are more
likely to be activated as there is no additional voxel-level
information. Furthermore, the detection performance of
GP models is sensitive to the number of regions S and to
how the image is parcellated. In contrast, CV-KC models
are much less affected by /. As shown in the Supporting
Information, a CV-KC with / = 25 can lead to the same
or even better detection performance than a CV-GP withS = 100. Moreover, the computing time of CV-GP grows
faster than that of CV-KC as S gets larger. When S = 100,
CV-GP takes about 2.3 times longer to obtain the same
type of activation results obtained by CV-KCwith/ = 100.

Another important advantage of the KC approach is that it
easily allows for multiresolution analysis (see the Support-
ing Information).

4.2 Realistic simulation study:
Multiple-slice analysis

We analyze realistic simulated data that imitates the
human echo planar volume imaging for whole brain
studies. In the majority of fMRI experiments, volume
images are measured one slice at a time in an interleaved
fashion and so the volume data consist of a collection of
two-dimensional (2D) slabs.
The data were generated using a discrete version of the

magnetic resonance (MR) signal equation after steady-
state magnetization (Karaman et al., 2015). Brains were
scanned seven times sequentially along the axial direc-
tion to generate seven image slices. Each slice has dimen-
sion 96 × 96 over < = 490 time points. There are two 5 ×5 squares as true activation regions that have positive
magnitude contrast (j1) and phase contrast (k1). There-
fore, two 5 × 5 × 5 cubes are the activation regions of the
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whole brain if slices are combined. Slices 1 and 7 have
no activated voxels, and their magnitude and phase con-
trasts are zero. Slice 4 has the largest maximummagnitude
and phase CNR with CNRM = j1∕& = 0.5∕1 and CNRP =k1∕SNRM = (Q∕120)∕25, respectively. Slices 3 and 5 have
weaker activations than slice 4, and slices 2 and 6 have the
weakest CNRM and CNRP. Technical details of the data-
generating process are discussed in the Supporting Infor-
mation.
Before fitting our models, we shrink the image size to64 × 64 by removing voxels outside the brain. We set / =S = 64 and use the centroids of the GP regions as the KC

spatial locations. We fitted CV-KC, MO-KC, CV-GP, and
MO-GP to each slice of the image. All model and MCMC
settings are the same as those used in the previous simula-
tion.
Since all models have a 100% true negative rate for slices

1 and 7, we focus on detecting power for slices 2–6. The pos-
terior probability maps in Figure 4 show that the CVmod-
els outperformMOmodels and KCmodels outperformGP
models for both complex-valued andmagnitude-only data.
When activation strengths are weak (slices 2 and 6), acti-
vated voxels are barely detected for all models, although
KC shows slightly more detection power. However, the KC
models detect more true positives than the GP models for
slices 3, 4, and 5. If the number of true positives are the
same for both KC and GP models, those activated vox-
els will generally have higher posterior probabilities when
the KC model is used. True positive rates averaged across
slices with .∗ = (0.5, 0.8722) are (0.39, 0.34), (0.38, 0.30),
(0.22, 0.14), and (0.16, 0.10) for CV-KC, CV-GP, MO-KC,
and MO-GP, respectively (low true positive rates are due
to low detecting power of slices 2 and 6), while F1 scores
are (0.49, 0.45), (0.49, 0.41), (0.31, 0.21), (0.25, 0.17), respec-
tively. The KCmethods are robust to threshold values, and
the CV methods dominate the MO approaches.

5 ANALYSIS OF HUMAN CV-fMRI
DATA

We analyze human data recorded during an fMRI experi-
ment performed on a 3.0-T General Electric Signa LXMRI
scanner with a gradient-echo echo-planar pulse sequence.
Slices within each volume are measured sequentially in
an interleaved fashion. The experiment consisted of a uni-
lateral right-handed finger-tapping task performed with a
visual cue indicating whether to tap or rest. Therefore, sci-
entifically one should expect to see brain activation in the
motor area on the left hemisphere and the supplementary
motor area of the blob in the center.
A block-designed experiment with an initial 20 s of rest

followed by 16 epochs of 15 s on and off was used. The full

dataset is composed of seven 2.5 mm thick axial slices of
dimension 96 × 96 and 510 time points with a volume time
to repetition (TR) of 1 s. We demonstrate that our CV-KC
method is able to produce activation results that are con-
sistent with previous analyses with the additional benefit
of reducing spurious activations, such as detecting activa-
tions outside the brain or in regions that are not impli-
cated in the finger-tapping task. We analyze multiple 2D
slice images using our methods as this describes the echo-
planar image measurement technique. With the TR of 1
s for these data and interleaved slices, adjacent slices are
measured half a second apart. Here we present the results
of the analysis for a single slice, the same one analyzed in
Karaman et al. (2014).
We begin by parcellating the image into 36 equal-sized

squared spatial regions containing 36 voxels each, and
then fit the CV-KC and CV-GP models to the CV-fMRI
data from one subject. Figure 5 shows the activation maps
derived from the CV-KC, CV-GP, and C-EMVS models
under .∗ = 0.5 for detecting activation. Clearly, spatial
models eliminate isolated voxels around the brain margin
incorrectly labeled as active by the C-EMVS approach. In
addition, spatial modeling encourages activation in clus-
ters of voxels. Both the CV-KC and CV-GP models detect
more activated voxels in the expected motor-related brain
regions located on the left of the brain. Moreover, with the
fact that activation is expected to be in gray matter (GM),
and the estimated classification of whether a voxel is GM
in Karaman et al. (2014), most of our activated voxels are
shown to be in GM. These results are biologically plau-
sible because execution of complex cognitive tasks usu-
ally involves populations of neurons spanning acrossmany
voxels rather than a single voxel. Althoughnot shownhere,
CV-KC-AR and CV-GP-AR produce almost identical acti-
vationmaps to CV-KC andCV-GPwith CV-KC-AR outper-
forming CV-KC-AR and C-EMVS-AR.
To focus on a smaller portion of the image that reduces

areas outside the brain, an image of size 56 × 56 was
further examined. This image was represented by 64
latent spatial sites for KC analysis, or parcellated into
64 regions each containing 49 voxels for GP analysis.
Figure 6 shows the voxel-level spatial effects inferred by the
CV-KC model and the region-specific spatial effects
inferred by the CV-GP model for this reduced image. The
CV-KC model generates smooth and localized maps of
the estimated spatial effects that show the strength of the
spatial effects adequately concentrated around the active
regions. On the other hand, the maps of estimated spa-
tial effects from CV-GP are neither smooth nor local-
ized. We note that for this particular dataset, the activa-
tion results are not so different for the CV-KC and CV-GP
approaches when .∗ values of 0.5 or 0.8722 are used for
detecting activation. However, once again, we see that the
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F IGURE 4 Posterior probability maps. From left to right: Slice 2 to slice 6. From top to bottom: CV-KC, CV-GP, MO-KC, MO-GP. The
posterior probability colorbar is shown at the bottom. This figure appears in color in the electronic version of this article, and any mention of
color refers to that version

F IGURE 5 Activation of human subject CV-fMRI. Left: Activation map from CV-KC with threshold 0.5. Middle: Activation map from
CV-GP with threshold 0.5. Right: Activation map from the nonspatial C-EMVS approach with threshold 0.5. Yellow dots represent the
location of latent spatial sites used for KC. This figure appears in color in the electronic version of this article, and any mention of color refers
to that version
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F IGURE 6 Posterior mean of the spatial random effects and their corresponding logistic transformations for the complex-valued human
data: (A) results from the CV-KC model; (B) results from the CV-GP model. White dots represent the location of latent spatial sites used for
KC. This figure appears in color in the electronic version of this article, and any mention of color refers to that version

CV-KCmodel leads to probability maps (in the Supporting
Information) that are less uncertain than the maps
obtained from the CV-GP model. This is a clear advantage
of theCV-KC approach, asmore precise posterior probabil-
ity maps for activation lead to final activation results that
are less sensitive to the choice of .∗.
6 DISCUSSION

We propose a new Bayesian spatiotemporal model via ker-
nel convolution for detecting brain activation from CV-
fMRI signals at the voxel-specific level. Our simulation
studies show that the Bayesian complex-valued spatial
models lead to greater power and less false positives than
models that do not include a spatial structure, especially
for small CNR.

Assuming the same number of latent spatial effects (S= /), our KC model outperforms the GP model by clev-
erly borrowing spatial information from neighboring vox-
els. Therefore, the CV-KC approach producesmore precise
posterior probability maps. Moreover, the CV-KCmodel is
not very sensitive to the number of spatial sites, leading
to dimension reduction and decreasing the computational
time for posterior inference. The proposed KCmodels also
avoid the need for predetermining the shape of regions and
centroid locations for these regions which is potentially a
serious problem for the GP models.
Future extensions will consider modeling functional

connectivity through additional spatial effects that can
include anatomical boundaries and long-distance spatial
dependencies. While our proposed method is mainly for
single-subject studies, its general spatiotemporal structure
lays a foundation of complete CV-fMRI multi-subject
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modeling. In a multisubject study, two types of parameter,[13 and T+(") for subject ", can be considered, with [13 a com-
mon spatial/group-level effect that borrows information
about local dependence from all subjects, and T+(") is the
subject-level effect that accounts for individual differences.
We strongly recommend the use of CV-fMRI data and

models for detecting brain activation. Adding a spatial
structure improves detection, but is computationally more
costly than using a complex-valued model with no spatial
structure. Having this in mind, we advocate for the use
of complex-valued models with a spatial kernel convolu-
tion. As shown here, these models lead to flexible spatial
modeling and more accurate estimated probability activa-
tionmaps and are less sensitive to the choice of the thresh-
old value that determines activation. Moreover, the CV-KC
models lead to dimension reduction and allow us to eas-
ily incorporatemultiresolution components to obtainmore
precise results without significantly increasing the compu-
tational burden.
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