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Low-rank Characteristic Tensor Density Estimation
Part I: Foundations

Magda Amiridi, Nikos Kargas, and Nicholas D. Sidiropoulos, Fellow, IEEE

Abstract—Effective non-parametric density estimation is a key
challenge in high-dimensional multivariate data analysis. In this
paper, we propose a novel approach that builds upon tensor
factorization tools. Any multivariate density can be represented
by its characteristic function, via the Fourier transform. If the
sought density is compactly supported, then its characteristic
function can be approximated, within controllable error, by a
finite tensor of leading Fourier coefficients, whose size depends
on the smoothness of the underlying density. This tensor can
be naturally estimated from observed and possibly incomplete
realizations of the random vector of interest, via sample aver-
aging. In order to circumvent the curse of dimensionality, we
introduce a low-rank model of this characteristic tensor, which
significantly improves the density estimate especially for high-
dimensional data and/or in the sample-starved regime. By virtue
of uniqueness of low-rank tensor decomposition, under certain
conditions, our method enables learning the true data-generating
distribution. We demonstrate the very promising performance of
the proposed method using several toy, measured, and image
datasets.

Index Terms—Statistical learning, Probability Density Func-
tion (PDF), Characteristic Function (CF), Tensors, Rank, Canon-
ical Polyadic Decomposition (CPD).

I. INTRODUCTION

Density estimation is a fundamental yet challenging prob-
lem in statistical signal processing and machine learning.
Density estimation is the task of learning the joint Proba-
bility Density Function (PDF) from a set of observed data
points, sampled from an unknown underlying data-generating
distribution. A model of the density function of a continuous
random vector provides a complete description of the joint
statistical properties of the data and can be used to perform
tasks such as computing the most likely value of a subset
of elements (“features”) conditioned on others, computing
any marginal or conditional distribution, and deriving opti-
mal estimators, such as the minimum mean squared error
(conditional mean) estimator. Density estimation has a wide
range of applications including classification [1], [2], [3], [4],
clustering [5], data synthesis [6], data completion [7] and
reconstruction related applications [8], as well as learning
statistical regularities such as skewness, tail behavior, multi-
modality or other structures present in the data [9].
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Existing work on density estimation can be mainly cate-
gorized into parametric approaches such as Gaussian Mixture
Models (GMM) [10], and non-parametric approaches such as
Histogram [11] and Kernel Density Estimation (KDE) [12].
A density model must be expressive – flexible enough to
represent a wide class of distributions, and tractable and
scalable (computationally and memory-wise) at the same
time (expressivity-tractability trade-off). Over the last several
years, explicit feed-forward neural network based density
estimation methods [13], [14], [15] have gained increasing
attention as they provide a tractable way to evaluate high-
dimensional densities point-wise. On the other hand implicit
generative models such as generative adversarial networks
[16] and variational autoencoders [17] can be used to obtain
models which allow effective and efficient sampling. Although
neural network based solutions show promise in some high-
dimensional applications such as image sampling, they are not
currently well-suited for many other real-world applications.
They lack the ability to compute expectations, marginalize
over arbitrary subsets of variables, and evaluate conditionals,
as they rather serve for point-wise density evaluation, or
sampling. Additionally, model identifiability (i.e., recovery of
the true data-generating distribution) is a fundamental goal of
PDF estimation, which most deep generative models have not
yet addressed. Incomplete observations (due to causes such
as faulty sensors, corrupt data, cost of acquisition, or privacy
concerns) present distinct challenges to the training of these
models. The majority of such models are trained on complete
data only and are unable to handle missing elements in the
input vector, during both training and testing (“showtime”).

In this paper, we develop a novel non-parametric method
for multivariate PDF estimation based on tensor rank de-
composition – known as Canonical Polyadic Decomposi-
tion (CPD) [18], [19]. CPD is a powerful model that can
parsimoniously represent high-order data tensors exactly or
approximately, and its distinguishing feature is that under
certain reasonable conditions it is unique – see [20] for
a recent tutorial overview. We show that any compactly
supported continuous density can be approximated, within
controllable error, by a finite characteristic tensor of leading
complex Fourier coefficients, whose size depends on the
smoothness of the density. This characteristic tensor can be
naturally estimated via sample averaging from realizations of
the random vector of interest.

The main challenge, however, lies in the fact that the size
of this tensor (the number of model parameters in the Fourier
domain) grows exponentially with the number of random
variables – the length of the random vector of interest. In
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order to circumvent this “curse of dimensionality” (CoD)
and further denoise the naive sample averaging estimates,
we introduce a low-rank model of the characteristic tensor,
whose degrees of freedom (for fixed rank) grow linearly
with the random vector dimension. Low-rank modeling
significantly improves the density estimate especially for high-
dimensional data and/or in the sample-starved regime. By
virtue of uniqueness of low-rank tensor decomposition, under
certain conditions, our method enables learning the true
data-generating distribution.

In order to handle incomplete (both training and testing)
data (vector realizations with missing entries) as well as
scaling up to high-dimensional vectors, we further introduce
coupled low-rank decomposition of lower-order characteristic
tensors corresponding to smaller subsets of variables that share
‘anchor’ variables, and show that this still enables recovery
of the global density, under certain conditions. As an added
benefit, our approach yields a generative model of the
sought density, from which it is very easy to sample
from. This is because our low-rank model of the characteristic
tensor admits a latent variable naive Bayes interpretation. A
corresponding result for finite-alphabet random vectors was
first pointed out in [21]. In contrast to [21], our approach
applies to continuous random vectors possessing a compactly
supported multivariate density function. From an algorithmic
standpoint, we formulate a constrained coupled tensor fac-
torization problem and develop a Block Coordinate Descent
(BCD) algorithm.

The main results and contributions of this paper can be
summarized as follows:

• We show that any smooth compactly supported multi-
variate PDF can be approximated by a finite tensor
model, without using any prior or data-driven dis-
cretization process. We also show that truncating the
sampled multivariate characteristic function of a random
vector is equivalent to using a finite separable mixture
model for the underlying distribution. Note that we do
not assume a latent variable mixture model; instead the
latent variable factorization falls off from compactness
of support and smoothness. Under these relatively mild
assumptions, the proposed model can approximate any
high dimensional PDF with approximation guaran-
tees. By virtue of uniqueness of CPD, assuming low-
rank in the Fourier domain, the underlying multivariate
density is identifiable.

• We show that high dimensional joint PDF recovery is
possible under low tensor-rank conditions, even if we
only observe subsets (triples) of variables. This is a key
point that enables one to handle incomplete realizations
of the random vector of interest. To the best of our
knowledge, no other generic density estimation approach
allows this. To tackle this more challenging version of the
problem, we propose an optimization framework based on
coupled tensor factorization. Our approach jointly learns
lower-order (3-dimensional) characteristic functions, and
then assembles tensor factors to synthesize the full char-
acteristic function model.

• The proposed model allows efficient and low-complexity

inference, sampling, and density evaluation. In that sense,
it a more comprehensive solution that neural density
evaluation or neural generative models. We provide con-
vincing experimental results on sampling, likelihood
evaluation, and regression on toy, image, and many
real datasets that are often used as benchmarks in
our context. Our results corroborate the effectiveness
of the proposed method even for datasets that have
hundreds of variables.

This is the first of a two-part paper. The second part builds
on this foundation to develop a joint compression (nonlinear
dimensionality reduction) and compressed density estimation
framework that offers additional flexibility and scalability, but
does not provide a density estimate in the original space as
the “baseline” method in this first part does. Each approach
has its own advantages, but the second builds upon the first.
It is therefore natural to present them as Part I and Part II.

II. BACKGROUND

A. Related work

Density estimation has been the subject of extensive re-
search in statistics and the machine learning community. Meth-
ods for density estimation can broadly be classified as either
parametric or non-parametric. Parametric density estimation
assumes that the data are drawn from a known parametric
family of distributions, parametrized by a fixed number of
tunable parameters. Parameter estimation is usually performed
by maximizing the likelihood of the observed data. One of the
most widely used parametric models is the Gaussian Mixture
Model (GMM). GMMs can approximate any density function
if the number of components is large enough [22]. However,
a very large number of components may be required for good
approximation of the unknown density, especially in high
dimensions. Increasing the number of components introduces
computational challenges and may require a large amount of
data [23]. Misspecification and inconsistent estimation is less
likely to occur with nonparametric density estimation.

Nonparametric density estimation is more unassuming and
in that sense “universal”, but the flip-side is that it does
not scale beyond a small number of variables (dimensions).
The most widely-used approach for nonparametric density
estimation is Kernel Density Estimation (KDE) [11], [12]. The
key idea of KDE is to estimate the density by means of a
sum of kernel functions centered at the given observations.
However, worst-case theoretical results show that its perfor-
mance worsens exponentially with the dimension of the data
vector [24].

Our approach falls under nonparametric methods, and is mo-
tivated by Orthogonal Series Density Estimation (OSDE) [25],
[26], [27], a powerful non-parametric estimation methodology.
OSDE approximates a probability density function using a
truncated sum of orthonormal basis functions, which may
be trigonometric, polynomial, wavelet etc. However, OSDE
becomes computationally intractable even for as few as 10 di-
mensions, since the number of parameters grows exponentially
with the number of dimensions. Unlike OSDE, our approach
is able to scale to much higher dimensions.
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The first work using tensor decomposition to establish
identifiability of latent variable models was [28], where it
was shown that, under certain conditions, a finite mixture of
non-parametric product distributions is identifiable. The linear
independence conditions mentioned in [28] are in fact not
necessary for uniqueness; a milder condition pertaining to the
sum of Kruskal-ranks of the latent factor matrices is in fact
sufficient [29]. Also, [28] did not provide a companion density
estimation procedure, which limits its applicability.

Later on, [30], [31] proposed using whitening-based or-
thogonal tensor decomposition to recover the parameters of
certain latent variable (not general density) models – but this
algorithm is not always feasible [32] because the whitening
step cannot always find a positive semi-definite matrix via
linear combination of tensor slices. This happens with positive
probability [32], in which case the orthogonal decomposition
algorithm fails altogether. Furthermore, if the rank of this
matrix is lower than the tensor rank, then the algorithm has
a “soft” failure. We also note that the approach in [30] is a
kernel method that involves eigenvalue decomposition of M
by M matrices, where M is the training sample size, which
is prohibitive for large training sets. Our proposed algorithm
is scalable (its complexity is linear in M ) and it avoids earlier
pitfalls. It is also worth re-iterating that, whereas there have
been prior works dealing with multivariate density estimation
for latent variable models such as [28], [30], our work is the
first to use tensor models for high-dimensional densities, where
the dimensionality is well above 3 − 10. Part of our novelty
is showing that low-rank tensor factorization can work, with
remarkably low ranks, in these high dimensions (up to 256
here).

Another method also based on low-rank tensor decom-
positions with theoretical guarantees of identifiability (for
distributions of low enough rank) has been presented in [33].
In contrast to [28], [30] and [33], our approach is “universal”
for smooth, compactly supported multivariate densities, i.e., no
assumptions regarding a multivariate mixture model of non-
parametric product distributions are made in the present paper;
we show that a latent variable factorization falls off from
compactness of support and smoothness. A similar approach to
[33] was considered in [34], where a tensor train model is used
to approximate a discretized PDF, followed by interpolation.
The authors use a conditioning chain and compute each condi-
tional distribution given the model for the full joint distribution
– this computation depends on the ordering of the variables.
There are no identifiability guarantees, and the method is
geared towards sampling applications. This is natural, since
tensor train models do not offer easy marginalization and
inference.

Recently, several density evaluation and modeling meth-
ods that rely on neural networks have been proposed. The
Real-valued Neural Autoregressive Distribution Estimator
(RNADE) [35] is among the best-performing neural density
estimators and has shown great potential in scaling to high-
dimensional distribution settings. These so-called autoregres-
sive models (not to be confused with classical AR models
for time-series) decompose the joint density as a product
of one-dimensional conditionals of increasing conditioning

order, and model each conditional density with a parametric
model. Normalizing Flows (NF) [36] models start with a base
density e.g., standard Gaussian, and stack a series of invert-
ible transformations with tractable Jacobian to approximate
the target density. Masked Autoregressive Flow (MAF) [15]
is a type of NF model, where the transformation layer is
built as an autoregressive neural network. These methods
do not construct a joint PDF model but rather serve for
point-wise density evaluation. That is, for any given input
vector (realization), they output an estimate of the density
evaluated at that particular input vector (point). For small
vector dimensions, e.g., two or three, it is possible to evaluate
all inputs on a dense grid, thereby obtaining a histogram-like
density estimate; but the curse of dimensionality kicks in for
high vector dimensions, where this is no longer an option.
Additionally, these methods cannot impute more than very few
missing elements in the input, for the same reason (grid search
becomes combinatorial).

Another class of neural network density models are the
sum-product networks (SPNs) [37], [38]. SPNs are deep
probabilistic models, represented by a directed acyclic graph
with univariate distributions at the leaves, that decompose
a joint distribution into a hierarchy of mixtures (sums) and
factorizations (products). Their extension to continuous vari-
ables assumes a model for the one-dimensional marginals, e.g.,
Gaussian or mixture of Gaussians for each input variable, in
which case the overall distribution is a mixture of separable
Gaussians. In the discrete (finite-alphabet / categorical) case,
our model [21] can be interpreted as a shallow SPN; in
the continuous case, as considered in this paper, we do not
make any assumption on the one-dimensional marginals at
the leaves, so our approach can be viewed as a nonparametric
shallow SPN. From the viewpoint of SPNs, we show in this
paper that

1) a shallow (one-sum layer) SPN is a universal model for
smooth and compactly supported multivariate densities,
and the underlying 1-D densities can be recovered
(versus prescribed). That is, if the true density has low
rank, then it can be pinned down and its components
can be ‘unraveled’ via the CPD.

2) the low-rank assumption works well in various practical
applications.

A multi-layer SPN, on the other hand, is akin to a hierarchical
Tucker model, and thus no model identifiability claims can
be made for deep SPNs – they can always be replaced by a
shallow SPN with sufficiently many leaves.

SPNs enjoy a tractable marginalization and inference pro-
cess, but our proposed model allows for even easier marginal-
ization (by discarding the subset of factor matrices correspond-
ing to the variables we are not interesting in), as well as easier
and closed form inference. SPNs require specific structural
constraints in order to guarantee exact inference [37]. In
contrast to SPNs, our model does not require architecture
specification.

B. Notation
In this section we briefly present notation conventions and

some tensor algebra preliminaries. We use the symbols x,
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Fig. 1: CPD model of a 3-way tensor.

X, X for vectors, matrices and tensors respectively. We use
the notation x(n), X(:, n), X(:, :, n) to refer to a particular
element of a vector, a column of a matrix and a slab of a tensor.
Symbols ∥x∥2, ∥X∥F , and ∥x∥∞ correspond to L2 norm,
Frobenius norm, and infinity norm. Symbols ◦, ⊛, ⊙ denote
the outer, Hadamard and Khatri-Rao product respectively. The
vectorization operator is denoted as vec(X), vec(X) for a
matrix and tensor respectively. Additionally, diag(x) ∈ CK×K

denotes the diagonal matrix with the elements of vector
x ∈ CK on its diagonal. The set of integers {1, . . . ,K} is
denoted as [K].

C. Relevant tensor algebra

An N -way tensor Φ ∈ CK1×K2×···×KN is a multidimen-
sional array whose elements are indexed by N indices. Any
tensor can be decomposed as a sum of F rank-1 tensors

Φ =
F∑

h=1

λ(h)A1(:, h) ◦A2(:, h) ◦ · · · ◦AN (:, h), (1)

where An ∈ CKn×F and constraining the columns An(:, h)
to have unit norm, the real scalar λ(h) absorbs the h-th rank-
one tensor’s scaling. A visualization is shown in Figure 1 for
the case of N = 3.

We use Φ = [[λ,A1, . . . ,AN ]] to denote the decomposi-
tion. When F is minimal, it is called the rank of tensor
Φ, and the decomposition is called Canonical Polyadic De-
composition (CPD). A particular element of the tensor is
given by Φ(k1, k2, . . . , kN ) =

∑F
h=1 λ(h)

∏N
n=1 An(kn, h).

The vectorized form of the tensor can be expressed as
vec(Φ) =

(
⊙N

n=1An

)
λ. We can express the mode-n

matrix unfolding which is a concatenation of all mode-
n ‘fibers’ of the tensor as Φ(n) = (⊙k ̸=nAk)diag(λ)An

T ,
where (⊙k ̸=nAk) = AN ⊙ · · · ⊙An+1 ⊙An−1 ⊙ · · · ⊙A1.

A key property of the CPD is that the rank-1 components are
unique under mild conditions. For learning probabilistic latent
variable models and latent representations, the uniqueness of
tensor decomposition can be interpreted as model identifiabil-
ity. A model is identifiable, if and only iff there is a unique set
of parameters that is consistent with what we have observed.

Theorem 1: [29]: Let kA be the Kruskal rank of A, defined
as the largest integer k such that every k columns of A
are linearly independent. Given Φ = [[λ,A1, . . . ,AN ]], if∑N

n=1 kAn
≥ 2F + N − 1, then the rank of Φ is F and

the decomposition of Φ in rank-one terms is unique.
Better results allowing for higher tensor rank are available for
generic tensors of given rank.

Theorem 2: [39]: Given Φ = [[λ,A1,A2,A3]], assume,
without loss of generality, that K1 ≤ K2 ≤ K3. Let α, β

be the largest integers such that 2α ≤ K1 and 2β ≤ K2. If
F ≤ 2α+β−2 the decomposition of Φ in rank-one terms is
unique almost surely.

III. A CHARACTERISTIC FUNCTION APPROACH

The characteristic function of a random variable X is the
Fourier transform of its PDF, and it conveys all information
about X . The characteristic function can be interpreted as
an expectation: the Fourier transform at frequency ν ∈ R
is E

[
ejνX

]
. Similarly, the multivariate characteristic function

is the multidimensional Fourier transform of the density of
a random vector X , which can again be interpreted as the
expectation E[ejν

TX ], where ν is a vector of frequency
variables. The expectation interpretation is crucial, because
ensemble averages can be estimated via sample averages; and
whereas direct nonparametric density estimation at point x
requires samples around x, estimating the characteristic func-
tion enables reusing all samples globally, thus enabling better
sample averaging and generalization. This point is the first
key to our approach. The difficulty, however, is that pinning
down the characteristic function seemingly requires estimating
an uncountable set of parameters. We need to reduce this to a
finite parameterization with controllable error, and ultimately
distill a parsimonious model that can learn from limited data
and still generalize well. In order to construct an accurate
joint distribution estimate that is scalable to high dimensions
without making explicit and restrictive prior assumptions (such
as a GMM model) on the nature of the density, and without
requiring huge amounts of data, we encode the following key
ingredients into our model.

• Compactness of support. In most cases, the random
variables of interest are bounded, and these bounds are
known or can be relatively easily estimated. The assump-
tion of knowing the support of the sought distribution
is not limiting in practice. Given that we are aiming
to estimate a high-dimensional distribution we should
naturally have access to much more data than is needed to
estimate the support of any marginal distribution of one
of the variables. Also note that we do not need to know
the exact support – reasonable upper and lower bounds
are enough to compress and shift the range.

• Continuity of the underlying density and its deriva-
tives. The joint distribution is assumed to be sufficiently
smooth in some sense, which enables the use of explicit
or implicit interpolation.

• Low-rank tensor modeling. We show that joint char-
acteristic functions can be represented as higher order
tensors. In practice these tensor data are not unstructured.
Low-rank tensor modeling provides a concise represen-
tation that captures the salient characteristics (the prin-
cipal components) of the data distribution in the Fourier
domain.

A. The Univariate Case

Before we delve into the multivariate setting, it is instructive
to examine the univariate case. Given a real-valued random
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Fig. 2: The Univariate Case: Illustration of the key idea on a
univariate Gaussian mixture of two distributions with means
µ1 = 0.35, µ2 = 0.7 and standard deviations σ1 = 0.1, σ2 =
0.08. The PDF can be (approximately) recovered from only 9
uniform samples of its Characteristic Function (CF).

variable X with compact support SX , the Probability Den-
sity Function (PDF) fX and its corresponding Characteristic
Function (CF) ΦX form a Fourier transform pair:

ΦX(ν) :=

∫
SX

fX(x)ejνxdx = E[ejνX ], (2)

fX(x) :=
1

2π

∫ ∞

−∞
ΦX(ν)e−jνxdν. (3)

Note that ΦX(0) =
∫∞
−∞ fX(x)dx = 1. Without loss of gen-

erality, we can apply range normalization and mean shifting
so that sX + c ∈ [0, 1] – the transformation is invertible. We
may therefore assume that SX = [0, 1]. Every PDF supported
in [0, 1] can be uniquely represented over its support by an
infinite Fourier series,

fX(x) =
∞∑

k=−∞

ΦX [k]e−j2πkx, (4)

where ΦX [k] = ΦX(ν)
∣∣
ν=2πk

, k ∈ Z. This shows
that countable parameterization through samples of the
characteristic function suffices for compactly supported
densities. But this is still not enough - we need a
finite parametrization. Thankfully, if fX is sufficiently
differentiable in the sense that fX ∈ Cp i.e., all its derivatives
∂fX
∂x , ∂2fX

∂x2 , · · · , ∂pfX
∂xp exist and are continuous we have that

Lemma 1: (e.g., see [40]): If fX ∈ Cp, then

|ΦX [k]| = O
(

1

1 + |k|p

)
.

It is therefore possible to use a truncated series

f̂X(x) =
K∑

k=−K

ΦX [k]e−j2πkx,

with proper choice of K that will not incur significant error.
Invoking Parseval’s Theorem

∥fX − f̂X∥22 =
∑

|k|>K

|ΦX [k]|2,

which is controllable by the smoothing parameter K. The k-th
Fourier coefficient

ΦX [k] =

∫ 1

0

fX(x)ej2πkxdx = E[ej2πkX ]

can be conveniently estimated via the sample mean

Φ̂X [k] =
1

M

M∑
m=1

ej2πkxm

Here M is the number of available realizations of the random
variable X .

A toy example to illustrate the idea is shown in Figure 2. For
this example, we are given M = 500 realizations of a random
variable X , which is a mixture of two Gaussian distributions
with means µ1 = 0.35, µ2 = 0.7 and standard deviations
σ1 = 0.1, σ2 = 0.08. The recovered PDF is very close to the
true PDF using only 9 coefficients of the CF.

B. The Multivariate Case

In the multivariate case, we are interested in obtaining
an estimate f̂X of the true density fX of a random vector
X := [X1, . . . , XN ]

T . The joint or multivariate characteristic
function of X is a function ΦX : RN → C defined as

ΦX(ν) := E
[
ejν

TX
]
, (5)

where ν := [ν1, . . . , νN ]
T
. For any given ν, given a set of

realizations {xm}Mm=1, we can estimate the empirical charac-
teristic function of the sequence as

Φ̂X(ν) =
1

M

M∑
m=1

ejν
Txm . (6)

Under mixing conditions such that sample averages con-
verge to ensemble averages, the corresponding PDF can be
uniquely recovered via the multidimensional inverse Fourier
transform

fX(x) =
1

(2π)N

∫
RN

ΦX(ν)e−jνTxdν. (7)

If the support of the joint PDF fX(x) is contained within the
hypercube SX = [0, 1]N , then similar to the univariate case,
it can be represented by a multivariate Fourier series

fX(x) =
∞∑

k1=−∞

· · ·
∞∑

kN=−∞

ΦX [k]e−j2πkTx,

where ΦX [k] = ΦX(ν)
∣∣
ν=2πk

,k = [k1, . . . , kN ]T .

(8)

Lemma 2: (see e.g., [40]): For any p ∈ N, if the partial
derivatives ∂θ1

∂x
θ1
1

· · · ∂θN

∂x
θN
N

fX(x) exist and are absolutely inte-

grable for all θ1, . . . , θN with
∑N

n=1 θn ≤ p then the rate of
decay of the magnitude of the k-th Fourier coefficient |ΦX [k]|
obeys |ΦX [k]| = O

(
1

1+∥k∥p
2

)
.

The smoother the underlying PDF, the faster its Fourier
coefficients and the approximation error tend to zero. Thus we
can view the joint PDF through the lens of functions with only
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low frequency harmonics. Specifically, it is known [41], [42,
Chapter 23] that the approximation error of the truncated series
with absolute cutoffs {Kn}Nn=1 is upper bounded by

∥fX − f̂X∥∞ ≤ C
N∑

n=1

ωn

(
∂θn

∂xθn
n
fX , 1

1+Kn

)
(1 +Kn)

θn
, (9)

where ωn(fX , δ) :=

sup
|xj−x′

j|≤δ

∣∣fX(x1, . . . , xj , . . . , xN )− fX(x1, . . . , x
′
j , . . . , xN )

∣∣ ,
and

C = C2

(
1 + C1

N∏
n=1

logKn

)
.

C1, C2 are constants independent of Kn. The smoother the
underlying PDF, the smaller the obtained finite parametrization
error. It follows that we can approximate fX

f̂X(x) =

K1∑
k=−K1

· · ·
KN∑

kN=−KN

ΦX [k]e−j2πkTx. (10)

The truncated Fourier coefficients can be naturally repre-
sented using an N -way tensor Φ where

Φ(k1, . . . , kN ) = ΦX [k]. (11)

IV. PROPOSED APPROACH: BREAKING THE CURSE OF
DIMENSIONALITY

We have obtained a finite parameterization with control-
lable and bounded error, but the number of parameters
(2K1 + 1)× · · · × (2KN + 1) obtained by truncating ΦX as
above grows exponentially with N . This curse of dimen-
sionality can be circumvented by focusing on the principal
components of the resulting tensor, i.e., introducing a low-
rank parametrization of the Characteristic Tensor obtained by
truncating the multidimensional Fourier series. Keeping the
first F principal components, the number of parameter reduces
from order of K1× · · ·×KN to order of (K1 + · · ·+KN )F .
Introducing the rank-F CPD in Equation (10), one obtains the
approximate model

f̃X(x) =
K∑

k1=−K

· · ·
K∑

kN=−K

F∑
h=1

pH(h)
N∏

n=1

ΦXn|H=h[kn]

e−j2πknxn , (12)

where H can be interpreted as a latent (H for ‘hidden’)
random variable, ΦXn|H=h[kn] is the characteristic function
of Xn conditioned on H = h

ΦXn|H=h[kn] := ΦXn|H=h(ν|h)
∣∣
ν=2πkn

= EXn|H=h

[
ej2πknXn

]
, (13)

and we stress that for high-enough F , this representation is
exact without loss of generality – see, e.g., [20]. For the rest
of the paper, we consider K = K1 = · · · = KN for brevity.

Fig. 3: The proposed generative model f̃X(x) admits an
interpretation as a mixture of F product distributions i.e., a
latent variable naive Bayes interpretation.

By linearity and separability of the multidimensional
Fourier transformation it follows that

f̃X(x) =
F∑

h=1

pH(h)
N∏

n=1

K∑
kn=−K

ΦXn|H=h[kn] e
−j2πknxn

=
F∑

h=1

pH(h)
N∏

n=1

fXn|H(xn|h). (14)

This generative model can be interpreted as mixture of product
distributions [33]. The joint PDF fX is a mixture of F
separable component PDFs, i.e., there exists a ‘hidden’ random
variable H taking values in {1, . . . , F} that selects the oper-
ational component of the mixture, and given H the random
variables X1, . . . , XN become independent (See Figure 3 for
visualization of this model). We have thus shown the following
result:

Proposition 1: Truncating the multidimensional Fourier se-
ries (sampled multivariate characteristic function) of any com-
pactly supported random vector is equivalent to approximating
the corresponding multivariate density by a finite mixture of
separable densities.

Thus, by choosing appropriate K and F , it is possible to
represent and approximate any compactly supported density
that it is sufficiently smooth by the proposed model. See
Figures 5, 4 where we showcase how each parameter affects
the modeling of complex structures in 2D synthetic datasets.

Conversely, if one assumes that the sought multivariate
density is a finite mixture of separable densities, then it is
easy to show that the corresponding characteristic function is
likewise a mixture of separable characteristic functions:

ΦX(ν) = E
[
ejν

TX
]

= EH

[
EX|H

[
ejν1X1 · · · ejνNXN

]]
= EH

[
ΦX1|H(ν1|H) · · ·ΦXn|H(νN |H)

]
=

F∑
h=1

pH(h)
N∏

n=1

ΦXn|H(νn|h). (15)

If we sample the above on any finite N -dimensional grid,
we obtain an N -way tensor and its polyadic decomposition.
Such decomposition is unique, under mild conditions [20]. It
follows that:

Proposition 2: A compactly supported multivariate (N ≥ 3)
mixture of separable densities is identifiable from (samples of)
its characteristic function, under mild conditions.
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The main reasons for working in the Fourier / characteristic
function domain are that

1) truncation is a “universal” approximation in the sense
that it only requires smoothness of the joint PDF;

2) the Fourier transform is “global” allowing us to estimate
the PDF in places where there is a scarcity of “local”
samples – which is a key problem in high-dimensional
cases;

3) since we limit ourselves to regular samples of the
characteristic function (multivariate Fourier series), we
can invert using the computationally advantageous Fast
Fourier Transform; and

4) relative to the moment generating function, the charac-
teristic function always exists.

The above analysis motivates the following course of action.
Given a set of realizations {xm}Mm=1,

1) estimate

Φ[k] =
1

M

M∑
m=1

ej2πk
Txm , (16)

2) fit a low-rank model

Φ[k] ≈
F∑

h=1

pH(h)
N∏

n=1

ΦXn|H=h[kn], (17)

3) and invert using

fX(x) =
F∑

h=1

pH(h)
N∏

n=1

fXn|H(xn|h), where

fXn|H(xn|h) =
K∑

kn=−K

ΦXn|H=h[kn]e
−j2πknxn . (18)

When building any statistical model, identifiability is a
fundamental question. A statistical model is said to be identi-
fiable when, given a sufficient number of observed data, it is
possible to uniquely recover the data-generating distribution.
When applying a non-identifiable model, different structures
or interpretations may arise from distinct parametrizations that
explain the data equally well. Most deep generative models
do not address the question of identifiability, and thus may
fail to deliver the true latent representations that generate the
observations. Our approach is fundamentally different, because
it builds on rigorous and controllable Fourier approximation
and identifiability of the characteristic tensor.

In the Appendix (Section VIII), we provide additional sta-
tistical insights regarding the proposed methodology, including
the asymptotic behavior of the empirical characteristic function
and the mean squared error reduction afforded by low-rank
tensor modeling in the characteristic function domain.

Two issues remain. First, uniqueness of CPD only implies
that each rank-one factor is unique, but leaves scaling/counter-
scaling freedom in pH and the conditional characteristic func-
tions. To resolve this, we can use the fact that each conditional
characteristic function must be equal to 1 at the origin (zero
frequency). Likewise, pH must be a valid probability mass
function. These constraints fix the scaling indeterminacy.

We note here that, under certain rank conditions (see Section
II-C) on the Fourier series coefficient tensor, the proposed

method ensures that the reconstructed density is positive and
integrates to one, as it should. This is due to the uniqueness
properties of the Fourier series representation and the CPD: if
there exists a density that generates a low-rank characteristic
tensor, and that tensor can be uniquely decomposed, the
sum of Fourier inverses of its components is unique, and
therefore equal to the generating density. Under ideal low-
rank conditions, this is true even if we ignore the constraints
implied by positivity when we decompose the characteristic
tensor in the Fourier domain. This is convenient because
strictly enforcing those in the Fourier domain would entail
cumbersome spectral factorization-type (positive semidefinite)
constraints. We therefore propose the following formulation:

min ∥Φ− [[λ,A1, . . . ,AN ]]∥2F
subject to λ ≥ 0,1Tλ = 1,

An(K + 1, :) = 1T , n = 1 . . . N,

(19)

where An(K+1+kn, h) holds ΦXn|H=h[kn], and λ(h) holds
pH(h).

The second issue is more important. When N is large,
instantiating or even allocating memory for the truncated
characteristic tensor is a challenge, because its size grows
exponentially with N . Fortunately, there is a way around
this problem. The main idea is that instead of estimating
the characteristic tensor of all N variables, we may instead
estimate the characteristic tensors of subsets of variables,
such as triples, which partially share variables with other
triples. The key observation that enables this approach is
that the marginal characteristic function of any subset of
random variables is also a constrained complex CPD model
that inherits parameters from the grand characteristic tensor.
Marginalizing with respect to the n′-th random variable, we
have that

Φ(k1, . . . , kn′ = 0, . . . , kN ) =
F∑

h=1

N∏
n=1
n̸=n′

ΦXn|H [kn]ΦXn′ |H [0]︸ ︷︷ ︸
=1

=
F∑

h=1

N∏
n=1
n̸=n′

ΦXn|H [kn]. (20)

Thus, a characteristic function of any subset of three random
variables Xi, Xj , Xℓ (triples) can be written as a third-order
tensor, Φijℓ, of rank F . These sub-tensors can be jointly de-
composed in a coupled fashion (see the optimization problem
in (22)) to obtain the sought factors that allow synthesizing
the big characteristic tensor. In this way, we beat the curse
of dimensionality for low-enough model ranks. In addition
to affording significant computational and memory reduction,
unlike neural network based methods, the above approach
allows us to work with fewer and even missing data during the
training phase, i.e., only having access to incomplete realiza-
tions of the random vector of interest. We estimate lower-order
characteristic function values from only those realizations that
all three random variables in a given triple appear together. Our
method can easily be adapted to work with pairs or quadruples,
but reliably estimating fourth-order characteristic functions
requires more sample averaging, whereas the 2− dimensional
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case requires stricter identifiability conditions. Hence working
with 3-D tensors offers a good compromise between these
conflicting considerations.

In earlier work, we proposed a similar approach for the
categorical case where every random variable is finite-alphabet
and the task is to estimate the joint probability mass function
(PMF) [21]. There we showed that every joint PMF of a
finite-alphabet random vector can be represented by a naı̈ve
Bayes model with a finite number of latent states (rank). If the
rank is low, the high dimensional joint PMF is almost surely
identifiable from lower-order marginals – which is reminiscent
of Kolmogorov extension.

In case of continuous random variables, however, the joint
PDF can no longer be directly represented by a tensor. One
possible solution could be discretization, but this unavoidably
leads to discretization error. In this work, what we show is
that we can approximately represent any smooth joint PDF
(and evaluate it at any point) using a low-rank tensor in the
characteristic function domain, thereby avoiding discretization
loss altogether.

Our joint PDF model enables easy computation of any
marginal or conditional density of subsets of variables of X .
Using the conditional expectation, the response variable, taken
without loss of generality to be the last variable XN , can
be estimated in the following way (see detailed derivation in
Section VIII.).

E [XN |X1, . . . , XN−1] =
1

c1

F∑
h=1

λ(h)

N−1∏
n=1

K∑
kn=−K

An(kn, h)e
−j2πknxn

K∑
kN=−K

c2,kN
AN (kN , h) (21)

where c1 =
F∑

h=1

λ(h)
N−1∏
n=1

K∑
kn=−K

An(kn, h)e
−j2πknxn ,

and c2,kN
=

e−j2πkN

−j2πkN
+

1− e−j2πkN

[−j2πkN ]2
.

One of the very appealing properties of the proposed
approach is that it is a generative model that affords easy sam-
pling. According to Equation (18), a sample of the multivariate
distribution can be generated by first drawing H according to
pH and then independently drawing samples for each variable
Xn from the conditional PDF fXn|H . The resulting generative
model can be visualized in Figure 3.

A. Algorithm: Coupled Tensor Factorization

We formulate the problem as a coupled complex tensor
factorization problem and propose a Block Coordinate Descent
algorithm for recovering the latent factors of the CPD model
representing the joint CF. Then, we only need to invert each
conditional CF and synthesize the joint PDF. We refer to this
approach as Low-Rank Characteristic Function based Density
Estimation (LRCF-DE).

Algorithm 1 Low-Rank Characteristic Function based
Density Estimation (LRCF-DE).

Input: A real-valued dataset D ∈ RN×M , parameters F,K.
Output: The joint PDF model fX .
Compute Φijℓ∀i, j, ℓ ∈ {1, . . . , N}, ℓ > j > i from
training data, using (16).
Initialize λ,A1, . . . ,AN in compliance with their con-
straints.
repeat

for all n ∈ {1, . . . , N} do
Solve the optimization problem with respect to An

defined in (23).
end for
Update λ by solving the optimization problem defined in
(25).

until convergence criterion satisfied
Assemble the joint PDF as in equation (27).

We begin by defining the following coupled tensor factor-
ization problem

min
λ,A1,...,AN

∑
i

∑
j>i

∑
ℓ>j

∥∥Φijℓ − [[λ,Ai,Aj ,Aℓ]]
∥∥2
F

subject to λ ≥ 0,1Tλ = 1,

An(K + 1, :) = 1T , n = 1, . . . , N.

(22)

Each lower-dimensional joint CF of triples, Φijℓ, can be
computed directly from the observed data via sample averag-
ing according to equation (16). The formulated optimization
problem (22) is non-convex and NP-hard. However it becomes
convex with respect to each variable if we fix the remaining
ones and can be handled using alternating optimization. By
using the mode-1 matrix unfolding of each tensor Φijℓ, the
optimization problem with respect to Ai becomes

min
Ai

∑
j ̸=i

∑
ℓ̸=i,ℓ>j

∥∥∥Φ(1)
ijℓ − (Aℓ ⊙Aj)diag(λ)AT

i

∥∥∥2
F

subject to Ai(K + 1, :) = 1T .

(23)

The exact update for each factor Ai can be computed as

Ai ← Gi
−1Vi, (24)

where
Gi = (λλT )⊛

∑
j ̸=i

∑
ℓ̸=i,ℓ>j

QH
ℓjQℓj ,

Vi = diag(λ)
∑
j ̸=i

∑
ℓ̸=i,ℓ>j

QH
ℓjΦ

(1)
ijℓ ,

Qℓj = Aℓ ⊙Aj .

For each update, the row of Ai that corresponds to zero fre-
quency is removed and updating Ai becomes an unconstrained
complex least squares problem. A vector of ones is appended
at the same row index after each update Ai. Due to role
symmetry the same form holds for each factor An.

Now, for the λ-update we solve the following optimization
problem
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Fig. 4: Visualization of synthetic M ′ = 1500 samples generated from the proposed model trained on the Weight-Height dataset
for different F,K parameter combinations – The rightmost figure represents the ground truth. On the first row, we fixed
K, K = 4, and varied F , F ∈ [2, 4, 6, 8, 10] (from left to right). On the second row, we fixed F , F = 8, and varied K,
K ∈ [1, 2, 3, 4, 5] (from left to right).

Fig. 5: Qualitative synthetic M ′ = 1500 samples obtained from the proposed model trained on M = 2000 samples of a toy
2-D Moons and Circles datasets (for fixed K, K = 11, from left to right F ∈ [1, 2, 3, 4, 6] – The rightmost figures represent
the ground truth).

min
λ

∑
i

∑
j>i

∑
ℓ>j

∥∥vec(Φijℓ)− (Aℓ ⊙Aj ⊙Ai)λ
∥∥2
F

subject to λ ≥ 0, 1Tλ = 1.

(25)

The optimization problem (25) is a least squares problem with
a probability simplex constraint. We use an ADMM algorithm
to tackle it. Towards this end, we reformulate the optimization
problem by introducing an auxiliary variable λ̂ and rewrite the
problem equivalently as

min
λ,λ̂

f(λ̂) + r(λ)

subject to λ̂
T
= λ,

where, f(λ̂) =
∑
i

∑
j>i

∑
ℓ>j

∥vec(Φijℓ)− (Aℓ ⊙Aj ⊙Ai)λ̂∥2F
and r(λ) is the indicator function for the probability simplex.
C = {λ|λ ≥ 0,1Tλ = 1},

r(λ) =

{
0, λ ∈ C

∞, λ ̸∈ C.

At each iteration τ , we perform the following updates

λ̂
τ+1
← (G+ ρI)

−1
(V + ρ(λτ + uτ ))

λτ+1 ← PC(λ
τ − λ̂

τ+1
+ uτ )

uτ+1 ← uτ + λτ+1 − λ̂
τ+1

,

where

G =
∑
i

∑
j>i

∑
ℓ>j

QH
ℓjiQℓji,

V =
∑
i

∑
j>i

∑
ℓ>j

QH
ℓjivec(Φ),

Qℓji = Aℓ ⊙Aj ⊙Ai.

(26)

PC(y) denotes the projection operator onto the convex set C –
it computes the Euclidean projection of the real part of a point
y = [y1, . . . , yF ]

T ∈ CF onto the probability simplex

min
x∈RF

1

2
∥x−ℜ(y)∥2F

subject to x ≥ 0, 1Tx = 1,

using the method described in [43]. The overall procedure is
described in Algorithm 1.
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As the final step, the factors are assembled from the
triples and the joint CF over all variables is synthesized as
Φ = [[λ,A1, . . . ,AN ]]. Given, the model of the joint CF, the
corresponding joint PDF model can be recovered at any point
as

fX(x) =
F∑

h=1

λ(h)
N∏

n=1

K∑
kn=−K

An(kn, h)e
−j2πknxn . (27)

V. EXPERIMENTS

A. Low Dimensional Toy Data

We first show motivating results from modeling low dimen-
sional datasets and showcase the expressivity of the proposed
model as well as the significance of each parameter. Our model
depends on the degree of smoothness and tensor rank (K
and F ). We pick the number of Fourier series coefficients
and the tensor rank through cross-validation for real data.
Using these figures, one can see how the model changes when
varying one of the two parameters separately. We begin by
modeling M = 2000 samples from the Weight-Height dataset.
In Figure 4, we present M ′ = 1500 synthetic samples obtained
from the proposed model for different smoothing parameters
K ∈ [1, 2, 3, 4, 5] and ranks F ∈ [2, 4, 6, 8, 10]. By judiciously
selecting the parameter search space, our approach yields an
expressive generative model that can well-represent the data.

Following the same procedure, we now visualize M = 2000
samples from the 2-D Moons and Circles datasets. We fix the
number of smoothing coefficients K, K = 11, and visualize
synthetic M ′ = 1500 samples obtained from the proposed
model for different approximation ranks F ∈ [1, 2, 3, 4, 6]
in Figure 5. The results show that our model is able to
capture complex structures and properties of the data for an
appropriate choice of rank F .

B. Real Data

We test the proposed approach on datasets (see a brief
description of the datasets in Table II) obtained from the UCI
machine learning repository [44].

For each dataset we randomly hide 20% of data (testing
set) and consider the remaining entries as observed infor-
mation (training set). The parameters, which include the
tensor rank F and the smoothing parameter K, are chosen
using cross-validation. The smoothing parameter K is cho-
sen from the set {5, 10, 20, 25, 30} and the rank F from
{5, 10, 20, 30, 50, 100}. We use 20% of the training data as
validation data, where we seek to find the optimal parameter
values maximizing the average log-likelihood of the validation
samples. Once the hyperparameters are chosen, we train the
model using all the training data (including the validation
data) and measure its performance on the testing set. We
compare our approach against standard baselines described in
section II-A.

Evaluating the quality of density models is an open and
difficult problem [45]. Following the approach in [35], [15],
we calculate and report the average log-likelihood of unseen
data samples (testing set), further averaged over 5 random data

splits. The results are shown in Table I. LRCF-DE has a higher
average test sample log likelihood on almost all datasets.
Overall, we observe that our method outperforms the baselines
in 4 datasets and is comparable to the winning method in the
remaining ones.

Following the derivation in Equation (21), we test the
proposed model in several regression tasks. We evaluate and
report the Mean Absolute Error (MAE) in estimating XN for
the unseen data samples in Table III and additional results for
multi-output regression are presented in Table IV. Overall, we
observe that LRCF-DE outperforms the baselines on almost
all datasets, and performs comparable to the winning method
in the remaining ones.

We have to stress again the fact that neural network based
density estimation methods evaluate multivariate densities
point-wise. These methods cannot impute more than a few
missing elements in the input as grid search becomes combi-
natorial. Due to the interpretation of the approximation of the
sought density as a finite mixture of separable densities and the
coupled tensor factorization approach, our method allows us to
easily work with missing data during both training and testing.
Here, we showcase the results of LRCF-DE against MAF for
simultaneously predicting the last two random variables of
each dataset given the remaining ones.

Data set LRCF-DE MAF

Red wine 0.82 0.91
White wine 0.93 0.97
First-order theorem proving (F-O.TP) 0.69 0.72
Polish companies bankruptcy (PCB) 4.97 5.46
Superconductivty 20.84 20.72
Corel Images 1.36 1.59
Gas Sensor Array Drift (Gas Sensor) 25.7 26.1

TABLE IV: MAE for multi-output regression tasks.

The reduction in free parameters makes the proposed model
particularly beneficial in the low-sample regime. We conducted
an additional experiment on the Gas dataset to study how
our model performs in terms of test-set log-likelihood when
the number of samples is varied in comparison with the best
performing neural network based PDF estimator from the
baselines considered, namely, MAF. The results in Figure 6
verify that small to moderate training sample sizes result in
much better LRCF-DE performance than MAF.

As our last experiment, we train LRCF-DE to learn the
joint distribution of grayscale images from the USPS dataset
[46], which contains 9298 images of handwritten digits of size
16 × 16 → N = 256. The number of examples for each
digit is shown in Table VIII. The purpose of this experiment
is to show that one can obtain reasonably accurate samples
of digit images, by only modeling the distribution of triples
of variables, something which has never been done before on
images. We sample from the resulting 256-dimensional model,
and provide visualization of the generated data. We fix the
tensor rank to F = 8 and the smoothing parameter to K = 15,
and draw 8 random samples of each digit (class). The resulting
samples are shown in Figure 7, and they are very pleasing –
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Data set MoG KDE RNADE MAF LRCF-DE

Red wine 11.9± 0.29 9.9± 0.16 14.41± 0.16 15.2± 0.09 16.4± 0.67
White wine 16.1± 1.48 14.8± 0.12 17.1± 0.26 17.3± 0.20 18.4± 0.17
F-O.TP 125.4± 7.79 103.05± 0.84 152.48± 5.62 149.6± 8.32 154.34± 8.43
PCB 152.9± 3.88 147.6± 1.63 171.7± 2.75 179.6± 1.62 194.4± 2.43
Superconductivty 134.7± 3.47 127.2± 2.82 140.2± 1.03 143.5± 1.32 146.1± 2.31
Corel Images 211.7± 1.04 201.4± 1.18 223.6± 0.88 218.2± 1.35 222.6± 1.25
Gas Sensor 310.3± 3.47 296.48± 1.62 316.3± 3.57 315.4± 1.458 316.6± 2.35

TABLE I: Average test-set log-likelihood per datapoint for 5 different models on UCI datasets; higher is better.

Data set N M

Red wine 11 1599
White wine 11 4898
First-order theorem proving (F-O.TP) 51 6118
Polish companies bankruptcy (PCB) 64 10503
Superconductivty 81 21263
Corel Images 89 68040
Gas Sensor Array Drift (Gas Sensor) 128 13910

TABLE II: Dataset information.

Data set MoG KDE RNADE MAF LRCF-DE

Red wine 1.28 1.13 0.66 0.63 0.56
White wine 1.79 1.31 0.80 0.75 0.59
F-O.TP 1.86 1.46 0.63 0.52 0.48
PCB 5.6 7.73 4.43 4.52 3.85
Superconductivty 18.56 19.96 16.46 16.38 16.53
Corel Images 0.53 0.93 0.27 0.27 0.28
Gas Sensor 29.7 35.3 26.8 26.2 26.7

TABLE III: MAE for regression tasks.

in light of the fact that our model is “agnostic”: designed
for general-purpose density estimation, not specifically for
realistic-looking image synthesis. It is possible to incorporate
image modeling domain knowledge in the design of LRCF-
DE (such as correlation between adjacent pixel values), but
this is beyond the scope of this paper. This manuscript is the
first part containing the foundations of a two-part paper. The
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Fig. 6: LRCF-DE is particularly beneficial in the small to
moderate training sample regime. Using a limited number of
training points from the Gas dataset, highlights the superior
performance of LRCF-DE against the state of the art deep
learning based PDF estimator (MAF).

0 1 2 3 4 5 6 7 8 9 Total

Samples 1553 1269 929 824 852 716 834 792 708 821 9298

TABLE V: Images of handwritten digits - USPS dataset
information.

Fig. 7: The first eight columns correspond to class-conditional
synthetic samples (generated by LRCF-DE) and the rest cor-
respond to real samples from the USPS dataset.

second part [47] builds on this foundation to develop a joint
compression (nonlinear dimensionality reduction) and com-
pressed density estimation framework that offers additional
flexibility and scalability and is used to demonstrate improved
image sampling performance against well known deep learning
models, including autoregressive methods and VAEs.

VI. HISTORY, PRIORITY AND ONE FINAL COMPARISON

The first preprint of this paper appeared on Aug. 27, 2020,
see V1 of [48], building upon our earlier work in [21] and
[49] which dealt with the case of discrete/categorical random
variables and multivariate histograms.

While this paper was undergoing multiple rounds of review
and revision, we noticed via Google Scholar recommendations
that several other papers and preprints were popping up,
claiming similar approaches and results. In particular, we saw
[50] in December 2021, and realized that the authors were
citing Parts I and II of our work as closely related in their
response to a reviewer in openreview https://openreview.net/
forum?id=uholDBWSVP, without acknowledging and citing
our work in the paper itself. Eventually, they uploaded a new
version that cites us in a very confusing way. In fact [50]
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(see also [51]) uses multivariate histograms to approximate
smooth multivariate densities, and derives the convergence
rate of a low-rank histogram estimator that exists but is
practically intractable. Their result does not tell us what is
the performance of any practical algorithm based on tensor
decomposition, and we do not know whether this bound is
practically attainable.

In July 2021 we discovered [52], which was very similar
to Part I of this work – the main difference being the use of
a tensor train decomposition instead of CPD. The authors of
[52] told us that they were unaware of our work, and offered
to cite it in a revised arXiv version; the conference version
[52] was already out and they could not update it. The revised
arXiv version of [52] citing (but not comparing to) our work
was uploaded on Feb. 25, 2022.

During the last round of review of this manuscript, one
reviewer acknowledged that we have priority over [50] and
[52], but felt that we should still cite these papers and compare
with [52] (since [50] did not include any well-developed
algorithm).

We decided that it is worth recounting this experience and
comparing with [52]. We downloaded the code provided by
the authors of [52], and applied it with their own parameter
settings on the same datasets that they tried. We included in
the comparison both the method in this (Part I of our two-part)
paper (LRCF-DE), and one of the methods (HTF-DE without
compression) in Part II of this paper, which is now published
[47]. As we expected, both our methods outperform [52]. We
present our results in Tables VI and VII.

Beyond numerical results, however, there are other impor-
tant reasons to choose our approach, which is based on CPD,
over the tensor train-based approach in [52]. These are as
follows.
• Ease of marginalization: For CPD, marginalization is
trivial – i.e., it incurs zero complexity. This is because if
[[λ,A1,A2,A3]] is the CPD model of density fX1,X2,X3 ,
the lower order marginal fX1,X2 is simply [[λ,A1,A2]], i.e.,
we simply drop one factor matrix; see also [21]. That is,
there is no cost in obtaining a closed-form expression for
the lower-order marginal. Evaluating our density model for N
random variables using K frequencies per variable and tensor
rank F entails complexity NKF per evaluation point. Thus,
when we evaluate lower-order marginals involving n < N
variables, the cost per evaluation is only nKF . For tensor
trains, marginalization according to [52] is carried out by
taking the inner product of two N -way tensors in tensor train
format1, using Algorithm 1 in [52] which has complexity
O(NKr2tt), where K is the number of basis functions (Fourier
coefficients in our context) per variable, and rtt is tensor train
rank. Note that this complexity estimate is per evaluation of
the resulting marginal at a particular point, and it involves N
instead of n.
• Ease of sampling: For our CPD-based model, sampling is
very simple: one draws a sample from the known PMF of
the latent variable, and then independently draws from each

1It is unclear what happens if the integral of one of the basis functions is
zero.

1-D conditional PDF of the sampled variables via the trans-
formation method. The latter process can be fully parallelized.
Tensor trains are inherently sequential models, and as stated
in [52], “the tensor-train format allows fast, exact sampling
in the autoregressive fashion.” A well known downside of
(sequential) auto-regressive models, however, is their slow
sampling time. That is because the sample coordinates are
generated one by one, which slows down the process for
high-dimensional datasets. The tensor-train sampling process
(Algorithm 2 in [52]) has complexity O(NKr2tt + NKL),
where L is the number of bisection steps per iteration. Again,
this is significantly more complicated than sampling from our
CPD model.
• Identifiability: Last but not least, CPD modeling affords
identifiability guarantees which are not available for the tensor
train approach in [52].

VII. CONCLUSIONS

In this work, we have revisited the classic problem of
non-parametric density estimation from a fresh perspective –
through the lens of complex Fourier series approximation and
tensor modeling, leading to a low-rank characteristic function
approach. We showed that any compactly supported density
can be well-approximated by a finite characteristic tensor of
leading complex Fourier coefficients as long as the coeffi-
cients decay sufficiently fast. We posed density estimation
as a constrained (coupled) tensor factorization problem and
proposed a Block Coordinate Descent algorithm, which under
certain conditions enables learning the true data-generating
distribution. Results on real data have demonstrated the utility
and promise of this novel approach compared to both standard
and recent density estimation techniques.

VIII. APPENDIX

Due to the subtleties of tensor rank, the possible non-
existence of best low-rank tensor approximation, and other
technical issues, no perturbation theory currently exists for
tensor decomposition to estimate how close low-rank approx-
imation of a perturbed low-rank tensor is to the unperturbed
low-rank tensor. In what follows, we summarize what is known
for our method without imposing low-rank structure, and
further explain why partially imposing low-rank structure is
beneficial, using matrix results.

A. Bias, variance, consistency of the empirical characteristic
function

In this appendix we summarize important properties of em-
pirical characteristic functions as statistical estimators of the
corresponding characteristic functions. We refer the reader to
[53] for proofs and additional results.

By linearity of expectation, it is easy to see that the
empirical characteristic function is an unbiased estimator of
the corresponding characteristic function, i.e.,

E
[
Φ̂X(ν)

]
= ΦX(ν),

for all ν and M ≥ 1. For the remainder of this section,
we assume that {xm}Mm=1 is i.i.d. in m. The variance of the
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POWER GAS HEPMASS MINIBOONE BSDS300

Squared TTDE [52] 0.46 8.93 −21.34 −28.77 143.30
LRCF-DE 0.47 8.44 −17.53 −17.05 152.30
HTF-DE [47] 0.44 8.51 -15.72 -15.43 151.31

TABLE VI: Average test-set log-likelihood per datapoint for different tensor-based models on UCI datasets; higher is better.

HEPMASS MINIBOONE BSDS300

Squared TTDE [52] 0.00313 0.1793 0.621
LRCF-DE 0.00292 0.1591 0.533
HTF-DE [47] 0.00301 0.1714 0.575

TABLE VII: Prediction performance (MSE); lower is better. We predict the first variable for each dataset.

0 1 2 3 4 5 6 7 8 9 Total

Samples 1553 1269 929 824 852 716 834 792 708 821 9298

TABLE VIII: Images of handwritten digits - USPS dataset
information.

empirical characteristic function estimate can be shown [53]
to be

Var[Φ̂X(ν)] = E

[∣∣∣Φ̂X(ν)− E
[
Φ̂X(ν)

]∣∣∣2]
= E

[∣∣∣Φ̂X(ν)− ΦX(ν)
∣∣∣2]

=
1

M

(
1− |ΦX(ν)|2

)
.

Note that 0 ≤
∣∣ΦX(ν)

∣∣ ≤ 1, and therefore Var[Φ̂X(ν)] ≤ 1
M .

It follows that

lim
M→∞

E

[∣∣∣Φ̂X(ν)− ΦX(ν)
∣∣∣2] = 0,

i.e., for any fixed ν, Φ̂X(ν) converges to ΦX(ν) in the mean-
squared sense. By the strong law of large numbers, it also
converges almost surely for any fixed ν. Furthermore, for any
fixed positive T <∞

lim
M→∞

sup ∥ν∥2≤T

∣∣Φ̂X(ν)− ΦX(ν)
∣∣ = 0,

almost surely. It can also be shown [53] that for any increasing
sequence TM such that limM→∞

log(TM )
M = 0, it holds

lim
M→∞

sup ∥ν∥2≤TM

∣∣Φ̂X(ν)− ΦX(ν)
∣∣ = 0,

almost surely. In our context, we only use a sampled and
truncated version of the characteristic function (corresponding
to a truncated multivariate Fourier series), hence T is always
finite – we do not need the latter result.

It is also worth noting that the covariance of different
samples of the empirical characteristic function (corresponding
to different values of ν) goes to zero ∼ 1

M , and so does the
covariance of its real and imaginary parts. As a result, for large
M , the errors in the different elements of the characteristic
tensor are approximately uncorrelated, with uncorrelated real
and imaginary parts. This suggests that when we fit a model

to the empirical characteristic function, it makes sense to use
a least squares approach. Another motivation for this comes
from Parseval’s theorem: minimizing integrated squared error
in the Fourier domain corresponds to minimizing integrated
squared error between the corresponding multivariate distri-
butions. This is true in particular when we limit the support
of the distribution to a hypercube and use the samples of
the characteristic function that correspond to the multivariate
Fourier series, thereby replacing the multivariate integral in
the Fourier domain by a multivariate sum.

B. Low-rank denoising: reduction of the mean squared error

Our use of a low-rank model in the characteristic tensor
domain is primarily motivated by the need to avoid the “curse
of dimensionality”: using a rank-F model with 2K+1 Fourier
coefficients per mode parametrizes the whole N -dimensional
multivariate density using just FN(2K + 1) coefficients, and
avoids instantiating and storing a tensor of size (2K + 1)N ,
which is close to impossible even for moderate N . However,
there is also a variance benefit that comes from this low-rank
parametrization. We know from [54] that for a square L ×
L matrix of rank F observed in zero-mean white noise of
variance σ2, low-rank denoising attains mean squared error
cLFσ2 asymptotically in L, where c is a small constant. In
practice the asymptotics kick in even for relatively small L
[54]. Contrast this to the raw L2σ2 if one does not use the
low-rank property.

For an N -way tensor of rank F , assume N is even,
Kn = K, ∀N (for simplicity of exposition), and “unfold”
the characteristic tensor into a KN/2 × KN/2 matrix. In
practice we use F far less than KN/2, and thus the resulting
matrix will be very low rank. Invoking [54], low-rank tensor
modeling will yield a reduction in mean squared error by a
factor of at least F

KN/2 . We say at least, because this low-
rank matrix structure is implied but does not imply low-rank
tensor structure, which is much stronger. Note also that mean
squared error in the characteristic tensor domain translates to
mean squared error between the corresponding distributions,
by virtue of Parseval’s theorem.
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C. Derivation of (21)

In this appendix we present the derivation of (21), which is
used to solve regression tasks.

E [XN |X1, . . . , XN−1]

=

∫ 1

0

xNfXN |X1,...,XN−1
(xN |x1, . . . , xN−1)dxN

=

∫ 1

0

xN
fX1,...,XN

(x1, . . . , xN )

fX1,...,XN−1
(x1, . . . , xN−1)

dxN

=
1

c1

∫ 1

0

xNfX1,...,XN
(x1, . . . , xN )dxN

=
1

c1

∫ 1

0

xN

F∑
h=1

λ(h)
N∏

n=1

K∑
kn=−K

An(kn, h)e
−j2πknxndxN

=
1

c1

F∑
h=1

λ(h)
N−1∏
n=1

K∑
kn=−K

An(kn, h)e
−j2πknxn

K∑
kN=−K

AN (kN , h)

∫ 1

0

xNe−j2πkNxNdxN

=
1

c1

F∑
h=1

λ(h)
N−1∏
n=1

K∑
kn=−K

An(kn, h)e
−j2πknxn

K∑
kN=−K

c2,kN
AN (kN , h),

where

c1 = fX1,...,XN−1
(x1, . . . , xN−1)

=
F∑

h=1

λ(h)
N−1∏
n=1

K∑
kn=−K

An(kn, h)e
−j2πknxn ,

and

c2,kN
=

e−j2πkN

−j2πkN
+

1− e−j2πkN

[−j2πkN ]2
.
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