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Low-rank Characteristic Tensor Density Estimation
Part II: Compression and Latent Density Estimation
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Abstract—Learning generative probabilistic models is a core
problem in machine learning, which presents significant challenges
due to the curse of dimensionality. This paper proposes a joint
dimensionality reduction and non-parametric density estimation
framework, using a novel estimator that can explicitly capture
the underlying distribution of appropriate reduced-dimension
representations of the input data. The idea is to jointly design
a nonlinear dimensionality reducing auto-encoder to model the
training data in terms of a parsimonious set of latent random
variables, and learn a canonical low-rank tensor model of the joint
distribution of the latent variables in the Fourier domain. The
proposed latent density model is non-parametric and “universal”,
as opposed to the predefined prior that is assumed in variational
auto-encoders. Joint optimization of the auto-encoder and the
latent density estimator is pursued via a formulation which learns
both by minimizing a combination of the negative log-likelihood
in the latent domain and the auto-encoder reconstruction loss.
We demonstrate that the proposed model achieves very promising
results on toy, tabular, and image datasets on regression tasks,
sampling, and anomaly detection.

Index Terms—Statistical learning, Probability Density Function
estimation, Autoencoder-based Generative Models, Dimension-
ality Reduction, Characteristic Function (CF), Tensors, Rank,
Canonical Polyadic Decomposition (CPD).

I. INTRODUCTION

Accurate modeling of the multivariate structure of data based
on observed data samples is one of the most fundamental topics
in machine learning. A model of the joint probability density
function (PDF) of a data vector encodes the complete statistical
properties of the data generative process and allows one to
reason about data probabilistically, uncover the (possibly low-
dimensional) manifold the data live on, and ultimately generate
new data. PDF estimation serves as a building block in a wide
variety of applications, such as image processing [1], speech
modeling [2], natural language processing [3], and anomaly
detection [4]. Conventional density estimation methods, such
as kernel density estimation (KDE) [5] and Gaussian mixture
models (GMMs) [6] are usually designed to fit target distri-
butions directly in the data space RN and fall short in high
dimensions from both computational and statistical points of
view due to the Curse of Dimensionality – convergence slows
down as the number of dimensions increases as a result of
data sparsity in high-dimensional spaces. Real-world data often
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resides in a high-dimensional and complex feature space with
only a limited amount of observed data being directly available.

Recently, the use of deep neural networks has led to
substantial advances in this area. For example, generative
adversarial networks (GANs) [7] can be trained to sample
from very high-dimensional densities, but they do not support
statistical inference or explicit density evaluation. On the
other hand, variational auto-encoders (VAEs) [8] provide
functionality for both (approximate) inference and sampling.
VAEs assume a prior as a manually specified distribution (e.g.,
a simple isotropic Gaussian or mixture of Gaussians) and are
trained by minimizing a reconstruction error and a divergence
to force the variational posterior to fit the prior of the latent
variables. However, the forced global structure in the latent
space through the use of a manually specified prior may differ
from the complex latent nature of the true data manifold.
Thus, such simplistic assumptions may potentially harm the
generalization of high dimensional data from low dimensional
latent spaces. For example, it is observed that VAEs tend to
generate blurry images, an effect that is usually attributed
to the latent density mismatch problem [9], [10]. Finally,
explicit neural models such as auto-regressive models [11]
and flow-based models [12], [13] are designed to perform
sampling and point-wise density evaluation. Despite their
success, auto-regressive models generally suffer from slow
sampling time [14] and inferior quality of samples compared
to VAEs; but they are particularly useful for point-wise density
evaluation. On the other hand, flow-based models, such as
Real-NVP [13] and Glow [1], are efficient for sampling, but
have inferior performance in evaluating the log-likelihood of
the input compared to the auto-regressive ones.

The goal of this paper is to introduce a class of probabilistic
latent variable models for unsupervised learning which is
tailored for high dimensional datasets. The proposed class
of models is non-parametric, and it learns the underlying
distribution of latent representations of the input data in the
Fourier domain. The proposed framework consists of two main
components: an auto-encoder network, through which a lower-
dimensional latent representation of the input is sought; and a
nonparametric density estimation module in the latent domain.
The auto-encoder compresses redundancies in the data domain
while preserving the essential information, and is used as a new
feature representation space where we learn the data distribution.
The auto-encoder and the latent density are learned jointly via
an optimization criterion that combines a data reconstruction
loss and a negative log-likelihood regularization term over the
latent representations of the training data.

This is the second part of a two-part paper. The first part
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[15] dealt with the density estimation problem in the native
(“raw”) input data domain, showing that any joint density that
is compactly supported and continuously differentiable can be
well-approximated using a low-rank tensor model in the Fourier
domain. A corollary of [15] is that a finite separable mixture
model (approximately) follows from compactness of support
and continuous differentiability. This interpretation enables an
efficient and disciplined sampling process. By introducing
a low-rank tensor model in the Fourier domain via the
Canonical Polyadic Decomposition (CPD) [16], a controllable
approximation of the multivariate density is identifiable. The
choice of tensor rank, number of Fourier coefficients, and the
dimensionality of the latent space let us control the expressivity
of the learned distribution. With respect to Part I [15], the key
differences in this second part are the following:

• Unlike Part I, which aimed to tackle the problem di-
rectly in the original N -dimensional space, probabilistic
modeling in Part II is realized in a reduced-dimension
latent space and the effects are translated back into
the input space through the decoder mapping. Towards
this end, a joint nonlinear dimensionality reduction and
compressed density estimation framework is proposed in
Part II. The joint approach boosts the flexibility, scala-
bility, and statistical performance in terms of prediction
(regression/detection) accuracy and sampling fidelity.

• Instead of the coupled tensor factorization approach
adopted in Part I, Part II tackles joint density estimation
as a hidden tensor factorization problem using maximum
likelihood learning of the latent distribution’s parameters.

A high-level overview of the proposed framework is shown
in Figure 1. A sneak peak of the expected performance of
the proposed method is shown in Figure 2 where we use our
model to learn the joint distribution of MNIST [17] images of
0s and 8s. With a suitable combination of hyper-parameters,
the proposed density estimator offers considerable flexibility
without sacrificing parsimony of representation. We showcase
the promising results of the proposed model on benchmark
image (MNIST, FMNIST [18]) and several tabular datasets
on sampling, regression, and anomaly detection tasks, and on
some toy but didactic examples for illustration.

II. BACKGROUND

A. Related work

Classic work on density estimation includes Gaussian Mix-
ture Models, which are fragile to model mismatch due to their
parametric nature, and introduce computational and estimation
challenges in the high dimensional case. Conventional non-
parametric models such as the Kernel Density Estimators
become computationally intractable in high dimensions, since
the number of parameters grows exponentially with the number
of dimensions [19].

Recently, the use of deep neural networks has led to
significant advances in modeling modern complex and high-
dimensional data. Auto-encoders enjoy a remarkable ability
to learn data representations. Auto-encoder networks such as
VAEs [8] and GANs [7] learn latent representations of very
high-dimensional data such as images or videos. However,

Fig. 1: Compressed Density Estimation: An auto-encoder
attempts to reproduce the input in the output layer by com-
pressing it to fewer dimensions while retaining non-redundant
information. The hidden layer becomes a bottleneck, forming
a lower-dimensional representation of the data, which is used
to build a non-parametric density model.

GANs only support sampling, but not inference or density
estimation. VAEs assume that high-dimensional data can be
modeled as lying on or near a low-dimensional, nonlinear man-
ifold which they approximate by learning nonlinear mappings
while encouraging a global structure in the latent space through
the use of a specified prior distribution. However, specifying the
prior distribution may prevent them from faithfully representing
the true data manifold. It was shown in [20] that choosing
a simplistic prior could lead to over-regularization and, as a
consequence, very poor latent representation.

In this work, we avoid the variational training by jointly
training a deterministic encoder–decoder pair and an expressive
density estimator in the latent space, which admits simpler
optimization, and, most importantly, generates better samples
than VAEs. A key advantage of our approach is that we
introduce a non-parametric density model into the latent space,
which by virtue of uniqueness of low rank tensor decomposition
comes with identification guarantees. This approach can yield
a more accurate model of the data manifold, as we will see.
A conceptually similar approach was proposed in [4] and
applied for unsupervised anomaly detection, the key difference
being that the density of low-dimensional representations was
modelled using a GMM, which is far more restrictive and does
not come with identification guarantees.

Other classes of generative models include the Real-valued
Neural Autoregressive Distribution Estimator (RNADE) [21]
and its discrete version MADE [22], which is among the
best performing neural density evaluation methods and has
shown great potential in scaling to high-dimensional distribution
evaluation problems. These so-called autoregressive models
decompose the joint density as a product of one-dimensional
conditionals of increasing conditioning order, and model each
conditional density with a parametric model. Normalizing
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(a) F = 4,K = 1 (b) F = 4,K = 3 (c) F = 4,K = 5

(d) F = 2,K = 3 (e) F = 4,K = 3 (f) F = 8,K = 3

Fig. 2: Sneak peek: Demonstration of generated MNIST
samples trained on images of 0s and 8s using the proposed
CDE model. We train the model on different values of F and K
to show that only a few parameters are needed to come close to
the ground-truth. Increasing K generates sharper digits, while
increasing F better differentiates the samples of the digits.

type of NF model where the transformation layer is built as an
autoregressive neural network. Finally, Gaussianization flows
(GF) [25] build upon rotation-based iterative Gaussianization.
These methods do not construct an explicit joint PDF model,
but rather serve for point-wise density evaluation. That is, for
any given input vector (realization), they output an estimate of
the density evaluated at that particular input vector.

B. Notation

In this paper, we use x, X, X for vectors, matrices
and tensors respectively. We use the notation x(k), X(:, k),
X(:, :, k) to refer to a particular element of a vector, a column
of a matrix and a slab of a tensor. Symbols ‖x‖2 and ‖X‖F
correspond to L2 norm and Frobenius norm. Symbols ◦,
~, � denote the outer, Hadamard and Khatri-Rao product
respectively. The set of integers {1, . . . , N} is denoted as [N ].
We use the notation FC (a, b, c) to describe a fully-connected
layer with a input neurons and b output neurons activated by
function c.

C. Canonical Polyadic Decomposition

In this section, we briefly introduce basic concepts related to
tensor decomposition. A D-way tensor Φ ∈ CK1×K2×···×KD

is a multidimensional array whose elements are indexed by D
indices. Any tensor can be decomposed as a sum of F rank-1
tensors, i.e.,

Φ = [[λ,A1,A2, . . . ,AD]] =
F∑

f=1

λ(f)a1
f ◦a2

f ◦· · ·◦aDf , (1)

where Ad = [ad1, . . . , a
d
F ] ∈ CKD×F and constraining the

columns An(:, f) to have unit norm, the real scalar λ(f)
absorbs the f -th rank-one tensor’s scaling. A particular element

of the tensor is given by

Φ(k1, k2, . . . , kD) =
F∑

f=1

λ(f)
D∏

d=1

Ad(kd, f). (2)

When F is minimal, it is called the rank of Φ, and the decom-
position is called Canonical Polyadic Decomposition (CPD)

[26], [16]. CPD is a powerful model that can parsimoniously
represent the high-order interactions among multi-way data
exactly or approximately leading to significant reduction in
the number of parameters. A key property of the CPD is that
the rank-1 components are unique under mild conditions. For
learning latent variable statistical models the uniqueness of
tensor decomposition often translates to identifiability, that
is the existence of a unique set of parameters that can be
consistent with what we have observed. See [27] for a tutorial
overview and detailed identifiability results.

III. COMPRESSED-DOMAIN DENSITY ESTIMATION

We consider the problem of general-purpose modeling of
a high-dimensional continuous joint distribution fX of an N -
dimensional random vector X when N is large. Given a dataset
D of M i.i.d. realizations in the N -dimensional observable
space D = {xm}Mm=1, we typically wish to perform maximum
likelihood learning of its parameters, i.e., to minimize the
Negative Log-Likelihood (NLL)

LNLL = − 1

M

M∑

m=1

log
(
fX(xm)

)
. (3)

In general, LNLL is difficult to compute or differentiate directly,
since the density fX can be analytically and computationally
intractable. One can address this issue and evade the curse
of dimensionality by using a mapping h to encode the
input data samples xm ∈ RN into much lower dimensional
representations zm ∈ RD, with D � N , in the latent space.

In this work, we propose a joint dimensionality reduction
(DR) and density estimation framework where the DR part is
carried out through learning an auto-encoder:

Auto-encoder: x
h7→ z

g7→ x̃.

Here, h and g denote the encoder and the decoder, respectively,
and x̃ is the reconstruction of x. The mapping h : RN → RD
can be viewed as nonlinear dimensionality reduction, and the
low-dimensional z = h(x) as the bottleneck representation
of the observed vector x. We approximate the latent domain
distribution fZ using the non-parametric density estimation
framework in Part I of this work [15]. The density estimation
framework relies on the decomposition of a D-way tensor
of leading Fourier series coefficients through CPD. Part I has
shown that this model is quite general, in that it can approximate
any multivariate compactly supported density as long as its
Fourier coefficients decay sufficiently fast, and under certain
conditions it can identify the true latent model.

The choice of tensor rank, number of Fourier coefficients, and
the dimensionality of the bottleneck representation are used to
control the expressivity of the model. Here we propose to jointly
learn the auto-encoder and the parameters of the density model.
The combination of an auto-encoder and density estimation
takes advantage of their synergistic strengths. Auto-encoders
can compress input data to fewer dimensions while retaining
non-redundant information, while density estimation works
best in lower-dimensional spaces. The proposed framework
can be used for missing data imputation and as a generative
model.

(a) From left to right : (F = 4,K = 1), (F = 4,K = 3), (F =
4,K = 5)
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(a) F = 4,K = 1 (b) F = 4,K = 3 (c) F = 4,K = 5

(d) F = 2,K = 3 (e) F = 4,K = 3 (f) F = 8,K = 3

Fig. 2: Sneak peek: Demonstration of generated MNIST
samples trained on images of 0s and 8s using the proposed
CDE model. We train the model on different values of F and K
to show that only a few parameters are needed to come close to
the ground-truth. Increasing K generates sharper digits, while
increasing F better differentiates the samples of the digits.

type of NF model where the transformation layer is built as an
autoregressive neural network. Finally, Gaussianization flows
(GF) [25] build upon rotation-based iterative Gaussianization.
These methods do not construct an explicit joint PDF model,
but rather serve for point-wise density evaluation. That is, for
any given input vector (realization), they output an estimate of
the density evaluated at that particular input vector.

B. Notation

In this paper, we use x, X, X for vectors, matrices
and tensors respectively. We use the notation x(k), X(:, k),
X(:, :, k) to refer to a particular element of a vector, a column
of a matrix and a slab of a tensor. Symbols ‖x‖2 and ‖X‖F
correspond to L2 norm and Frobenius norm. Symbols ◦,
~, � denote the outer, Hadamard and Khatri-Rao product
respectively. The set of integers {1, . . . , N} is denoted as [N ].
We use the notation FC (a, b, c) to describe a fully-connected
layer with a input neurons and b output neurons activated by
function c.

C. Canonical Polyadic Decomposition

In this section, we briefly introduce basic concepts related to
tensor decomposition. A D-way tensor Φ ∈ CK1×K2×···×KD

is a multidimensional array whose elements are indexed by D
indices. Any tensor can be decomposed as a sum of F rank-1
tensors, i.e.,

Φ = [[λ,A1,A2, . . . ,AD]] =
F∑

f=1

λ(f)a1
f ◦a2

f ◦· · ·◦aDf , (1)

where Ad = [ad1, . . . , a
d
F ] ∈ CKD×F and constraining the

columns An(:, f) to have unit norm, the real scalar λ(f)
absorbs the f -th rank-one tensor’s scaling. A particular element

of the tensor is given by

Φ(k1, k2, . . . , kD) =
F∑

f=1

λ(f)
D∏

d=1

Ad(kd, f). (2)

When F is minimal, it is called the rank of Φ, and the decom-
position is called Canonical Polyadic Decomposition (CPD)

[26], [16]. CPD is a powerful model that can parsimoniously
represent the high-order interactions among multi-way data
exactly or approximately leading to significant reduction in
the number of parameters. A key property of the CPD is that
the rank-1 components are unique under mild conditions. For
learning latent variable statistical models the uniqueness of
tensor decomposition often translates to identifiability, that
is the existence of a unique set of parameters that can be
consistent with what we have observed. See [27] for a tutorial
overview and detailed identifiability results.

III. COMPRESSED-DOMAIN DENSITY ESTIMATION

We consider the problem of general-purpose modeling of
a high-dimensional continuous joint distribution fX of an N -
dimensional random vector X when N is large. Given a dataset
D of M i.i.d. realizations in the N -dimensional observable
space D = {xm}Mm=1, we typically wish to perform maximum
likelihood learning of its parameters, i.e., to minimize the
Negative Log-Likelihood (NLL)

LNLL = − 1

M

M∑

m=1

log
(
fX(xm)

)
. (3)

In general, LNLL is difficult to compute or differentiate directly,
since the density fX can be analytically and computationally
intractable. One can address this issue and evade the curse
of dimensionality by using a mapping h to encode the
input data samples xm ∈ RN into much lower dimensional
representations zm ∈ RD, with D � N , in the latent space.

In this work, we propose a joint dimensionality reduction
(DR) and density estimation framework where the DR part is
carried out through learning an auto-encoder:

Auto-encoder: x
h7→ z

g7→ x̃.

Here, h and g denote the encoder and the decoder, respectively,
and x̃ is the reconstruction of x. The mapping h : RN → RD
can be viewed as nonlinear dimensionality reduction, and the
low-dimensional z = h(x) as the bottleneck representation
of the observed vector x. We approximate the latent domain
distribution fZ using the non-parametric density estimation
framework in Part I of this work [15]. The density estimation
framework relies on the decomposition of a D-way tensor
of leading Fourier series coefficients through CPD. Part I has
shown that this model is quite general, in that it can approximate
any multivariate compactly supported density as long as its
Fourier coefficients decay sufficiently fast, and under certain
conditions it can identify the true latent model.

The choice of tensor rank, number of Fourier coefficients, and
the dimensionality of the bottleneck representation are used to
control the expressivity of the model. Here we propose to jointly
learn the auto-encoder and the parameters of the density model.
The combination of an auto-encoder and density estimation
takes advantage of their synergistic strengths. Auto-encoders
can compress input data to fewer dimensions while retaining
non-redundant information, while density estimation works
best in lower-dimensional spaces. The proposed framework
can be used for missing data imputation and as a generative
model.

(b) From left to right : (F = 2,K = 3), (F = 4,K = 3), (F =
8,K = 3)

Fig. 2: Sneak peek: Demonstration of generated MNIST
samples trained on images of 0s and 8s using the proposed
CDE model. We train the model on different values of F and K
to show that only a few parameters are needed to come close to
the ground-truth. Increasing K generates sharper digits, while
increasing F better differentiates the samples of the digits.

Flows (NF) [23] models, on the other hand, start with a base
density e.g., standard Gaussian, and stack a series of invertible
transformations with tractable Jacobian to approximate the
target density. Masked Autoregressive Flow (MAF) [24] is a
type of NF model where the transformation layer is built as an
autoregressive neural network. Finally, Gaussianization flows
(GF) [25] build upon rotation-based iterative Gaussianization.
These methods do not construct an explicit joint PDF model,
but rather serve for point-wise density evaluation. That is, for
any given input vector (realization), they output an estimate of
the density evaluated at that particular input vector.

B. Notation

In this paper, we use x, X, X for vectors, matrices
and tensors respectively. We use the notation x(k), X(:, k),
X(:, :, k) to refer to a particular element of a vector, a column
of a matrix and a slab of a tensor. Symbols ∥x∥2 and ∥X∥F
correspond to L2 norm and Frobenius norm. Symbols ◦,
⊛, ⊙ denote the outer, Hadamard and Khatri-Rao product
respectively. The set of integers {1, . . . , N} is denoted as [N ].
We use the notation FC (a, b, c) to describe a fully-connected
layer with a input neurons and b output neurons activated by
function c.

C. Canonical Polyadic Decomposition

In this section, we briefly introduce basic concepts related to
tensor decomposition. A D-way tensor Φ ∈ CK1×K2×···×KD

is a multidimensional array whose elements are indexed by D
indices. Any tensor can be decomposed as a sum of F rank-1
tensors, i.e.,

Φ = [[λ,A1,A2, . . . ,AD]] =
F∑

f=1

λ(f)a1f ◦a2f ◦· · ·◦aDf , (1)

where Ad = [ad1, . . . , a
d
F ] ∈ CKD×F and constraining the

columns An(:, f) to have unit norm, the real scalar λ(f)
absorbs the f -th rank-one tensor’s scaling. A particular element

of the tensor is given by

Φ(k1, k2, . . . , kD) =
F∑

f=1

λ(f)
D∏

d=1

Ad(kd, f). (2)

When F is minimal, it is called the rank of Φ, and the decom-
position is called Canonical Polyadic Decomposition (CPD)
[26], [16]. CPD is a powerful model that can parsimoniously
represent the high-order interactions among multi-way data
exactly or approximately leading to significant reduction in the
number of parameters. A key property of the CPD is that the
rank-1 components are unique under mild conditions, see [27]
for a tutorial overview and related identifiability results. In our
present context, uniqueness of the CPD implies uniqueness of
the multivariate density model that we will build using CPD
in the Fourier domain, as we will see.

D. Choice of Tensor Decomposition Model

We will use CPD tensor modeling, but there are also other
tensor decompositions that one might consider using, such
as Tucker decompositions, particularly HOSVD/MLSVD, and
tensor-train models, see [27] and references therein. Different
decompositions serve different purposes and our decision to
choose CPD is based on its uniqueness properties, compactness
of model parametrization (scalability to higher dimensions),
and ease of marginalization and sampling. Marginalization is
important when we wish to predict a subset of the random
variables from another subset of the random variables – one
of the most important motivations for developing multivariate
density models. Ease of sampling is key when we wish to
efficiently draw samples from the fitted distribution, which is
another common use of multivariate density models.

We briefly compare the three most commonly used tensor
decompositions: CPD, Tucker (including HOSVD/MLSVD),
and tensor-trains. Tucker represents data as a core tensor and
D factor matrices using O(FD + DKF ) parameters, which
scales exponentially in the number of input random variables
(D). CPD and tensor-train decompositions are preferred for
high-order tensors since their complexity scales linearly with
D. CPD represents a tensor as a sum of rank-one tensors using
O(DKF ) parameters and the number of free parameters in
tensor-train models is O(KDF 2). We chose CPD over tensor-
trains due to

1) its uniqueness properties and
2) ease of marginalization and sampling from the fitted

model (these are considerably more complicated for
tensor-trains).

That does not mean that tensor-trains cannot be useful in our
present context; but we defer this to future work.

One of the key parameters in the CPD is the choice of rank
F . Determining tensor rank is an NP-hard problem. In practice
we choose rank using a validation set. Aiming to bypass the
problem of rank determination, Bayesian probabilistic tensor
factorization approaches such as [28], [29] have been proposed.
The objective of these approaches is not multivariate PDF or
PMF modeling but general tensor modeling – i.e., instead of a
collection of samples of a random vector, their input is elements
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of a data tensor. Rank determination (subject to a user-specified
upper bound on rank) is automatic in these methods, but it
falls off statistical modeling assumptions that may or may not
be appropriate in our context. Note that we model the complex
tensor of multivariate Fourier series coefficients of the joint
PDF in some latent space. We know that for differentiable
PDFs the high-frequency coefficients will typically be much
smaller than low-frequency ones; but the priors used on the
factors in Bayesian tensor models are i.i.d. across modes.

Interestingly, reference [28] is about fitting non-negative
tensors using non-negative factors. While is not useful for PDF
modeling in the Fourier domain, it can potentially be used in
the multivariate PMF case considered earlier in our work [30],
if one can incorporate certain sum to one constraints in the
framework of [28].

III. COMPRESSED-DOMAIN DENSITY ESTIMATION

We consider the problem of general-purpose modeling of
a high-dimensional continuous joint distribution fX of an N -
dimensional random vector X when N is large. Given a dataset
D of M i.i.d. realizations in the N -dimensional observable
space D = {xm}Mm=1, we typically wish to perform maximum
likelihood learning of its parameters, i.e., to minimize the
Negative Log-Likelihood (NLL)

LNLL = − 1

M

M∑

m=1

log
(
fX(xm)

)
. (3)

In general, LNLL is difficult to compute or differentiate directly,
since the density fX can be analytically and computationally
intractable. One can address this issue and evade the curse
of dimensionality by using a mapping h to encode the
input data samples xm ∈ RN into much lower dimensional
representations zm ∈ RD, with D ≪ N , in the latent space.

In this work, we propose a joint dimensionality reduction
(DR) and density estimation framework where the DR part is
carried out through learning an auto-encoder:

Auto-encoder: x
h7→ z

g7→ x̃.

Here, h and g denote the encoder and the decoder, respectively,
and x̃ is the reconstruction of x. The mapping h : RN → RD

can be viewed as nonlinear dimensionality reduction, and the
low-dimensional z = h(x) as the bottleneck representation
of the observed vector x. We approximate the latent domain
distribution fZ using the non-parametric density estimation
framework in Part I of this work [15]. The density estimation
framework relies on the decomposition of a D-way tensor
of leading Fourier series coefficients through CPD. Part I has
shown that this model is quite general, in that it can approximate
any multivariate compactly supported density as long as its
Fourier coefficients decay sufficiently fast, and under certain
conditions it can identify the true latent model.

The choice of tensor rank, number of Fourier coefficients,
and the dimensionality of the bottleneck representation are
used to control the expressivity of the model. Here we propose
to jointly learn the auto-encoder and the parameters of the
density model. The combination of an auto-encoder and density

estimation takes advantage of their synergistic strengths. Auto-
encoders can compress input data to fewer dimensions while
retaining non-redundant information, while density estimation
works best in lower-dimensional spaces. The resulting training
objective provides a strong underlying signal to efficiently
capture the latent space distribution of the input data during
training. The proposed framework can be used for missing data
imputation and as a generative model.

Missing data imputation: Assume that for a given data sample
x, we observe a subset of its values denoted as xO and
xM is the part that we do not observe. Data imputation can
be performed by clamping the observed dimensions xO to
their values and maximizing log-likelihood with respect to the
missing dimensions xM

max
xM

log
(
fZ

(
h(xO,xM )

))
. (4)

Data sampling: With g given, we can draw a realization
of the random vector Z in the D-dimensional latent space
from fZ , and back transform to a sample in the original N -
dimensional space by its inverse image as

z ∼ fZ , x̃ = g(z). (5)

Similar approaches such as VAEs pose a stochastic condition
on the latent variables to comply with a fixed prior distribution
fZ over a low-dimensional latent space:

VAE: x
h7→ z

g7→ x̃, z ∼ fZ(z).

The generative process of the VAE is carried out as

z ∼ fZ ,x ∼ pθ(X|Z = z)

where a stochastic decoder

Dθ(z) = x ∼ pθ(x|z) = p(X|g(z))

links the latent space to the input space through the likelihood
distribution pθ. This may be limiting in case this predefined
prior does not match the structure of the true data manifold,
leading to a less accurate model. Our approach is fundamentally
different as we avoid prior distribution matching between the
variational posterior and the prior, but instead propose jointly
learning a non-parametric density estimator in the latent space.
Most importantly, our approach produces better samples than
VAEs, as we will see. In the following sections, we give
a detailed description of the two main components of our
framework and the optimization procedure.

A. Compression Network

The first component of our framework seeks a non-linear
mapping h to project high-dimensional input samples into a
low-dimensional space. In the dimensionality reduction process,
discarding some dimensions inevitably leads to information
loss. We wish to preserve the available information as much
as possible, and to this end we minimize the empirical
approximation of the mean squared error

MSE :=

∫

RN

∥x− g(h(x))∥22fX(x)dx. (6)
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Auto-encoders learn a function by fine-tuning the parameters
of a feed-forward Deep Neural Network (DNN) in such a way
that the reconstruction error is minimized when back projected
with another feed-forward DNN. These networks need to be
specified a-priori, in terms of the number of layers and neurons.
In this work, we use the rectified linear unit (ReLU) activation
function [31] while the rest of the parameters such as the
width of each layer and the depth of the network are adjusted
according to M,N .

Although we proceed with simpler networks, other types of
networks (e.g., convolutional neural networks [32], [33]) can
also be used. Let h(·; θh) and g(·; θg) be DNNs and θh, θg
collect the encoder and decoder network parameters, i.e., the
weights and bias terms at each hidden layer. Given a finite
set of samples M , the empirical reconstruction loss can be
computed as

LREC :=
1

M

M∑

m=1

||xm − g(h(xm;θh); θg)||22. (7)

The reconstruction loss is typically minimized using Stochastic
Gradient Descent (SGD).

B. Latent Density Estimation Network
The second component of our framework is a non-parametric

density estimation model [15]. The key difference is that we
propose joint dimensionality reduction and density modeling
in the reduced-dimension latent space so that we capture the
bottleneck layer distribution, whereas [15] aimed to tackle
the problem directly in the original N -dimensional space.
This combination is crucial for enhanced performance and
scalability. Additionally, instead of coupled tensor factorization,
we consider an alternative algorithmic approach by formulating
density estimation as a hidden tensor factorization problem.

Let us consider the multivariate joint PDF fZ of a D-
dimensional random vector Z with its support contained within
the hypercube S = [0, 1]D. Then, the joint PDF can be
represented by a multivariate Fourier series

fZ(z) =
∞∑

k1=−∞
· · ·

∞∑

kD=−∞
ΦZ [k]e

−j2πkT z, (8)

where

ΦZ [k] = ΦZ(ν)
∣∣
ν=2πk

,k = [k1, . . . , kD]T

and ΦZ is the Characteristic Function (CF). The multivariate
characteristic function ΦZ : RD → C is defined as

ΦZ(ν) = E
[
ejν

TZ
]
.

Similar to the PDF fZ , its corresponding CF ΦZ contains
complete information about the distribution of Z, i.e., the PDF
and the CF have a bijective relationship – one being the Fourier
transform of the other. When the underlying PDF is sufficiently
differentiable in all variables, fZ can be approximated by a
truncated multivariate Fourier series with cutoffs K1, . . . ,KD

i.e.,

f̃Z(z) =

K1∑

k1=−K1

. . .

KD∑

kD=−KD

ΦZ [k]e
−j2πkT z. (9)

The smoother the underlying PDF the faster the convergence
rate and the smaller the approximation error.

For any p ∈ N, If the partial derivatives ∂θ1

∂z
θ1
1

· · · ∂θD

∂z
θD
D

fZ(z)

of f(·) exist and are absolutely integrable for all θ1, . . . , θD
with

∑D
n=1 θn ≤ p then the rate of decay of the magnitude of

the k-th Fourier coefficient |ΦZ [k]| obeys [34]

|ΦZ [k]| = O
(

1

1 + ∥k∥p2

)
.

The worst-case approximation error is bounded by

∥fZ − f̃Z∥∞ ≤ C
D∑

d=1

ωd

(
∂θd

∂z
θd
d

fZ ,
1

1+Kd

)

(1 +Kd)
θd

,

where C = C2

(
1 + C1

∏D
d=1 logKd

)
, C1, C2 are constants

independent of fZ and the Kd’s and

ωj(fZ , δ) := sup
|zj−z′

j|≤δ

|fZ(z1, ..., zj , ..., zD)

−fZ(z1, ..., z′j , ..., zD)|
(10)

measures the smoothness of fZ for each component
j ∈ [D] [35], [36, Chapter 23]. Note that we can represent
the truncated Fourier coefficients using a D-way tensor Φ
where

Φ(k1, . . . , kD) = ΦZ [k]. (11)

For simplicity we will assume that K1 = · · · = KD = K.
Orthogonal series PDF approximation using a truncated sum
of basis functions (e.g., trigonometric, polynomial, wavelet)
becomes computationally intractable in high dimensions, since
the number of parameters (tensor elements) grows exponentially
with the number of dimensions. To reduce the number of
parameters, we introduce a low-rank parameterization of the
coefficient tensor obtained by truncating the multidimensional
Fourier series [15] which reduces the number of parameters
from O(KD) to O(DKF ). Introducing the rank-F CPD we
have

Φ(k1, . . . , kD) =

F∑

f=1

pH(f)

D∏

d=1

ΦZd|H=f (kd|f). (12)

By linearity and separability of the multidimensional Fourier
transformation, applied to rank-one components, f̃Z(z) can be
written in the following form

f̃Z(z) =

K1∑

k1=−K1

. . .

KD∑

kD=−KD

ΦZ [k]e
−j2πkT z

=
F∑

f=1

pH(f)︸ ︷︷ ︸
λ(f)

D∏

d=1

K∑

kd=−K

ΦZd|H=f (kd|f)︸ ︷︷ ︸
af
d(K+1+kd)

e−j2πkdzd︸ ︷︷ ︸
bd(K+1+kd)

=

F∑

f=1

λ(f)
D∏

d=1

Ad(:, f)
Tbd.

The above joint PDF fZ model can be interpreted as a
mixture of F product distributions, i.e., there exists a ‘hidden’
random variable H taking values in {1, . . . , F} that selects

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3158422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.



6

Fig. 3: Our approach yields a generative model of the latent
density, from which it is very easy to sample. This is because
fZ can be interpreted as a mixture of F product distributions
i.e., admits a latent variable naive Bayes interpretation.

the operational component of the mixture, and given H the
random variables Z1, . . . , ZD become independent (Fig. 3).
Then, given z, we can compute the likelihood using

f̂Z(z) = (bT
1 A1 ⊛ · · ·⊛ bT

DAD)Tλ

= (⊛D
d=1b

T
d Ad)λ.

The complexity of computing the likelihood of a data point z is
O(DKF ). Tensor methods are commonly used to establish that
the parameters of a generative model can be identified given
higher order moments. This generative model theoretically has
enough flexibility to capture highly complex distributions such
as image manifolds. According to this model, a sample of
the multivariate latent distribution can be generated by first
drawing H according to pH and then independently drawing
samples for each variable Zd from the conditional PDF fZd|H .

1) Maximum Likelihood Estimation: The above analysis
suggests fitting a low-rank CPD model on the D-way Fourier
series coefficient tensor Φ. To this end, we build a genera-
tive probabilistic model that assigns high probability to the
transformed observed samples. We propose fitting the Fourier
tensor coefficients indirectly on the latent space representation
of the training data. Let us define matrices Bd ∈ C(2K+1)×M

as
Bd(K + 1 + kd,m) = e−j2πkdzm(d).

Given M samples, we define the following NLL cost term

LNLL := − 1

M

M∑

m=1

log
(
f̂Z(zm)

)

= − 1

M

M∑

m=1

log
(
(⊛D

d=1(Bd(:,m)TAd))λ
)
,

(13)

where Ad(K + 1 + kd, h) holds ΦZd|H=h[kd], λ(f) holds
pH(f). Note that we do not instantiate the full Fourier
coefficient tensor but rather recover it implicitly, by minimizing
the NLL term.

We can further restrict the model and reduce its learnable
parameters by 50% by noticing that each column of the factor
matrix Ad holds a valid characteristic function which is by
definition conjugate symmetric around the origin, and equal to
one at the origin, i.e.,

Ad(K + 1, :) = 1T , and
Ad(K + 1 + k, :) = A∗

d(K + 1− k, :),

k ∈ [K], d ∈ [D].

Algorithm 1 CDE (Projected - SGD)

Input: Z,Zval, F,K,D,Mbatch

Initialize λ, {An}Dn=1,θg , θh
repeat

Sample Mbatch data points
Update network parameters via SGD
for d = 1 to D do

Update Ad via SGD
end for
Update λ
Project λ onto the probability simplex
Compute LNLL + Lrec using Zval

until maxiter is reached or LNLL + Lrec stops diminishing

C. Optimization Procedure
By the above reasoning, instead of using decoupled two-

stage training we suggest the following overall joint DR and
density estimation optimization problem which we tackle by
stochastic gradient descent

min
θh,θg,{Ad}D

d=1,λ

1

M

M∑

m=1

(
∥xm − g(h(xm;θh);θg)∥2−

− µ log
(
(⊛D

d=1(Bd(:,m)TAd))λ
))

+

D∑

d=1

ρ∥Ad∥2F

s.t. λ ≥ 0,1Tλ = 1,

Ad(K + 1, :) = 1T ,

Ad(K + 1 + k, :) = A∗
d(K + 1− k, :).

The optimization criterion that guides CDE consists of three
terms: the reconstruction loss of the auto-encoder, NLL of the
density estimation component, and Frobenius norm regular-
ization. In the above formulation, µ ≥ 0 is a regularization
parameter which balances the reconstruction error versus the
maximum likelihood estimation. The number of coefficients
K controls the desired smoothness of the joint density, while
the number of latent dimensions D and the rank F control the
expressivity.

We refer to this approach as Compressed-domain Density
Estimation with Hidden Tensor Factorization (CDE-HTF). Fig-
ure (1) presents the network structure corresponding to the final
joint problem formulation. We solve the proposed optimization
problem using projected Stochastic Gradient Descent (SGD).
We initialize the Fourier tensor-related parameters using random
initialization, while for θg and θh, it was empirically observed
that auto-encoder pre-training was most effective. At each step
we update θg, θh, factors Ad and λ simultaneously by first
sampling a batch of size Mbatch and taking a gradient step.
After that, we project λ to the probability simplex. For the
termination of the algorithm we compute the cost function on
a validation set and stop if a number of maximum iterations
has been reached or the log-likelihood has not improved in the
last T iterations. The full procedure is shown in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed approach using
various datasets and evaluation criteria, ranging from sampling
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of toy 3-D examples to real MNIST and Fashion-MNIST
images, and regression and anomaly detection tasks using
standard tabular datasets from the UCI database. We compare
with density estimation and anomaly detection baselines from
the deep learning literature, including standard VAEs, Real-
NVP, MAF, MADE and GF for reference.

A. Toy Datasets

We begin with modeling the joint density function of a
subset of MNIST images, consisting of only 0s and 8s using
the proposed CDE model. For these experiments the network
architecture considered is a four-layer network encoder of 784,
128, 64, 32, neurons respectively (with the decoder being a
mirrored version of the encoder), and ReLU activation functions.
In Figure 2, we visualize random samples learned by the
proposed model for different values of F and K to show that
only a few parameters are needed to obtain a model that is
flexible enough to fit the distribution in great detail. The first
row represents results for fixed F = 4 and different values
of K ∈ [1, 3, 5], while the second row represents results for
fixed K = 3 and different values of F ∈ [2, 4, 8]. Increasing K
generates sharper digits, while increasing F better differentiates
the samples of the two digits.

We then continue with modeling three toy 3-D datasets,
namely Swiss-roll, S-curve, and Fish-bowl where we are given
3000 training data points from each dataset and we use CDE
to randomly sample 5000 synthetic data points. For all the
datasets considered, the auto-encoder structure we use is FC (3,
128, ReLU), FC (128, 64, ReLU), FC (64, 32, ReLU), FC (32,
2, none), FC (2, 32, ReLU), FC (32, 64, ReLU), FC (64, 128,
ReLU), FC (128, 3, none), and the tensor parameters are set to
(K,F ) = (5, 10). We provide an illustration of the 2-D latent
space learned via latent synthetic samples drawn using the
proposed method. Using the approximate inverse map of the
decoder, we can back-transform latent samples into samples in
the original data space and visualize the learned distribution
in the original space. The results in Figure 4 showcase that
the proposed framework is capable of learning the structure
of the data, notably in critical regions where the curvature is
very high – which is interesting.

B. Tabular Datasets

Next, we evaluate the proposed approach on several re-
gression tasks using tabular datasets described in Table I.
We compare our approach against standard baselines. For
each dataset we split the data in two subsets: 80% used
for training and 20% used for testing. The parameters for
each method are chosen using 5-fold cross-validation and
we report the Mean Absolute Error (MAE) for the unseen
data samples. The results underline the superior performance
of the proposed method for inference tasks. Regarding the
auto-encoder’s parameters for the datasets, the number of
hidden layers varies according to the dataset dimensionality
– from three (MINIBOONE dataset) to six (ISOLET dataset).
The most critical one is the hidden layer dimensionality
D ∈ {16, 32, 48, 64}, and concerning tensor parameters, the
important ones are the tensor rank F ∈ {5, 10, 20, 30, 50} and

the smoothing parameter K ∈ {5, 10, 15, 20, 30}. The learning,
drop-out rates, and regularization parameters were sampled
from a uniform distribution in the range [0.05, 0.2]. That is, we
randomly sampled parameters from this range using a uniform
distribution and used cross-validation to select the best set of
parameters. The initial weight matrices were all sampled from
the uniform distribution within the range [−1, 1].

We used Adam optimizer [37] with a batch size of 500.
Overall, we observe that CDE outperforms the baselines
on almost all datasets, and performs comparable to the
winning method in the remaining ones. More specifically, CDE
shows significantly lower test-set MAE on MINIBOONE, Gas
Sensor, and BlogFeedback dataset compared to Real-NVP and
MAF, which appear to be the next best performing models.
Additionally CDE has a clear lead against the VAE especially
on Gas Sensor, IDA2016Challenge, and ISOLET dataset, which
confirms our initial motivation of using a non-parametric latent
density estimator to improve model flexibility.

C. Image Datasets

We consider grayscale images from the MNIST and Fashion-
MNIST database, which both contain a set of 60, 000 training
observations of 28 × 28 pixels (N = 784) from 10 classes.
Regarding MNIST, the most critical parameters include the
encoder architecture, which consists of four hidden layers of
784, 128, 64, 32, neurons respectively (the decoder network
has a mirrored structure), ReLU activation function, tensor rank
which is fixed to F = 50, smoothing parameter K = 5, and the
learning rate which is fixed to α = 0.0001. For Fashion-MNIST,
the model parameters are fixed to be the same as for the MNIST
dataset, with the encoder network (784, 256, 128, 64, 32, 16)
being the only exception. See also Figure 7, which shows
the distribution of the components of the latent variable H
after training the generative model. These bar-plots tell us
that the rank of the compressed density model is essentially
F = 30, but for exploratory modeling purposes, we set F = 50
(the parameter F is actually an upper bound on tensor rank)
and encourage sparsity of the latent components through our
optimization problem formulation. We sample from the learned
lower-dimensional latent joint generative model (D = 32 for
MNIST and D = 16 for Fashion-MNIST) – See Section III-B
for the detailed sampling process – and provide visualization of
the generated data. The resulting 100 randomly drawn samples,
which are impressively more pleasing to the eye in direct
comparison with other well-known models such as MADE and
GFs are shown in Figures 5 and 6.

We note that in our case, no prior is imposed on the latent
variables, so we do not have issues such as “posterior collapse”
which has been observed to occur in VAEs. Degeneration
(“collapse”) could occur in principle for our model if the
joint characteristic function is reduced to a rank-1 tensor
during training. An easy way to check this would be through
the mixture distribution of the latent components, i.e., the
probability mass function of the latent variable H , pH(f).
If after training the generative model only one element of
pH(·) is nonzero, i.e., only one component “survives”, then
the characteristic tensor is rank-1, and degeneration / collapse
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(a) Latent space Z for the Swiss-roll dataset. (b) Latent space Z for the S-Curve dataset. (c) Latent space Z for the Fish bowl dataset.

(d) Data space X for the Swiss-roll dataset. (e) Data space X for the S-Curve dataset. (f) Data space X for the Fish bowl dataset.

Fig. 4: Three toy 3-D (gray data-points) datasets and corresponding samples drawn via CDE. CDE maps raw samples to latent
features through a mapping h : R3 → R2 that is learned by an auto-encoder. The non-parametric latent density model allows
efficient sample generation in the latent space (orange data-points on the images of the first row). The approximate inverse map
of the decoder, back-transforms latent samples into samples in the data space (orange data-points on the images of the second
row. See text for further details.

Data set N M VAE Real-NVP MAF GF CDE

MINIBOONE 51 130065 3.69± 0.68 3.18± 0.16 3.17± 0.45 3.15± 0.52 3.12± 0.43
BSDS300 63 50000 0.37± 0.08 0.60± 0.02 0.32± 0.03 0.48± 0.03 0.30± 0.02
Gas Sensor 128 13910 1.46± 0.04 1.31± 0.31 1.23± 0.44 1.23± 0.30 1.21± 0.84
Musk 168 6598 0.40± 0.51 0.22± 0.68 0.12± 0.07 0.19± 0.08 0.13± 0.23
IDA2016Challenge 171 76000 0.23± 0.06 0.18± 0.09 0.12± 0.05 0.10± 0.09 0.11± 0.16
BlogFeedback 281 60021 2.43± 0.22 2.35± 0.21 2.37± 0.22 2.37± 0.42 2.32± 0.17
ISOLET 617 7797 1.41± 0.31 1.09± 0.04 1.11± 0.38 1.85± 0.21 1.03± 0.56

TABLE I: Dataset information and test-set MAE on UCI datasets. For each test sample, we choose the response variable Y at
random and estimate using Stochastic Gradient Ascent.

to a separable latent space distribution occurs. Throughout our
experiments, although the datasets can be well approximated
with lower ranks, such degeneration did not take place. We
show this in Figure 7, where we demonstrate the distribution
of the latent variable H after training the generative model on
MNIST (left figure) and Fashion-MNIST (right figure).

Although at first glance, the images generated by VAE have
cleaner and thicker strokes, they are also more blurry and
distorted than those produced by CDE. The Fashion-MNIST
data help bring this out more clearly: one can see that CDE
allows capturing and representing more details in the items,
while the samples drawn from the VAE are much more blurry.
The overall conclusion from the experiments is that while the
quality of our synthetic images is competitive against the VAE
and considerably better than that of the samples generated by
the rest of the models considered, the proposed framework is

superior for regression tasks.

Because the dimensionality of the latent space is an important
factor in the architecture, we demonstrate sampling results for
different dimensionalities on Fashion-MNIST. We repeat the
experiment by setting F = 50 and K = 5. We randomly sample
from the learned lower-dimensional latent joint generative
model for D = 6, 10, 14 and provide visualization of the
generated data in the input space. The resulting 100 randomly
drawn samples are shown in Figure 8. We can see that
increasing latent dimenionality from D = 6 to D = 14
significantly improves sample quality. Results for D = 16
can be seen on Figure 6 which yield high-quality image
samples. Larger latent dimensionality does not further improve
the samples (and eventually degrades it, as expected) so we
opt for the smallest dimensionality that yields good results.
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Fig. 5: Synthetic samples drawn from the joint density of MNIST from various models. From left to right: Ground Truth, Masked
auto-encoder for Distribution Estimation (MADE), Gaussianization Flows (GF), Variational auto-encoder (VAE), Proposed:
CDE.

D. Anomaly Detection Using Real Data

We use four public datasets‡: KDDCUP99, Thyroid, Arrhyth-
mia, and KDDCUP-Rev. The (instance number M , dimension
N , anomaly ratio (%)) of each dataset is (494021, 121, 20),
(3772, 6, 2.5), (452, 274, 15), and (121597, 121, 20). For
categorical features, we further used one-hot representation to
encode them. Regarding Thyroid, there are three classes in
the original dataset. We treat the hyperfunction class as the
anomaly class and the other two classes are treated as normal
class. Regarding Arrhythmia, the smallest classes, including
3, 4, 5, 7, 8, 9, 14, and 15, are combined to form the anomaly
class, and the rest of the classes are combined to form the
normal class. We randomly extracted 50% of the data and
assigned it to the training subset and the rest to the testing
subset. In our experimental setting for anomaly detection, clean

‡Datasets can be downloaded at https://kdd.ics.uci.edu/ and http://odds.cs.
stonybrook.edu.

training data is adopted – that is, during the training, only
normal data were used. We assume that the percentage of
anomalous data points is known, and our goal is to detect
which data points in the testing subset are most likely to be
outliers. Towards this end, at the testing stage the likelihood of
each testing sample in the compressed domain was evaluated
and sorted in order to detect the anomalies as the points with the
smallest likelihood. By knowing the percentage of anomalies,
we can indicate the exact number of outliers and output the
data samples with the smallest likelihood values.

The network structures of CDE used for individual datasets
are summarized as follows.

• For KDDCUP, the auto-encoder network runs with FC
(120, 60, tanh), FC (60, 30, tanh), FC (30, 20, tanh), FC
(20, 10, none), FC (10, 20, tanh), FC (20, 30, tanh), FC
(30, 60, tanh), FC (60, 120, none).

• The auto-encoder network for Thyroid runs with FC (6,
12, tanh), FC (12, 4, tanh), FC (4, 2, none), FC (2, 4,
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Fig. 6: Synthetic samples drawn from the joint density of Fashion-MNIST from various models. From left to right: Ground
Truth, Masked auto-encoder for Distribution Estimation (MADE), Gaussianization Flows (GF), Variational auto-encoder (VAE),
Proposed: CDE.

tanh), FC (4, 12, tanh), FC (12, 6, none).
• The auto-encoder network for Arrhythmia runs with FC

(274, 64, tanh), FC (64, 32, none), FC (32, 64, tanh), FC
(64, 274, none).

• The auto-encoder network for KDDCUP-Rev runs with
FC (120, 60, tanh), FC (60, 30, tanh), FC (30, 20, tanh),
FC (20, 10, none), FC (10, 20, tanh), FC (20, 30, tanh),
FC (30, 60, tanh), FC (60, 120, none).

As metrics, precision, recall, and F1 score are calculated. We
run experiments 20 times for each dataset split by 20 different
random seeds. Table II reports the average scores and standard
deviations (in brackets). Compared to the baselines considered,
CDE achieves the highest performance – CDE is superior to
both VAE and DAGMM for each evaluation criterion except for
precision on the Arrhythmia dataset. This result suggests that
our proposed latent nonparametric density estimation approach
can provide more expressive models which can bring better

performance in important detection tasks as well.

V. CONCLUSIONS

In this work, we introduced Compressed Density Estimation
(CDE), a novel probabilistic latent density model that builds
upon deep auto-encoder networks and non-parametric multivari-
ate density modeling in the Fourier domain. We propose using
an auto-encoder to embed the data into a latent code space
by minimizing reconstruction error, and a regularization over
the latent space which maximizes the likelihood of the hidden
code vector and is modelled using a low-rank characteristic
tensor approach.

We investigated whether leveraging probabilistic (non-
parametric) low-rank tensor models in the Fourier domain as a
latent distribution model can improve the expressivity of density
models. By jointly optimizing the auto-encoder and the latent
density model, we can better capture the latent distribution of
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Fig. 7: Distribution of the components of the latent variable H after training the generative model on MNIST (left figure) and
Fashion-MNIST (right figure).

Fig. 8: Fashion-MNIST samples for different values of latent dimensionality (D = 6, D = 10, D = 14).

Dataset Methods Precision Recall F1

KDDCup
VAE 0.9524 (0.0047) 0.9140 (0.0052) 0.9326 (0.0052)
DAGMM 0.9427 (0.0055) 0.9578 (0.0051) 0.9507 (0.0052)
CDE 0.9565 (0.0046) 0.9712 (0.0048) 0.9641 (0.0045)

Thyroid
VAE 0.6575 (0.0371) 0.5743 (0.0583) 0.6357 (0.0583)
DAGMM 0.4658 (0.0481) 0.4902 (0.0452) 0.4752 (0.0497)
CDE 0.6560 (0.0572) 0.6740 (0.0493) 0.6703 (0.0592)

Arrythmia
VAE 0.4375 (0.0538) 0.4340 (0.0496) 0.4302 (0.0482)
DAGMM 0.5358 (0.0468) 0.5592 (0.0475) 0.5403 (0.0421)
CDE 0.5299 (0.0400) 0.5551 (0.0418) 0.5389 (0.0420)

KDDCup-rev
VAE 0.9771 (0.0058) 0.9779 (0.0004) 0.9678 (0.0018)
DAGMM 0.9762 (0.0038) 0.9823 (0.0017) 0.9709 (0.0021)
CDE 0.9866 (0.0008) 0.9872 (0.0015) 0.9871 (0.0012)

TABLE II: Average (over 20 runs) and standard deviations (in brackets) of Precision, Recall and F1 score.

data representations obtained by the auto-encoder. Experimental
results demonstrated the effectiveness of the proposed joint
optimization approach, which is able to learn complex high
dimensional distributions using a parsimonious model with few
tuning parameters.
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