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Abstract—To empower flexible and scalable operations, dis-
tributed control of multi-inverter microgrids, based on classical
communication networks among distributed energy resources,
has attracted considerable attention as it can guarantee syn-
chronization and provide suitable remedies to the problem of
improper power sharing. Notwithstanding this, resilience of the
current schemes on classical communication makes microgrids
vulnerable to cyber attacks. Inspired by recent revolutionary
breakthroughs in quantum communication, in this paper, we devise
a novel synchronization mechanism. We extend the synchronization
framework utilized in distributed control algorithms to networks
of quantum systems by generating pinning terms and coupling
mechanism for the new synchronization rule via exploiting proper
quantum jump operators and observables, and show that the
quantum system will converge to a time-variant target state.
QOur devised quantum distributed controller (QDC) gives rise to
a novel quantum communication scheme for distributed control
of microgrids and enables microgrids to exploit the state-of-
the-art quantum communication frameworks as communication
infrastructure.

Test results on two representative AC and DC networked
microgrids validate the efficacy and universality of the quantum
distributed control.

Index Terms—Quantum distributed control, distributed fre-
quency regulation, distributed voltage regulation.

I. INTRODUCTION

ICROGRIDS, featured by the autonomic coordination of

their local energy sources and power demands, have
proven to be a promising new paradigm of electricity re-
siliency [1], [2], and thus their share in the energy sector is
swiftly growing [3]. In an AC microgrid, distributed energy
resources (DERs) provide electrical power that oscillates as
sinusoidal waves. Since these waves are finally superimposed,
they need to be synchronized to the same (rated) frequencys;
otherwise, desynchronization of DERs cause the delivered
power to fluctuate, which can lead to equipment malfunction
and damages and even power outages [4], [5]. Adding to the
challenge is the increase in penetrations resulting from the
ongoing integration of energy from DERs that are inherently
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heterogeneous [6], [7] and may further impair the synchro-
nization. Therefore, maintaining frequency synchronization is
challenging since the system is complicated in various ways.

Distributed control of multi-inverter microgrids has attracted
considerable attention as it can achieve the combined goals
of flexible plug-and-play architecture, guaranteeing frequency
and voltage regulation while preserving precise power sharing
among nonidentical DERs [8]. In distributed control of micro-
grids, a sparse communication network can be used which has
less computational complexity at each inverter controller. As a
result, the infrastructure cost can be reduced and the system
scalability can be improved. Furthermore, it provides solutions
to problems of single point-of-failure and complicated two-way
communication networks of central control schemes, offering
more reliability while being resilient to faults or unknown
system parameters [8], [9].

However, security of communication among distant parties is
an indispensable criterion for evaluating the performance of any
communication network [10] and distributed control of micro-
grids is not an exception. While distributed control strategies
can enhance microgrids resilience, the openness brought by the
corresponding communication networks may cause cybersecu-
rity challenges since they can be susceptible to cyber attacks
on communication links. Adversarial attacks from third party
agents can drive the microgrid toward inconsistent performance
and impair the operation and control functions of participating
DERs and stability of the whole system [11].

Finding solutions to encounter cyber manipulation in micro-
grids with distributed control strategies is an ongoing research
[12]-[17]. However, the existing solutions may become insecure
due to the rapid development of supercomputers and the emer-
gence of quantum computers [18]-[20] and so they can make
traditional/classical methods obsolete. On the other hand, utiliz-
ing principles of quantum mechanics, quantum communication
offers provable security of communication and is a promising
solution to counter such threats [20].

Quantum physics principles give rise to novel capability
unattainable with classical transmission media [10], [21]-[24],
[24]-[28]. Such a quantum communication enables secure com-
munication between any two points and will connect quantum
processors in order to achieve capabilities that are provably
impossible by using only classical information [29]. Several
major applications have already been reported, including secure
communication, quantum distributed computation, simulation of
quantum many-body systems and exponential savings in com-
munication [10], [25]. However, central to all these applications
is the ability to transmit quantum bits (qubits) which cannot
be copied, and any attempt to do so can be detected. This
feature makes qubits well suited for security applications [10].
Promising findings on quantum internet have even led some
researchers to believe that all secure communications will
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eventually be done through quantum channels [27].

Regarding this revolutionary step in secure communication,
many models including quantum key distribution (QKD) [30],
quantum teleportation [31] and quantum secure direct communi-
cation [32]-[34] have been developed. Based on QKD technol-
ogy, many different types of quantum communication networks
have been proposed [35]-[37]. However, these communication
networks based on QKD technology only transmit the key,
but do not directly transmit information. On the other hand,
quantum secure direct communication is a kind of information
carrier with quantum state in communication. In this method,
secret information is directly transmitted over a secure quantum
channel and, in contrast to QKD schemes, they do not require
key distribution and key storage [32].

In this effort, we answer the questions that how is it possible
to establish synchronization through exchanging qubits? How
can we exploit a quantum communication infrastructure for
distributed control of microgrids while control objectives like
frequency/voltage regulation and power/current sharing in AC
and DC microgrids are guaranteed? Therefore, inspired by the
aforementioned developments, specifically those with quantum
states in communication, we aim to devise a scalable quan-
tum distributed controller (QDC) for AC and DC microgrids
within which, the information carrier is quantum states and the
transmission media is a quantum channel, i.e., information is
encoded into quantum states which are directly sent over quan-
tum channels among participating DERs. Quantum states are
then processed and measured at each DER and the measurement
outcomes are exploited as control signals.

One of the primary objectives in distributed control and
coordination is to drive a network to reach a consensus, where
all agents hold the same value for some key parameter(s), by
local interactions [38], [39]. Several efforts have been made to
investigate consensus problems in the quantum domain [40]—
[42]. To describe quantum state evolution of quantum systems
with external inputs (open quantum systems), a so called
Lindblad equation can be used [43], [44]. Authors in [45] show
that quantum consensus can be obtained through a Lindblad
master equation with the Lindblad terms generated by swap-
ping operators among the qubits, giving rise to the dynamical
evolution of the quantum network. The swapping operations
also introduce an underlying interaction graph for the quantum
network, which leads to a distributed structure for the master
equation.

One existing approach to achieve quantum consensus is to
model the quantum network’s state evolution through the quan-
tum synchronization master equation [45]. Another approach is
to appeal to the gossip-type interaction between neighboring
quantum computing devices [41]. Existing literature only
considers two special cases: 1) Under a non-zero Hamiltonian
with the swapping as jump operators, each qubit tends to the
same trajectory corresponding to a network Hamiltonian and
initial states; 2) Under a zero Hamiltonian, the network’s final
state is the average of the initial states. In both cases, however,
it is difficult to derive the explicit trajectory of each qubit as
a function of the Hamiltonian, and the synchronization orbit
is certainly no longer the one determined by the Hamiltonian
for most choices of the Hamiltonian [45]. Furthermore, in the
existing approaches, measurement is not considered, i.e., the
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existing frameworks are valid as long as the corresponding
quantum system is not measured, which makes them impractical
for realistic distributed control of microgrids.

Toward the goal of devising the quantum distributed con-
troller, considering the above challenges and potential to de-
sign a quantum synchronization scheme, we first formulate
the quantum synchronization problem using a quantum master
equation and identify and characterize suitable jump operators
to drive the quantum network to synchronization. The protocol
we construct gives rise to a differential equation that allows us
to analyze the convergence. We utilize proper observables and
show that all the corresponding expectation values (averaging
measurement outcomes) will eventually converge to a possibly
time-varying target value, and finally exploit these expectation
values to construct the control signals to drive a network of
DERs to synchronization.

Hence, our devised QDC gives rise to a novel quantum
communication scheme for distributed control of microgrids
and enables microgrids to utilize the existing quantum com-
munication frameworks as communication infrastructure, and
also paves the way for more advanced quantum-secure commu-
nication frameworks for microgrids, unattainable with classical
transmission media.

The rest of the paper is organized as follows. Section II
provides some preliminaries including relevant concepts in
graph theory and quantum systems along with notations and
conventions we use in this paper. The developed quantum
distributed controller together with a numerical example and
proof of convergence are presented in section III. Section IV is
devoted to explain the devised quantum distributed frequency
controller and voltage controller for AC and DC microgrids,
respectively. Simulation results are also provided. Section V
provides a discussion on realization of QDC, summarizes the
main results and gives an outlook on possible further develop-
ments and applications.

II. PRELIMINARIES

In this section, we introduce some fundamental concepts from
graph theory [46] and quantum systems [47].

A. Graph Theory

Some basic concepts from graph theory [46] are provided
here. A simple graph G = (V, E') consists of a set of n nodes (or
agents), V = {v1,vs,...,v,}, and a set of edges, E C V x V.
An edge (v;,v;) C E represents that agents v; and v; can
exchange information with each other. A sequence of non-
repeated edges (v;, Up, ), (UpysVUps)s -+ (Upns 13 Vpi)s (Up,, s U5)
is called a path between nodes v; and v;. If there exists a
path between any two different nodes v;,v; € V, G is said
to be connected. An agent v; is called a neighbor of agent v;
if (v;,v;) C E. The set of neighbors of agent v; is denoted as
N; ={v; € V| (vj,v;) C E}. The adjacency matrix of graph
G, denoted as A, is an n x n matrix whose entries a; ; = 1
if v; € N; and a;; = 0 otherwise. The degree matrix D of
graph G, denoted as D, is defined as an n x n diagonal matrix
whose th diagonal entry equals the degree of node v;, i.e.,
Zu,-e N, @i,j- The Laplacian matrix of graph G, denoted as L,
is defined as D — A. Note that A, D, L are all symmetric. The
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Fig. 1. QDC framework for microgrids - Quantum communication is established among the DERs - Power sharing signals, n; P;, are scaled to

be encoded into quantum information.

node-edge incidence matrix B € RV*¥ is defined component-
wise as B; ; = 1 if edge j enters node i, B; ; = —1 if edge j
leaves node 7, and B; ; = 0 otherwise. For z € RY,BTz e RE
is the vector with components x; — x;, with {i,j} € E. If
diag({a;,; }{;,jyer) is the diagonal matrix of edge weights, then
the Laplacian matrix is given by L = Bdiag({a; ;}{i jyer)B”

B. Quantum Systems and Notations

Throughout this paper, the (adjoint) § symbol indicates the
transpose-conjugate in matrix representation, and the tensor
product symbol ® is the Kronecker product.

The mathematical description of a single quantum system
starts by considering a complex Hilbert space H. We utilize
Dirac’s notation, where |¢)) denotes an element of H, called a
ket which is represented by a column vector, while (¢)| = |'L/)>T
is used for its dual, a bra, represented by a row vector, and
(¢|¢) for the associated inner product. We denote the set of
linear operators on H by 9B(#). The adjoint operator X' &
B(H) of an operator X € B(H) is the unique operator that
satisfies (X [)T |x) = (| (XT|x)) for all |¢), |x) € H. The
natural inner product in B(#) is the Hilbert-Schmidt product
(X,Y) = tr(XTY), where tr is the usual trace functional which
is canonically defined in a finite dimensional setting. We denote
by I the identity operator. [A, B] = AB—BA is the commutator
and {A, B} = AB + BA is the anticommutator of A and B.

A quantum bit (qubit), defined as the quantum state of a two-
state quantum system, is the smallest unit of information, and it
is analogous to a classical bit. The state of a qubit, represented
by |[¢) = «|0) + 81), is a superposition of the two orthogonal
basis states |0) and |1), where « and /3 are complex numbers in
general, where |a|® 4 |3]* = 1. We will simplify the notation
of a n-qubit state |¢1) ® ... ® |g,) € HE™ as |q1...qn).

In the case of mixed state, the state of a quantum system
is represented by a density operator p, which is a self-adjoint
positive semi-definite operator with trace one. Moreover, the

state |¢) € H with (|)) = 1 in the above is called a pure
state, which can also be written in the form of a density matrix
p = |¢) (¢|. For further information on qubits see [47], [48].

III. QUANTUM DISTRIBUTED CONTROL

Distributed control problems of microgrids are typically
modeled as networked differential equations over a simple, con-
nected graph G = (V, E) whose node set V = {vy,va,...,0,}
represents microgrids and edge set E depicts allowable com-
munication among the microgrids. As an illustrative example,
the problem of distributed frequency control and power sharing
in AC microgrids can be formulated as

*
w; =w" —n P+ @;,

. 1
O, = f(P;, P, ®;, j € N;), )

where w; represents the derivative of the voltage phase angle
of DER; (i.e., the frequency at DER;) with respect to time,
w* is a nominal network frequency, P; is the measured ac-
tive power injection at DER;, n; is the gain of the droop
coefficient, IN; denotes the set of neighbors of DER; (i.e.,
N, = {v; € V| (vj,v;) C E}), and the dynamics of ®;
represents the secondary control, which is a function (f) of
its current value, P;, and ®;’s of its neighbors. The goal of
the distributed frequency control problem is to ensure that the
network frequency will be regulated to the rated value w*
and that active power sharing is guaranteed (i.e., w; = w*
and n;P; = n;P; for all ¢,j). It is worth emphasizing that
Eq. (1) has a universal form which can be used, with simple
modification, to describe the problem of distributed voltage
control and power/current sharing in DC microgrids, as we will
elaborate in section IV.

Recent development in quantum algorithms for solving lin-
ear/nonlinear/partial differential equations suggests potential
efficiency and capability of quantum devices in solving these
class of equations [49]-[55]. Therefore, we aim to construct a
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quantum distributed framework to control a network of DERs,
as shown in Fig. 1. In this framework, each DER is equipped
with or connected to a quantum computing (QC) device, which
prepares a quantum state to be manipulated and measured and
then seeks a consensus among all the QCs in a distributed
manner.

The state of each quantum device can be described by
a positive Hermitian density matrix p. Since synchronization
requires interaction among all quantum devices, let us assume
that each device can be considered as a quantum system and
has access to the (quantum) information of its neighbors. The
following Lindblad master equation is a suitable way to describe
the dynamics of a system with dissipation:

]

p0) =~ 1H. A+ Y (CpCl - S1CiC ). @
i=1

where H is the effective Hamiltonian as a Hermitian operator
over the underlying Hilbert space, /i is the reduced Planck
constant, ¢ denotes the imaginary unit (ie., :> = —1), and
C;’s are jump operators. For more information on Markovian
master equations in Lindblad form, see [56]. To anticipate later
discussions, it should be emphasized that our goal is to leverage
the Lindblad master equation in order to construct the network
of differential equations, such as those in Eq. (1), in which,
in contrast to the classical synchronization, quantum bits are
what is exchanged among the nodes. We next demonstrate
that utilizing suitable jump operators and observers for each
quantum node would lead the average expectation values of all
the observers in the corresponding quantum setting to converge
to a possibly time-varying target value and the synchronization
rule follows the Kuramoto model modified by the presence of
a sinusoidal driving [57].

A. Algorithm

Let us update the state of each quantum node at each time
step as follows:

cos &

. — 4
|q2(t)> - (ez¢i(t) Sil’lZ) ’ te {071727'”}, 3)

which is the general state in polar coordinates set on the xy-
plane in the Bloch sphere, where ¢;(0) € (0,7/2) and each
¢i(t), t > 1, is the averaged measurement outcome which
can be obtained by simply averaging measurement outcomes of
many realizations of a single experiment for node ¢ and will be
discussed in detail shortly. Let |1/} = |q1q2 - - ¢,) be the state
of the whole quantum network and p = |¢)) (¢)|. We introduce
the following master equation:

- 1
3(t) = (O. cf - ~rcle,, )
p(t) Zl inCl = S{CIC, p}
- o “
+ Y (cmpci,j - 5{Ci,jq.’j,p}).
{i,j}€E
where C; ; is the swapping operator that specifies the external

interaction between quantum computing devices ¢ and j such
that

Ci,j(|q1> ®...Q |q2> ®..Q |(Jj> ®..Q |qn>)

5
) ® @4 B e B [g) B o @ [gn).
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11>

Fig. 2. Qubit state representation on the Bloch sphere. Rotations around
the positive X, Y, and Z axes are represented by the dashed black
arrows.

Let us define the jump operator, C;, by
Ci =1°0"V @ R.(¢) @ %" (6)

with R, (¢) being the rotation-Z operator which is a single-qubit
rotation through angle ¢ radians around the Z-axis (Fig. 2):

—1/2 0
R.(¢) = (e 0 ew/g). )

By definition, the operator C; acts only on |g;) without changing
<m@—@<

the states of other qubits, i.e.,
i-1 n-i i-1 n-i
~ N AN T
qr .. ¢ ... qn> <q1 e Qi e O ) C;
i-1 n-i i-1 n-i (8)
AN~ AN~

To see the impact of the introduced jump operator on |g;), by
selecting ¢ = ¢, ; — ¢; we have

R.(¢) |a;) (a:| RL(¢) =

e Uit cos Tsin T
©))

sin? &

( cos? T
UPit+d) cos T gin T
e cos 7 sin 7 1

cos &
= 4 -t tyi in T
= (el(d)tv’) sin Z) (COS T e u(e.4) gin Z)

which is considered as the target state for quantum node . As
can be seen, the jump operators C;’s are state dependent and
updated based on the target values ¢; ; and the measured ¢;(?).
Furthermore, as mentioned, at the beginning of each time step,
all the qubits are initialized as (3) based on the measurement
outcome of the previous step. Therefore, at each time step, the
master equation components are updated based on the target
values and the obtained measurement signals. Thus, the density
matrix at time ¢ + dt can be decomposed into p(t + dt) =
p(t) + dp:, where dp(t) is defined in (4).

In order to obtain the angles ¢;, we introduce the following
observables:

Ay = 180D g g, @[O0,
AQVZ‘ = I®(i71) ® O'y ® I®(nii).

(10)
(1)
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The operator /€0~ @, /, ® I®"~9 acts only on |g;) where
node-wise means, having o, and o, which are Pauli matrices
as observables at each node,

(0 1 (0 =
9%2=\1 0/ %=\, o)

The expectation value of an observable A via measurement
on a system described a density matrix p is given by (A) =
tr(pA) [48]. For a general one qubit state p, tr(po,) =
rsinfcos ¢, tr(po,) = rsinfsing and tr(po,) = rcosé,
where 7, 6, and ¢ are the parameters that describe p in the
Bloch sphere, which is essentially the spherical coordinate but
with » < 1. Generally, the Lindblad equation results in states
becoming more mixed; however, we only let the system evolve
in a short time and re-initialize the system in a product of pure
qubit states. Therefore, we can consider r = 1 and 6 = 7/2
and hence

12)

tr(poyx) = cos¢i,  tr(poy) = sin ¢;. (13)

which are equivalent to tr(pAi;) = cos¢; and tr(pAs;) =
sin ¢;, respectively. Since both C; and C; ; are unitary, we have

n

dp(t) = > (CipCl = p)dt+ > (Ci;pCL; = pat,
i=1 {i,j}EE
(14
If we repeat the procedure of the Lindblad evolution in a
short duration, measurement and re-initialization, we can obtain
approximated equations for ¢;’s in the limit dt — 0. The goal
is to obtain the dynamic of the phase angles ¢;. Note that

4 (A) = Ltr(pA) = tr(pA). From (14),

tr(pAyi) = cos ¢y ; — cos g; + Z a; ;(cos ¢; — cos ¢;)

Jj=1

tr(pAq;) =singy; —sing; + Z a;,;(sin ¢; — sin ¢;)

j=1

5)

where a; ; = 1 if C;; # 0 and a; ; = 0 otherwise. Utilizing
tr(pAy;) and tr(pAs;), we have the dynamic of ¢; as follows:

b= arctan(tr(PA?A))

dt tr(pAi;)
_ tr(pAsi)tr(pAsi) — tr(pAs)tr(pAa,) cos? ¢;
cos? ¢; Z

n
= | sing; —sing; + Z a; ;(sin¢; —sing;) | cos ¢;

Jj=1

n
— | cos ¢y ; — cos ¢p; + Z a; j(cos¢; —cos¢;) | sin @,

Jj=1

= sin (¢ri — ¢i) + D aijsin(¢; — ¢;).

j=1

’ (16)
It is worth mentioning that both tr(pA;;) and tr(pAs;) are
used in (16) to find the trajectory that ¢; traverses along the
time; however, either arccos (tr(poy)) or arcsin (tr(poy)) gives
¢;. In the ‘Analysis’ subsection, we will show how the pinning
term sin (¢, ; — ¢;) forces the phase ¢; to stick at the value ¢, ;
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and the coupling mechanism Z?=1 a; ;sin (¢; — ¢;) helps to
synchronize the entire system.

The basic outline of the algorithm is drawn schematically in
Fig. 3 and is summarized as follows:

1) Initialize qubits as a point on the first quarter of the
equator of the Bloch Sphere, i.e., 0 < ¢;(0) < 7/2, using
Eq. (3).

2) Teleport information throughout the network such that
each quantum node receives the quantum information
from its adjacent nodes.

3) At each node, update the rotation-Z (R,) operator’s argu-
ment based on the pinner (¢ ;) and the current value of
the phase angle ¢;.

4) Evolve the master Eq. (14) for one time step ¢ by means
of the swapping and rotation-Z operators.

5) Measure the expectation value of the o, or o, operator as
the observer at each node. Repeating this multiple times
and averaging gives the cos ¢; or sin ¢;, depending on the
exploited observable.

6) On classical hardware at each node, compute arccos (o)
or arcsin (o) to obtain the phase angle ¢;.

7) Re-initialize the state of each quantum node according to
Eq. (3).

8) Go back to step 2.

B. Analysis

For synchronization of the system, it is critical that the pinner
for all of the oscillators be the same, i.e., ¢;; = ¢*, otherwise,
synchronization cannot be achieved in general. To study whether
quantum node ¢ is synchronized to the pinner, it is convenient
to study the phase deviation of quantum node ¢ from the pinner.
We introduce the following change of variables,

i =" + G,

where (; denotes the phase deviation of the ¢th oscillator from
the pinner ¢*. Substituting (17) into (16), we have

a7)

n
G=) aijsin(G = G) —sin (). (18)
j=1
By studying the properties of (18), we can obtain the condition
for synchronization. If all {;’s converge to 0, then we have ¢; =
¢* as t — oo, indicating that all nodes are synchronized to the
pinner. Let B = [B; ;] xm be the incidence matrix [46] of the
communication graph G with m being the number of edges.
Then, (18) can be recast in a state form:

{ = —sin¢ — BWsin(B%¢), (19)

where W = diag({a; ;}{ j1er) is the diagonal matrix of edge
weights and sin(-) takes entry-wise operation for a vector.
To proceed, set ¢ = jmax |Ci]- When € < (7/2), if {; = ¢,

we have —7 < —ZESC_J‘_—Q < 0 for 1 < j < n. Hence, in
(18), sin (¢; — ¢;) < 0 and sin¢; > 0 hold, and hence G <0
hold. Therefore, the vector field is pointing inward in the set,
and no trajectory can escape to values larger than . Similarly,
it can be obtained that, when (; = —e, CZ > 0 holds. Thus
no trajectory can escape to values smaller than —e. Therefore,
¢ € [-g,e] x -+ X [—¢g,¢e] = [—¢,e]™ is positively invariant
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when ¢ < 7/2, where x denotes Cartesian product. Define a
Lyapunov function V = (1/2)¢7'¢, which equals zero only if
all (; are zero, meaning the synchronization of all nodes to the
pinner. Differentiating V' along the trajectories of (19) yields

V= gTé =T (sin{ + BWsinBTC)

= (T8¢ - ("BWS,B¢, 20
where S; € R™"*™ and S € R™*™ are given by
Sy = diag {sinc((1),- -+ ,sinc(¢y)},
Sy = diag {sinc(B" ()1, ,sinc(BT¢)m } , @)

where sinc(x) = sin(x)/x and (BT¢); denotes the ith element
of mx 1 dimensional vector BT'¢. When all ¢; are within [—¢, ¢]
with 0 < ¢ < (7/2), (BT(); is in the form of (; — ¢; (1 <

k,1 < n), and hence is restricted to (—m, 7). Given that in

(—m,7), sinc(x) > 0 holds, it follows that S; and S satisfy

the following inequalities:
S1 2> o011,
SQ 2 0'217

= sinc(g),
71 = sinele) (22)
o9 = sinc(2e).
So, we have S; + BWSsBT > o,1 + 0o BW BT, which in
combination with (20) yields

V < —(Y(011 4+ 0o BWBT)C. (23)

Note that BW BT is the Laplacian matrix of the underlying
graph G, which is always positive semidefinite. Since o7 and
o9 are positive, o711 + oo BW BT must be positive definite. It
follows that, when 0 < £ < (7/2), we have V< —2uV, where

= Amin(01I + 0o BWBT) > 0, (24)

which implies that all the nodes will synchronize to the pinner
exponentially fast at a rate no less than p, which is dependent
on the network connectivity.

C. Numerical Example

We consider a network composed of two quantum nodes with
the following initial states:

) = % G) o le) = <0.51/+\/O§.51> :

In this example, the state %[1, 2)T is the first target, then at t
= 5.5 the target changes to the state %[1, e™/19)T and hence,
the pinner is ¢* = 7/2 and then ¢* = 7/10, respectively.
The two qubits |¢;) and |g2) interact through a swapping
operator, forming a connected interaction graph. The trajectories
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i = sin (kn P — ¢;) + Y _ aijsin (¢ — ¢1)

Jj=1

w; =w* —n; Z Egbi,p sin (0; — dp) + Zi
P
Fig. 5. Coupling of the physical microgrid to the network of quantum
controllers can be considered as coupling of Kuramoto models.

of ¢1 and ¢o, i.e. phase angles of |¢1) and |g2) respectively,
are sketched in Fig. 4 utilizing the Python-based open source
software QuTiP [58]. As illustrated, both phase angles converge
to ¢*. Therefore, the final state of the quantum network is |qq),
where we denote by |¢) the state %[1, e™/10 T,
IV. QUANTUM DISTRIBUTED CONTROLLER FOR AC AND
DC MICROGRIDS

A. Quantum Distributed Frequency Control

In AC microgrids, a predominantly inductive network nat-
urally decouples the load sharing process; the reactive power
regulator must handle the reactive load sharing by adjusting
voltage magnitude while the active power regulator would
handle the active load sharing through adjusting the frequency.
A common approach for inverter interfaced DER is to connect
the power electronic inverter with an LC filter. Therefore, the
predominantly inductive line is either from the natural line/cable
characteristics or implemented with virtual impedance. The
locally deployed LC filter in each DER makes the output
impedance inductive dominant [59], then the power sharing
control laws that allow the active power to be shared based
on DER units’ rated capacities according to the droop setting,
can be written as [60]

(25)

W; = w* — ’I’LZ‘PZ'

As discussed, the problem of distributed frequency control
and power sharing would take a form such as Eq. (1) where ®;
as the secondary controller is a synchronization rule consisting
of pinning terms and coupling mechanism and is a function of
its current value, P;, and its neighbors’ values ®;’s. Looking at
Eq. (16), it can be seen that there are pinning terms, produced by
the rotation-Z operators and coupling mechanism, produced by
swapping operators. Therefore, in order to apply the QDC, we
need to define the target for (16) which is done through scaling
n; P;. Here, we call n; P; the power sharing signal. Specifically,
n;P; is scaled to be restricted to in the range (0,7/2); thus,
we select k& such that k& < % so that, kn; P; is ready to
be incorporated into the argument of the rotation-Z operator at
node ¢ and then the process follows the steps explained in Fig. 3.
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Hence, our developed QDC for AC microgrids is formulated as
follows

* ¢i
P 2
w; =w ni L5 + &
: n (26)
¢; =sin (kn; P; — ¢;) + Zai,j sin (¢; — ¢i),

Jj=1

where ¢;/k is the secondary control variable.

In a typical AC microgrid with distributed line impedances,
since the susceptance of line impedance is usually much larger
than its conductance, and also due to the small angle difference
between each bus voltage, the active power and reactive power
are decoupled and the output active power of each DER can be
expressed as [61]

Pi =Y EEy|Y;p|sin(6; — 6,) = Y gipsin(d; — 5p)
p=1

p=1
27
where E; is the nodal voltage magnitudes F; > 0, =Y, is
the admittance of the line between DER; and DER,, and J; is
the voltage phase angle and its dynamic characteristic is 6 =
W; — w* = (bz/k — niPi.
From (27), the physical power network can be treated as
a connected network whose entries of its adjacency matrix
are g;, = E;E,|Y; | and hence, considering (26), it can be
readily obtained that, the coupling of the network of quantum
distributed controllers and the physical microgrid is the coupling
of a forced Kuramoto model with a Kuramoto model (Fig. 5).
At the steady state, the microgrid is assumed stable. Since the
DERs’ frequency must be equal, we have w; = w; and thus
n P, — ¢i/k = n;P; — ¢;/k Vi, j. As shown before, ¢;
converges to the pinner as ¢ — oo. Thus, n;P; = ¢;/k and
n;P; =n;P; Vi,j and w; converges to w*.

B. Verification on an AC Networked-Microgrid Case Study

The performance of the developed quantum distributed con-
troller is tested on a networked microgrids with five AC
microgrids each one has 3 DERs (Fig. 6). The nominal voltage
and frequency are 380 V and 60 Hz respectively. All other
parameters can be seen in Fig. 6. For the sake of simulation,
two scenarios are examined. In the first scenario, the system is
examined in the face of a step load change. To verify the QDC’s
feature of plug-and-play capability, as the second scenario, plug-
and-play of DERs and microgrids are tested.

1) Controller Performance: Studies in this section illustrate
the performance of the QDC under a step load change applied
to microgrid 2 at t = 10s and results are depicted in Fig. 7.
The exploited communication graph is shown in Fig. 6. As can
be seen, frequency regulation is maintained throughout the step
load change and Active power is accurately shared among the
heterogeneous DGs throughout the entire runtime.

2) Plug-and-play functionality - plug-and-play of DERs:
Due to the availability of renewable generators, microgrid’s
physical and communication topologies can be time-varying.
In this case we demonstrate that to support plug-and-play
functionality, our developed QDC provides a robust secondary
control framework that works effectively in spite of time-
varying communication networks. Thus, this case verifies the
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QDC'’s feature of plug-and-play capability. This merit is inves-
tigated, by detaching DER;(, DER;; and DER;5 at t = 10s and
plugging them in again at t = 20s. As depicted in Fig. 8, after
disconnection of the DERs, the power deficiency reallocated
among the remaining DERs and they manage to share the
loads. As shown, accurate active power sharing and frequency
restoration are maintained during plug-and-play operation.

3) Plug-and-play of microgrids: As the second plug-and-
play scenario, microgrids 4 and 5 are disconnected from mi-
crogrids 1, 2 and 3 at t = 10s and reconnected again at t = 20s.
Afterward, at t = 24s, the communication between microgrids
1-5 and microgrids 3-4 are reestablished. Fig. 9 shows how
after disconnection of microgrids frequency is regulated in both
microgrids 1-3 and 4-5 to the rated 60 Hz. Furthermore, after
disconnection, the active power is shared among DERs 1-9 and
DERs 10-15, and then among all the DERs after reconnection
of microgrids 4-5, starting from t=24s. The reason of transient
oscillations after reconnection is that, no presynchronization is
implemented ahead of reconnection.

4) Comparison with the classical benchmark: In order to
benchmark the QDC better, its performance is compared with
the distributed-averaging PI (DAPI) controller (with the positive
constant k; = 1 [62]). For both DAPI and QDC, the commu-
nication graph is the same as Fig. 6. In this case, DER;; is
unplugged at t = 10s followed by the step load of 40 kw at t =
20s, and then reconnected at t = 30s. Results depicted in Fig.
10 demonstrate that, regarding restoring time at the events of
load disturbance and plug-and-play, both controllers have close
performances. However, our devised QDC enables encoding
information into quantum states, directly sent over quantum
channels among participating DERs, and thus allows microgrids
to be profited from quantum communication advantages.

C. Quantum Distributed Voltage Control for DC Microgrids.

In DC microgrids, droop control function is mainly utilized
to provide decentralized power sharing. It generates the voltage
reference Vire£ as [63]

Vit = v — i1, (28)

where V* is the nominal dc voltage, d; is the current droop gain,
I; is the output current of DER;. Consider the DC microgrid
depicted in Fig. (11), ignoring the inductance effect of lines,
the DC bus voltage V;, can be determined as

Vi = V' — Ry, (29)

It can be easily shown that, if the current droop gain d; is set
much larger than the line resistance R;, % ~ g—; and V}, ~ Vi’"ef
Vi, 7. The larger d; is chosen, the more accurate power sharing
can be obtained, however, larger d; may cause the dc bus voltage
V4 to deviate more from the nominal value V*. Therefore, we
aim to attain both power sharing and precise voltage restoration,
simultaneously, by adding the QDC. To equip the DC microgrid
with the QDC, we follow the same implementation procedure
explained for distributed frequency control and hence, the droop
function (28) is modified as

i

IR
Cc

by = sin (ediI; — ¢i) + > aijsin (¢; — ),
j=1

Vil = v —dil +
(30)
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which can be rewritten as

Vil = V* —mPye + %,

. (31)

¢; = sin (em; Pac,i — ¢i) + Zai,j sin (¢; — ¢i),
j=1

where Py.; = V,I; and m; is the power droop gain. Again,
we select ¢ such that ¢ < m, so that, it is ready to be
incorporated into the argument of the rotation-Z operator at node
1 and then the process follows the steps explained in Fig. (3).
As can be seen, (31) has a similar form as (26). Obviously, the
first part in (31) is to drive the dc bus voltage V;, to the nominal
value V* while the second part is to guarantee that ¢; = ¢;
is satisfied, i.e., the current/power sharing is achieved which
demonstrates that the QDC is also applicable to distributed
voltage control in DC microgrids.

D. Verification on a DC Microgrid Case Study.

This case verifies the universality of the QDC. This merit
is investigated by equipping a 9 DER DC microgrid case
study with the QDC (see Fig. 11) and applying a step load
of 267 kw at t= 10s. Results are depicted in Fig. 12. The
exploited communication graph is shown in Fig. 12. As can
be seen, voltage regulation is guaranteed throughout the step
load disturbance and power/current is accurately shared among
the heterogeneous DGs throughout the entire runtime.

V. DISCUSSION, CONCLUSION AND OUTLOOK
A. Realization.

In an abstract sense, a quantum network is a network of
quantum processors as nodes on specific locations, that are con-
nected via links [64]. Like a quantum network/internet, realiza-
tion of the QDC requires essential quantum hardware/software
elements. First, a physical link (quantum channel) that is able to
transmit qubits is needed. Standard telecom fibers are of suitable
choices since they are currently used to communicate classical
light and so far, photons are known as the ideal physical
carrier of information to implement intrinsically secure quantum
communications, specifically, for long-distance communications
[10]. Various required building blocks for the links such as
photonic quantum channels between ground stations or, between
ground stations and satellites, quantum repeaters, quantum
memory, etc., have recently been experimentally demonstrated
[65], [66].

Second, a quantum algorithm is required to simulate Eq. (14)
at each node. Several methods have been recently proposed for
the problem of simulating open quantum systems represented
by either the operator sum representation or the Lindblad master
equation [67]-[69]. The overall approach in these algorithms is
first, transforming the open dynamic into Kraus formalism in the
operator sum form (if it is in Lindblad representation), which is
the most general form of the time evolution for a density matrix,
second, converting the Kraus operators into unitary matrices and
third, decomposing the unitary matrices into unitary quantum
gates. This procedure allows the evolution of the initial state
through unitary quantum gates.

The third element is measurement. In a typical quantum
algorithm, we need to estimate expectation values of a set of
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Fig. 12. Voltage regulation, power sharing and current sharing after a

operators/observables in a quantum state p that can be prepared
repeatedly using a programmable quantum system [70]. As
discussed, each ¢;(t) is the averaged measurement outcome
which is obtained by averaging measurement outcomes of many
realizations of a single experiment for node i. The reason is, an
informative quantum measurement is demolishing (i.e. causing
the wave function to collapse) and gives probabilistic outcomes
[71]. Hence, to obtain precise estimates, each operator must be
measured many times.

Several solutions have been introduced to overcome this
fundamental scaling problem including matrix product state
tomography, neural network tomography, shadow tomography
and classical shadow [71]-[76]. Among these methods, the
derandomized Pauli measurement approach in [70] is of our
interest, where authors describe a deterministic protocol for es-
timating Pauli-operator expectation values using very few copies
of p. Developments like these are of particular importance since
they are proposing promising solutions to the issues of large
shot counts and high number of times required for transmitting

. . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/lp
Authorized licensed use limited to: Brookhaven National Laboratory. Downloaded on August 09,2022 at 02:34:34 UTC from

step load disturbance at t=10s.

a particular quantum state among two nodes for measurement
purposes.

B. Conclusion and Outlook.

While we are on the verge of quantum internet, planning
for future smart power grids, as the largest man-made systems,
based on classical communications seems obsolete and may
fail to address the new requirements and security challenges.
Therefore, keeping up with the quantum technology seems
essential. The potential to design a quantum synchronization
scheme motivated us to study the feasibility of realizing a
quantum distributed controller.

In this work we introduce a new synchronization mechanism
by leveraging the quantum properties of qubits. Since the
distributed control problems of microgrids can be modeled as
networked differential equations, we leverage a proposed master
equation to construct the network of differential equations.
Then, we demonstrate that by characterizing proper observables,
expectation values of all the observers at all nodes will eventu-
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ally get synchronized to a possibly time-varying target value and
the synchronization rule follows the forced Kuramoto model.
We show how our proposed quantum synchronization scheme
can be exploited to regulate AC microgrids’ frequency and DC
microgrids’ voltage and guarantee precise power sharing. Then,
our theoretical derivations are complemented by a series of
numerical and simulation results, which have fully confirm the
validity and generality of the QDC scheme. In later studies,
we will demonstrate that, due to the superposition feature of
qubits, the QDC provides a foundation for introducing more
enhanced quantum-secure distributed control for microgrids
through randomizing the 6 angle of qubits in the initialization
step, which finally results in an unprecedented security for
distributed control of AC and DC microgrids.

Although, in our devised protocol, communication network
is assumed balanced, we believe the QDC can be extended to
unbalanced communications where the Laplacian matrix is no
longer doubly stochastic. Further, the QDC in conjunction with
sparse data transmission and event-triggered methods, promises
wide adoptions in those applications where resilient high-speed
communication is required and computation burden matters.
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