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Abstract—Quantum-empowered electromagnetic transients
program (QEMTP) is a promising paradigm for tackling EMTP’s
computational burdens. Nevertheless, no existing studies truly
achieve a practical and scalable QEMTP operable on today’s
noisy-intermediate-scale quantum (NISQ) computers. The strong
reliance on noise-free and fault-tolerant quantum devices–which
appears to be decades away–hinder practical applications of
current QEMTP methods. This paper devises a NISQ-QEMTP
methodology which for the first time transitions the QEMTP
operations from ideal, noise-free quantum simulators to real,
noisy quantum computers. The main contributions lie in: (1)
design of shallow-depth QEMTP quantum circuits for mitigating
noises on NISQ quantum devices; (2) practical QEMTP linear
solvers incorporating executable quantum state preparation and
measurements for nodal voltage computations; (3) a noise-
resilient QEMTP algorithm leveraging quantum resources loga-
rithmically scaled with power system dimension; (4) a quantum
shifted frequency analysis (QSFA) for accelerating QEMTP by
exploiting dynamic phasor simulations with larger time steps;
(5) a systematical analysis on QEMTP’s performance under
various noisy quantum environments. Extensive experiments
systematically verify the accuracy, efficacy, universality and
noise-resilience of QEMTP on both noise-free simulators and
IBM real quantum computers.

Index Terms—Quantum electromagnetic transients program
(QEMTP), quantum shifted frequency analysis (QSFA), quan-
tum computing, variational quantum linear solver, noisy-
intermediate-scale quantum (NISQ) era.

I. INTRODUCTION

ELECTROMAGNETIC transients program (EMTP) has
become a keystone of modern power system analytics.

Those widely-used electromechanical dynamical simulation
tools become incapable of capturing fast frequency excursions
and extreme dynamics [1] in modern grids with reduced iner-
tia. EMTP, which can accurately trace power system dynamics
and generate electromagnetic waveforms of broad spectra [2],
is therefore in high demand for managing today’s power
networks with increasingly complex operational scenarios.

Solving EMTP, however, is a long-standing obstacle [3].
The complexity of numerical integration by classical comput-
ing scales polynomially with the power system dimension,
making EMTP computationally expensive even on a real-
time dynamic simulator (RTDS). Recently, the swift growth in
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quantum computing [4], [5], [6] ignites new hopes of develop-
ing unprecedentedly scalable EMTP analytics. In contrast to
classical computing, quantum computing holds the promise
of developing linear solvers with a logarithmically scaled
computational complexity [6].

A prior study [7] devised an Harrow-Hassidim-Lloyd
(HHL)-based quantum EMTP, which was the first attempt
to integrate quantum computing with EMTP. Although the
proof-of-concept was successful [7], the method’s scalability
on real-scale power systems and practicability on real quantum
hardware remain unsatisfactory. HHL employs extremely high-
depth quantum circuits even for tiny-scale problems [8], mak-
ing them prone to perturbations from noisy environments [9].
In fact, the fault-tolerant quantum devices required by HHL,
i.e., those with diminutive quantum errors and sufficient qubits
for error correction, may not be immediately available within
decades [10]. Noisy-intermediate-scale quantum (NISQ) com-
puters are still the state-of-the-art, where the executable scale
of quantum circuits is severely restricted by the limited number
of qubits, low connectivity between qubits, and coherent and
incoherent errors, etc [9].

The overarching goal of this paper is to enable an NISQ-
device-compatible quantum EMTP (QEMTP) which allows
for practical and scalable quantum EMTP simulations on
the NISQ devices (e.g., quantum devices accessible at IBM
Quantum Hubs). To this end, four major contributions are
made as follows:
• A shallow-depth, logarithmical-width variational quantum

circuit (VQC) is designed to enable reliable operations of
QEMTP under noisy quantum environments.

• Practical QEMTP linear system problem (LSP) solvers are
devised for the step-by-step nodal analysis. By leveraging
the power network characteristics, the customized QEMTP-
LSP solvers resolve the obstacles faced by the general-
purpose variational quantum linear solvers (VQLSs) for
quantum state preparations and measurements on real quan-
tum hardware.

• An overall procedure of QEMTP is developed integrating
the QEMTP-VQC training, the QEMTP-LSP solver, and
error compensation to jointly achieve high-fidelity, noise-
resilient EMTP simulations through quantum computing.

• QEMTP is further empowered with a quantum shifted-
frequency-analysis (QSFA) method, which accelerates
QEMTP by solving dynamic-phasor-based differential equa-
tions with larger time steps in quantum computations. A
QSFA solver is established for computing the complex nodal
voltage phasors at each time step.

• Systematical studies are designed to comprehensively eval-
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uate the QEMTP performance under noisy quantum envi-
ronments regarding both the simulation accuracy and the
noise-resilience.

The remainder of the paper is organized as follows. Sec-
tion II establishes the QEMTP formulation. Section III devises
the NISQ QEMTP algorithm. Section IV further establishes
the QSFA methodology. Section V provides extensive case
studies on both quantum simulators and real IBM quantum
computers to validate the proposed methods. Section VI con-
cludes the paper.

II. QUANTUM EMTP FORMULATION

A. Classical EMTP Formulation

EMTP studies power system transients based on numeri-
cal integration rules (e.g.,the trapezoidal discretization) and
nodal analysis [2]. By introducing a compensated current
source, each electrical component, regardless of a simple RLC
component or a complex rotating machine, can be uniformly
transformed into an equivalent resistance:

i(t) = gv(t)− ih(t) (1)

where i(t) and v(t) respectively denote the component current
and voltage; g denotes the equivalent conductance and ih(t)
denotes the compensated current of history states (see Table I
for the detailed expressions of basic RLC components).

Table I. EMTP formulation of basis components

Component g ih(t) Graphic Illustration

R 1
R

0

i(t)

v(t)

ih(t)

g

L ∆t
2L

* −∆t
2L
v(t−∆t)−i(t−∆t)

C 2C
∆t

2C
∆t
v(t−∆t)+i(t−∆t)

* ∆t: time step.

Correspondingly, at each time step, dynamic equations of
a power network can be numerically substituted by algebraic
equations of an equivalent network of resistances [2]:

Ĝv̂(t) = îs(t) + îh(t) := î(t) (2)

Here, v̂ denotes the vector of nodal voltages; î denotes the
vector of nodal current injections, which assembles currents
from both power sources (i.e., îs) and history terms (i.e., îh);
Ĝ denotes the equivalent conductance matrix of N dimensions
(i.e., number of nodes with unknown voltages).

EMTP solves (2) step-by-step to obtain v̂(t), and thus its
essence is a Linear System Problem (LSP). Classically, solving
an N -dimensional LSP leads to a computational complexity
scaling polynomially in N , making EMTP intractable for
large-scale systems. In contrast, quantum computing exhibits
exponential speedup in tensor manipulation and is promisingly
efficacious for data processing in an ultra-high-dimensional
space. This motivates the establishment of an QEMTP.

B. Preliminaries of Quantum Computing

In quantum computing, a quantum state is represented by a
vector in a Hilbert space. An arbitrary n-qubit quantum state
can be modelled as:

|ϕ⟩ =
∑2n

k=1
αk |k⟩ (3)

where |k⟩ represents the k-th computational basis and∑
k |αk|2 = 1. As indicated by (3), n qubits are capable

of creating a complete 2n-dimensional vector space [11].
Therefore, any quantum operations will be of exponential
dimension, as compared with classical operations.

The basic computational routine in quantum computing is
a quantum circuit [12]. A variational quantum circuit (VQC)
is an ordered sequence of parameterized quantum gates on
quantum states. Those parameters can be optimized such
that VQCs can realize various tasks (e.g., linear solver [10],
eigensolver [13]).

C. Quantum EMTP Formulation

As aforementioned, n = ⌈log2(N)⌉ qubits are required to
represent an N -dimensional power system.

Reformulating the current injection i in (2) into its quantum
representation gives:

|i⟩ =
∑N

k=1

îk√∑
k î

2
k

|k⟩ =:
∑N

k=1
ik |k⟩ (4)

where îk denotes the kth element of î.
Reformulating the conductance matrix Ĝ into a padded and

normalized form gives:

G =

[
D(

√
d−1
G )ĜD(

√
d−1
G ) 0

0 I2
n−N

]
(5)

where dG denotes a vector constructed by the diagonal el-
ements of Ĝ; D(·) constructs a diagonal matrix from the
input vector; I2

n−N denotes an identity matrix of dimension
(2n −N ); 0 denotes a zero matrix.

QEMTP targets at preparing a quantized nodal voltage state
|v⟩ so that G |v⟩ is proportional to |i⟩:

|ϕ⟩ = G |v⟩√
⟨v|GTG|v⟩

= |i⟩ (6)

To achieve this goal, a variational quantum circuit (VQC)
should be delicately designed for generating |v⟩ corresponding
to G and i, such as:

|v⟩ = U(p) |0⟩ (7)

where U denotes a VQC parameterized by p. The next section
introduces how to establish such U(p).

Equations (4)-(7) jointly form a quantum-based solution of
nodal voltages. Consequently, the LSP in classical EMTP (see
(2)) can be substituted by a quantum LSP (QLSP) embedded
in the Hilbert space (see (7)). A salient feature of the QEMTP
formulation is that the required computational resource (i.e.,
qubits) scales logarithmically in N , which indicates an expo-
nential improvement over the classical EMTP.
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Figure 1. Schematic diagram of the VQLS-based QEMTP-LSP solver

III. VARIATIONAL QUANTUM EMTP ALGORITHM

In this section, we devise a variational QEMTP algorithm
to realize the EMTP functionality in the Hilbert space.

A. VQLS-based QEMTP-LSP Solver

This subsection establishes a variational quantum linear
solver (VQLS)-based QEMTP-LSP solver to prepare a proper
QEMTP-VQC depicted in (7), given the conductance matrix
G and nodal current injections i.

Fig. 1 illustrates the schematic diagram of the VQLS-based
QEMTP-LSP solver, where a hybrid quantum-classical frame-
work is adopted. As shown in Fig. 1, a quantum computer
takes the system conductance matrix G and i as inputs, and
it executes the parameterized QEMTP-VQC to obtain the
quantum states of nodal voltages, i.e., |v⟩ = U(p) |0⟩. Then,
a classical computer updates the VQC parameters p, which
prompt G |v⟩ to move towards i. The two subroutines interact
to optimize the VQC’s parameters until (6) is achieved. The
following details the methodology.
1) Conductance Matrix Decomposition: First, the conduc-
tance matrix G is decomposed into a linear combination of
multi-qubit Pauli operators so that its information can be
represented in the Hilbert space [14]:

G =
∑4n

s=1
csσs =

∑4n

s=1

1

2n
Tr(σsG)

(⊗n

k=1
σs,k

)
(8)

Here, σs =
⊗n

k=1 σs,k is the s-th unitary operator; cs =
1
2n Tr(σsG) is the s-th coefficient correspondingly; σs,k ∈
{σI , σx, σy, σz} is a Pauli operator applied on the k-th qubit;
σI = [ 1 0

0 1 ], σx = [ 0 1
1 0 ], σy =

[
0 −j
j 0

]
and σz =

[
1 0
0 −1

]
respectively denote the zeroth, x-, y- and z-Pauli matrices.

Additionally, |i⟩ is also prepared by quantum operators as:

|i⟩ = Ui |0⟩ (9)

where Ui is supposed to be a short-depth quantum circuit.
Subsection III-B further discusses the realization of (9).
2) Cost Function Construction: Then, a cost function is
constructed to depict the similarity between |ϕ⟩ (i.e., the
normalized state of G |v⟩, see (6)) and |i⟩ (i.e., the normalized
state of nodal current injections, see (4)). Denote |ψ⟩ = G |v⟩,
the cost function can be formulated as:

C = 1− | ⟨i|ϕ⟩ |2 = 1− | ⟨i|ψ⟩ |2
⟨ψ|ψ⟩ (10)

Substituting (7)-(9) into (10) yields an equivalent cost
function constructed by a sequence of quantum operators [10]:

⟨ψ|ψ⟩ =
∑
s,s′

csc
∗
s′βs,s′ , | ⟨i|ψ⟩ |2 =

∑
s,s′

csc
∗
s′δs,s′ (11)

Here cs denote the decomposition coefficients of G (see (8));
βs,s′ and δs,s′ are respectively modelled as [10]:

βs,s′ = ⟨0|U †(p)σ†
s′σsU(p)|0⟩

δs,s′ = ⟨0|U †(p)σ†
s′UiPU

†
i σsU(p)|0⟩

(12)

(13)

where P = 1
2 + 1

2n

∑n−1
j=0 |0j⟩ ⟨0j | ⊗ 1j̄ . Equation (11)

establishes an executable formulation of the cost function so
that it can be evaluated through Hadamard test [15]. Detailed
derivations of (11) and the Hadamard circuit are stated in [10].
3) QEMTP-VQC Training: As illustrated in (7), QEMTP
optimizes a quantum circuit to obtain the nodal voltage states.
The left subplot of Fig. 1 depicts the VQC designed for
QEMTP, where the quantum gate arrangements are as follows:
• Initial state encoding: |ψI⟩ = UI(pI) |0⟩ encoding the zero

state by a RZ-SX-RZ sequence on each qubit;
• Entangled state encoding: |ψE⟩ = UE(pE) |ψI⟩ introducing

entanglement between each pair of adjacent qubits;
• Repetitive layered structure: |v⟩ = U

(L)
E · · ·U (1)

E UI |0⟩ =:
U(p) |0⟩ to accomplish the QEMTP-VQC.
Then, a stochastic quantum gradient algorithm is introduced

for QEMTP-VQC training, which is a quantized version of
the traditional Adaptive Moment Estimation (Adam) opti-
mizer [16]. At each iteration, the VQC parameters are updated
based on the quantum gradient values:

ps = ps−1 − η∇Cp (14)

Here, η denotes the adaptive learning rate; ∇Cp is the quantum
gradient of C w.r.t p calculated by parameter-shift rules [17],
[18]. Upon the convergence of C towards 0, optimized VQC
parameters are obtained, i.e., denoted by p∗.

Consequently, the optimized QEMTP-VQC circuit outputs
a normalized state of the power system nodal voltages:

|v⟩ = U(p∗) |0⟩ =
∑2n

k=1
vk |k⟩ (15)

where vk is the k-th element of the normalized voltage vector.
4) Remarks: Here, we explain the reason for designing a
variational RZ-SX-RZ sequence in Fig. 1. Although any
quantum operators can be utilized in the theoretical design of
a quantum circuit, they may not be available on real quantum
computers. Most state-of-the-art IBM quantum computers only
provide 5 basis gates, i.e., CX, ID, RZ, X and SX gates (see
Appendix A for detailed representations of commonly-used
quantum gates). Therefore, any non-basis quantum gates will
be transpiled to basis gates when executed on an IBM quantum
computer. Specifically, the transpilation of RX gates and RY
gates (i.e., the widely used parameterized gates in quantum
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computing) involves the RZ-SX-RZ sequence, as shown in
Fig. 2. Therefore, we utilize the RZ-SX-RZ ansatz in the
QEMTP-VQC circuit.

Designed Circuits Transpiled Circuits

Figure 2. Transpilation of RX, RY, RZ gates on real IBM quantum
hardware

Another configurable setting of the QEMTP-VQC is the
number of layers. In this paper, the layer number is set
by experimentation. Starting from L = 1, we optimize the
corresponding QEMTP-VQC. If the 1-layer VQC converges
to a satisfactory precision, the algorithm stops; otherwise, the
layer number is increased. A larger number of layers leads to
higher expressibility of the QEMTP-VQC because there will
be more parameterized quantum gates that can be optimized.
However, it will unavoidably deteriorate the noise-resilience
of QEMTP because higher-depth quantum circuits are more
sensitive to the noisy quantum environments when executed
on real quantum computers.

B. Practical QEMTP-LSP Solvers

Even though the VQLS-based QEMTP-LSP algorithm can
theoretically obtain the quantized nodal voltage states, its real-
world application is hindered by two significant challenges.

First, a quantum state is not observable from a quantum
circuit, meaning that vk in (15) is actually inaccessible on
real quantum hardware. Instead, only |vk|2 can be acquired
through measurements, reflecting the possibility of the k-th
basis state. In other words, even though the QEMTP-VQC
prepares |v⟩ in a Hilbert space, it does not explicitly lead to
an EMTP solution v in a Euclidean space.

Second, preparing an arbitrary quantum state can be com-
putationally expensive and may lead to a high-depth circuit.
For example, Fig. 3 exemplifies the quantum circuits for
preparing randomly-generated |i⟩. It can be seen that high-
depth quantum circuits are required even for low-dimensional
vectors. This indicates that (9) is possibly unrealizable in
practice, considering the time-varying nodal current injections
in an EMTP calculation.

Motivated by the discussion above, this subsection develops
practical QEMTP-LSP solvers to conquer the state prepara-
tion/measurement barriers.
1) Basis QEMTP-LSP Solver: First, a basis QEMTP-LSP
solver is devised. The fundamental idea is to solve a series of
“basis” nodal voltage vectors corresponding to every “basis”
current injection:

G
∣∣∣v(k)〉 =

∣∣∣i(k)〉 ,
∣∣∣i(k)〉 = |k⟩ , ∀k (16)

where
∣∣v(k)〉 and

∣∣i(k)〉 respectively denote the k-th basis
voltage and current states.

(a) Quantum circuit for preparing a random 4-dimensional state
i = [0.43, 0.52, 0.31, 0.67]T

(b) Quantum circuit for preparing a random 8-dimensional state
i = [0.41, 0.36, 0.35, 0.40, 0.35, 0.26, 0.42, 0.23]T

Figure 3. Exemplification of quantum circuits for preparing |i⟩

Current State Preparation Circuit

Basis
Solver

|i〉 = |0〉 |i〉 = |1〉 |i〉 = |2〉 |i〉 = |3〉

Decomposed Conductance
Matrix Circuit

G=σx1σx2+σy1σy2+σz1σx2

Batch
Solver

Figure 4. Quantum circuits for current state preparation and conductance
matrix decomposition in practical QEMTP-LSP solvers. Exemplified on
a 4-dimensional example, which requires 2 qubits for the basis solver and 4
qubits for the batch solver.

Proposition 1. Denote
∣∣v(k)〉 = [v

(k)
1 , v

(k)
2 , · · · , v(k)2n ]T . Then,

v
(k)
j ∈ R and v(k)j ≥ 0 (∀j).

Proof . See Appendix B-A.
Accordingly, the voltage state corresponding to an arbitrary

current state |i◦⟩ = ∑
k ik |k⟩ can be constructed as the linear

combination of the “basis” voltages:

v◦ =
∑

k
ikv

(k) (17)

where v(k) is measured from
∣∣v(k)〉.

This basis QEMTP-LSP solver resolves the aforementioned
challenges because:
• Equation (16) only requires preparing each basis quantum

state, i.e., |k⟩ = U
(k)
i |0⟩. This can be readily achieved by

applying Pauli-X gates on appropriate qubits so that U (k)
i is

fortunately a one-depth quantum circuit. Fig. 4 demonstrates
U

(k)
i on a 4-dimensional example.

• According to Proposition 1, coefficients of
∣∣v(k)〉 are all

real, non-negative numbers.
Therefore, v(k) can be straightforwardly measured from a
quantum circuit as:

v(k) = [
√
|α1|2,

√
|α2|2, · · · ,

√
|α2n |2] (18)

where |αs|2 denotes the possibility of
∣∣v(k)〉 on the s-th

computational basis.

2) Batch QEMTP-LSP Solver : The basis QEMTP-LSP solver
requires solving N QLSPs for all computational bases, as
formulated in (16). A natural idea is to explore whether those
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QLSPs can be solved simultaneously, exploiting the advantage
of superpositions in quantum computing.

A batch QEMTP-LSP solver is therefore devised. Rather
than solving each basis QLSP independently, the batch
QEMTP-LSP solver gathers (16) for each k to build up an
augmented QEMTP model:

G 0 · · · 0
0 G · · · 0
...

...
. . .

...
0 0 · · · G



v(1)

v(2)

...
v(2

n)

 =
1

2n−1


i(1)

i(2)

...
i(2

n)

 (19)

Equation (19) is again reformulated in its quantum repre-
sentation:

G̃ |ṽ⟩ =
∣∣∣̃i〉 (20)

where |ṽ⟩ and
∣∣∣̃i〉 are both 2n-qubit quantum states.

A notable observation is that the batch solver in the Hilbert
space (see (20)) only requires an additional n qubits, whereas
in the Euclidean space, it leads to an LSP scaled by 2n

times. This again demonstrates the logarithmic reduction of
computational resources through quantum computing.

The following explains how the batch QEMTP-LSP solver
tackles the challenges in measurements and state preparation.
First, G̃ is a block-diagonal matrix with each block inheriting
the structure of G, which therefore leads to a measurable
quantum state |ṽ⟩ by analogy with (18). Second, preparing

∣∣∣̃i〉
happens to be trivial since each

∣∣i(k)〉 is a computational basis.
Fig. 4 illustrates the general structure of the state preparation
circuit, where n Hadamard gates on the first n qubits followed
by a sequence of n CNOT gates readily generates

∣∣∣̃i〉.

Moreover, the Pauli-decomposition of G̃, which is a prepa-
ration step for VQLS as depicted in (8), can be effortlessly
constructed based on the decomposition of G:

G̃ =
∑4n

s=1
cs

(⊗2n

k=n+1
σs,k

)
(21)

where cs and σs,k refers to the decomposition of G in (8). See
the derivation of (21) in Appendix B-B. The only difference
between (21) and (8) is that G̃ implements those Pauli
operators on the last n qubits (see Fig. 4 for the visualized
illustration). Equation (21) indicates that even though the
dimension of the augmented EMTP matrix G̃ is 2n times
larger than that of the original EMTP matrix G, no additional
effort is required in decomposing the conductance matrix.

C. Error Compensation

Up to this point, we have established practical QEMTP-
LSP solvers to tackle the step-by-step nodal voltage computa-
tion. However, today’s quantum devices are still in the noisy
intermediate-scale quantum (NISQ) era. Gate errors and short
decoherence time [19] inevitably disturb the quantum devices,
obstructing a quantum circuit’s output from being its theoreti-
cal value. Therefore, although the QEMTP-VQC trained from
Subsections III-A and III-B can prepare an accurate nodal
voltage state in theory, it usually fails to perfectly replicate
the exact results on a noisy quantum computer.

This subsection develops an error compensation technique
to ensure the accuracy of the step-by-step QEMTP under noisy
quantum environments. Denote R =

[
v(1), · · · ,v(2n)

]
as the

basis voltage states estimated from a quantum computer. We
reason that R provides a good approximation of G−1 accord-
ing to the philosophy of VQLS. Thereby, G is decomposed
as G = R−1 + ∆G, where ∆G denotes a small error term.
Consequently, the following iterative process is introduced to
acquire an authentic nodal voltage solution:

v(s+1) = v(s) + ϵRr(s) , r(s+1) = i−Gv(s+1) (22)

where v(s) is the value of v at the s-th iteration (i.e., v(0) = v◦

as defined in (17)); r(s) denotes the residual (i.e., r(0) = i−
Gv(0)); ϵ denotes the stepsize. Iterations in (22) is recursively
executed until a satisfactory precision is reached. Convergence
of the above iterative method is guaranteed by the following
proposition.

Proposition 2. The iterative method in (22) convergences to
the correct result with a proper setting of ϵ satisfying the
spectral radius ρ(I − ϵRG) < 1.

Proof . See Appendix B-C.

D. Overall Procedure of QEMTP Algorithm

In summary, Algorithm 1 presents the QEMTP procedure.
When the power network configuration changes, G is updated
and a corresponding QEMTP-VQC is trained. Then at each
timestep, i(t) is updated based on the previous system states
to solve the unknown nodal voltages while the error compen-
sation technique ensures the high fidelity of QEMTP results.

IV. QSFA: AN SFA-BASED QEMTP

QEMTP inherits a deficiency of classical EMTP that small
discretization steps are required to trace the instantaneous
values of all desirable frequency components [20]. To resolve
this issue, this section empowers QEMTP with a quantum SFA
(QSFA) methodology.

A. Classical SFA Formulation

SFA-based EMTP [20], [21], [22] embeds dynamic phasors
into EMTP models to obtain the time-varying phasors in power
grids. A salient feature of SFA is the ability to accurately
calculate the envelopes of electromagnetic transients with a
large time step. Moreover, the dynamic phasor results can be
readily transformed back to instantaneous solutions that still
accurately capture the electromagnetic transients.

Denote V(t) as the dynamic phasor of v(t) (here, the
calligraphic font is used to denote complex variables). Math-
ematically, V(t) is formulated as:

V(t) = z(t)e−jωst ⇐⇒ v(t) = Re(V(t)ejωst) (23)

where ωs is the fundamental frequency (i.e., 60 Hz); z(t) =
v(t)+jH(v(t)) and H(·) denotes the Hilbert transform. V(t)
therefore provides a complex envelope of v(t).
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Algorithm 1: Quantum EMTP Algorithm
1 ▷ Initialization: temtp, ξmax, system parameters;
2 for t ∈ temtp do
3 if Network configuration changes or Initialization then
4 Update Ĝ and construct G;
5 ▷ QEMTP-VQC Training:
6 Decompose G by (8) and prepare Ui by (9) ;
7 Build QEMTP-VQC by Fig. 1 ;
8 Randomly initialize VQC parameters p;
9 Train QEMTP-VQC by Fig. 14 ;

10
11 ▷ QEMTP-LSP Solver:
12 Initiaize v(0) = 0, r(0) = i;
13 if basis solver then
14 for k=1:N do
15 Execute the QEMTP-VQC with |i⟩(k) by

(16);
16 Measure v(k) by (18);
17 end
18 else
19 Construct G̃ and ĩ by (21) and Fig. III-B ;
20 Execute the QEMTP-VQC with

∣∣∣̃i〉 by (20);
21 Measure ṽ ;
22 end
23
24 end
25 Update i(t) = ih(t) + is(t), Prepare |i⟩ by (4);
26 Construct v by (17);
27 ▷ Error Compensation:
28 Initialize v(0) = 0, r(0) = i, s = 0;
29 while max |r(s+1)| < ξmax do
30 Update v(s+1) and r(s+1) by (22), s = s+ 1;
31 end
32
33 Rescale v(s) to v̂ according to (2);
34 Update nodal voltage array vemtp = {vemtp, v̂} ;
35 end
36 ▷ Output: time-series QEMTP results vemtp ;

Under the dynamic phasor formulation, the SFA-based
nodal equations of the power system is reformulated as:

GV(t) = Is(t) + Ih(t) := I(t) (24)

Here, Is, Ih and I are respectively the dynamic phasors of
is, ih and i in (2); G is the equivalent admittance matrix.

Consequently, the major computational burden of SFA is to
solve a complex LSP (24) at each time step.

B. QSFA Methodology

QSFA acquires the solution of (24) through quantum com-
puting. Denote G = Gr+jGi, V = Vr+jVi and I = Ir+jIi.
Equation (24) is reformulated into the real number field as:[

Gr −Gi

Gi Gr

] [
Vr

Vi

]
=

[
Ir
Ii

]
(25)

Recalling the fact that only possibilities can be observed from
a real quantum computer rather than a quantum state itself, Vr

and Vi can not be measured unless the sign of each element
is known in advance. Motivated by this observation, we

decompose G into its capacitive component GC and inductive
component GI :

G = GI + GC (26)

Without loss of generality, GC is assumed as a diagonal
matrix which usually formulates the coupled capacitances of
branches. Then, SFA for the inductive power network is solved
by a quantum linear solver by analogy with Section III:[

GI
r −GI

i

GI
i GI

r

] [
V I
r

V I
i

]
=

[
Ir
Ii

]
(27)

where GI
r and GI

r are respectively the real and imaginary
part of GI . Denoting VI = V I

r + jV I
i as the complex voltage

vector solved from a quantum computer, we compensate VI

with GC to construct the true nodal voltages of SFA. The
following iterative compensation methodology is introduced,
which only introduces simple algebraic operations:

VI
(s+1) = VI

(s) − g(s)GC
ssVI

(s),sVI
(s) (28)

where s denotes the s-th iteration; g(s) = 1
1+VI

(s),s

. Required
number of iterations depend on the number of non-zero
elements in GC .

Note that (27) is a 2n+1-dimensional LSP and thus n +
1 qubits are used for QSFA computation, i.e., the required
quantum computational resource only increases by one qubit
compared with that for QEMTP.

V. CASE STUDY

This section verifies QEMTP with extensive experiments.
Test systems range from typical EMTP test circuits [23]
to standard IEEE PES feeders [24]. QEMTP is imple-
mented on both an IBM noise-free quantum simulator
(ibmq qasm simulator, a 32-qubit simulator) and a real IBM
quantum computer (ibmq sydney, a 27-qubit, 32-quantum vol-
ume machine).

A. Verification of QEMTP on Noise-Free Quantum Simulator

This subsection thoroughly demonstrates the versatility and
efficacy of QEMTP on an IBM noise-free quantum simulator
ibmq qasm simulator.
1) Exemplification of the QEMTP Procedure: First of all,
we exemplify the overall QEMTP procedure on a Latency
circuit [23], which is a typical abstraction to study the fast-
slow dynamics characteristics of power systems (see Fig. 3).
The time step for QEMTP is set as ∆t = 0.2µs. Simulation
results are provided in Fig. 4.

To solve the unknown nodal voltages [v2; v3; v4], 2 qubits
are required in QEMTP. The very first step of QEMTP is to
decompose the conductance matrix of the Latency circuit:

G =σI − 0.0495σx,2 − 0.0049σx,1σx,2

− 0.0049σy,1σy,2 − 0.0495σz,1σx,2
(29)

Next, a QEMTP-VQC with 2 qubits, 2 layers is constructed
for the Latency circuit. Fig. 4(a) illustrates the training pro-
cess of this QEMTP-VQC. Starting with randomly initialized
parameters, VQC generates a quantum solution (see the green
vector) that differs largely from the real solution (see the red
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Figure 4. Demonstration of the QEMTP procedure on the Latency circuit. (a): QEMTP training procedure and the corresponding evolution of cost function
and the fidelity between the real solution and the quantum solution. Vectors of the real solution and the quantum solution at typical iterations (i.e., the first,
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Figure 3. Illustration of the Latency circuit (see circuit parameters in [23])

vector). A large cost function and a low fidelity level can also
be observed, indicating that the untrained VQC is not qualified
for EMTP. Then, along the training process, the decrease of the
cost function, increase of the fidelity level and approaching of
the quantum solution towards the real solution jointly illustrate
that the QEMTP-VQC is evolving into a well-trained quantum
circuit suited for QEMTP computation.

The optimized QEMTP-VQC is depicted in Fig. 4(b).
Further, Fig. 4(c) evaluates the QEMTP-LSP solver’s efficacy
in the Hilbert space. The perfect match between the classical
and quantum probabilities of each basis state demonstrates the
high fidelity of the results from the trained QEMTP-VQC.

Subsequently, Fig. 4(d) presents the QEMTP-based voltage
trajectories across both the fast and slow capacitors. The
QEMTP results not only accurately match the classical EMTP
results and state-space solutions, but also perfectly replicate
the electromagnetic transients reported in [25]. Both obser-
vations verify the correctness of QEMTP in tracing the high-
frequency oscillations.

More importantly, as shown in Fig. 4(b), the QEMTP
functionality is realized by a short-depth VQC with only 2
qubits, 11 depths and 2 CNOT gates. This concise quan-
tum circuit makes it possible to truly execute QEMTP on
the near-term quantum computers, meaning that the NISQ-
QEMTP indeed provides a practical quantum EMTP solution
(see Subsection V-B for the implementation on real quantum

hardware). This is a most salient distinction from our previous
work [7]. As demonstrated in [7], our previous HHL-based
QEMTP requires a 7-qubit, 102-depth quantum circuit with
54 CNOT gates for EMTP of a very simple RLC circuit,
which is far beyond the quantum volume of today’s quantum
hardware and fails to generate meaningful results under noisy
environments.
2) Demonstration of QEMTP Under Configuration Switching:
Besides the normal operations, we also test QEMTP under
configuration switching. Another typical EMTP test circuit,
i.e., the 2-area resonant circuit [23], is employed to study
the 2-area oscillation of power systems. Simulation results are
presented in Fig. 5. With the switch opened at 33.33ms, the
two resonant circuits become islanded.

Under configuration switching, a series of QEMTP-VQCs
are trained for each configuration. As illustrated in Fig. 5(a)
and Fig. 5(b), the pre-disturbance system employs a single-
qubit VQC to encode the unknown voltages of the 2-area
system (i.e., [v2; v4]), while the post-disturbance system em-
ploys two single-qubit VQCs to separately formulate each
resonant system (i.e., v2 and [v3; v4]). Although the electrical
system’s parameters remain the same, the pre-disturbance and
post-disturbance VQCs are independent and do not necessarily
share parameters or structures.

QEMTP results in Fig. 5(c) and Fig. 5(f) show that QEMTP
maintains high fidelity to simulate the electromagnetic dynam-
ics triggered by the switching operation, under both a poorly
damped case and an improved damped case. The amplified
views during the starting and switching periods specifically
illustrate the perfect accuracy of QEMTP for capturing the
ultra-fast transients. Again, all the QEMTP trajectories are
coincident with those reported in existing studies [23], which
verifies the effectiveness of QEMTP.
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Figure 5. Demonstration of QEMTP under configuration switching . Subplots (a)-(c) investigate a poorly-damped, 2-are resonant circuit and Subplots (d)
studies a improved-damped case.

3) Validity of QEMTP on Standard IEEE Test Feeders:
Further, QEMTP is verified on standard IEEE test feeders.
Three test systems are studied (i.e., the 4-bus, 13-bus, 123-bus
IEEE feeders [24] and the IEEE 906-bus European LV test
feeder [26]) and several typical disturbances are considered
(i.e., load changing, short-circuit and open-circuit) to jointly
test the versatility of QEMTP. The time step for QEMTP is
set as ∆t = 1µs.

QEMTP trajectories of each test feeder are visualized in
Fig. 6. It can be observed that under normal conditions,
the electromagnetic transients basically exhibit a sinusoidal
waveform of the fundamental frequency (i.e., 60 Hz), whereas
under disturbances, high-frequency harmonics are induced.
QEMTP accurately traces both the fundamental-frequency
components and the irregular voltage/current distortions during
the whole simulation, providing identical results with classical
EMTP or state-space results.

Table II further presents a quantitative evaluation of the
accuracy of QEMTP. For test systems of different scales,
the QEMTP-LSP solver consistently provides high fidelity
QEMTP results with an error level lower than 5× 10−9.

Additionally, Table II provides the comparison between
quantum resources and classical resources used for EMTP.
A noteworthy observation is that while the scale of the 123-
bus feeder is about 10 times larger than that of the 13-bus
test feeders, only 3 more qubits are required to accomplish
the QEMTP computations. This again exhibits the exponential
superiority of performing EMTP in the Hilbert space.

Table II. QEMTP accuracy on an IBM noise-free simulator

N /n1
VQLS Accuracy QEMTP Accuracy

(Fidelity2) Error (10−9))
Min Mean Max Mean

Latency 3/2 1.0000 1.0000 0.0131 0.0064
2-Area 3/2 1.0000 1.0000 0.0213 0.0012

4-Bus Feeder 3/2 1.0000 1.0000 0.8350 0.0672
13-Bus Feeder 12/4 0.9999 0.9999 1.0051 0.1118

123-Bus Feeder 122/7 0.9999 0.9999 2.3952 0.1939
906-Bus Feeder 905/10 0.9999 0.9999 1.3356 0.4365
1 N : dimension of the classical EMTP model (i.e., number of unknown

nodal voltages); n: number of qubits required in QEMTP.
2 Fidelity between two pure quantum states |ψ1⟩ =

∑
α1i |i⟩ and

|ψ2⟩ =
∑
α2i |i⟩ is defined as F (ψ1, ψ2) = | ⟨ψ1|ψ2⟩ |2 =

(
∑
α∗
1iα2i)

2, which quantifies the similarity of quantum states. Here,
the fidelity is computed between the quantum state obtained from
QEMTP-VQC and the real solution of the linear equations, and therefore
a higher fidelity indicates more accurate results.

B. QEMTP Analysis on Real, Noisy Quantum Hardware

In this subsection, we study the performance of QEMTP on
a real quantum computer to verify its practicality in the Noisy
Intermediate-Scale Quantum (NISQ) era [27].

1) Verification of QEMTP on the ibmq sydney Quantum Com-
puter: QEMTP is implemented on the IBM quantum computer
ibmq sydney, i.e., a 27-qubit, 32-quantum volume quantum
computer (see Fig. 7 for its configuration and error map)
and ibmq hanoi, a 27-qubit, 64-quantum volume quantum
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Figure 6. QEMTP results of IEEE test feeders

Figure 7. Configuration of the ibmq sydney 27-qubit quantum computer

Table III. Comparison of QEMTP accuracy: noisy real quantum device
ibmq sydney vs. noise-free simulator ibmq qasm simulator

Simulator Real machine
(10−9 p.u.) (10−9 p.u.)

MAE 1 RMSE 2 MAE RMSE
Latency circuit 0.0064 0.0084 0.5258 0.6809

2-Area
(Poor)

Normal 0.0004 4.3249 0.0007 0.7102
Fault 0.0012 1.0783 0.0049 5.055

2-Area
(Improved)

Normal 0.0005 1.4207 0.0010 0.0068
Fault 0.002 2.7852 0.0009 0.9738

4-Bus
Feeder

Normal 0.0045 0.0168 0.6531 0.8747
Fault 0.1863 0.2683 0.9567 1.1779

13-Bus
Feeder

Normal 0.1249 0.1982 3.5906 4.9395
Fault 0.0867 0.1541 3.3037 5.0541

123-Bus
Feeder

Normal 0.1549 0.2033 0.2584 0.3346
Fault 0.2680 0.3556 0.5021 0.6657

906-Bus Normal 0.3978 0.5032 0.5627 0.8273
Feeder Fault 0.6489 0.8742 0.8816 0.9869

1 Mean absolute error: MAE = meani(ypi − yi) where ypi and yi
respectively denote the numerical solution and the real solution.

2 Root-mean-square error: RMSE =
√

meani(ypi − yi)2.

computer3 .
Fig. 8 presents the QEMTP results obtained from the

real quantum computer. As a universal test, QEMTP tran-
sients triggered by different events are thoroughly studied,
i.e., unsteady initial states in (a), configuration switching in
(b), parametric switching in (c) and faults in (d)(e)(f). In
each and every case, real-machine-based QEMTP trajectories
accurately match those obtained from the quantum simulator,
which evidences the effectiveness of QEMTP in simulating
the electromagnetic transients on real quantum devices.

More explicitly, Fig. 9 visualizes the instantaneous error
of QEMTP at each time step and Table III quantifies the
QEMTP accuracy. It can be observed that QEMTP reports
a slightly weakened accuracy on the real quantum computer
due to the noisy environment. Meanwhile, the discrete events
(such as parametric changing and faults) generally trigger a
slight impulse on the errors during the step-by-step QEMTP
computation. However, the overall accuracy of QEMTP under
the noisy quantum environment is still high, i.e., the relative
error level is consistently below 10−8 even for the IEEE 123-
bus test feeder. This experiment indicates the robustness of
QEMTP against quantum noises.

3In the following experiments, only QEMTP of the IEEE 906-bus feeder
is run on ibmq hanoi because ibmq sydney was unavailable during the
manuscript revision period.
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Figure 9. Step-by-step error of QEMTP: noisy real quantum device
ibmq sydney vs. noise-free simulator ibmq qasm simulator

Table IV. Qiskit Runtime on ibm hanoi (unit: s)

Test Case Transpilation Validation Execution Sum
IEEE 4-bus 0.778 0.957 9.192 10.927

IEEE 13-bus 1.104 1.133 9.467 11.704
IEEE 123-bus 1.155 1.295 9.035 11.485
IEEE 906-bus 1.048 1.308 9.469 11.825

Additionally, Table IV provides the runtime of QEMTP on
the IBM real quantum computer4, which is mainly composed
of the time for transpilation, validation, and execution. Al-
though the time consumption of QEMTP seems to be large
on today’s quantum hardware, a noteworthy observation is that
a larger system size does not significantly increase the time
consumption. As aforementioned, the reason is that QEMTP
embeds the EMTP formulation from the Euclidean (classical)
space into the Hilbert (quantum) space. Therefore, QEMTP
can achieve exponential enhancement for tensor products over
classical computing regarding the computational complex-
ity [28].
2) Impact of Quantum Noise: Fig. 10 further summarizes the
accuracy of QEMTP-LSP under various noisy environments.
The noise model is built upon Qiskit Aer 0.8.2. [29] for
simulating quantum circuits in the presence of errors.

4The runtime experiment is performed on ibm hanoi because ibmq sydney
was unavailable during the manuscript revision periods.
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Figure 10. QEMTP performance over a range of noisy quantum envi-
ronment. Subplot (a): Fidelity of the QEMTP-LSP solver over a range of
gate errors. Subplot (b): Fidelity of the QEMTP-LSP solver over a range of
thermal relaxation time T1 (i.e., the time it takes for a qubit to decay from
the excited state to the ground state).

Simulation shows that increasing the number of layers tends
to compromise the fidelity of QEMTP-LSP, indicating that a
higher-depth quantum circuit is less robust against quantum
noises. On the other hand, even though deteriorated gate error
and decoherence time lead to a decreased fidelity, performance
of the QEMTP-LSP solver is highly assured with gate errors
smaller than 0.03 or thermal relaxation time larger than
5µs. Today’s quantum computers can readily achieve those
noise requirements, which ensures the universal practicality
of QEMTP on arbitrary near-term quantum devices.

C. Verification of QSFA

Finally, this subsection verifies the QSFA methodology,
which empowers QEMTP with the SFA theory to allow for a
large time step to accelerate the EMTP simulations. Without
loss of generality, QSFA is demonstrated on the IEEE 4-bus
test feeder. The time step for QEMTP is set as ∆t = 1ms.

To solve the unknown complex voltages of buses 2-4,
six variables are involved (i.e., real and imaginary parts of
[v2; v3; v4]) and therefore a 3-qubit quantum circuit is to be
constructed. Equation (30) presents the decomposition of the
augmented admittance matrix H of the test system for QSFA:

H =σI − 0.2537σx,2σx,3 − 0.2537σy,2σy,3

− 0.1533σz,2σx,3 − 0.1274σy,1 − 0.1533σx,3
(30)

The optimized QSFA-VQC for the IEEE 4-bus feeder is
visualized in Fig. 11(a), which is a 3-qubit, 15-depth quan-
tum circuit with 3 CNOT gates. Since QSFA introduces the
dynamic phasor formulation, complex bus voltages are to
be solved by quantum circuits, leading to a slightly more
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Figure 12. QSFA of IEEE 4-bus test feeder under different disturbances

complicated circuit structure than that of QEMTP. Further,
Figs. 11(b)(c) present the consistency between classical and

quantum probabilities under basis current injections, which
verifies that the well-trained QSFA-VQC provides an effica-
cious solver for this complex LSP.

Subsequently, Fig. 12 provides the QSFA results under
different disturbances. Several observations can be obtained:
• QSFA constructed on both the simulator and the real QC

ibmq sydney (see the blue and green curves) generates
identical trajectories with those from the classical SFA (see
the orange curves), which demonstrates the accuracy and
noise-resilience of QSFA.

• QSFA offers accurate envelopes of the time-domain EMTP
waveforms, which meets our expectation that the shift-
frequency domain analysis can trace the system transients
with a larger time step. Specifically, the dynamic phasor
results indicate high-frequency oscillations on system volt-
ages/currents after disturbances.

• Time domain results transformed back from QSFA dynamic
phasors (see the yellow curves) are identical with those
from the classical EMTP (see the purple curves), which also
evidences the correctness of QSFA.

VI. CONCLUSION

This paper devises scalable and noise-resilient quantum
EMTP analytics to allow for practical quantum electromag-
netic transients analyses in the noisy-intermediate-scale quan-
tum (NISQ) era. The devised NISQ-era QEMTP and QSFA
employ shallow-depth quantum circuits and properly resolve
the state preparation and measurement obstacles, and thus they
truly can execute on real quantum computers and outperform
our previous work [7]. QEMTP and QSFA are thoroughly
validated on a real IBM quantum computer (i.e., ibmq sydney)
to demonstrate its accuracy, efficacy and noise-resilience.
This work unlocks the potential of near-term, noisy quantum
hardware for power system electromagnetic analyses.
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APPENDIX A
REPRESENTATIONS OF QUANTUM GATES USED IN THE

PAPER

σI denotes the identity gate (also denoted by I in literature),
whose representation is:

σI =

[
1 0
0 1

]
σx, σy and σz respectively denote the Pauli X,Y, Z-gates

(also denoted by X , Y and Z), whose representations are:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
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√
X (or SX) denotes the squared X gate, whose represen-

tation is:
√
X =

1

2

[
1 + i 1− i
1− i 1 + i

]
H denotes the Hadamard gate, whose representation is:

H =
1

2

[
1 1
1 −1

]
RX , RY , RZ respectively denote the single-qubit rotation

gates about the X, Y and Z-axes, whose representations are:

RX(θ) =

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

]
RY (θ) =

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
RZ(θ) =

[
e−iθ/2 0

0 eiθ/2

]
CNOT (or CX) denotes the controlled Not gate, whose

representation is:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


APPENDIX B

SEVERAL REMARKS FOR SECTION III

A. Proof of Proposition 1

Proof . Since [v
(k)
1 , v

(k)
2 , · · · , v(k)2n ]T is a solution of (16) and

G and
∣∣i(k)〉 are real matrix/vector, it is obvious that v(k)j ∈

R(∀j).
Denote v(k)q as the element of the minimum value in

∣∣v(k)〉.
Therefore, v(k)q ≤ v

(k)
j (∀j). In the following, we prove v(k)q ≥

0.
Suppose v

(k)
q < 0. The current injection at node q is

calculated as:

i(k)q =
∑
j∈Sq

(v(k)q − v
(k)
j )gj + (v(k)q − 0)gq (31)

where Sq denotes the set of nodes connected to node q; gj
denotes the EMTP equivalent conductance at branch j-q (see
(1)); gq denotes the equivalent conductance between node q
and the ground. Based on the conductance definition, gj and
gq are definitely positive. Therefore, (31) yields:

i(k)q ≤
∑
j∈Sq

(v
(k)
j − v

(k)
j )gj + (v(k)q − 0)gq

<(0− 0)gq = 0

(32)

On the other hand,
∣∣i(k)〉 = |k⟩ and hence i(k)q ≥ 0.

By obtaining a contradiction, we have proved that all the
elements of

∣∣v(k)〉 are non-negative (∀k).

B. Derivation of (21)

∑4n

s=1
cs

(⊗2n

k=n+1
σs,k

)
=
∑4n

s=1
cs

(⊗n

k=1
σI,k

⊗2n

k=n+1
σs,k

)
=I⊗n

(∑4n

s=1
cs

⊗2n

k=n+1
σs,k

)
=I⊗n

⊗
G = G̃

(33)

C. Proof of Proposition 2

Proof . Equation (22) can be reformulated as:

v(s+1) = v(s) + ϵR(i−Gv(s)) = (I − ϵRG)v(s) + ϵRi

Denote Aϵ = I − ϵRG and b = ϵRi. Define the error at
iteration s as e(s) = v(s) − v, where v denotes the correct
result of Gv = i. The error term therefore satisfies the
following iterative step:

e(s+1) = v(s+1) − v = Aϵv(s) + b− v
= Aϵ(e(s) + v) + b− v = Aϵe(s) + (Aϵv + b− v)
= Aϵe(s) + ϵR(−Gv + i) = Aϵe(s)

Correspondingly, we have:

e(s) = A
s
ϵe(0) = A

s
ϵ(v(0) − v) (34)

Case 1 (ρ(−R∆G) < 1): Consider a special case that ϵ = 1
and we have:

A1 = I −R(R−1 +∆G) = −R∆G (35)

The spectral radius of A1 is defined as the maximum abso-
lute value of its eigenvalues, i.e., ρ(A1) = max |λ|. Since
R obtained from the QEMTP-LSP solvers provide a good
approximation of G−1, −R∆G is usually small compared
with the identity matrix, which generally leads to ρ(A1) < 1.
Note that ρ(A1) < 1 is equivalent to lims→∞A

s
1e = 0 for

arbitrary vectors e. Therefore, the iteration provably converges
to v.

Case 2 (ρ(−R∆G) ≥ 1): Even if ρ(−R∆G) is larger than
1 because of the perturbations from the noisy quantum envi-
ronments, the algorithm convergence can still be guaranteed
by setting a proper ϵ. Denote an arbitrary eigenvalue of A1 as
λ and the corresponding eigenvector as ψ:

A1ψ = −R∆Gψ = λψ (36)

Then we have:

Aϵψ = (I − ϵRG)ψ = (1− ϵ+ ϵλ)ψ (37)

which indicates that λϵ = 1− ϵ+ ϵλ is the eigenvalue of Aϵ.
Correspondingly, an ϵ satisfying |1 − ϵ + ϵλ| < 1 guarantees
the convergence.
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