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Abstract: Land-use transition is one of the most profound human-induced alterations of the Earth’s 
system. It can support better land management and decision-making for increasing the yield of food 
production to fulfill the food needs in a specific area. However, modeling land-use change involves 
the complexity of human drivers and natural or environmental constraints. This study develops an 
agent-based model (ABM) for land use transitions using critical indicators that contribute to food 
deserts. The model’s performance was evaluated using Guilford County, North Carolina, as a case 
study. The modeling inputs include land covers, climate variability (rainfall and temperature), soil 
quality, land-use-related policies, and population growth. Studying the interrelationships between 
these factors can improve the development of effective land-use policies and help responsible agen-
cies and policymakers plan accordingly to improve food security. The agent-based model illustrates 
how and when individuals or communities could make specific land-cover transitions to fulfill the 
community’s food needs. The results indicate that the agent-based model could effectively monitor 
land use and environmental changes to visualize potential risks over time and help the affected 
communities plan accordingly. 
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1. Introduction 
Research in regional and local food systems has gained significant attention. Multiple 

studies have investigated individuals and entities involved in food systems regarding de-
cision-making behavior, strategies, interactions, and the impacts of the interlinkages be-
tween the components of the systems [1–3]. From the modeling perspective, local and 
regional food systems often refer to the shorter supply chain with a specific focus on the 
geographic proximity of producers, consumers, and the affected communities [4,5]. 

A food system represents a complex web of decisions, actions, and consequences in-
volving a collaborative process from production to supply chain and consumption. The 
literature points to the many issues and challenges within such an intertwined system and 
specifically notes the common lack of effective governance, distribution, communication, 
and resource allocation in inefficient food systems [6,7]. The studies related to food deserts 
are good examples, often demonstrating the combinations of the challenges regarding 
food availability, access, utilization, and accountability [8–10]. 

Accessibility to healthy, affordable, high-quality food has long been a challenge in 
low-income, urban, and rural areas across the US and globally [11,12]. In addition, many 
people continue to struggle with food price inflation, and supply issues recently brought 
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on by the COVID-19 pandemic. Everything from demand for healthy foods to export and 
import challenges has hit many communities. As a result, low-income households, the 
elderly, and children are more vulnerable to an increasingly pervasive state of food inse-
curity. 

In most general terms, food deserts are defined as geographic areas characterized by 
both low income and low access to nutritious food [13]. A recent study showed that about 
795 million people in the world have limited access to healthy food, and most of these live 
in developing regions of the world [14]. This is also a severe issue in developed countries. 
For example, nearly 39.5 million people (12%) of the U.S. population were living in low-
income and low-access areas, according to the USDA’s most recent data [15]. Similarly, in 
the U.K., 10% of the population were living in food insecurity in 2016, whereas about 13% 
of Canadians were food insecure in 2018. These levels of limited access to healthy foods 
are also common in other affluent countries. 

Multiple studies have related low consumption of fresh fruits and vegetables to ele-
vated risks of various chronic diseases, including heart disease, stroke, and diabetes [16]. 
Moreover, since limited access to supermarkets, supercenters, grocery stores, or other 
sources of healthy and affordable food is posited to be one of the critical barriers for house-
holds to eat a healthy meal, research documenting the link between populations living in 
food deserts having higher risks of battling chronic health issues has been growing [17,18]. 

Various factors contribute to food deserts, including income [19], political instability 
[20], access to transportation and supermarkets, and shortage of agricultural production 
due to climate variability, soil quality, and population growth [21]. Climate variability 
and soil quality significantly affect the quality and quantity of the agricultural output via 
routes such as drowned crops and lower yields [22,23]. Moreover, the rapid global human 
population growth can also impact the food supply and access in the future. Therefore, 
increasing the agricultural output is essential to meet the needs across the globe, especially 
in developing countries. 

However, local farmer’s markets can serve as community-level interventions, bring-
ing healthy and affordable food options to the food deserts community [24]. They are one 
promising way to address the nation’s chronic health problems associated with less fruit 
and vegetable consumption. Moreover, they can connect the rural to the urban, farmer to 
consumer, and fresh ingredients to our diets and become economic and community cen-
terpieces in cities and towns across the U.S. These markets can be developed in commu-
nities with low-income, minority communities, and communities with limited access to 
healthy and affordable foods. 

Understanding how the interactions between households and the food environment 
lead to sufficient fresh fruits and vegetable consumption is critical to overcoming healthy 
food insecurity. Understanding how land-use transitions interrelate with households’ de-
cisions and the environmental conditions is vital to predicting the impacts of potential 
economic scenarios and land-use planning and policy [25,26]. Intentional land-use transi-
tion can support better land management and decision-making for increasing the yield of 
food production to fulfill the food needs in a specific area. To inform the policymaking, 
modeling land-use changes needs to reflect the complexity of both its human drivers and 
natural or environmental constraints [27]. In addition, changes on the macro level, such 
as global policies and population growth, can affect individuals’ behavior, creating 
changes at the micro-level [28]. 

Monitoring vegetation/crop conditions and land-use transition maps can be created 
using remote sensing-based indexes [29,30] and model-based approaches [31–34]. The re-
mote sensing indexes approach has been widely used to monitor the vegetation/crop con-
ditions at regional and global scales at various spatial and temporal resolutions. One com-
monly used remote-sensing index for measuring vegetation conditions is the vegetation 
condition index (VCI) [29]. The vegetation conditions can be attributed to the disaster’s 
impact on vegetation/crops. The Disaster Vegetation Damage Index (DVDI) is another 
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index-based approach used effectively to measure a disaster’s effects on vegetation/crops 
[30].  

Several main methods have been proposed for modeling land use and land cover 
changes, such as Markov chain models [31], system dynamics [32], microsimulation mod-
els [33], and agent-based models (ABM) [34]. The Markov chain model is an essential pro-
jection model that has been used to model land-use changes at large spatial scales [35]. 
This approach can study different states’ initial occupation and transition probabilities to 
determine the development trend and predict the future state, especially when the 
changes and processes in the land are difficult to describe. However, it is limited for pre-
dicting spatial patterns because the approach utilizes only limited spatial knowledge. Ad-
ditionally, Markov chain models often assume that dynamic processes evolve following 
the same (stationary) probabilities as observed in the recent past [36,37]. 

The system dynamic method uses feedback loops, accumulations, time delays, flows, 
and stocks to understand the complex system’s nonlinear behavior over time. This ap-
proach is based on the idea that all of the dynamics occur as a result of the accumulation 
of flows in stocks. System dynamic has a top-down simulating structure that can avoid 
one-sided thinking limitations and enable understanding of the whole structure behind a 
complex phenomenon. However, it cannot effectively examine the driving forces of land-
use changes and the impact of human system behavior on the environment due to its 
structure, which does not account for micro-level dynamics [32]. In contrast with the sys-
tem dynamics approach, microsimulation models analyze the land and the population 
dynamics at a micro-level based on individuals (or agents) [33,38]. This approach is based 
on individual-level or microdata relating to the characteristics and behaviors of individu-
als. Such models have a bottom-up structure that describes agents with individual data 
(e.g., population census data) and simulates their behaviors with transition probabilities 
produced from the data. However, the interaction between individuals is ignored in this 
approach. 

The fourth main approach, the ABM, has emerged as a potent tool to model various 
dynamic processes, including food security [39,40], agricultural policy evaluation [41], 
and urban planning [42]. For example, Natalini et al. [39] developed the ABM that simu-
lates the global food market and the political fragility of countries. The model effectively 
simulates the effects of food insecurity on international food prices and how these increase 
food riots in countries. The model can also be used to simulate the consequences of food 
riots. Similarly, Namany et al. [40] used the ABM to simulate the perishable food market 
strategies under different circumstances for a Qatar-based case study. The ABM devel-
oped effectively simulates the performance of the tomato market in the state of Qatar un-
der different economic and environmental scenarios. Wossen et al. [41], on the other hand, 
used the ABM to analyze how adaptation affects the distribution of household food secu-
rity and poverty under the current climate and price variability. They also examined the 
effectiveness of policy interventions for promoting agricultural credit and off-farm em-
ployment opportunities. Their experiments suggest that the ABM is an effective tool for 
the analyzes of climate and price variability’s effect on household welfare. 

The ABM has also become an essential tool for exploring potential land system de-
velopments, especially when hypothetical scenarios have not yet been observed in the real 
world [34,43,44]. ABM assumes a collection of autonomous decision-making entities 
called agents. The agents in the ABM are independent, autonomous units with properties 
and actions that attempt to fulfill a set of goals. The agents do not have to represent hu-
mans. Instead, they can be land, farmers, or households in the land-use transition context. 
Each agent individually assesses their situation and makes decisions based on a set of 
rules. Furthermore, the agents can interact with each other and their environment, result-
ing in emergent outcomes at the macroscale level [45]. These interactions can be direct 
(e.g., communication and physical interaction) or indirect (e.g., via multiple-pathway 
feedback and aggregate results). 
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Compared to conventional modeling approaches, ABMs are often more complex and 
difficult to generalize beyond a specific context because they depend on local knowledge 
and data [46]. However, due to the ABM bottom-up model structure, they have a vital 
role in examining the driving forces of land-use changes and the impact of human system 
behavior on the environment [47]. In addition, the ABM allows high heterogeneity in 
agent characteristics and interactions between agents and environments and features like 
dynamics, feedback, and adaptation, which are impossible to represent in conventional 
models. For land-use application, the ABM offers a way of incorporating the influence of 
human decision-making on land use in a formal and spatially explicit way and modeling 
individual decision-making entities and their interactions since they are based on individ-
ual agents [48–50]. However, to our knowledge, the ABM has not been applied to specifi-
cally study land-use transitions as influenced by and influencing food deserts. 

To fill the gap in the understanding of how the ABM approach could be used to study 
land-use transitions in the context of food deserts, this study (1) outlines the major steps 
for the development of an ABM that accounts for the interrelationships between relevant 
human and natural systems, (2) identifies the crucial information needed to make the 
ABM operational, and (3) demonstrates the feasibility of such modeling for a chosen 
county in the state of North Carolina, U.S., based on publicly available data and estimated 
functional relationships published to date. The study is motivated by the following ques-
tions: how can the interaction between households and the food environment lead to ad-
equate fresh fruits and vegetables? How do climate variability, soil quality, population 
growth, and policies lead to crop insecurity over time? How does land use transition lead 
to adequate healthy and affordable food access for the local community? How would 
maximizing crop production within or around the food desert communities in the study 
area improve households’ food access? The study itself is not about the ABM. Instead, it 
applied the ABM to show the relation between food needs and production and the poten-
tial of land use transition to meet the food needs to overcome food desert.  

Our methodology adopts a multi-disciplinary approach looking at several food de-
sert indicators to achieve sustainable crop provision and meet the food needs. The main 
agents that contribute to crop yield reduction and food desert factors such as climate var-
iability, soil quality, and population growth impacts are incorporated in the model. The 
framework uses monthly data as an input to simulate the component behaviors and create 
sustainable strategies aimed at satisfying the local food needs. The study hypothesis is 
that the interaction between households and the food environment and land use transition 
lead to adequate fresh fruits and vegetables. Moreover, significant climate variation and 
population growth rate affect the crop production output and food demand each season. 
We assumed the households would not change their purchasing pattern and consumption 
preferences dramatically in any given time period, which means the fruit and vegetable 
consumption mentioned in our study would remain constant throughout the county. The 
study approach can guide stakeholders, policymakers, and other responsible agencies to 
sustain or improve communities’ livelihoods and food security. Furthermore, the system 
approach proposed to develop the framework can be adopted and used for future re-
search to test the effectiveness of land-use and land-cover changes to meet the food needs 
globally. 

The paper is organized as follows: Section 2 introduces the methods used. Section 3 
presents the study area and research data along with data processing. Section 4 presents 
the results and discussions. Finally, Section 5 presents the conclusion of the study. 

2. Methods: Model Development 
This section describes the ABM development to simulate the behavior of human and 

natural systems in land use transition to improve healthy food security. The study ap-
proach required an iterative development process with several phases and data prepara-
tion incorporated into each. 
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Agent-based modeling is a bottom-up computer simulation technique used to ana-
lyze a system by its individual agents that interact with each other, for example, the inter-
actions between people, things, places, and time. The agents are programmed to behave 
and interact with other agents and the environment in certain ways. These interactions 
produce emergent effects that may differ from the effects of individual agents. Agents are 
a representation and a simplification of complex behavior, such as human behavior. This 
representation is established by defining rules, which the agent uses to achieve specific 
goals. The rules together represent the ‘rational’ behavior of the agent. To simulate an 
agent model, we let the agents communicate with each other and other agents. Commu-
nication in agent simulation is how an agent modeler intuitively sees the interactions be-
tween real-life (e.g., other agents, but also the environment) entities. Agents must be able 
to communicate with each other, dependent on the behavior-rules one applies in the 
model; also, agents communicate with the simulated environment. They can be repre-
sented with rules that allow them to learn and copy their neighbors and have a decisional 
structure obtained from “frames of reference”. 

ABMs can offer a way of incorporating the influence of human decision-making on 
land use in a mechanical, formal, and spatially explicit way, considering social interaction, 
adaptation, and decision-making at different levels. In this research, the systems that af-
fect a community’s food security are categorized into two major groups: (I) human sys-
tems such as households, and (II) natural systems such as land agents, which produce 
ecosystem services affecting or fulfilling the human agents’ needs. The ABM is applied to 
analyze the influence of the behavior of individual human system agents (farmers, house-
holds, consumers) on the emergent properties of the natural system agent, such as land-
scape. This model can be used to create realistic representations of food desert indicators, 
such as climate variability, soil quality, population growth, and policies. Figure 1 shows 
the conceptual model of farmland use change and interaction between household agents 
and natural systems. 

 
Figure 1. The land-use transition framework. 

I. Human System. The human system comprises individuals and households and their 
decision-making and actions upon farmland use. The study used age and gender to 
estimate the food needs of the population in the county. These allowed us to estimate 
households’ fruit and vegetable needs based on the Centers for Disease Control and 
Prevention (CDC) daily recommendations. In this study, household agents define the 
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human system. Therefore, household agents are minimal units for measuring human 
variables and include household information and land perceived by the agents, 
which are either farming or consumer households. A farming household is a house-
hold that decides how to use its farmlands and allocate resources at the beginning of 
the farming season. In contrast, a consumer household is a household with its own 
behavior and decision-making characteristics when it comes to consuming food 
items such as fresh fruits and vegetables. The food choice of each consumer house-
hold is influenced by the type of crops that the farming household grows. The main 
attributes of households include human, physical, and natural-related factors. Each 
individual who belongs to the household is defined by their age, gender, income, and 
educational status. The household’s agent structure is described as: 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑎𝑔𝑒𝑛𝑡 (𝐻) = {𝐻 , 𝐿𝑎𝑛𝑑 , 𝐻 , 𝑅𝑢𝑙𝑒𝑠, 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 } (1)

where, 𝐻   is a set of household information including individual variables; 𝐿𝑎𝑛𝑑  is the spatial information obtained from lands, such as plot land size; 𝐻  is behavioral parameters that the households or individuals use to make 
decisions; Rules are a set of conditions that define a logical procedure driven to decide 
how households use their land parcels. It represents the Decision-making mechanism 
that takes inputs from the household’s background and land parcels, assuming that 
household agents behave reactively according to the rules. A procedure of decision-
making is universal for all household agents concerning its logical sequence. How-
ever, decision outcomes are diverse since the agent’s state, parameters, and structure 
of utility functions are individual-specific. The household background included the 
following attributes as mentioned before: 𝐻 = {𝐻 , 𝐻  , 𝐻 ,, 𝐻 , 𝐻 ,𝐻   } (2)

where, 𝐻   represents the human resources based on their age and gender, 𝐻    is the available land, 𝐻   represents farm landowners’ capital, 𝐻  is policy related to households and their land uses, 𝐻   represents house-
holds size, and 𝐻    is the educational status of landowners or house-
holds. 

II. Natural System. The natural system is the landscape with its attributes and ecologi-
cal response mechanisms to environmental changes and human interventions (Fig-
ure 1). The study selected the main natural system-related factors contributing to a 
food desert based on literature and data availability. These include landscape, tem-
perature, soil quality, and precipitation. For example, temperature and precipitation 
variability adversely affect the quality and quantities of crop production. In addition, 
soil quality also has a significant impact on crop production. In this study, land 
agents define the natural system. A land agent is a spatial unit for measuring spatial 
variables of a landscape corresponding to a parcel map, such as land cover and prop-
erty boundaries. 𝐿𝑎𝑛𝑑 𝑎𝑔𝑒𝑡 (𝐿) = { 𝐿𝑎𝑛𝑑 𝑠𝑖𝑧𝑒, 𝐶𝑙𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑟𝑎𝑏𝑙𝑖𝑡𝑦, 𝑆𝑜𝑖𝑙 𝑞𝑢𝑎𝑙𝑖𝑡𝑦} (3)

Land size is the total available farmland used by farmers to produce fruits and vege-
tables needed to meet the food requirements. Since the unavailability of enough land 
for crop production causes a shortage of healthy foods, the model makes a land-use 
transition to minimize the issue. In this case, the land-use change is made by consid-
ering regional and federal land use policies, Climate variability, and Soil quality. For 
example, since temperature and precipitation affect the crops’ planting, growing, and 
harvesting processes, the model considers these factors to estimate the size of 
croplands needed to meet the food requirements and the amount of crop yields ob-
tained from the farmlands. Soil is another essential element of thriving agriculture 
and is the primary source of nutrients used to grow crops [51]. Soil quality affects the 
quality and quantity of crop production. Farmlands with relatively healthy soils 
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produce healthy and high amounts of fruits and vegetables. Based on that context, 
the fruit and vegetable yields obtained per acre of land can be estimated by consid-
ering the land’s soil quality. The decision is based on the agents’ expected yields, land 
availability, and the fruit and vegetable needs of the community. Therefore, food 
needs are considered by simultaneously optimizing the production and consumption 
decisions. Note that landscape, temperature, soil, and precipitation are selected for 
the natural system based on literature and availability of data 

III. The interaction of human and natural systems. The human and natural systems’ in-
teractions drive land-use changes critical for global processes such as climate change 
and food shortage. The human system impacts natural systems, whereas natural sys-
tems present food production conditions to the human system. The human system 
affects the natural environment in many ways, including pollution and deforestation. 
These changes have resulted in climate change and a shortage of rainfall that have 
led to food insecurity [52]. In this research, through our ABM model, we study the 
interaction between these two systems and farmland-use transition in response to 
human decisions and natural constraints to improve food deserts. This interaction 
can be between human agents or human–natural agents. For example, the interaction 
between human and natural agents can affect the quality and quantity of farmland’s 
crop yields. Natural agent attributes such as temperature, rainfall availability, and 
soil quality affect the farm’s crop productivity. The ABM model can simulate this 
interaction and show possible solutions to increase crop production by implementing 
land-use changes. The land-use changes can allow the use of more farmlands to in-
crease crop yields when there is not enough rainfall, temperature, and the soil quality 
of the farmland is not good. 
Each individual’s daily vegetable and fruit needs can be calculated based on health 

officials or other responsible agencies’ recommendations. This research used the CDC 
daily health food intake recommendation and calculated the amount of healthy food in-
take by considering an individual’s gender, age, and health status. Then, the size of the 
farmland area to grow the food requirements are calculated under different conditions, 
such as considering crop type or the suitable season to grow that crop. The calculations 
also consider the condition of rainfall, temperature, and soil quality. The detailed proce-
dure of the ABM development is presented in the next section. 

3. Data Processing 
The ABM was implemented on NetLogo, a multi-agent programming modeling en-

vironment [53]. In addition, ArcGIS was used for preprocessing the input data. 

3.1. Study Area 
Guilford County, North Carolina, U.S., is selected as a study area for the research 

because most of its population is in food deserts. The study area is shown in Figure 2. 
Guilford County is the third-most populated county in the state of North Carolina. It is a 
part of the Piedmont Triad and is located in the north-central area of the State. This county 
has historically served as one of Southeast’s significant manufacturing and transportation 
hubs. According to U.S. Census Bureau, Guilford County’s 2017 estimated population was 
526,953 compared to 488,406 in 2010. According to 2017 estimates, there were an estimated 
203,199 total households in Guilford County. This county has the same average household 
size of 2.5 persons as North Carolina as a whole. According to County Health Databook, 
North Carolina State Center for Health Statistics, life expectancy at birth in Guilford 
County is 78.4 years, higher than in the state as a whole; however, life expectancy has 
declined in Guilford County over the last several years. 
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Figure 2. The study area of Guilford County, North Carolina 

The USDA Food Access Research Atlas maps census tracts that have both low income 
and low access information, as measured by the different distance demarcations [54]. For 
the purposes of this tool, the definition of low access to food is interpreted as being in a 
low-income census tract, and census tracts are regarded to have low access if a large share 
of people in the tract are “far from a supermarket, supercenter, or large grocery store”. 
The Atlas allows for multiple ways to depict the characteristics that can contribute to food 
deserts, including income level, distance to supermarkets, and vehicle access. Figure 3 
shows the 2019 food desert tracts of Guilford County created using the USDA “1and10” 
food desert mapping definition in this study. According to the “1and10” USDA definition, 
a census tract is designed as a food desert when it fulfills the following requirements: (1) 
if the poverty rate becomes 20% or greater, or a median family income is at or below 80% 
of the statewide or metropolitan area median family income, and (2) if at least 500 persons 
and at least 33% of the population live more than 1 mile to the nearest supermarket or 
grocery store in the urban areas and more than 10 miles in the rural areas. Based on that 
definition, 263,826 (54%) people out of the total population of 488,406 are in the food de-
sert, i.e., most people in the county have limited access to healthy and affordable foods. 

 
Figure 3. Food Desert Census Tracts of Guilford County with limited access to healthy food outlets 
and low income. 
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According to USDA’s 2017 report, this county included 900 farmlands with an aver-
age size of 89 acres. The total number of agricultural producers is 1374, including 887 
males and 487 females. Out of all producers, some 114 are aged less than 35, 762 aged 35–
64, and 498 aged 65 and older. Recent data shows that land on farms declined significantly 
in this county from 1987 to 2017 (Figure 4), leading to a reduced agricultural production. 

 
Figure 4. Farmland size change of Guilford County from 1987 to 2017. 

As shown in Figure 4, in 1987, there were 126,369 acres of farmland, yet the farmland 
decreased to 76,352 acres (by 40%) in 2017. Several factors caused this farmland loss in the 
county, including soil degradation, climate change, and the expansion of urbanization. 
For example, soil degradation can cause vegetation cover removal from soils and loss of 
land minerals [55]. In addition, urbanization has led to the continuous expansion of built-
up areas and urban population growth, leading to farmland reduction [56]. 

3.2. Research Data 
The following datasets were used for developing the land-use transition model in 

this study: 
I. Annual rainfall and temperature data. Annual precipitations and temperature data 

for the study area were downloaded from the U.S. Geological Survey (USGS) website 
(https://waterdata.usgs.gov/nc/nwis/annual/?referred_module=sw (accessed on 8 
June 2021)) and National Oceanic and Atmospheric Administration (NOAA) website 
(https://www.ncdc.noaa.gov/cdo-web/ (accessed on 2 June 2021)). The precipitation 
record comes from human-facilitated and automated observation stations in the 
Global Historical Climatology Network-Daily database. The study used the annual 
rainfall and temperature data from the year 2011 to 2020 for model development pur-
poses. 

II. Cropland Data Layer (CDL) data. The CDL land cover raster was downloaded from 
the USDA website (https://nassgeodata.gmu.edu/CropScape/ (accessed on 26 June 
2021)). CDL is a publicly available land cover classification map covering 48 states in 
the U.S. at 30 m resolution. The study used the CDL raster from 2011 to 2020 for land 
cover analysis purposes. 

III. Parcel data. The parcel data has information about Guildford County property own-
ership. The data was downloaded from the NC OneMap website 
(https://www.nconemap.gov/ (accessed on 15 July 2021)). 
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IV. Household data. The household data for Guilford County was downloaded from the 
USDA Economic Research Service website (https://www.ers.usda.gov/data-prod-
ucts/food-access-research-atlas/ (accessed on 12 June 2021)). The Food Access Re-
search Atlas has an overview of food access factors for low-income and other census 
tracts using various measures of supermarket accessibility. It also provides food ac-
cess data for populations within census tracts. The study used this data to create a 
food desert map of Guilford County. This study also used household information 
such as an individual’s gender and age to estimate the total food requirement of a 
specific area since individual daily fruit and vegetable needs depend on them. In ad-
dition, since we use an ABM, a bottom-up strategy, data containing the spatial dis-
tribution of households and their characteristics in our study area are used for model 
development. 

V. Soil data layer. This layer displays the National Commodity Crop Productivity In-
dex (NCCPI) derived from the Soil Survey Geographic Database (SSURGO). 
SSURGO is generally the detailed level of soil geographic data prepared by the Na-
tional Cooperative Soil Survey (NCSS) in accordance with the NCSS mapping stand-
ards. The soil quality data ranks the inherent capability of soils for crop production 
and other applications. This data was downloaded for our study area from the 
NCCPI in ArcGIS online (https://landscape11.arcgis.com/arcgis/ (accessed on 15 July 
2021)). This map has 30 m pixel size and, combining this layer with other information, 
is used to measure soil suitability for crop production in this study. 

VI. Population growth rate data. The population growth data was collected for Guilford 
County, North Carolina, from 2011 to 2020 as input for the ABM development. This 
data was used to estimate the seasonal fruit and vegetable needs of Guilford County. 
The data was downloaded from the United States Census Bureau website 
(https://www.census.gov/data.html (accessed on 15 June 2021)). 

3.3. Data Processing 
In this stage, data preprocessing such as mapping, georeferencing, resampling, and 

reclassification is done for the model development purposes. Each data preparation and 
processing task is presented below: 

I. CDL Data Reclassification. The study reclassified the CDL maps of Guilford County 
downloaded from the USDA website from 2019 to 2020 to use them as input for the 
ABM development. The CDL map layers have more than 120 individual classes, in-
cluding apple, carrot, orange, cabbage, etc. The reclassification is done to group all 
types of fruit together as one class, “fruit”. The same regrouping process is done to 
combine all vegetables as one “vegetable” class [57]. Based on that context, each sea-
son, CDL’s farmlands (from 2011 to 2020) were regrouped into eight categories: (1) 
vegetable, (2) fallow, (3) fruit, (4) row crop, (5) hay, (6) forest, (7) barren, and (8) wet-
lands. 

II. Georeferencing and Resampling the Data. In this study, we clipped the Guilford 
County CDL raster layer from the North Carolina CDL map for further analysis. In 
addition, the raster data used in the study were georeferenced for geospatial data 
integration and visualization purposes. 

III. Precipitation, temperature, and slope maps preparation. Temperature and rainfall 
raster maps were generated to understand their effects in Guilford County. We used 
point temperature and rainfall data to create these spatially distributed heat maps 
using the Kriging interpolation method with a 30 m pixel resolution. Kriging is a 
geostatistical procedure that creates an estimated surface from a scattered set of 
points with values. The slope map for the study area was also created using the in-
terpolation method to understand the nature of the study area’s land for farming. 

IV. Relation of land use with food desert indictors. In this stage, the precipitation map 
is overlaid with the CDL land cover map of Guilford County to study the correlations 
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between them. The land coverage area of fruit, vegetables, row crops, and hay in the 
study area is calculated considering the magnitude of precipitation from place to 
place. The same procedure was followed to study the correlation between land use 
and the temperature, soil quality, and slope of the study area. 

3.4. Model Development 
In this study, land-use and land-cover change is made by considering the following 

factors as described in Figure 5: (i) household agents, (ii) land covers, (iii) seasonal fruit 
and vegetable needs, (iv) land-use related policy, (v) climate variability (temperature and 
precipitation), (vi) soil quality, and (vii) population growth rate. 

Figure 5 shows the overall process for each season to increase the crop production 
outputs of the county. The data inputs include household data and a land parcel map. In 
addition, other time-series data, such as the reclassified CDL land-cover map, temperature 
and precipitation data, soil quality data, and population growth rate data from 2011 to 
2020, were used as input for data processing. 

 
Figure 5. The overall process is completed each season to increase the crop production outputs of 
the County. 

To run the simulation, first, the fruit and vegetable needs of the study area are calcu-
lated using the CDC daily individual fruit and vegetable intake recommendation based 
on age and gender. Next, the available farmland size of the county is calculated using the 
land parcel map. Then, the total land size needed to grow fruits and vegetables to meet 
the crop requirements of the county is estimated. Finally, land cover changes are made by 
considering the availability of fruits, vegetables, and fallow lands in the county and the 
county’s total population, including the future population growth in each season. Note 
that the land cover changes are made by considering the county’s climate variability and 
soil quality in each season. This is done by estimating the crop’s production yield that can 
be obtained in different conditions. For example, in the condition when the quality of 
farmland soil, rainfall, and temperature availability is suitable or not suitable for farming, 
the amount of crop yields obtained per acre of land will be different. In other words, crop 
yields can be increased with high soil quality, sufficient temperature, and rainfall availa-
bility. Therefore, the crop yield per acre of farmland was calculated by considering this 
situation. 
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I. Households. This study used household information to estimate the total food re-
quirement of a specific area since individual daily fruit and vegetable needs depend 
on them. In the ABM, one household is represented by one agent. It can follow spe-
cific rules and make land-use and other decisions based on household-specific data. 
The food requirement of the community is based on each individual’s needs in the 
household. During each season time step of the model, farming households went 
through resource allocation, planting, and harvesting processes. The ABM model 
runs through 20 farming seasons from 2019 to 2030. 

II. Farmlands. This study used available farmlands in Guilford County for ABM devel-
opment. In the ABM, one patch of farmland is represented by an agent. This agent 
follows specific rules and interacts with other agents such as households. The re-
search estimated the county’s annual fruit and vegetable productions from 2011 
through 2020 to better understand the correlation between healthy food production 
and food desert areas in the study area. The production increase or land-use transi-
tion recommendation for the future years can be made by considering the county’s 
population, population growth rate, and the availability of land. 

III. Seasonal fruit and vegetable needs. Individuals’ daily fruit and vegetable needs vary 
by age and gender. Adults should consume from 1.5 to 2 cups equivalents of fruits 
and from 2 to 3 cup-equivalents of vegetables daily, according to the 2020–2025 Die-
tary Guidelines for Americans. The prevalence of meeting fruit intake recommenda-
tions was highest among adults aged ≥51 years (12.5%) and lowest among those liv-
ing below or close to the poverty level (income to poverty ratio [IPR] < 1.25) (6.8%) 
(https://www.cdc.gov/mmwr/volumes/71/wr/mm7101a1.htm#suggestedcitation (ac-
cessed on 7 January 2022)). Only 9% and 12% of adults ate the recommended amount 
of vegetables and fruit, respectively, according to a CDC analysis of data from the 
2015 Behavioral Risk Factor Surveillance System 
(https://www.cdc.gov/nccdphp/dnpao/division-information/media-tools/adults-
fruits-vegetables.html (accessed on 16 February 2021)). The total daily fruit and veg-
etable intake is calculated using individuals’ age and gender information based on 
CDC daily fruit and vegetable intake recommendations at the start of a farming sea-
son. This study assumed that people eat fruits and vegetables five days a week; thus, 
the individual yearly needs are calculated based on Equation (4). This allowed us to 
estimate the size of land parcels needed to meet the fruit and vegetable requirements. 

𝑌𝑒𝑎𝑟𝑙𝑦 𝑐𝑟𝑜𝑝 𝑛𝑒𝑒𝑑𝑠 = (𝑑𝑎𝑖𝑙𝑦 𝑖𝑛𝑑𝑣𝑖𝑑𝑎𝑙 𝑛𝑒𝑒𝑑𝑠 ) × 240 (4)

Note that this study hypothesizes increasing fruit and vegetable production can min-
imize the issue of a food desert mainly if local farmers use their fruits and vegetable 
production to meet their family food needs and locally sell them. Therefore, we have 
not included the food import or export in the estimations. 

IV. Land-use policies. Federal and state land-use-related policies have a significant im-
pact on crop production. In addition, environmental effects and demands for other 
outputs (e.g., hay, trees, cash crops, etc.) significantly impact land use changes and 
crop production. For example, the conversion of forest land into farmland can lead 
to ecological effects (e.g., effects on the quality of water and wildlife habitat) and so-
cioeconomic effects (e.g., reduction of forest recreation opportunities, reduction of 
long-term timber production, and loss of open space) as significant implications of 
forest loss [58]. In addition, farmers may not be interested in using their cash crops, 
hay, or other land parcels to plant fruits and vegetables for personal use. Instead, 
they grow cash crops for sale [59] and use their profit to pay their taxes and hire 
agricultural laborers. In this study, vegetation and wetlands are not recommended 
to convert to croplands. Based on that context, the land transition in this study is 
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completed to meet the fruit and vegetable requirements of the county from fallow 
or/and hay lands to fruit or/and vegetable lands. 

V. Population growth rate. Population growth is one of the factors that can drive up 
demand for food, which typically requires land-use transition to meet the needs. In-
creases in land dedicated to agricultural purposes may help meet the food demand 
increased due to population growth. Figure 6 shows the population growth rate of 
Guilford County from 2011 to 2020. The population growth rate data is used in this 
study to calculate the seasonal fruit and vegetable needs of Guilford County for each 
season (Figure 6). 

 
Figure 6. Guilford County, North Carolina, population growth rate. 

VI. Climate variability and soil quality. Climate change and soil quality degradation 
are ongoing problems growing exponentially over the globe as the composition of 
the atmosphere changes. In North Carolina, the climate has shifted; as a result, the 
average temperature has increased, and droughts and floods have become more fre-
quent. The production of crops and other agricultural products is impacted by the 
increasing temperature, precipitation shortage, and soil quality degradation. De-
pending on the crop types, an increase in average temperature and precipitation may 
help to increase agricultural production. However, extreme temperatures and pre-
cipitation can prevent crops from growing. Therefore, the optimum temperature and 
precipitation need to be identified for the study area to know their impacts on crop 
production in the simulation model. The optimum temperature is a temperature suit-
able for producing crops. Therefore, investigating the relationship between crop 
yield and climate variability (mainly temperature and precipitation) is essential for 
predicting agricultural land-use decisions with climate change to understand its im-
pacts on crop yields. Once the county’s seasonal fruit and vegetable requirements for 
each season are known, the size of farmlands needed to fulfill the vegetable and fruit 
requirements has to be calculated for each season in terms of suitable temperature, 
precipitation, and soil quality. For example, suppose the existing fruit and vegetable 
lands are insufficient to grow the required fruits and vegetables. The model trans-
forms the land cover from fallow and hay to fruits and vegetables in that case. Land-
use transition decisions are made by the rainfall, temperature availability, and soil 
quality of the area. For example, when there is enough rainfall and temperature in 
the season, the model assumes households can plant and harvest effectively and get 
more productional outputs since the agricultural production outputs depend on their 
availability and soil quality. On the other hand, if the season with temperature or 
rainfall is not optimum (too high or too low), the fruit and vegetable yield will be 
low, and more land will be involved in the transition to meet the crop requirements 
of the season. Therefore, the land size to meet the yearly food needs in the county 
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depends on the climate conditions (temperature, rainfall), soil quality, and the pop-
ulation growth rate. 

VII. Crop yield. Once the impacts of climate variability and soil quality are known, the 
study area’s fruit and vegetable yields are estimated for each season. Crop yield is 
the main component used in determining overall production and supply. Crop yield 
is defined as the standard measurement of the amount of agricultural output ob-
tained per unit of land area. One of the standard units of yield measurement is tons 
per acre in the United States. The average crop yield is estimated using the following 
formula: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑 = 𝐿𝑛 × 𝑙𝑏𝑎𝑐𝑒𝑟 × 𝐾 × 10,000 (5)

where Ln is the number of available patch lands in Guilford County, K represents the 
parameter for precipitation, temperature, and soil quality impacts on crop yields. The 
value of 10,000 is the average estimated crop yield in pounds (lb) per acre of land 
[60,61]. Finally, the total land size needs to meet the fruit and vegetable requirements 
of the county for each season calculated by dividing the yearly crop needs of the 
county by crop yields per 1 acre of land estimation value. 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑎𝑛𝑑 𝑛𝑒𝑒𝑑𝑠 = 𝑦𝑒𝑎𝑟𝑙𝑦 𝑐𝑟𝑜𝑝 𝑛𝑒𝑒𝑑𝑠𝑐𝑟𝑜𝑝 𝑦𝑒𝑖𝑙𝑑𝑠 𝑝𝑒𝑟 1 𝑎𝑐𝑒𝑟 𝑜𝑓 𝑙𝑎𝑛𝑑  (6)

Overall, land cover transitions (e.g., from fallow to farmlands) are done if the availa-
ble fruit and vegetable lands do not meet the requirements. 

4. Results and Discussions 
4.1. Model Development 
4.1.1. Land Use Relation with Land Productivity and Slope 

Figure 7a shows the NCCPI values of the study area obtained from the SSURGO. 
According to SSURGO, soils with the most suitable characteristics for crop production 
have larger NCCPI values, whereas soils with low crop yield potential have lower NCCPI 
values [62]. Based on that context, the study reclassified the NCCPI into three classes: (1) 
low: the soil with the NCCPI value between 0.01 and 0.40; (2) medium: soil with the 
NCCPI values between 0.41 and 0.70; and (3) high: the optimum NCCPI suitable for crop 
and hay production (between 0.71 and 1). As shown in Figure 7a, most of the areas in 
Guilford County have optimum NCCPI values (between 0.71 and 1). Figure 7b shows the 
slope map of the study created using DEM. The study classified the slope values in the 
study area into three classes: (1) low: the optimum slope suitable for crop and hay pro-
duction (between 0% and 12%); (2) medium: the area with slope values between 13% and 
25%; and (3) high: the area with a steep slope (greater than 25%). As shown in Figure 7b, 
most of the areas in Guilford County have optimum slope values (between 0% and 12%). 
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(a) (b) 

Figure 7. The NCCPI and slope map of the study area for the year 2020: (a) NCCPI map of the study 
area; (b) slope map of the study area. 

The CDL land cover and NCCPI maps were combined to build a spatial relationship 
between the county’s land use and soil productivity. The NCCPI map was overlaid with 
the Guilford County land cover map to identify the correlation between soil quality and 
land covers in the study area. In addition, the CDL land cover and slope maps were com-
bined to build a spatial relationship between the land use of the county and the slope. The 
overlaid results that show the correlation between land use and soil quality and slope are 
shown in Figure 8. The chart’s Y-axis represents the type of land coverage: crop and hay, 
whereas the chart’s X-axis shows the size of crop and hay land coverage in acres. The 
colors indicate the low, medium, and high values of NCCPI and slopes on the X-axis. For 
example, the low, medium, and high soil quality values are represented with red colors, 
as shown in the legend in Figure 8. The medium NCCPI values area is the optimum soil 
for producing crops and hay. On the other hand, the low, medium, and high values of 
slopes are represented with red colors. The area with low slope values is the optimum 
slope for crop and hay production. 

 
Figure 8. The relation between land use with soil quality and slope in the study area. 

As shown in Figure 8 (green colors), 20,143 acres of crops are in the area with opti-
mum soil quality (NCCPI values between 0.7 and 1) compared to 3840 acres and 25 acres 
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in the area with medium and low NCCPI values, respectively. The same trends are seen 
for the hay land coverage. About 75% (40,575 acres) of hay land coverage is in the area 
with optimum soil quality. These showed that most of the crop and hay productions of 
the county are in the area with high NCCPI values. 

In addition to soil quality, the slope gradient is crucial for crop and hay production 
because it influences the runoff flow on the soil surface and the propensity to erodes the 
soil. As shown in Figure 8 (red colors), more than 80% (20,588 acres) of the crop coverage 
is in the area with a low or optimum slope percentage (between 0% and 12%). As ex-
pected,, when the slope values increase, the crop coverage area decreases. The same trends 
are seen for the hay land cover; about 90% of the hay is in the area with optimum slope. 
Similar to the crops, the hay coverage area decreases when the slope values are increased 
in Guilford County. 

4.1.2. Land Use Relation with Climate Variability 
Figure 9a shows the average annual temperature map of Guilford County from 2011 

to 2020 created in this study. The CDL land cover and temperature maps were combined 
to build a spatial relationship between the county’s land use and temperature. The tem-
perature map was reclassified and overlaid with the Guilford County land cover map to 
identify the correlation between temperature and land covers. The overlaid results that 
show the correlation between temperature and land covers are shown in Figure 10. Cool-
season crops (such as oats, rye, wheat, and barley) have temperatures: in the range of 32 
°F to 41 °F, and warm-season crops (such as tomato, watermelon, pumpkin, and sweet 
potato) have an optimum temperature between 77 °F to 88 °F [63]. Cool-season crops grow 
best in cold wintertime weather, whereas warm-season crops are crops that grow better 
in the hot summertime. Most of the crops in the study area are produced in the warm 
season (Feb to Oct). Therefore, the study used the average optimum range of temperature, 
considering the amount of crop production in each season (warm or cool seasons) 
throughout the year. Based on that context, the temperature map is classified into three 
groups: (1) low: the area with a temperature value below the optimum temperature for 
crop and hay production (54 °F–60 °F); (2) medium (optimum): the area with an optimum 
temperature for crop and hay production (61 °F and 66 °F); and (3) high temperature: the 
area with a temperature above the optimal value (>67 °F). 

  
(a) (b) 
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Figure 9. (a) Average annual temperature map of Guilford County from 2011 to 2020 in degrees 
Fahrenheit (°F); (b) Average annual precipitation map of Guilford County from 2011 to 2020 in mil-
limeters (mm). 

  
Figure 10. The relation between land use with temperature and precipitation in the study area. 

Figure 9b shows the average annual rainfall map of Guilford County from 2011 to 
2020 created in this study. The CDL land cover and precipitation maps were combined to 
build a spatial relationship between the county’s land use and land precipitation. The 
study used the average optimum range of precipitation, considering the amount of crop 
production in each season (warm or cool seasons) throughout the year [64]. Based on that 
context, the precipitation map is classified into three groups: (1) low: the area in which 
precipitation is below the optimum (between 1098 mm and 1200 mm); (2) medium (opti-
mum): the area which receives precipitation between 1201 mm and 1400 mm; and (3) high: 
the area which receives precipitation of above 1400. Like the temperature map, the pre-
cipitation map was overlaid with the Guilford County land cover map to identify the cor-
relation between precipitation and land covers. 

The quantitative results in Figure 10 show that the area’s crop coverages with an op-
timal average yearly temperature (between 61 °F and 66 °F) were 15,125 acres, compared 
to 1681 and 7202 acres of low- and high-temperature classes, respectively. This shows that 
relatively more crop production in Guilford County was in the area which received me-
dium (optimum) temperature from 2011 to 2020. The same trends are seen in hay produc-
tion in Guilford County; about 70% of hay coverage is in the area with optimum temper-
atures. The quantitative results also show that more than 90% of crop (including fruit, 
vegetable, and cash crop) coverages were in the area which received medium (optimal) 
average annual precipitation (between 1200 mm and 1400 mm). This shows that relatively 
more crop production in Guilford County was in the area which received higher precipi-
tation from 2011 to 2020. The same trends are seen in hay production in Guilford County. 

4.2. Simulation Results 
This section presents the ABM development outputs for the study area. Figure 11 

shows the reclassified land-cover map results of Guilford County for the sample years of 
2019 and 2020. The study created reclassified land cover maps from 2011 to 2020 for ABM 
development purposes, but we presented land cover maps for the 2019 and 2020 seasons 
as a sample here (Figure 11). As shown in Figure 11, most parts of the county are covered 
by forest (green colored pixels) and barren lands (brown colored pixels). Moreover, the 
fruit and vegetable cover of the county is less than 5% compared to other covers. 
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(a) (b)  

Figure 11. CDL land cover maps for Guilford County: (a) land cover map of 2019; (b) 2020 map. 

Figure 12 shows the County’s past fruit and vegetable cover in 2019 and 2020, which 
this study analyzes from the CDL land cover map. Among the eight land cover classes 
shown in Figure 12, we presented three land cover types: fruit, vegetable, and fallow, since 
these are our main focus in the mode development. As shown in Figure 12, Guilford’s 
2019 fruit and vegetable covers were 3.1 acres and 17 acres of land, respectively, based on 
2029 CDL land cover maps. However, its fruit and vegetable cover in 2020 was 6.5 acres 
and 20 acres of land, respectively. Therefore, more lands were left as fallow in 2019 and 
2020 in the county compared to their fruit and vegetable covers. The land left as fallow 
was 3433 acres in 2019 compared to 2706 acres in 2020. 

 
Figure 12. Fruit, vegetable, and fallow covers of Guilford County in 2019 and 2020. 

The study presented the sample ABM of land cover transition results for 2020 (Figure 
13). The y-axis of Figure 13 represents the land coverage size in acres, whereas the x-axis 
represents the land cover types (vegetable, fruit, and fallow). The blue-colored column of 
the diagram shows the Guilford County 2020 land cover map. In contrast, the orange-
colored column represents the Guilford County 2020 land covers simulated in the ABM 
after the land transitioned to fulfill the county’s food needs. 
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Figure 13. Sample result of ABM’s farmland-use transition for the year 2020. 

The developed ABM results showed that the simulated 2020 fruit and vegetable 
cover changed from the observed 3 acres and 6.5 acres to 3200 acres and 3617 acres, re-
spectively. This is based on the 2020 population’s food needs based on age and gender. 
The crop yields that account for the factors that affected crop production, such as climate 
variability and soil quality. The land cover converted from fallow or hay lands to fruits 
and vegetables to meet the county’s minimum fruit and vegetable requirements. The cre-
ated model results illustrated a significant variation in the production of fruits and vege-
tables over time. One of the reasons for this is the population growth rate of the county 
and the available farmlands needed to meet the food requirements. There is an average of 
1.2% population growth in Guilford County; as a result, fruit and vegetable needs are 
grown each year. As we see from the results, the land use transition increased the fruit 
and vegetable cover of the county dramatically. This can enable the local community to 
have fresh and healthy fruit and vegetables if they buy from the local farmers. In addition, 
accessing healthy foods from local markets can improve the health of each individual in 
the community, as not eating enough fruits and vegetables causes chronic diseases. In-
creasing the amount of land used for farming is one of among the several ways to increase 
the production of fruits and vegetables at the national and global levels. Our results indi-
cated that the crop transition toward the desired level of fruits and vegetables can still 
take place within the county, considering the amount of each crop needs, the soil quality, 
population growth rate, climate variability, and land-use and crop production-related 
policies. Policies are important. For example, policies may not allow transitioning from 
forest to farmland, because converting forests into farmland has a negative impact on the 
ecosystem and has been shown to decrease biodiversity. In addition to land conversion, 
crop production can be increased on existing farms through intensification, such as using 
additional fertilizer, machinery, and labor. 

The crop production estimated for the area analyzed in the ABM are presented in 
Figure 14. We used the model’s estimated yield fruit and vegetable outputs. The y-axis of 
Figure 14 represents the crop production size in tons, whereas the x-axis represents the 
existing crop yield and the ABM crop yield obtained after the land transition is done. The 
blue-colored column of the diagram represents the fruit production of the county, 
whereas the orange-colored column represents the vegetable production of the county. 
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Figure 14. Fruit and vegetable yields of the ABM for 2020. 

As we see in Figure 14, the 2020 Guilford County fruit and vegetable productions 
were 23 tons and 49 tons, respectively. However, the ABM simulation results show that 
24,000 tons and 27,128 tons of fruits and vegetables need to meet the food needs. The land 
transition to meet the food requirement was done from fallow and hay lands to fruit and 
vegetable. The study assumes producing more fruits and vegetables in the county may 
minimize the issue of a food desert. For example, farmers and people who do home gar-
dening can have more access to fruit and vegetables than those who buy these foods to 
eat. In other words, the more fruit and vegetable production in the area, the more people 
who live in the area can easily access them. Overall, the ABM created in this study can 
show the uncertainty in production and consumer decision-making processes. For exam-
ple, at runtime, a range of visual display outputs could be presented in the model, such 
as land-use change size assigned for fruits and vegetables each season, the changes in land 
size from one type to another, and the agricultural production outputs in each season. 

5. Conclusions 
Climate change, urbanization, distribution gaps, income inequality, and population 

growth pose a considerable threat to global food security, potentially leading to a com-
munity food desert. Rainfall and temperature have been identified as two significant fac-
tors creating impacts on agricultural productivity. The effective use of farmland and the 
protection of soils would also contribute substantially to generating equitable and healthy 
agricultural outcomes. Many scholars have studied the interrelationships between farm-
ers’ decisions, climate variations, and mitigations to achieve sustainable goals as identi-
fied by the United Nations (https://www.un.org/en/food-systems-summit (accessed on 23 
September 2021)). Studying the interrelationships between factors that cause food insecu-
rity, such as climate variability and land use, will further improve our understanding of 
food security and help responsible agencies and policymakers plan accordingly to design 
and implement proper land-use policies. This article introduced a novel approach using 
an agent-based model of land-use transition to simulate the interactions of the human and 
environmental systems leading to sufficient fruit and vegetable production.  

The approach presented in this article required an iterative development process 
with several phases. In this study, land-use and land-cover change is modeled by consid-
ering the following factors: (i) household agents, (ii) land patches, (iii) seasonal fruit and 
vegetable needs, (iv) land-use related policy, (v) climate variability (temperature and pre-
cipitation), (vi) soil quality, and (vii) population growth rate. The data used for developing 
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the model included: Parcel land polygons, annual rainfall, temperature data, CDL, and 
annual precipitations and temperature data. The model result showed that the 2020 fruit 
and vegetable covers changed from the CDL 3 acres and 6.5 acres covers to 3200 acres and 
3617 acres, respectively, to fulfill the fruit and vegetable needs of the county. The simula-
tion results reported are based on the 2020 population’s food needs considering individ-
uals’ age and gender. However, acquiring sufficient data to validate the outcomes is the 
main challenge of this study. For example, information regarding each individual’s fruit 
and vegetable purchases from the local farmer in our study area were not available and 
we used state average estimates instead. The study used CDL land covers of the study 
area as a point of reference to learn about previous fruit and vegetable covers as well as 
crop yields, which could be likewise improved with more detailed data. Many other as-
sumptions had to be made in the proposed system research, for example, the timeframe 
of the data acquired, consistent production and consumption patterns, and steady 
weather conditions.  

The proposed model explores alternative scenarios to improve livelihoods and miti-
gate the impact of land use, climate variability, soil quality, and population growth related 
to accessing fresh fruits and vegetables. Our approach can be used as a tool for stakehold-
ers, policymakers, and other responsible agencies to ensure all the community residents 
obtain fresh and affordable fruits and vegetables through a sustainable food system. 
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