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Abstract—Transient stability assessment (TSA) is a cornerstone
for resilient operations of today’s interconnected power grids.
This paper is a confluence of quantum computing, data science
and machine learning to potentially address the power system
TSA issue. We devise a quantum TSA (QTSA) method to enable
efficient data-driven transient stability prediction for bulk power
systems, which is the first attempt to tackle the TSA issue with
quantum computing. Our contributions are three-fold: 1) A high
expressibility, low-depth quantum circuit (HELD) is designed for
accurate and noise-resilient TSA; 2) A quantum natural gradient
descent algorithm is developed for efficient HELD training; 3)
A systematical analysis on QTSA’s performance under various
quantum factors is performed. QTSA underpins a foundation of
quantum machine learning-enabled power grid stability analytics.
It renders the intractable TSA straightforward and effortless in
the Hilbert space, and therefore provides stability information
for power system operations. Extensive experiments on quantum
simulators and real quantum computers verify the accuracy,
noise-resilience, scalability and universality of QTSA.

Index Terms—Quantum machine learning, quantum neural
network, power system stability, transient stability assessment.

I. INTRODUCTION

Texas’ and California’s rolling outages [1], [2] in recent
years signaled that our existing power infrastructures can
hardly sustain the ever-expanding communities [3]. The sit-
uations are rapidly deteriorating as our power grids are in-
creasingly integrating massive uncertain renewables, such as
intermittent rooftop solar photovoltaics, as well as solar farms
and offshore wind systems, and have been subject to more
frequent weather events [4].

Interconnected power systems are the largest and most com-
plicated man-made dynamical systems on this planet. Those
bulk systems are highly nonlinear, exhibit multi-scale behav-
iors spatially and temporarily, and are increasingly stochastic
and uncertain. A key technology to secure today’s bulk power
grids is transient stability assessment (TSA). Transient insta-
bility is a fast phenomenon typically taking only a few seconds
for the bulk system to collapse after contingencies occur.
TSA determines the system’s ability to ride-through large
disturbances (contingencies) and to reach the post-contingency
steady-state [5]. It plays a significant role in various essential
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routines in power system planning and operation, such as “N-
k” contingency screening [6], dynamic security analysis [7],
and reliability evaluation [8]. The majority of the TSA meth-
ods rely on the explicit integration or implicit integration
of differential equation models of the bulk power systems,
which are known to be intractable to handle large power
systems [9]. Frequent fluctuation due to deep integration of
renewable energy resources and unknown models due to data
privacy issues make classical TSA methods even more com-
putationally expensive even if they are executed on the pow-
erful real-time simulators. Transient energy function (TEF)-
based methods can realize direct stability assessment without
time-domain simulations [10]. Nevertheless, the obstacles in
constructing a TEF for arbitrary power systems to capture
all the instability modes restrict the application of TEF in
large-scale, interconnected power systems [11], [12]. Due to
aforementioned challenges, system operators in the control
center hardly have sufficient time to steer the power system
away from instability upon the occurrence of contingencies.
For this reason, the artificial intelligence-based TSA without
requiring manual interaction from human operators to assess
the transient stability of the system has attracted significant
attraction [6], [7], [13].

Today’s power systems are undergoing an Enlightenment,
where the confluence of big data, quantum computing and
machine learning altogether is to drive a regime shift in the
analysis and operation of our critical power infrastructures.
Big data is the force behind the revolution: massive new types
of intelligent electronic sensors such as synchronized phasor
measurement units (PMUs), advanced metering infrastructure
(AMI) meters and remote terminal units (RTUs) [14] are
continuously generating gigantic volumes of data which allow
for the development of data-driven power system analytics.
Most recently, the successes in exploiting the potential of
quantum supremacy [15], [16] shed lights on a “quantum leap”
of computing capabilities. The power of quantum computing
is derived from its ability to prepare and maintain complex
superpositions of quantum states across many quantum degrees
of freedom. While classically the number of required physical
resources [N grows exponentially with the system complexity
n, N grows linearly with n in a quantum computer, resulting
in exponential improvement over classical computing [17].
Furthermore, highly entangled states, very difficult to represent
on classical computers, are easily represented on a quantum
computer [18]. Therefore, power system problems, if formu-
lated properly through programmable quantum circuits, can be
executed efficiently on a quantum computer.

Inheriting the quantum speedup in tensor manipulation [19],
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the swift growth in quantum machine learning (QML) tech-
niques [20], [21] ignites new hopes of developing scalable
and efficient data-driven power system analytics. QML is
promising for data processing and model training in high-
dimensional space [22], [23]. Ideally, unique quantum op-
erators such as superposition and entanglement, which can
not be efficiently represented by classical operators, enable a
superior representation of complicated data relationships [24],
[25]. Nevertheless, the existing noisy quantum devices are
still restrictive, hindering the implementing of QML if deep
quantum circuits are needed.

This paper is the first attempt to unlock the potential of
QML for power system TSA. A high expressibility, low-depth
quantum circuit-based transient stability assessment (QTSA)
method is devised to enable effective data-driven transient sta-
bility prediction. The contributions of this work are threefold:

o We devise a high expressibility, low-depth quantum circuit
(HELD) for QTSA that is feasible to pursue on near-term
devices, considering the noisy-intermediate-scale quantum
(NISQ) era [26], and also general enough to be directly
expandable to the noise-free quantum computer. Through
quantitative evaluations, we show that HELD exhibits the
best expressibility in exploring the Hilbert space and in
performing the TSA classification.

o We establish a quantum natural gradient descent algorithm
to enable an efficient training of the HELD circuit along the
steepest direction in the output space.

« We design systematical studies to comprehensively evaluate
the TSA results under quantum environments regarding the
accuracy, fidelity, and noise-resilience. By extensive exper-
iments, we demonstrate the consistently high performance
of QTSA for real-scale power systems on both quantum
simulators and real quantum computers.

The remainder of the paper is organized as follows. Sec-
tion II devises the QTSA methodology, including the overall
framework, the HELD circuit design, and the training algo-
rithm. Section III offers extensive case studies on both quan-
tum simulators and real IBM quantum computers. Section IV
concludes the paper.

II. QUANTUM CLASSIFIER FOR POWER SYSTEM TSA
A. Power System Transient Stability Assessment (TSA)

Power system transients are generically modelled as a set
of nonlinear differential algebraic equations:

(1a)

X =Fp(X,Y)
(1b)

0=F4(X,Y)

where X and Y separately denote the differential variables
and algebraic variables; (1a) formulates the nonlinear dynam-
ics of power devices, such as generators (e.g., synchronous
machines, distributed energy resources), controllers (e.g., gov-
ernors, exciters, inverters), power loads, etc; (1b) formulates
the instantaneous power flow of the entire power grid.

TSA appraises a power system’s capability of resisting large
disturbance [5]. Denote Z = (X,Y), and ¢(¢, Z) as the orbit
of (1) starting from Z. An asymptotically stable equilibrium

point (SEP) Z; of (1) satisfies that: (a) Z; is Lyapunov stable;
(b) there exists an open neighborhood O of Z; such that
VZ € O converges to Zs when ¢ approaches infinity [10].
The stability region of Z; encloses all the states that can be
attracted by Zs within an infinite time:

A(ZG) = {Z eR™: tlilgo ¢(ta Z) = Zs} (2)

Stability region theory states that system stability after
a large disturbance is determined by whether the post-
disturbance state is within the stability region of an SEP [10].
Therefore, to formulate the data-driven TSA, the idea is to
establish a direct mapping between the post-disturbance power
system states and the stability results [6], [13].

B. Preliminaries of Quantum Computing

Machine learning tasks frequently involve high-dimensional
computation. Quantum computing exhibits promising efficacy
in manipulating high-dimensional vectors by tensor product of
Hilbert spaces [19], which motivates us to exploit a quantum-
assisted data-driven TSA.

In quantum computing, a quantum state is represented by a
vector in a Hilbert space. A qubit is the fundamental element
of a quantum system, which is described as [¢)) = ag|0) +
a1 |1). Here, |0) = [{] and |1) = [{] respectively denote the
two-dimensional basis states; ag and oy are complex numbers;
|cvo|? and |1 |? respectively denote the probability on |0) and
|1) satisfying |ag|? + |a1|? = 1. With n qubits, an arbitrary
quantum state can be modelled as |¢)) = 212; «; |y, where
|i) represents the computational basis and ), |a;|> = 1. The
superposition and entanglement enable creating a complete 2" -
dimensional vector space and performing the corresponding
manipulations with only n qubits [18].

A quantum circuit is a computational routine on quantum
states [21]. As illustrated in Fig. 1(a), a quantum circuit
consist of an ordered sequence of quantum gates |¢)) = A |1)g)
followed by the measurements. When parameterized quantum
gates are involved, the circuit is named as a variational
quantum circuit (VQC). As illustrated in Fig. 1(b), a VQC im-
plements parameterized quantum operations |¢,) = A(p) |¢o)
according to a set of free parameters p, and therefore the
output state |1,) can be controlled by the VQC parameters. By
optimizing p, VQCs can be trained to perform various tasks
(e.g., linear equation solver [27], eigensolver [28]).

(a) Fixed quantum circuit

(b) Variational quantum circuit

Fig. 1. Ilustration of variational quantum circuits

Quantum machine learning (QML) takes advantages of
VQCs to train a quantumized mapping between inputs and out-
puts. Benefiting from the aforementioned quantum speedup,
QML provides an exponential improvement on computational
complexity in regard of distance evaluation and inner product
compared with classical computing [19].
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Fig. 2. Design of high expressibility, low-depth quantum TSA. (a): Variational layer of HELD designed for QTSA. Each layer [ consists of three blocks:
a non-Gaussian feature encoding block, a variational Gaussian entangled block and a feature re-encoding block. (b): Hybrid training procedure of QTSA.
Quantum computer performs the feedforward execution of quantum circuits (i.e., measurement on the first qubit outputs the TSA result), and classical computer

performs backward parameter update.

C. Overall Framework of QTSA

The keystone of QTSA, different from classical machine
learning techniques, is that the transient stability features in a
Euclidean space Z € £ are embedded into quantum states in
a Hilbert space |¢) € H through a VQC, which will explicitly
separate the stable and unstable samples.

Our key innovation is a design of the high expressibility,
low-depth circuit (HELD), as presented in Fig. 2. The high
expressibility attribute addresses the dimensionality and non-
linearity obstacles in TSA, enabling an efficacious stability
prediction for real-scale power systems. The low-depth at-
tribute addresses the nonnegligible noise and source limitations
in the noisy-intermediate-scale quantum era, enabling an effec-
tive execution of QTSA on near-term quantum devices. Fig. 2
depicts the variational HELD circuit, whose kernel ingredients
include (see the arrangement of quantum gates in Fig. 2(a) and
the corresponding mathematical formulations in section II-D):

1) Non-Gaussian feature encoding: |[¢g) = Ugr(pg, Z) |0)
which adopts parameterized, activation-enhanced quan-
tum gates to enable a flexible, nonlinear and dimension-
free encoding of power system stability features Z;
Properly-arranged Gaussian quantum gates: |¢)y)
Uy (pv) |¥E) to efficiently represent the solution space;

2)

3) Feature re-encoding: |¢)) = Ug(pgr,Z)|¢v) for en-
hanced expressibility of nonlinear behaviors in power
systems;

4) Repetitive layered structure: |¢)) = U(p, Z)|0) =

UE) ...uPUM |0) to realize a more expressive and
entangled VQC, where U) = U g)U‘(fl)U ](El) denotes the
unitary operation at [*" layer and p assembles the circuit
parameters at each layer. The HELD circuit takes |0) as
the input quantum state, whose state preparation is trivial.

Then, as presented in Fig. 2(b), QTSA employs a hybrid
quantum-classical framework for HELD training. The param-
eterized HELD circuit is executed on a quantum computer
as the feedforward functionality, and parameter optimization
is executed on a classical computer as the backpropaga-
tion functionality. The two subroutines interact to train the
VQC’s parameters. Here, we introduce a generalized quan-
tum natural gradient to enable a more efficient training of
QTSA: p—Ap(VL,F; ' Vy,) — p, where L is the nonconvex
cross-entropy loss representing the correctness of quantum-
embedded power system stability results; y denotes the output

of the quantum circuit; Vy, is the quantum gradient function;
VL, is the gradient of £ w.r.t y; F}, is the Fisher informa-
tion matrix of the non-Gaussian quantum circuit; Ap is the
updating rule for circuit parameters (see details in Subsection
1I-E).

D. Design of HELD

Our goal is to design a powerful high expressibility, low-
depth quantum circuit that processes high-dimensional inputs,
embeds nonlinear power features and thus can realize stability
prediction for large-scale power systems. However, the exist-
ing noisy quantum devices only allow us to execute low-depth
quantum circuits. To solve this dilemma, a high expressibility,
low-depth quantum circuit is established as visualized in
Fig. 2. Under a multilayer structure U = U ... U@ y®),
each layer of HELD consists of three blocks: a non-Gaussian
feature encoding block U (l), a Gaussian variational block U‘(/l)
and a feature reuploading block U g) (see Fig. 2(a)):

3)

Here, p(*) denotes the parameters at layer [, i.e., an assembly
of p%), pg), p%) in each block.

The following details the mathematical representations of
each block of the circuit designed in Fig. 2(a).

First, the feature encoding block (i.e., the first block in
Fig. 2(a)) embeds the power system stability features a into
an n-qubit quantum state. This block applies single-qubit X
rotations (i.e., RX gates) at each qubit. The representation of
an RX gate is Rx (0) = e~%07=/2 = [ cos(6/2)  —isin(6/2)

—isin(0/2) cos(6/2) |’
where 6 is the rotating angle and o,

l l l l l l
uOp0, z) =P, 2P oL, z)

= [9}] is the Pauli-

X operator. Different rotating angles of the RX gate lead to
different quantum states [21]. Therefore, by embedding the
power system features into the quantum gate angles, the output
states can be controlled. Consequently, the feature encoding
block is realized by a unitary transform as:

vO Y, z) = ®exp(—z’9§?kax,k/2) )
k=1

where (I) denotes the [-th layer; p%) denotes the parame-

ters at the [-th layer; Q) denotes the tensor product; o j
denotes the Pauli-X operator applied on the k-th qubit;

Gg) = 0(<p%), [Z;1])) denotes the rotating angles of the
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RX gates which adopt a single-layer perception of the input
power system features to enhance the expressibility on limited
quantum resources; o is the activation function, e.g. tanh,
sigmoid, ReLU.

Then, the variational block (i.e., the second block in
Fig. 2(a)) is constructed to introduce entanglements between
qubits, which is essential to enhance a quantum circuit’s
ability to express the whole Hilbert space [29]. This block is
composed of two parts: a ring structure of the RZZ gates (i.e.,
the CNOT-RZ-CNOT gates) on each two adjacent qubits [24]
and parallel single-qubit Y rotations (i.e., RY gates) on each
qubit. The representations of an RZZ gate and an RY gate are
respectively Ry 7 (0) = e~ 10/29:89= and Ry () = e~ 07v/2 =

cos(0/2) —sin(0/2 —q
|:sin((0;2§ cos(é/é))}’ where Oy = [(2) 0] and o, = [(1) —01]

respectively denote the Pauli-Y and Pauli-Z operators. There-
fore, the mathematical representation of the variational block
is as follows.

n
U‘(/l)(pg)) = (H J@0k=1) exp(—iég’)kaz,k ® 0Z7k+1/2)
k=1

I®(n_k_1)) éeXp(_leg)k+navk/2) (5)
k=1

where 95/1) = pg); 0y,k and o, separately denote the Pauli-

Y and Pauli-Z operators on the k-th qubit. Specifically, for
the 2-qubit HELD, no ring structure is required. The train-
able rotations and CNOTs together generate highly entangled
quantum states to capture non-trivial correlations in quantum
states by a low-depth circuit, and therefore enable an efficient
expression of the solution space [29].

Subsequently, feature encoding is repeated as a data-
reuploading block [30] (i.e., the third block in Fig. 2(a)). The
power system features are again embedded into the rotating
angles of the RX gates to further enhance the expressibility
for quantum stability assessment. In analogy to (4), the feature
re-encoding block is formulated as:

Ur(pf} . 2) = @ exp(<itronn/2) 6
k=1

where 8% = o((pi", [Z:1])).

An arbitrary qubit of the HELD circuit can be chosen as
the output qubit. A single qubit describes a two-dimensional
quantum state. A mapping between stable (unstable) and
higher (lower) possibility on |1) therefore enables the binary
classification functionality of TSA. Without loss of generality,
in this paper, the measurement on the first qubit, denoted
as y, is selected to generate the TSA prediction result.
On a quantum simulator, the expectation value of y =
(0|UT(p, Z)MU (p, Z) |0) of the observable M is computed,
where p assembles circuit parameters (i.e., p(!)) at each layer.
On a real quantum machine, the multi-shot implementation is
performed to estimate y.

E. QTSA Training Through Quantum Natural Gradient

In this subsection, we establish a generalized quantum
natural gradient (QNG) algorithm for efficient QTSA training.

4

QNG is a promising algorithm for quantum optimization. It
outperforms the commonly-used quantum gradient descent
because of the capability of searching the steepest descent
direction in the output space [31], [32]. However, existing
QNG algorithms mostly resolves quadratic objective mini-
mization of Gaussian quantum circuits [33], [34], which do
not adapt to the non-Gaussian HELD training. Therefore, the
following develops a generalized QNG which is able to deal
with arbitrary quantum circuits and nonconvex loss functions.

Consider a training set {(Z;,7;)}"_,, where Z; and 7
respectively denote the TSA feature vector and the correspond-
ing stability label of the i-th sample. The parameterized HELD
circuit is optimized on the training set with a cross-entropy
loss function:

L) =D 1w, 2:) = Y —log(wilp. Z)) (D
i=1 i=1
Here, y; = (0| Ut (p, Z;)M;U (p, Z;) |0) is the QTSA’s predic-
tion of the i-th sample; M, is the corresponding observable,
i.e., M; =10) (0] for §; = 0 (i.e., unstable) and M; = |1) (1]
for ¢; = 1 (i.e., stable).
Denoting 6 as an assemble of gate rotation angles (i.e., g,
0y and 6g), a second-order Taylor expansion of y; w.r.t 6
yields:

Oy; 1
dy; =~ —-df + ~do” f,(0)do 8
yi 5 5d0 + 56" fi(6) (8)
Here, %%i is the quantum gradient calculated by the parameter-

shift rule [32]; f;(0) is the quantum Fisher information
matrix regarding a Gaussian quantum circuit, i.e., f; jx =
;. DY Y 9 — 7
Re({G5%, G5t) — (G i) — (i, Gg=)) and ¢ = U(p, Z:)[0)
based on the Fubini-Study metric [33].
Based on (4)-(6), substituting df = g—zdp into (8) yields:

Oy 1. (00" 00
dy; = 5 dp + 5dp (8]) f1(9)8p> dp )

Fi(p) = g—ﬁT fi(H)g—g establishes the quantum Fisher matrix
for a generic non-Gaussian quantum circuit. F; represents an
approximation of Hessian matrix of y; at p and therefore
enables searching the local minimal of y; around p with
second-order terms:

. Oy Lo r yi

Y 1 ' _ %Y

gy = arg Iglpn[fap Ap+5Ap" Fi(p)Ap] = — £ (p) Bp
(10)

where g3 denotes the natural gradient of y w.r.t p; Fi+ denotes
the pseudo-inverse of Fj.

Correspondingly, QNG is established for (7), where L-
optimization is iteratively solved at the steepest direction in
the distribution space:

ol 0y;
L + i
Ipk = L (k) (1D
icB yi Opr.
Prst = Pk — ﬁ%mk (12)

Here, B denotes the batch set; £ denotes the k-th iteration;
n denotes the learning rate; my and ¥y jointly realize an
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adaptive learning rate [35], where 1, = my/(1 — BF),
bp = op/(1 = B5), mp = Bimp—1 + (1 — B1)g), and
v = ﬂgvk,1+(1—ﬁg)(g£k)2; £ is a small positive constant to
ensure the numerical stability; 5; and 32 are hyperparameters
governing the moment updates.

Next, we show that the non-Gaussian quantum Fisher matrix
F; can be effectively approximated in a block-diagonal form.
For concision, the subscript ¢ is omitted in the following
derivation. Based on (4)-(6), we have:

D p@ (D
o0 v o0 ... 0
a0 6@ | o veP
- . . (13)
o Lo 0 v
where:
NI
00 [velz;1]T 0 0
Vo = gl 0 I 0
6 0 0 Vo[z;1]T

According to [33], the Gaussian Fisher matrix f also follows
a block-diagonal form. Consequently, the non-Gaussian Fisher
matrix is constructed as:

e @ @)
pg; FM(p) (2(; e 0
p 0 F=(p

Fp)= ", ) ) ) (14
Lo 0 F®(p)

Here, F()(p) = (VHI(JZ))Tf(l)VGS); 1 () denotes the Gaus-
sian Fisher matrix block of the [ layer, where fj(,? =
(O K K D) — (O [ D) (O] [¢:0) [33]. Matrix
multiplication and pseudo-inverse of a block-diagonalized
F(p) would be highly efficient.

Aforementioned derivations establish the generalized QNG
algorithm, which adopts Riemannian metrics and enables
efficient training of the HELD circuit with arbitrary gates
and targets. Therefore, the optimization of HELD will be per-
formed along the steepest descent direction in the output space,
whereas the conventional quantum gradient descent is only
capable of updating parameters following the steepest descent
direction in the parameter space with Euclidean metrics.

III. NUMERICAL EXPERIMENTS

Extensive experiments of QTSA are conducted on typical
power systems ranging from benchmark grids to a real-
scale U.S. power grids. QTSA is coded with Qiskit [36]
and Pennylane [37], and is implemented on both a noise-
free quantum simulator (ibmq_gasm_simulator, a 32-qubit
simulator) and real IBM quantum devices (a 20-qubit machine
ibmq_boeblingen, and a 7-qubit machine ibm_lagos). Power

5

system transient simulations with random fault locations and
random fault clearing time are conducted by Power System
Toolbox (PST) [38]. Those physical model-based simulations
will generate the features for QTSA (such as power outputs,
rotor angles and rotor speeds of generators, power flows
through transmission lines, and bus voltage angles and am-
plitudes) as well as providing the ground truth of the system
stability.

The following sections investigate the capability of QTSA
in assessing power system stability on both noise-free simu-
lators and near-term noisy quantum computers, as well as the
performance of different quantum circuit designs for QTSA.

A. Validity of QTSA on Noise-Free Quantum Simulator

Four typical power systems are studied:

o Single-machine infinite-bus (SMIB) system, one of the most
widely-used test systems in power system research. Since
the stability region of SMIB (i.e., a 2-dimensional region)
can be analytically computed, SMIB always serves as an
indispensable benchmark for testing the performance of a
TSA method.

o Two-area system, another most widely-used benchmark sys-
tem exhibiting both local and inter-area oscillation modes.
The system models and parameters are constructed from a
real North American power system [5].

o Northeast Power Coordinating Council (NPCC) test system,
a real Northeastern US power system which was involved
in the Northeast blackout of 2003.

o [EEE 300-bus system, a large power system which con-
tains 69 generators, 304 transmission lines, and 195 loads.
Generators are formulated using the classical synchronous
machine model.

Appendix A presents the test system parameters and the
settings of the training and testing sets.

The overall QTSA procedure is exemplified via the SMIB
system. We then verify the efficacy of QTSA on all the test
systems.

1) Training Preparation: Various dynamics samples are gen-
erated on the SMIB system (see Fig. 3(a)). Time-domain sim-
ulations of SMIB under random disturbances are performed
to obtain stability features (i.e., rotor angle and rotor speed in
this case). Fig. 3(b) shows both the stable cases with dampened
oscillations and the unstable cases where power generators run
out-of-step. The initial states of the post-disturbance system
therefore construct the feature set for QTSA training, as shown
by the samples in Fig. 3(c) (green for stable samples and red
for unstable samples). Our hope is that QTSA can directly
distinguish the stable and unstable samples in the Hilbert
space.

2) QTSA Training: A HELD circuit with 2 qubits, 6 layers
(denoted by HELD(2,6)) is constructed for SMIB. Fig. 3(d)
to (f) show how an untrained HELD evolves into a well-
trained one. We use Bloch sphere and quantum states overlap
to evaluate the QTSA efficacy in the Hilbert space. A point
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training. Subplots (g)-(i) demonstrate the stability insights obtained by QTSA learning. (a): Topology of the SMIB system. (b): Time-domain simulations of
SMIB under random disturbances. (¢): Samples in the classical feature space (green for stable samples and red for unstable samples). (d): Samples embedded
in the Hilbert space by a randomly-initialized HELD. (e): Loss function evolution during QTSA training process and the final confusion matrix. (f): Samples
embedded in the Hilbert space by the well-trained HELD, where the stable and unstable samples are distinctly separated. (g): Stable and unstable regions
discovered by the well-trained HELD and its comparison with the physical model-based analytic stability boundary (i.e., black line). (h): Contour plot of
probability on measuring |1) from HELD. Either a high probability on |1) or a high probability on |0) (i.e.,low probability on |1)) reflects a high fidelity of
transient stability prediction. (i): Stability boundaries discovered by QTSA under different fidelity levels.

(6,4) on the Bloch sphere' represents a single-qubit state
cos £0)+e?sin(6/2) |1). The data overlap between each pair
of samples represents the fidelity between the corresponding
quantum states.

Starting with a randomly-initialized HELD, Fig. 3(d) shows
that the stable and unstable samples are mixed on the Bloch
sphere and quantum states corresponding to stable and un-
stable samples are highly overlapped, meaning the untrained
circuit cannot be used for TSA. Then, Fig. 3(e) shows the
evolution of loss function during the QTSA training, where the
classification accuracy exceeds 99% for both stable and unsta-
ble samples at the final stage. The Hilbert space observations
in Fig. 3(f) demonstrate the efficacy of the trained HELD. It
can be seen that the well-trained quantum circuit successfully
embeds the stable (unstable) samples to the lower-(upper-) half
Bloch sphere. As can be seen from the data overlap, the mutual

IThe Bloch sphere geometrically represents a single-qubit quantum states
on a unit three-dimensional sphere. A state [¢)) = o |0) + a1 |1) can always

be rewritten as |¢)) = Y (cos g |0) + e® cos g [1) ). where ~, 0, ¢ are real
numbers. Therefore, 6 and ¢, as the spherical co-ordinates, jointly define a
point on the Bloch sphere for [)).

fidelity between samples from the same class is almost 1, while
that from different classes is close to 0. Both observations
verify a successful QTSA being able to clearly separate the
opposite classes through the VQC.

3) Stability Insights by QTSA: Fig. 3(g) shows that QTSA
is able to accurately discover power system stability regions
A(Z) (see (2)). As illustrated by the simulation results, there
is a faithful match between the stable/unstable regions learned
by QTSA (i.e., the green and red regions) and those obtained
from model-based analytical solutions (i.e., the black line).
Stability regions discovered by QTSA allow power system
operators to identify the system stability under disturbances,
i.e., the SMIB system will remain stable if its post-contingency
state locates in the green zone, whereas it must collapse if the
post-contingency state locates in the red zone.

Another interesting observation is that QTSA offers not
only the stability classification results but also the fidelity
of stability or instability. Fidelity measures the similarity of
quantum states 2. Denote the output state of HELD at the first

ZFor two pure quantum states |¢1) = > aq; [i) and |i2) = 3 aw; |i),
their fidelity is defined as F'(1,92) = | (¢1|¢2) |2 = (3 o, 024)2
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Fig. 4. QTSA results for practical power systems. Subplot (a-d), (e-h) and (i-1) respectively present QTSA results of the two-area system, the NPCC system
and the IEEE 300-bus system. All the cases use HELD(2,6), where 2 qubits and 6 layers are employed. (a)(e)(i): Power grid topology. (b)(f)(j): Samples in
the classical space (green for stable samples and red for unstable samples). In all the cases, stability features include power outputs, rotor angles and rotor
speeds of generators, power flows through transmission lines, and bus voltage angles and amplitudes (w, P, @ and v respectively denote the rotor speeds,
active power generations, reactive power generations and bus voltage amplitudes). (¢)(g)(k): Loss function evolution during QTSA training process. (d)(h)(1):
State measurements of the trained HELD. Stable samples (green) and unstable samples (red) are embedded to different halves of the Block sphere.

qubit as ¢ = ag |0) + a1 |1). The fidelities between ) and
stability (i.e., |1)) and instability (i.e., |0)) are respectively
Fiy = [ (¥[1)]? = |ou]* and Fy = | (4|0) |* = |ao|?, which
can be directly measured from the multi-shot executions of
the quantum circuit.

As shown in Fig. 3(h), for a post-contingency state falling
in the stable zone, the farther it deviates from the stability
boundary, the system stability (|1)) would be assured with
a higher probability. Similarly, the system would collapse
(|0)) with a higher probability if its state lies in the deeper
red zone. The operating points with probabilities near 0.5
indicate marginal cases, which are observed to be located
near the stability boundary. The probabilities associated with
system stability provide valuable new information for system
operators and decision makers to make more suitable planning,
operation and remedial action schemes. Either the risk-averse
or risk-takers will then selectively use such information to
optimize the social welfare and improve electricity resilience.

Further, QTSA is able to calculate stability regions at
different risk levels. Fig. 3(i) exhibits the stability boundaries
corresponding to different fidelity thresholds. Being less risk-
tolerant leads to shrunken stability regions because higher
fidelity levels are adopted.

4) Verification on Practical Power Systems: We further ex-
hibit the versatility and efficacy of QTSA in the stability

assessment of large power systems. Fig. 4 presents the QTSA
results for the two-area system, the NPCC system and the
IEEE 300-bus system. For each system, as shown in Fig. 4(b),
(f) and (j), their high-dimensional features are irregularly
distributed in the classical space and their stable/unstable
samples are highly mixed. Once a trained HELD embeds the
classical features into quantum states, it successfully arranges
the stable and unstable samples onto the upper- and lower-
halves of a Bloch sphere, rendering the challenging power
system stability identification straightforward and effortless in
the Hilbert space.

Table. I quantitatively evaluates the accuracy of QTSA. For
the small- and medium-scale power system, QTSA achieves
high accuracy on both the training set (> 99%) and test
set (> 98%). Even for the large-scale systems such as the
NPCC grid and IEEE 300-bus grid, QTS A exhibits satisfactory
performance of 98% accuracy on the training set and 95%
accuracy on the testing set. QTSA is further compared with
two data-driven TSA methods based on classical machine
learning, i.e., a support vector machine (SVM) with the radial
basis function kernel, and a deep neural network (DNN) with
a three-layer perceptron architecture implemented in Scikit-
learn [39]. Both the F}-scores and accuracy validate QTSA’s
competency and high performance in comparison with classi-
cal data-driven TSA approaches.
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TABLE 1. Comparison of accuracy: QTSA vs. TSA based on classical
machine learning methods

Training Set Test Set
QML SVM DNN [ QML SVM DNN

Accuracy | 0.9906 0.9525 0.9913| 0.9810 0.9510 0.9865

SMIB | Precision | 0.9867 0.9672 0.9867| 0.9726 0.9754 0.9855
System| Recall 0.9911 09185 0.9926| 0.9820 0.9050 0.9820
Fi-Score | 0.9889 0.9422 0.9897| 0.9773 0.9389 0.9837

Two- Accuracy | 0.9975 0.9931 0.9944] 0.9860 0.9900 0.9850
Area Precision | 0.9972 0.9917 0.9917| 0.9795 0.9866 0.9779
System Recall 0.9991 0.9981 1.0000| 1.0000 0.9985 1.0000
Fi-Score | 0.9981 0.9949 0.9958| 0.9896 0.9925 0.9888
Accuracy | 0.9800 0.9550 0.9765| 0.9530 0.9470 0.9560

NPCC | Precision | 0.9831 0.9442 0.9822| 0.9560 0.9455 0.9582
System| Recall 0.9846 0.9854 0.9798| 0.9722 0.9757 0.9757
F1-Score | 0.9838 0.9644 0.9810| 0.9640 0.9604 0.9669

IEEE | Accuracy | 0.9800 0.9385 0.9645| 0.963 0.9300 0.9460
300- Precision | 0.9768 0.9349 0.9573| 0.9674 0.937 0.9397
bus Recall 0.9931 0.9741 0.9901| 0.9775 0.9595 0.9820
System | F1-Score | 0.9849 0.9541 0.9734| 0.9724 0.9481 0.9604
1 Accuracy = %; Precision = ~12—: Recall = ij_ipFN; Fi-

TPHFP’
Score= 2(Precision It Recall™! )~ 1. Here, TP, TN, FP, FN respectively
denote the number of true positive, true negative, false positive and false
negative samples.

B. Comparison of Quantum Circuits

In this section, we demonstrate how different designs of
quantum circuits impact the quantum TSA’s performance.
Three factors are taken into consideration: circuit depth (i.e.,
number of layers), circuit width (i.e., number of qubits)
and circuit layer structure. In addition to classification ac-
curacy and Fp-Score, another performance index Tr(ogoq)
is introduced for QTSA, where oo = mean;es, (|1:) (¥i])
and o1 = mean;cgs, (|1;) (¥;|) respectively denote the mean
density matrices of unstable/stable samples. A decrease in
Tr(opo1) thus indicates an improved separation between the
stable and unstable classes. Without loss of generality, the
comparisonal studies are performed on the SMIB system.

1) Impact of Quantum Circuit Scale: Fig. 5 shows the impacts
of scaling factors such as circuit’s depths and widths. The
following insights can be obtained:

« Initially, increasing the number of layers tends to cause
improved accuracy and better separations between sta-
ble/unstable samples. The rationale behind this is an en-
hanced expressibility of the quantum circuit. Note that the
performance of QTSA starts to saturate once the depth goes
beyond a certain number (6 in this case).

o Increasing the number of qubits also leads to improved
QTSA performance, whereas the expressibility saturation
is again observed. A noteworthy observation is that QTSA
manifests impressive expressibility even with a single qubit,
where the classification accuracy still reaches 97.38%.

o Although more layers and qubits definitely boost the ex-
pressibility of HELD, an overscale quantum circuit is not
recommended. Such a circuit would demand prohibitively
expensive quantum resources due to the saturation phe-
nomenon. It also aggravates the training burden of the
variational quantum circuit accompanied with the increased
parameters. Finally, a large-scale quantum circuit is prone
to the noisy quantum environment, leading to a sharply
declined TSA performance on real quantum devices (which
will be further discussed in the next subsection).
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Fig. 5. QTSA performances with different HELD circuit scales. The
architecture of HELD is depicted in Fig. 2. An improved separation between
the stable and unstable classes is indicated by improved accuracy and
decreased T'r(cgo1).

2) Impact of Circuit Layer Structure: Fig. 6 compares the
performance of HELD with those of three typical variational
quantum circuit (VQC) structures, i.e., an Instantaneous Quan-
tum Polynomial (IQP) circuit [24], the Quantum Approximate
Optimization Algorithm (QAOA) inspired circuit [25], and a
data reuploading circuit [30]. Our HELD circuit exhibits the
best expressibility benefiting from its non-Gaussian feature
encoding and entanglement layers.

Further, we quantitatively analyze the expressibility of
HELD. Two expressibility indices are introduced: FErqqr
describes a VQC'’s ability to express the Hilbert space [29],
and Erga describes a VQC’s ability to express the TSA
classification.

Etaar = Dr(Pvoc(f, )| Praar(f))
Ersa = Dir(Pygc(fy,P")||Prsa(fy))

Both Epgqr and Ergs are defined based on the Kullback-
Leibler (KL) divergence D (P||Q) = >, P(i)ln 53,
which is widely used in machine learning to quantify the
difference between an estimated distribution P and the ideal
distribution @. A smaller KL-divergence indicates a better
expressibility. Specifically, Eg 4, denotes the KL divergence
between Pyoc(f,p) (ie., the distribution of fidelity f es-
timated from a VQC parameterized by p) and the Haar
distribution Praq-(f) (i-e., the probability distribution under
the Haar random states) [29]. Erg 4 denotes the KL divergence
between Pygc( fy,p*) (i.e., the distribution of the stability
fidelity f, = |[(1]U(p*)|0))|* estimated by the optimized
VQC) and Prsa(f,) (i.e., the true distribution of stability
fidelity obtained from the ground truth).

Fig. 7 and Fig. 8 present the simulation results. Fig. 7
shows that probability distributions estimated by those VQCs
all match well with the Haar distribution and HELD exhibits
slightly better performance. This observation indicates that
each VQC can properly express the quantum states in the
whole Hilbert space. Actually, as investigated in [29], a VQC
with enough parameterized rotation gates and entanglements
usually can represent the Hilbert space effectively. Never-
theless, simulation results in Fig. 8 show that those VQCs
exhibit essentially different expressibility for TSA classifica-
tions. HELD achieves the best performance regarding Epg4.
In contrast, other types of VQCs lead to considerable KL
divergence between the true stability distribution and the
estimated stability distribution, which conforms with the fact
that they mix plenty of stable and unstable samples. This

15)
(16)
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Circuit Layer Structure Evaluation Indices Stability Region Bloch Sphere
Our HELD(2,6) circuit Accuracy 0.9906
F1-Score 0.9889 &
Tr(ooo1) 0.1981
IQP circuit [24] Accuracy 0.8688
F1-Score 0.8241 &
R—" Tr(coor) 0.5636
QAOA circuit [25] Accuracy 0.8994
E, F1-Score 0.8851 CA
Nt Tr(ooo1) 0.4685
Data reuploading [30] Accuracy 0.9206
F1-Score 0.8993 Q
Tr(ooo1) 0.4379

Fig. 6. Quantum TSA performances with different quantum circuit designs. Our HELD circuit employs 2 qubits and 6 layers. The IQP and QAOA
circuits both employ 3 qubits and 10 layers. The data reuploading circuit employs 2 qubit and 10 layers. Three indices are employed to evaluate the transient
stability prediction capability of quantum circuits: classification accuracy, F1-Score and Tr(cpo1). An improved separation between the stable and unstable
classes is indicated by improved accuracy, increased Fq-Score and decreased T'r(cgo1).
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Fig. 7. Expressibility of different VQCs for exploring the Hilbert space
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Fig. 8. Expressibility of different VQCs for TSA classifications

observation shows that HELD not only explores the Hilbert
space effectively but also well expresses the stable and unsta-
ble samples.

C. Validity of QTSA on Real, Noisy Quantum Environment

Today’s quantum devices are limited by gate errors and
qubit connectivity, which hinders the implementation of deep
quantum circuits. As an ultimate test of the practicality of
QTSA, we now implement it on a real quantum computer
and systematically verify it under noisy quantum computing
environments.

1) Verification on the Real IBM Quantum Computers: In
this subsection, we run QTSA on real IBM Quantum device.
QTSA of the SMIB system, 2-area system and NPCC system
is tested on ibmg_boelingen which is a 20-qubit supercon-
ducting quantum computer (QC). QTSA of the IEEE 300-
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Fig. 9. Configuration and error map of the ibmq_boelingen 20-qubit
quantum computer. Figure courtesy of IBM TJ Watson Research Center [40]

bus system is tested on a 7-qubit QC ibm_lagos. The number
of shots is set as 1024. Fig. 9 presents the configuration of
ibmq_boelingen as well as its error map. The average error
rates of the single-qubit Hadamard gate and the double-qubit
CNOT gate are respectively 0.038% and 1.308%.

Table. II presents QTSA’s accuracy obtained from real
IBM quantum computers, where the stability identification
results are again obtained by HELD(2,6). Compared with
those results on the noise-free IBM Quantum simulator
ibmq_qasm_simulator, a surprising finding is that a noisy real
quantum computing environment has little effect on the per-
formance of QTSA and the overall classification is still of high
quality. Even in the most challenging case of the IEEE 300-bus
system, only a 0.5% decrease in the accuracy is reported, and
the QTSA results remain compelling as compared with those
from classical machine learning algorithms (see Table. I). This
experiment exhibits the effectiveness of QTSA on the near-
term quantum devices and verifies the inherent resilience of
QTSA against noisy quantum computing environments.

Fig. 10(a) further investigates the rationale behind the re-
silience of QTSA. Accordingly, there are four types of results:
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Fig. 10. Implementation of QTSA on the noisy IBM Quantum computer (ibmg_boelingen). (a): Stability predictions obtained on the simulator
ibmq_qasm_simulator and the real noisy QC ibmg_boelingen. Two typical samples exemplify the quantum state probability measured from HELD. Sample
(A) illustrates an identical prediction on both devices, which represents the most cases (green and red dots), whereas sample (B) illustrates an opposite
prediction, which is observed mainly around the stability boundary. (b): Probability distribution function (PDF) and cumulative distribution function (CDF)

of the probability of measuring |1) from different-scaled HELD circuits.

TABLE II. Comparison of QTSA accuracy: noisy real quantum devices
vs. noise-free simulator ibmq_qgasm_simulator

Training Set Test Set
Real QC  Simulator | Real QC  Simulator

Accuracy 0.9819 0.9906 0.9770 0.9810

SMIB Precision 0.9708 0.9867 0.9679 0.9726
System Recall 0.9867 0.9911 0.9772 0.9820
F1-Score 0.9787 0.9889 0.9725 0.9773

Two- Accqrgcy 0.9907 0.9975 0.9910 0.9930
Arca Precision 0.9882 0.9972 0.9866 0.9896
System Recall 0.9980 0.9991 1.0000 1.0000
F1-Score 0.9931 0.9981 0.9933 0.9948

Accuracy 0.9710 0.9800 0.9450 0.9540

NPCC Precision 0.9727 0.9831 0.9414 0.9527
System Recall 0.9806 0.9846 0.9772 0.9787
F1-Score 0.9767 0.9838 0.9590 0.9655

IEEE Accuracy 0.9780 0.9800 0.9590 0.9630
300- Precision 0.9746 0.9768 0.9658 0.9674
bus Recall 0.9924 0.9931 0.9730 0.9775
System | FI1-Score 0.9834 0.9849 0.9694 0.9724

green dots (samples predicted as stable on both the simulator
ibmq_qgasm_simulator and the real QC ibmq_boelingen); red
dots (samples predicted as unstable on both devices); yellow
dots (samples predicted as stable on the simulator but unstable
on the real QC); blue dots (samples predicted as unstable
on the simulator but stable on the real QC). It can be seen
that samples of inconsistent prediction from ibmgq_boelingen
and ibmq_gasm_simulator (i.e., the blue and yellow dots)
are mostly distributed around the stability boundary. Further,
Fig. 10(a) exemplifies the quantum state probability measured
from HELD by two typical samples. Sample (A) illustrates an
identical prediction on both devices, which represents the most
cases (green and red dots), whereas sample (B) illustrates an
opposite prediction, which is observed mainly around the sta-
bility boundary. The measurement probability distribution of
samples (A) and (B) shows that the measurement probabilities
from ibmq_boelingen and ibmq_qasm_simulator do not differ
much. This indicates HELD(2,6) is only slightly perturbed by

the noisy quantum device. Therefore, only for the low-fidelity
areas where the quantum circuit output already has a similar
probability on both |0) and |1), a slight perturbation from
the noisy environment would possibly produce an opposite
classification result, as exemplified by sample (B). According
to our previous study in Fig. 3(h), those samples locate in a
narrow area around the stability boundary, which are actually
of low stability margin, and thus their stability by their very
nature is uncertain. Whereas, for the high-fidelity areas as
exemplified by sample (A), the quantum circuit output in
the noisy device does not change the final QTSA prediction.
Therefore, QTSA generates reliable results for most samples
even on noisy QCs.

Even though HELD(2,6) maintains high accuracy, a larger
scale HELD circuit may fail to produce similar results.
Fig. 10(b) illustrates the performance of HELD of different
scales on noisy QCs, where HELD(2,6) as the default case,
HELD(2,10) with 10 layers and HELD(3,6) with an additional
qubit are compared.

o On the first qubit (i.e., the output qubit), we measure its
probability on the basis quantum state |1) based on 1024
shots. Denote the probability on |1) as |a;|?. By gathering
|y 4|* for each sample i (Vi = 1,...,n), the probability
density function of |o|? can be estimated. The x-axis and
y-axis of Fig. 10(b) correspondingly refer to |ay|? and the
PDF/CDF of |a1|2. To best classify the stable and unstable
samples, |a1|? is expected to be concentrated around 0 and
1 (i.e., high fidelity for instability/stability).

o On the noise-free ibmq_gasm_simulator, all circuits achieve
high accuracy over 99% with a notable feature that quantum
measurements mainly accumulate around 0 and 1. This in-
dicates that most samples are predicted at high confidences,
which is coincident with Fig.3(h), i.e., only the narrow areas
around the stability boundary are of low fidelity.

o For HELD(2,6) running on the noisy ibmgq_boelingen, the
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(b) Transpiled layer of a 3-qubit HELD

Fig. 11. Transpiled HELD circuit on the real QC ibm_lagos

peaks of the probability distribution slightly shift towards
the center compared with that from the simulator, indicating
a slightly decreased prediction fidelity.

« For HELD(2,10), although its accuracy on the noisy QC
remains comparable to that of HELD(2,6), the shift of
probability distribution peaks is more obvious, reflecting a
further decreased fidelity on the noisy prediction.

« For HELD(3,6) involving more qubits, more CNOT gates
and deeper circuit depth, the accuracy on the real QC
deteriorates down to 52.02%, making the evaluation on
the noise-free simulator meaningless. The probability dis-
tribution histogram shows most of the measurements center
around 0.5, indicating that output states from QTSA are
nearly random due to the noisy environment and quantum
decoherence.

o The degraded performance of HELD(3,6) is induced by
the increased number of CNOT gates. On the one hand,
the theoretical design of HELD (see Fig. 2) requires more
CNOT gates in each layer when more qubits are employed.
On the other hand, in the real-machine implementation, if
a CNOT gate is required between two disconnected qubits,
the quantum circuit will be transpiled using SWAP, which
also increases the number of CNOT gates. Fig. 11 shows
the transplied HELD circuit on the real QC ibm_lagos. 3 It
can be observed that for the 2-qubit case, the arrangement
of CNOT gates executed on the real QC conforms with
the design in Fig. 2. Nevertheless, for the 3-qubit case, the
HELD circuit is transplied because qubit 3 is not connected
to qubit 1, and therefore, three additional CNOT gates
are involved. Since two-qubit gates always introduce more
significant errors than single-qubit gates, more CNOT gates
lead to reduced noise resilience.

o Consequently, a high quality QTSA need to possess both
high accuracy and high fidelity. This is important to ensure
a high tolerance against noises.

Additionally, Table III presents the runtime of the quantum-
based TSA on the real QC ibm_lagos. The runtime of each
job in IBM Qiskit mainly comprises the time consumption for
transpilation, validation, and execution.

2) Impact of Various Noise Levels: Since different quantum
devices may have different noise features, it is necessary
to systematically examine the QTSA’s performance under
various noisy environments. We adjust the noise levels through

3The IBM quantum computer ibm_lagos only has 5 basis gates, i.e., CX
(the controlled-X gate), ID (the identity gate), RZ (the single-qubit rotation
about the Z axis), X (the Pauli-X gate) and SX (the sqrt-X gate). Therefore,
when executed on ibm_lagos, the RX and RY gates designed in Fig. 2 are
transpiled to basis gates (i.e., RZ gates, CX gates and SX gates) in Fig. 11.
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TABLE III. Runtime of QTSA on ibm_lagos (unit: s)

HELD Scale Transpilation  Validation Execution Sum
2,2) 0.919 1.173 4931 7.023
24 0.750 1.221 4.892 6.863
(2,6) 0.842 1.136 5.022 7.000
(2,8) 0.766 0.999 4.988 6.753
3,2) 0.900 1.579 5.296 7.775
(3.4 0.625 1.177 5.078 6.880
(3,6) 0.832 0.845 5.179 6.856
(3.8) 0.828 1.080 5.174 7.082
100
Z 102 08 g
2 g g
£ 1073 0.6 o §
g g <
& 107 g E
04 < S
500 1000 1500 0% 102 10?2 10"
Samples (ranked) Error Probability
(a) QTSA performance over a range of gate errors
10%° 1 100
2 e} v
_ 10 0.8 § =80
ESNE 0.6 ;U g
0 =] 5]
10! g <9
1005 023 £ 0
500 1000 1500 10% 10" 10" 107 10*°

Samples (ranked) T (ps)

(b) QTSA performance over a range of thermal relaxation time
Fig. 12. Impact of noisy quantum environment on QTSA performance.
(a): Left subplot shows QTSA’s success probabilities of all samples (sorted
from the sample of the lowest success probability to that of the highest) over
a range of gate errors. Right subplot shows QTSA’s overall accuracy on the
test set over a range of gate errors. (b): QTSA’s success probabilities of all
sample as well as the overall accuracy over a range of thermal relaxation time

T1 (i.e., the time it takes for a qubit to decay from the excited state to the
ground state).

a noise module provisioned by IBM and the noise settings are
modified from the ibmq_boelingen’s real noise data. As Fig. 12
shows, excessive gate error and decohenrece time certainly
lead to the collapse of the quantum circuit. Nevertheless, high
TSA accuracy can still be obtained with gate errors smaller
than 2% or the thermal relaxation time larger than 10us, which
can be easily satisfied by today’s quantum hardware. The
QTSA’s excellent performance is therefore universal.

3) Remarks: (a) With HELD, quantum computers with lim-
ited qubit resources can still handle high-dimensional TSA
problems and achieve satisfactory accuracy. The reason is
because HELD employs TSA features as rotation parameters
of the controllable quantum gates (see the parameterized
rotation angles 6 in (4), (5) and (6)) rather than encoding
them into quantum states. The feature dimension that QTSA
can handle thus is independent of the number of qubits. (b)
Due to quantum noises, it is more challenging to implement
a quantum circuit on near-term quantum computers than on
quantum simulators or noise-free quantum computers in a
distant future. This necessitates the design of a low-depth
quantum circuit. (c) The unique potentials of QTSA over
classical ML-based TSA are as follows. First, the execution
of the quantum circuit refers to computations in the Hilbert
space, as presented in (4)-(6), which inherits the exponential
quantum speedup in tensor products. Second, QTSA reports
comparable accuracy against classical DNN while saving more
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than 70% parameters, which conforms to the observations in
existing studies that QML can be more expressive [41].

IV. CONCLUSION

This paper unlocks the potential of quantum machine learn-
ing in power system data-driven analytics. The key innova-
tion is to develop a HELD circuit-centric transient stability
assessment to enable an efficient transient stability analysis
for resilient and secured decision-making of real-world power
systems. The new quantum transient stability analysis algo-
rithm achieves outstanding performances both on a quantum
simulator and real IBM quantum devices (ibmq_boeblingen, a
20-qubit machine, and ibm_lagos, a 7-qubit machine). There-
fore, it has the penitential to resolve the TSA challenge in this
noisy-intermediate-scale quantum (NISQ) era.
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APPENDIX A
TEST SYSTEM PARAMETERS AND TRAINING SETTINGS

This appendix provides the test system parameters and
dataset settings.

SMIB system: The dynamical model of the SMIB system
is detailed as follows [5]:

6= wolw—1)

1 a7
?j(Pm —P.— D(w-1))

Here, § denotes the power angle (unit:rad) of the generator;
w denotes the rotor speed (unit: p.u.) of the generator; T}
and D respectively denote the inertia constant and damping
coefficient; P,, is the mechanical power; P, = E'Ujsin §/x¢
is the electrical power where E’, Uy and x( respectively
denote the generator voltage, the infinite bus voltage and the
equivalent impedance. Parameters of the SMIB system are:
wo = 1207wrad/s, T; = 6s, D = 5pu., P, = 1.2pu,
E’ =1.05p.u.,, Uy = 1p.u., g = 0.5p.u..

Two-area system and NPCC system: All the parameters of
the systems are from the Power System Toolbox (PST) [38].
The voltage-behind-transient-reactance model is adopted for
all the synchronous generators.

IEEE 300-bus system: Parameters of the network and the
operating point are from Matpower [42]. Dynamical models
and parameters of the generators are from PST [38]. The
classical generator model is adopted with a typical parameter
setting (e.g., the d-axis synchronous reactance is 0.081 p.u.
and the inertia constant is 30.3s).

Dataset settings: For the SMIB system, we perform time-
domain simulations with randomly-generated initial states.

For other test systems, we perform time-domain simulations
under three-phase short circuit faults. The initial operating
points are identical to those from PST/Matpower. The fault

(A'):
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location is randomly selected at different transmission lines.
The fault clearing time is randomly set between 0.1s-0.35s
for the 2-area system, 0.1s-0.55s for the NPCC system, and
0.1s-0.4s for the IEEE 300-bus system.

The obtained data are randomly divided into the training
and testing sets.
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