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Abstract—The dawn of quantum computing brings on a revolu-
tion in the way combinatorially complex power system problems
such as Unit Commitment are solved. The Unit Commitment
problem complexity is expected to increase in the future because
of the trend toward the increase of penetration of intermittent
renewables. Even though quantum computing has proven effective
for solving a host of problems, its applications for power systems’
problem have been rather limited. In this paper, a quantum
unit commitment is innovatively formulated and the quantum
version of the decomposition and coordination alternate direc-
tion method of multipliers (ADMM) is established. The above
is achieved by devising quantum algorithms and by exploiting
the superposition and entanglement of quantum bits (qubits)
for solving subproblems, which are then coordinated through
ADMM to obtain feasible solutions. The main contributions of
this paper include: 1) the innovative development of a quantum
model for Unit Commitment; 2) development of decomposition
and coordination-supported framework which paves the way for
the utilization of limited quantum resources to potentially solve
the large-scale discrete optimization problems; 3) devising the
novel quantum distributed unit commitment (QDUC) to solve
the problem in a larger scale that currently available quantum
computers are capable of solving. The QDUC results are compared
with those from its classical counterpart, which validate the efficacy
of quantum computing.

Index Terms—Quantum computing, Quantum distributed opti-
mization, Unit commitment, Microgrids.

I. INTRODUCTION

Unit commitment (UC) [1] is a critically important problem
for the operational optimization within power systems. Within
the UC problem, the presence of binary commitment decision
variables leads to combinatorial complexity. Moreover, with the
goals to increase the penetration of intermittent renewables, the
complexity is expected to increase in the future and the new
sources for disruptive solution methodologies need to be found.

General Discussion on Quantum Computing. A very
promising and quickly emerging technology, which has the
potential to efficiently handle combinatorial complexity in the
future is based on quantum computing (QC), which has already
proved promising to overcome computational difficulties faced
by classical computers in solving a variety of problems arising
in biomedical science, weather forecasting, risk analysis [2],
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aerospace engineering [3], cybersecurity [4], chemistry [5],
and machine learning [6]. To efficiently perform the quantum
algorithms, an appropriate design of quantum circuit running
sequentially the quantum gates on the existing qubits is required
for implementation of problems [7].

Quantum Optimization. Universal quantum computers with
up to 1,000 qubits are expected to be produced in this
decade [8], which will allow the researchers to solve large-
scale optimization problems which cannot be solved by clas-
sical counterparts. Even though current quantum optimization
algorithms are inchoate and can only handle relatively small
optimization problems and problems of certain types [9], signifi-
cant progress has been made to solve combinatorial optimization
problems. Currently available quantum optimization algorithms
can already solve problems formulated as quadratic uncon-
strained binary optimization (QUBO) problems. One of the first
quantum optimization algorithms is the Quantum Approximate
Optimization Algorithm (QAOA) [10] where a multi-level pa-
rameterized quantum circuit is established to optimize the ex-
pected value of the QUBO objective function. Another quantum
optimization algorithm is Grover’s algorithm [11], which was
used for the portfolio optimization problem, formulated in a
QUBO form. One of the first attempts to show the superiority of
QC over classical computing in optimization problems refers to
the combinatorial problem of bounded occurrence Max E3LIN2
[12], in which the QAOA beats the existing best approximation
bound for efficient classical algorithms. Another advantage of
QC over classical computing is realized in Grover’s algorithm,
in which a quadratic speed-up was achieved on a unstructured
search problem as an optimization problem. In this problem, we
are aiming at locating an item among a large list of items with
a unique property [13]. In [14], the researchers have proven that
the query complexity on Grover’s problem is achievable using
the class of QAOA circuits. The QAOA was used to solve the
maximum cut (max-cut) combinatorial problem [15]. In a recent
promising research, Egger, et al [16], have improved the perfor-
mance of QAOA in solving max-cut problem as a continuous
relaxations of NP-Hard combinatorial optimization problem. In
their algorithm, namely warm-starting quantum optimization,
Goemans-Williamson random hyperplane rounding for max-cut
problem can find cuts whose expected value is at least as good
as classical approximations at any circuit depth.

Although, the aforementioned quantum optimization algo-
rithms have been exploited to solve binary optimization prob-
lems, large-scale problems cannot be solved because of lim-
ited number of qubits currently available. Moreover, quantum
optimization methods are not naturally distributed in a sense
that the coordination of distributed entities is not supported.
Furthermore, while the large-scale quantum computers will exist
in a foreseeable future, their availability will likely be costly
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and limited. To enable the efficient use of smaller quantum
computers to solve large-scale problems, a decomposition and
coordination framework is required.

Decomposition and Coordination Methods. To coordinate
distributed entities, such as units within the Unit Commitment
problem, decomposition and coordination methods have been
used [17], [18]. The alternate direction method of multipliers
(ADMM) is used to overcome the combinatorial complex-
ity issues faced by Augmented Lagrangian Relaxation (ALR)
method. Within the ADMM, subproblems are smaller in size
and are easier to solve than the relaxed problem within ALR
[19]. In [20], ADMM aims at dualizing the power flow con-
straints between the neighboring regions in UC optimization
problem. In [21], the Surrogate Lagrangian Relaxation (SLR)
method is used to solve large-scale security-constrained unit
commitment (SCUC) problems with multiple combined cycle
units without requiring the “so-called” optimal dual value for
convergence. These methods enable the decomposition into
several smaller subproblems so that the resulting mixed-binary
optimization (MBO) problems are solvable by quantum meth-
ods. This direction is promising and opens a new window to
solve a wide range of optimization problems in power systems
by using current quantum algorithms.

The main contribution of the paper is to develop a quan-
tum algorithm with futuristic implications to efficiently solve
optimization problems, and the improvement of convergence
of ADMM, which is a classical aspect, is out of the scope of
the paper. Accordingly, the main focus is on the development
of decomposition and coordination-supported framework for
quantum optimization, which allows to solve problems larger
that currently available quantum computers are capable of
solving. The implications of the new method are thus profound.
In Section II, the unit commitment problem is formulated in
a QUBO form amenable for quantum optimization in a novel
way. In Section III, the QAOA is presented for the quantum UC
problem. The quantum-inspired Alternate Direction Method of
Multipliers is presented in subsection III.B. In Section 1V, it is
demonstrated that distributed UC problem can take advantage
of QC compared to the classical counterpart. In Section V,
the quantum computing capabilities and current limitations are
discussed.

II. UNIT COMMITMENT PROBLEM FORMULATION

In this section, the traditional Unit Commitment problem is
presented first. The novelty of this section is then to reformu-
lated the UC problem in a QUBO form amenable for quantum
optimization.

A. Unit Commitment Formulation

Within the UC problem, the generation cost is minimized
subject to unit-wise constraints (e.g., generation capacity, ramp-
rated, minimum up/down time, etc) as well as the system-wide
constraints (e.g., system demand, reserve, transmission capacity,
etc.)

Objective function. The following objective function con-
sisting of the total fuel cost (F(P)) and the total commitment
cost (G(u)) should be minimized [22]:

min OF = n;in [F(P)+G(u)]. (1)

Pu U

where, F(P) and G(u) can be written as follows:

F(Py=> > [ai-P}i+Bi-Pitv], ()
teT el

Glu) =) wi- . (2b)
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where, P, ; is the generation level of i*" unit at hour ¢ and «;, B3;
and ~; are fuel price parameters of i*" unit. For the commitment
cost G(u) including startup and shutdown costs, the binary
decision variable u; € {0,1} is the commitment status of
unit ¢ at hour ¢. The commitment price of each unit including
startup/shutdown price, is denoted by w;. Also, the sets 7' and
I denote time period and generation unit, respectively.

Constraints: The objective function is subject to the follow-
ing constraints:

D-u<D, (3a)
J-P <, (3b)
Q-u+R-P<Y. (o)

where, constraint (3a) includes any constraints associated with
the binary variable u, e.g., startup and shutdown constraints,
minimum up time and minimum down time. Constraint (3b)
is associated with power generation variable P, e.g., spinning
reserves, ramping rate, transmission lines, and power balance
limits. It is noted that the power balance can be described as
two opposite inequalities. Additionally, constraint (3c) includes
both binary variable v and non-binary variable P to demonstrate
the minimum and maximum generation capacity limit.

In the following, the UC problem formulation amenable for
quantum computing will be developed in a novel way.

B. Quantum Formulation of Unit Commitment

Within this subsection, a background information behind
quantum optimization will be presented first. Then the quantum
UC will be formulated.

1) Preliminary discussion on quantum optimization: Unlike
classical computers, where information is represented by using
binary bits (0 or 1), quantum computers use the so-called
“quantum bits” - qubits. A qubit is a superposition of states
|0) and |1). The superposition can take either a value of 0 or
1 with a certain probability after a measurement. One qubit
can thus hold two bits of information. Likewise, 2 qubits are
a superposition of four entangled states |0,0), |0,1), |1,0)
and |1,1), and so on. Therefore, n qubits hold 2" bits of
information. The main idea behind the quantum computers is
to exponentially reduce the complexity as compared to the
classical computers. To perform the calculation on the quan-
tum platform, within the so-called quantum circuit, quantum
gates are used as computational blocks. In a quantum circuit,
input qubits are first initialized by using equiprobable states.
Qubits are then passed through quantum gates to rotate the
entangles states within each qubit, which essentially updates
the probability of each state. Ultimately, the state of the qubit
is measured, and the states with higher probabilities appear in
the measurement more often.

As established in [23], a solution to a QUBO problem
is equivalent to the ground state of a corresponding Ising
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Hamiltonian. Several methods were developed to establish the
Hamiltonian of the Ising model [24]. We firstly discuss a general
procedure behind creating Ising Hamiltonian for any QUBO
optimization problems, and then, the procedure is applied to
the UC problem. To define the Ising model, a graph G = (V,¢)
with vertices set V' and edges set € is commonly used (shown in
Fig. 1). The Hamiltonian Ising model is then built based upon
the existing vertices V' and their connected edges ¢ between the
two vertices. The vertices are physical qubits of the system in
which interaction between qubits is realized by Lj; while the
edges correspond to the possible locations of two-qubit gates.
Also, the external magnetic g, causes a rotation of vertex V'
with spin ¢ = 1. From quantum computing point of view, at
any given time, the quantum state |¢)) is described by a vector
in the Hilbert space which should be projected to the basis
of eigenfunctions of the position operator to prepare the wave
function. To reach the ground state, the projected quantum state
should be rotated using the spin operators. The quantum state
and accordingly wave function is changed after each rotation.
It is noted that the rotation operators are linear and unitary
operators, and determining the optimized rotation angles lead
the system toward the ground state, which is equal to minimum
cost function in the optimization problems. In Section III-A,
the quantum mechanism to update the rotation angles in the
quantum optimization algorithm is explained. The Hamiltonian
of the Ising model, which is referred as cost Hamiltonian, is
written as follows to find the ground state or minimum energy
configuration [25]:

N N
H=> > Ly-G-+> e @

k=1j=1,j#k keV

The first term of the cost Hamiltonian (4) has to do with
the interaction of two qubits or vertices of a system, while
the second term defines the impact of magnetic field with a
spin on each single qubit. The role of edges and vertices in
a real quantum circuit will be discussed in further detail in
the next section. The total number of spins is defined by N,
which is the same as the number of vertices. The minimal
eigenvalues or ground state of the Ising model (4) is achievable
through searching for spins ¢;’. Therefore, the optimal rotation
angles of spin operators guarantee the optimal values of decision
variables, and thereby optimal solution of the optimization
problems.

As the physics rule, the ground state is called the most stable
state. Thus, the lowest energy state of Hamiltonian of Ising
model (4) is the stable state of a system. Accordingly, in opti-
mization problems, quadratic unconstrained binary optimization
is the energy function that its corresponding Hamiltonian Ising
model should be obtained using a simple conversion [26]. In
(4), replacing the spin ¢ by a binary variable a results a QUBO
problem. The interaction between spins and external magnetic
field acting on a spin in (4) are accordingly changed to M and
r, respectively:

H = Z Mkj~ak~aj+2rk~ak+c. 5)
(k,j)€e kev

where, c is a constant value and has no impact on the efficiency
of the computation. The relation between a spin (; and a binary
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Fig. 1. The Hamiltonian Ising model in terms of a sample graph

variable ay, is derived as follows [27]:

1+ G
T2

2) Quantum Formulation of Unit Commitment: To prepare
the UC problem for quantum-oriented optimization problem,
the objective function (1) should be mapped to the Ising model
using the existing relationship between a spin and a binary
variable (6). Before going through the Hamiltonian Ising model
steps, the UC problem should satisfy the requirements of a
QUBO problem, in which the quadratic objective function
should include the existing constraints. Thus, several steps
should be considered for converting the quantum UC problem
to a QUBO problem. To this end, firstly, the generic form of
UC constraints (3a), (3b) and (3c) is changed in each step of
conversion, and then the specific form of constraints undergo
the corresponding changes. To solve the UC problem using a
typical quantum variational approach, the quantum states of
the problem are prepared using the quantum circuit. Then,
the quantum states are measured and the expected value of
the UC Hamiltonian is obtained for the given quantum states.
Afterwards, a classical solver is employed to find the new set of
variational parameters. In Section. III-A, a detailed explanation
of the hybrid procedure of the quantum variational approach will
be discussed. While in previous quantum optimization methods,
only binary and integer variables could be considered in a
problem, this paper resolves this issue to make the UC problem
industrially practical and cost-effective by assigning continuous
variables to DERs generation level. To this end, the developed
quantum distributed method is a promising step in solving large
scale optimization problems by using QC. In the slack-based
formulation, the following three conversion rules are considered
to convert the problem into a QUBO:

o The inequality constraints (3a), (3b), and (3c) needs to

be converted to an equality constraint first, by using non-
negative slack variables Sy 1, St 2 and S 3:

, keV. (6)

ag

D-u—D+ S5 =0, (7a)
J-P—J+Si2=0, (7b)
Q u+R-P-Y +8,3=0. (7c)

After conversion (7a)-(7c¢), the size of the problem changes
so that for each inequality constraint before conversion, a
slack variable is added after the conversion.
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o In the second step, in case there are integer variables
in the problem, these type of variables are converted to
binary variables. To do this, bounded-coefficient encod-
ing is introduced in [28]. In a case study with DERs,
before conversion, there are some binary variables for
commitment status of DERs, and the same size of integer
variables for the generation level of DERs. After converting
the integer variables to binary variables, the constraint
associated with the minimum and maximum generation
capacity of DERs plays an important role. Consequently,
for each value of the range, one binary variable should be
assigned. It should be mentioned that each binary variable
is assigned to a qubit. Therefore, to solve a simplified
UC problem integrating many DERs by QAOA, we need
many binary variables or qubits, which exceeds the qubits
availability in the quantum computers. Nevertheless, the
quantum computers are capable of efficiently solving the
problem owing to the decomposition feature of the ADMM
method, in which the continuous variables are assigned to
a classical solver, and therefore, this conversion is skipped
in our developed method. Thus, the size of the problem
remains the same in our distributed UC problem.

o In the last step, linear equality constraints are added to
the objective function by using quadratic penalties. The
modified constraints (7a), (7b) and (7¢) are considered in
the objective function as follows:

D-u—D+81)*+ (T P—J+S2)?
+(Q-u+R-P—Y +85)°

These penalty terms are penalized with an appropriate
penalty coefficients to ensure that the constraints are satis-
fied exactly. A more detailed explanations of operational-
ization of this idea will be presented in subsection III-B.

After converting the UC problem into a QUBO problem, the
objective function can be mapped to the Ising model. According
to (6), the decision variables of QUBO and spin (; can be
transformed to each other. In other words, the UC objective
function including the decision variables can be mapped to
the Hamiltonian Ising model via (6). Therefore, in the original
objective function of UC, if the decision variables P;; is
replaced by 1‘;@”’, the Hamiltonian Ising model is achievable
as following:

B 14 Gk 1+ Gy
HO—ZZZZ(% 9 9 .

teT icl keV jeV

14 Crin
_A'_BZ#

= %Z Z Z Z a; - (Crik - Crig + Criisk + Ciig)

teT i€l keV jeV

T % Z Z Z (B - Ceik)] + .

teT i€l keV

(®)

+ )

€))

where, ¢; is a constant value.

Similar to (9), the Ising model can be applied to equality and
inequality constraints as well [24]. For the constraints of UC
problem, each decision variable should be replaced by %
Therefore, to map the the UC constraints (7a), (7b) and (7c) to

the Ising model, they should be firstly in terms of (D-u— D+
Si1)% (J-P—J+Si2)?and (Q-u+R-P—Y + S 3)%
respectively (see eq. (8)). Then, for each term, the following
mapping is applicable:

Her =333 (oo A LS o
teT iel keV jeVvV
Hoz= 330 30 So(g sk IR

teT i€l keV jEV

Hc,3:ZZZ ZZ(Q' 1+gt’i’k +R#+

teT i€l kEV jEV IEV

1+ Geia
2

-Y)2 (10c)

The total energy function is represented as a weighted cost
function which is the weighted sum of (9), (10a), (10b), and
(10c¢):

H=91 -Ho+H2 He1+93-Hea+HDa-Hes (11

where, $; and o are the coefficients of total energy function.

After mapping the objective function to the Hamiltonian,
the QUBO problem is prepared for quantum optimization al-
gorithms.

III. QUANTUM OPTIMIZATION ALGORITHM

In this section, the Quantum Approximate Optimization Al-
gorithm is presented and Quantum Alternate Direction Method
of Multipliers is then developed as a heuristic algorithm to solve
the distributed UC problem. Specifically, in subsection A, the
QAOA is presented. To enhance the scalability of QAOA, the
UC problem is decomposed into unit-wise subproblems after
relaxing coupling system demand constraints and subproblems
are coordinated by updating Lagrangian multipliers in subsec-
tion B. In subsection C, the approximation mechanism of QAOA
is explained.

A. QAOA algorithm

The QAOA aims at finding feasible solutions to the QUBO
problems by minimizing the expected value of the Hamiltonian
developed in the previous section. The expectation is taken
with respect to quantum states, which, in turn, are obtained
by rotating the initial state that entangles all possible states
with equal probabilities. The minimum expected value of the
Hamiltonian is obtained by obtaining feasible rotation angles
by using a classical optimizer.

Tge QAOA algorithm aims to obtain the quantum state
l( €, 7)) such that the expected value of UC Hamiltonian

E(E,7) = (€, D) HI(E, 7). (12)

is minimized.

According to [10], through the combination of UC Hamil-
tonian and single qubit Pauli X rotations through the Pauli
operator, a measurement of a state [1)( €, 7)) is performed.
Also, the transverse field Hamiltonian B is defined as follows
based on the total number of bits n:

B = zn:Xi.
i=1

(13)
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Fig. 2. A quantum circuit of Up and Upg gates in a system with four qubits

An example of a quantum circuit for 4 qubits is shown in
Fig. 2. Before starting the QAOA, a uniform superposition over
the n bit-string basis states is initialized as:

w1
|+) = 7 > 2.

z€{0,1}"

(14)

whereby each state is equiprobable, which is achieved by the
using Hadamard gatg denoted by the operator H®". To obtain
a quantum state [¢)( £ , 7)) to establish the expectation in (12),
the rotation of the entangled state (14) is performed with respect
to ¢ through the use of Uy gates, and then the rotation of the
resulting state of performed with respect to 7 through the use
of Up gates in the following way:

- n
WJ( § ??)>:UBd.UHd.UBd—1.UHd—l. "UB1'UH1 |+> :

5)
where, the operators are in the following explicit forms:
Up, =e "8 = ] ein, (16a)
k=1
Uy =~ = [ e @#™”. (16b)
edge(k,j)

The number of Uy gates is the same as the number of edges
(k,j) € e and the number of Up gates is the same as the
number of vertices in the graph G.

The d layers of parametrized Up and Up gates are then
ready to go through the closed loop optimization process using
a classical optimizer. The classical optimizer is then used to
obtain variational parameters £* and 7 such that the expected
function F in (12) is minimized:

(?,Tj) = argmin E(?, ?)

¢ a7

The minimum of the expected function £ is obtained by
running the procedur_e> described above several times, and after
each run the state |( £, 7)) is measured which return a sample
solution Y with the probability | (Y|(&, 7)) |2. The final purpose
of QAOA is to provide an approximation of |(£,7)) such that
the obtained sample Y reaches the minimum value of objective
function. In a sense, the optimization is performed by varying
rotation angles & ang> T with the in_t)ent to obtain 12 smallest value
of the function E(€,7) = (( €, 7)|H[Y(E,7)) in (12).

The algorithm is summarized in the following steps:

Step 1) The initial state |¢)9) = |0000) with four qubits is
passed through a Hadamard gate which results the following

|11) state:

1) = H®* - [yo) = % -(]0000) + |0001) + - - - + |1111)).
(18)

Step 2) The controlled-phase gate is applied to state |17).
In controlled-phase gate, a determined phase is added to the
target qubit when the control qubit(s) are |1). To show the
impact of controlled-phase gate in a 2-qubit system including
two controlled-NOT gates and one controlled-phase gate, the
|1h) state is obtained as follows:

1 0 0 0 1 0 0 0
p 01 0 O 1 0 1 0 01 0 0
W?):[o 0 0 1]' [o 1}®[0 e—iﬁ] '[0 0 0 1]
0 0 1 0 —— —— 0 0 1 0
kth qubit jth qubit

C—-NOTgate C—-NOTgate

1 0 0 0

|0 e 0 0

~|o 0 e % 0]

0 0 0 1
(19)

In (19), a phase change —¢ is applied. According to step 1, the
|th) state should pass through the Hadamard gate. Therefore,
the resultant |¢)2) state can be obtained on a two-qubit circuit
as follows:

1 0o 0 0] [1
Lo e 0 of |1
[p2) =H®? - [) = - i€
2700 0 e 0T b
o o o 1f [1

1 . )
=5 (]00) + e~ [01) 4+ e [10) + |11)).

Similarly, for a quantum circuit with four qubits as shown in
Fig. 2, the |¢2) state is defined as follows:

1 . _
|1o) = 1( |0000) + =% |0001) + e3¢ ]0010) + - - -
+ e % |1110) 4 [1111)).

2n

Step 3) Before measurement, the Up gate with —7 rotation
should be applied to the state |1)2). In other words, each qubit
cos(T) —i - sin(T)

—i - sin(T) cos(T)

Step 4) At the measurement stage, the output of each qubit is
extracted based on the £ and 7. The QAOA should be repeated
several times to get the appropriate results for the qubits.

To summarize the execution steps of QAOA, Algorithm 1
gives a brief explanation of creating a quantum circuit for the
optimization problem. Additionally, Fig. 3 shows the hybrid
nature of QAOA, in which the quantum processor aims at
preparing and measuring the quantum state |1)( £ , ?)}, starting
from the initial state. The classical computer processor is
employed to update the parameters £ and 7 for the next iteration.
Therefore, there is a feedback loop between the quantum and
classical processors in solving a combinatorial optimization
problem. In Fig. 4, the hybrid scheme of the QAOA algorithm
shows the interaction between classical solver and quantum
computing.

In order to efficiently solve the UC problem by using
the QAOA presented before, the Alternate Direction Method

should pass through the gate Up =
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- L
L u.P; <P;<u.P; ) | Update &, T

Fig. 3. QAOA framework for UC optimization

Algorithm 1 Steps of quantum circuit creation for QAOA let P = [T, PT|T, folu) = G(u) + (D - ugy — D)|3,
1 Create uniform superposition by applying Hadamard gate. and  fi( ]5) = F(P) + F- ( ]5) where 2 =
{ZeRPCR)| D-2<D, J-P<J Q- 24+R-P<Y}

2 Apply the Uy gate with angle & considering the edges (16b).

It is noted that binary and continuous variables are separated
in (22a). Therefore, the problem (22a) subject to (22b) is
rewritten as following:

3 Apply X rotation (13) to all qubits with 7 as a angle which
results Ry (1) (16a).

4 Measure the computational basis of qubits using Z-measurement.

Min : fo(u) + fi(P), (23a)
u€eU,PER
These steps are implemented in the These steps are implemented in subject to: Ag-u+ Ay - P=0. (23b)

classical computer

the quantum computer

Classical cost function:

Total energy function (Cost

lw(&t)>
Measure the expected value
E(¢ =<y ) H|y(E.1)>

Min E(t)=Min(<y(&,7 )[H[y(&,7 )>)
To find new (&,7).

Fig. 4. The hybrid scheme of QAOA

of Multipliers (ADMM) - a decomposition and coordination
method - will be presented in the next subsection whereby sub-
problems will be solved by using QAOA and then coordinated
by updating Lagrangian multipliers.

B. Quantum Alternate Direction Method of Multipliers

In this paper, multi-block decomposition of ADMM is used
for the UC problem [29]. In the defined UC problem, the term
associated with fuel cost in objective function (1) consists of
continuous variables (P) for the generation level of DERs.
Additionally, in the commitment cost of UC problem, the
commitment status of DERs are binary variables (u). In the
first step, we need to convert the problem to a QUBO form.
To this end, firstly the constraint including binary variable (3a)
is added to the objective function as an augmented term. Thus,
the problem (1) is converted into the following soft-constrained
problem in presence of new variable Z € R:

: . Yu e — 2
ueU,EJWeZ]R?:LPQR : F(P)+G(u) + 5 |(D-u; — D)3, (22a)

subjectto: D-z2< D, J-P < J,

Q- 5+R-P<Y, u="* (22b)

where, Ag and A; are the coefficients of variables u and P
respectively. The implementation steps of ADMM in multi-

OF = (a.P>+ B.P +7) + (0.u) Lol Hamiltonian)
St.Dus<D, JP<J, QutRP<Y H=h, . Hy+6,.He 1 +63.He oG4 He 3 block problem is listed as following:
.. Prepare quantum state e . . . .. .
Minimize the expected value < e Step 1: Initialize the iteration index s, decision variables,

penalty factor, and stopping criteria.

Step 2: Solve the QUBO subproblem to update the corre-
sponding variables:

ug zargminz [wi S+ Q(D U — D)2] +

uef0.1} i 2
S M Ao ui Y %HAO cugi+ A B
teT teT

(24)

where, the value of penalty factors v, is set to a large number
(10%) to ensure that penalized term is forced to be zero. Also,
the value of p3 > v, is set to 1001.

Step 3: Solve the convex subproblem to update the corre-
sponding variables:

Py =argminfi(P)+Y A,y Ar- Py

PeR
Sy, T e
+° o Ao - u; + Av- Prgll”.
teT
Step 4: Update the dual variables:
Ats = Aps—1 + p3(Ao-ui; + A Ists,i)- (26)

Step 5: If the stopping criteria satisfies || Ag-uf ; + 4, -]551- | <
€, then return the optimized values otherwise go to step 2.
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The Lagrangian function of the UC problem is as follows:

L(]B,u7)\) :ZZ [Wi CUg +f1(]5)}

teT iel

D> [521(19- Ut —’19)2]

teT iel

+ZZ>\? [AO'Ut,iJrAl'pt,z}

teT i€l

+ 30 (B0 e+ Av - Pl

teT i€l

27

ADMM, however, generally does not converge. In the dual
space, multipliers are not guaranteed to converge to optimal
multipliers, and in the primal space, feasible solutions are not
guaranteed to be globally optimal.

C. Approximation Mechanism of QAOA

In this subsection, the approximation mechanism of QAOA,
which guarantees the actual optimum of the problem, is dis-
cussed [10], [30].

In the classical combinatorial optimization problems, the
purpose of optimization is to find a string that minimizes a
classical objective function (1) OF(P) : {+1,—1}" on N —bit
binary strings P = pips...pny. A desired approximation
ratio #(r < 1) of an approximate optimization algorithm in
finding a string P determines the quality of the solution toward
the global minimum solution [30]. Therefore, a good approx-
imation ratio leads the approximate optimization algorithm
to generate bit-string P (generated power by DERs) so that
OF™in — mfz;n OF(P) is achievable with high probability. The
approximation ratio of the objective function can be bounded
as following:

OF(P)
— >
OmeL -
where, OF™™ is the minimum value of the objective function.

As it was discussed in subsection III-A, in the quantum ap-
proximation, the variational parameters £* and 7* are obtained
using the cgssical optim_iger such that the expected function
E = (&, 7)|H[Y(E,7)) is minimized (see eq.(17)).
To achieve an exact optimal value of E(&",7°) where the
optimized values of &* and 7* were obtained using (17), the
approximation ratio can be bounded as follows to obtain an
estimate of 7:

(28)

E (gz’;) .. (29)
C/m,zn -
where, in a d la f ircuit, li E_”Z_*}:
, yer of quantum circuit, limg_, o E(£*,7)

C'™i In this condition, the QAOA algorithm has a guaran-
teed approximation ratio that can be obtained with polynomial
efficiency in the problem size as as a conventional approximate

optimization algorithm.
In_> the QAOA, firstly the samples are taken from trial state
(€ ,7)) in the computational basis. In the UC problem with
the Hamiltonian 7 = 3 pc (13, OF(P)|P) (P|, single qubit

measurements of the state [1hg( €, 7)) in the quantum state

basis is repeated. Therefore, this iterative procedure results the
sampling estimate of the following:

WEPNHWE )= Y OFP)(PR(E, 7))
Pe{0,1}"
(30)

In the secgr;d step, the obtained string P using the distribu-
tion (Plypg(€,7)) |? is used to assess the cost function OF
by taking an average over total samples. Finally, a classical
optimization is employed to optimize the E( ¢, 7).

To achieve a solution with high probability and close to
the optimized expectation value E({*,7°), assume that the
Hamiltonian H of UC problem has the total w number of
terms in the form of H = Y, A; by a universal constant
||A;|| < A. To obtain £* and 7* close to the expected value
E(&", ) with high _Probability, the samples drawn from the
distribution | (P|yq( € , 7)) |? are important, and if the variance
is too high, many samples should be considered. Therefore,
we _s}hould find the bound of the variance of expected value
E(&,7) as follows:

(W€, PN M2 W(E, 7)) — (€, 7 HIW(E, 7))

< ((E PNH (€ 7)) an
= 3 W€ AN Ad [0(€,7) < w?d?

As it can be seen from (31), the variance of E(?,?) is
bounded by w2A2. It means that to achieve a &* and 7* close
to the expected value E(?7 7:} ) with high probability, variance
of expected value should be satisfied as (31).

From complexity theory point of view, classically sampling
from the output of a general quantum circuit cannot be done
efficiently [31]-[33]. Even in small depth quantum circuits (e.g.,
the lowest quantum circuit depth d = 1), the classical computers
cannot efficiently execute the problems [10] compared to the
quantum computers. This feature of QC can lead the quantum
optimization algorithms to outperform the classical counterparts
in computation time in near-future quantum machines.

IV. NUMERICAL RESULTS

In this section, two case studies are considered. Within the
first study, the UC problem including three MGs is solved in
a centralized way by using QAOA. Within the the second case
study, the distributed coordination between MGs are used to
obtain the feasible scheduling of distributed energy resources
(DERsS). In this paper, to run the optimization problems, IBM
Quantum provides the statevector simulator for optimization
quantum circuits, and explores their performance under realistic
device noise models.

A. Centralized UC

In the centralized framework, all information of microgrids
are sent to a central controller, and then the optimization process
is run for the whole network including the MGs’ objective
function [34]. In Fig. 5, the centralized operation mode of
microgrids is depicted where each microgrid control center
(MGCC) provides the Ising Hamiltonian model of its objective
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Central controller TABLE II. MGs’ contribution in supplying the network demand in the
=P - - N ) first scenario of centralized operation mode (The MG’ contribution is
—— Optimized solution [FEEEFIE @ | Optimized solution ? the multiplication of on/off status and generation level of each DER.)
C;\ m 4 period MGI  MG2 MG3 period MGI MG2 MG3
£ Classical bits > (h) kW) (kW) (kW) (h) kW) (kW) (kW)
L . 1 15 0 1 13 15 4 15
) g G £ 2 15 0 3 14 15 1115
z & 2 g 3 15 0 5 15 15 11 15
E & = 4 15 0 7 16 15 10 15
3 e & s 5 15 0 10 17 15 13 15
ﬁé%m I‘{f;?cs 6 5 0 15 18 5 15 15
Ctond (% Load 7 15 4 15 19 15 10 15
s P >3 s @ 1 8 15 7 15 20 15 8 15
e : » s, : e 9 5 12 15 21 15 4 15
CHP _FC___MT CHP __FC___MT 10 15 9 15 22 15 2 15
Microgrid 1 Microgrid 2 Microgrid 3 11 15 6 15 23 15 0 15
12 15 5 15 24 15 0 9

Fig. 5. Centralized operation mode of microgrids

TABLE L Specifications of DERs in the first scenario of centralized UC TABLE III. Operation cost of MGs in the first scenario of centralized

MG DER a ﬂ v pmin || pmaz operation mode
No. No. MG Classical Iterations || Quantum Iterations
MGl DERI 0.03 2 100 || 1kW || 15kW No. computing computing
MG2 DERI1 0.02 5 120 1kW || 15kW (Gurobi)
MG3 DERI1 0.025 4 80 1kW || 15kW MGl $3281.99 _ $3281.98 _
MG2 $3560.74 — $3560.71 -
) ) ) MG3 $3247.88 - $3247.86 —
function and constraints to the control center and in return, Total $10090.61 8 $10090.55 3
the control center sends the feasible solution of UC which is
the expected value of (12). The measuring units in the end of
each MGCC can measure the quantum state and convert it int0  Gyrobi.

the classical bits. For the optimization purpose, the QAOA,
discussed in Section. III-A, is utilized, and tested on three
scenarios.

First scenario: Three DERs. Firstly, a small network with
three MGs is tested. In this scenario, one DER is devoted to
each MG to satisfy the hourly demand of the network shown as
Fig. 6. The DERs coefficients are described in Table I. The
contributions of MGs in supplying the network demand are
described in Table II. The contribution of each DER is defined
as the multiplication of commitment status and generated power.
The zero value for DERs’ contribution means that the DER is
in off mode.

The results of Table II indicate that the DER of MGI is
economical to be involved in power generation process. Also,
the DER of MG3 has an important role in providing the demand
of the network. It is seen that the DER of MG2 is expensive
to produce power. In Table III, the total operation cost of MGs
obtained by QC is compared with those from classical solver,

45
38
Demand 3,
(kW) o4
16
01:00 04:00 08:00 12:00 16:00 20:00 00:00
Time (h)

Fig. 6. The demand profile of the network in the first scenario

According to Table III, the QC has a better computing
performance compared to the classical counterpart, and can
achieve the feasible solution in 3 iterations while the classical
computing requires § iterations to get the same results as QC.
As mentioned in subsection III-C, a successful approximation
ratio of the objective function leads toward better optimization
results using quantum algorithms. It is noted that the floating
nature of cost coefficient o results in floating values for the
objective function in Table III.

Second scenario: Three DERs with demand change. In
this scenario, the load curve of the UC problem is decreased by
10 percent while other parameters are kept unchanged as the
first scenario in the centralized UC problem. The contribution
of each MG in centralized UC problem when the load curve is
decrease by 10 percent can be seen in Table IV.

Compared to the first scenario, in Table IV, the power
generation level of DERs is decreased when the total demand
of microgrids is reduced by 10 percent. In this scenario, the
operation cost of the network drops to $9702, in which the
operation cost of MG1, MG2 and MG3 is $3279, $3255 and
$3168, respectively.

Third scenario: Nine DERs. In the third scenario of cen-
tralized operation and optimization of microgrids, the number
of DERSs is increased in each microgrid. In this scenario, each
MG consists of three dispatchable DERs.

As discussed in Section II-B, before converting integer
variables to binary variables, there are 9 binary variables for
commitment status of DERs, and 9 integer variables for the
generation level of DERs at any given scheduling hour. After
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TABLE IV. MGs’ contribution in supplying the network demand in the
second scenario of centralized operation mode (The MG’ contribution
is the multiplication of on/off status and generation level of each DER.)

| Updates multiplier (A ) |

period  MG1 MG2 MG3 | period MG1I MG2 MG3 [
h)  &KW) &W) KW) () (KW) KW) (kW) el Mcccs
1 14 0 0 13 15 1 15 Optimized generated Clzsiiical [ [——=| Optimized generated
2 15 0 1 14 15 7 15 power of MG3 ‘_EE"—i 2 | power of MG3
3 15 0 3 15 15 7 15 Optini
ptimized generated power
4 15 0 5 16 15 6 15 of MG3
5 15 0 3 17 15 9 15 Optimized generated [[Q404 optimization | Optimized generated
6 5 0 2 18 5 11 15 pOwCEOEMGE Microgrid 3 power of MG2
7 15 1 15 19 15 6 15 |Updates multiplier (A )| |Updates multiplier (A )|
8 15 3 15 20 15 4 15 ; = —
9 15 8 15 21 15 1 15 MGCC1 Q Optimized generated Q
10 15 5 15 22 15 0 14 Classical power g Classical
11 15 2 15 23 15 0 12 - ;L,_.._‘@: .4 LLJ-—\GS L —
12 15 2 15 24 15 0 7 el & P Eﬁ pe

conversion, since the generation level of each DER should be
between 1kW and 15kW, we need 9x 15 = 135 binary variables
or qubits to cover the generation level limit at the corresponding
scheduling hour. Therefore, to solve a simplified UC problem
with nine DERs in the centralized operation mode by QAOA
in each hour, we need 9 4+ 135 = 144 binary variables or
qubits, which exceeds the qubits availability in the quantum
computers. Additionally, extra variables should be assigned to
the slack variables to convert the inequality constraints to the
equality constraints (first step of slack-based formulation in
Section I1.B.2). To overcome this drawback of current QC, this
paper offers the idea of distributed operation and optimization
of UC in the next subsection.

B. Distributed UC

In the distributed UC, the main problem is separated into sev-
eral subproblems, and each MG optimizes its objective function
and only the joint variables are shared between entities to get the
updated multiplier. To do this, the quantum ADMM developed
in Section. III-B is used. In Fig. 7, the quantum distributed
operation of MGs is shown, where each MGCC only shares
the generated power value obtained by quantum optimization
QAOA with each other to get the updated multipliers.

Here, the UC problem of nine DERs is split into three
optimization subproblems, where each MG optimizes its UC
problem consisting of three DERs. The characteristics of each
DER are described in Table V. In the rest of this section, two
different scenarios are tested.

First scenario: Simplified distributed UC. In this scenario,
a simplified UC problem consisting of power generation capac-
ity limit and power balance constraint is modeled.

In Table VI, the DERSs’ contributions in supplying the net-
work demand are described after solving the UC problem
consisting of nine DERs and three MGs. Fig. 8 shows the
convergence speed of quantum-ADMM (Q-ADMM) compared
to the classical version in terms of primal residuals.

As seen in Fig. 8, the computing performance of the ADMM
algorithm is improved in quantum computing. The Q-ADMM
can achieve the small primal residuals in less iterations com-
pared to the classical ADMM.

Second scenario: A real distributed UC problem with-
out line power flow constraint. In this scenario, unlike the

Optimized generated power Optimized generated power

> of MG1 of MG2
QAOA optimization Optimized generated QAOA optimization

power of MG2

Microgrid 2

Fig. 7. Distributed operation mode of microgrids.

TABLE V. Characteristics of DERs in the distributed UC

MG DER «@ B y prvn || pmaz

No. No.

MGl DERI1 0.03 2 100 1kW || 15kW
DER2 0.02 5 120 1kW || 15kW
DER3 0.025 4 80 1kW || 15kW

MG2 DERI1 0.03 4 50 1kW || 15kW
DER2 0.015 7 80 1kW || 15kW
DER3 0.027 3 70 1kW || 15kW

MG3 DERI1 0.025 6 90 1kW || 15kW
DER2 0.03 2 110 1kW || 15kW
DER3 0.028 5 50 1kW || 15kW

simplified version of UC, other UC constraints are employed.
These constraints are ramp-up, ramp-down, minimum up time,
and minimum down time constraints. The ramp-up rate and
ramp-down rate are adjusted to 1.6kW and 1.1kW, respectively.
This scenario can show the performance of QC on a real
power system UC problem. The problem input including power
demand level and DER characteristics are as the first scenario.
The contributions of each DER can be seen in Table VII.
Comparing the results of first scenario (Table VI) and second

10°F ‘ " [~-Quantum ADMM
—o—Classical ADMM

Primal residuals

10-]5L L L L L L L L L

5 .6 7 8 9 10
Iteration

Fig. 8. Residual value of Q-ADMM and classical ADMM in distributed UC
(first scenario)

1 2 3 4
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TABLE VI. DERSs’ contribution in supplying the network demand in the simplified Distributed UC in presence of nine DERs using quantum-ADMM (first

scenario)
Scheduling time (h) Total
MGNo. [DERNo. | I [ 2 | 3 [ 4 [ 5 | 6 [ 7 [ 8 | 9 [ 10 [ 11 [ 12 | 13 [ 14 | 15 [ 16 | 17 | 18 | 19 | 20 | 21 | 22 [ 23 | 24 | demand
Generated power (kW) (kW)
DERI 6.03]659 ] 714 | 7.14 | 7.70 | 9.93 | 9.78 | 11.10 [ 11.80 | 12.30 | 11.00 | 11.00 | 11.10 | 11.80 | 12.30 | 14.50 | 14.40 | 15.00 | 13.20 | 12.60 | 11.80 | 11.10 [ 9.79 | 7.70
MGl DER2 539 15951 651 | 651 6.88 | 8.16 | 846 | 9.74 | 1040 | 11.60 | 10.40 | 10.40 | 9.74 | 10.40 | 11.20 | 13.40 | 13.50 | 15.00 | 12.60 | 11.70 | 10.40 | 9.74 | 8.46 | 6.88 729.41
DER3 560 | 6.16 | 671 | 671 | 7.19 | 832 | 875 [ 9.26 [ 11.20 | 11.80 | 10.90 | 10.90 | 9.27 [ 11.20 [ 12.30 | 12.80 | 13.70 | 15.00 | 12.80 | 12.20 | 11.20 | 9.27 | 8.76 | 7.19
DERI1 559 [ 615 | 6.70 | 6.70 | 7.61 9.01 | 8.68 | 10.20 | 11.00 | 11.20 | 9.67 9.67 | 10.20 | 11.00 | 12.50 | 12.80 | 14.00 | 15.00 | 12.80 | 12.10 | 11.00 | 10.20 | 8.68 | 7.61
MG2 DER2 [ 495 [ 551 [ 607 | 607 | 7.70 | 805 | 839 | 9.64 [ 1040 [ 11.60 | 9.99 | 9.99 | 9.64 [ 10.40 [ 12.00 | 13.10 | 13.40 | 10.00 | 12.20 [ 11.50 | 10.40 | 9.64 | 839 | 7.70 | 713.34
DER3 582638 ] 693 | 693 [ 824 | 867 | 891 [ 10.10 [ 11.30 [ 11.20 | 10.80 | 10.80 | 10.10 [ 11.40 [ 12.60 | 13.10 | 14.30 | 15.00 | 13.00 [ 12.40 [ 11.30 [ 10.10 | 891 [ 8.25
DERI1 5.16 | 571 | 627 | 6.27 | 7.83 8.69 | 848 | 9.69 | 11.00 | 11.00 | 9.22 9.22 9.70 | 11.00 | 11.40 | 12.74 | 13.60 | 15.00 | 12.40 | 11.70 | 11.00 | 9.70 | 8.48 | 7.83
MG3 DER2 6.03 659 | 7.15 | 7.15 [ 10.40 | 8.95 | 9.86 | 10.70 | 11.80 | 13.10 | 12.90 | 12.90 | 10.70 | 11.80 | 13.90 | 14.50 | 14.40 | 15.00 | 13.20 | 12.60 | 11.80 | 10.70 | 9.86 | 10.40 | 732.96
DER3 537593648 | 648 | 642 | 828 [ 8.65 [ 9.53 [ 11.00 [ 11.10 | 10.10 | 10.10 | 9.53 [ 11.00 [ 11.80 | 12.80 | 13.70 | 15.00 | 12.60 [ 12.00 [ 11.00 [ 9.53 | 8.65 | 6.43
Total power 50 55 60 60 70 78 80 90 100 105 95 95 90 100 110 120 125 130 115 109 100 90 80 70 2177
cost 963 | 985 | 1008 | 1008 | 1052 | 1091 | 1099 | 1147 | 1194 | 1219 | 1166 | 1166 | 1147 | 1194 | 1241 | 1291 | 1317 | 1334 | 1268 | 1239 | 1194 | 1147 | 1099 | 1052 -

TABLE VII. DERs’ contribution in supplying the network demand in a real distributed UC problem without line power flow constraint in presence of nine DERs

using quantum-ADMM (second scenario)

Scheduling time (h)
MG No. | DER No. 1 T2 [ 3] 4[5 6] 7 [ 8 [ 9 [ 10 ] 11 [ 12 13 [ 14 [ 15 [ 16 [ 17 [ 18 [ 19 [ 20 [ 21 | 22 [ 23 | 24
Generated power (kW)

DERI 6.03 | 6.59 | 7.14 | 7.14 | 8.65 | 9.48 | 10.27 | 11.61 | 12.31 | 12.68 | 11.58 | 12.26 | 11.84 | 13.24 | 14.30 | 14.80 | 15.00 | 15.00 | 13.40 | 12.97 | 11.97 | 10.87 | 9.76 | 8.65

MGl DER2 539 595|651 | 651 | 7.88 [ 887 | 930 | 10.02 | 11.52 [ 11.65 | 10.55 | 10.21 | 9.44 [ 10.93 | 12.29 | 13.59 | 14.04 | 14.87 | 13.27 | 12.32 | 11.32 | 10.22 | 9.11 | 8.00
DER3 5.60 | 6.16 | 6.71 | 6.71 | 8.19 | 9.01 8.62 9.65 10.67 | 12.15 | 11.05 | 10.08 | 9.09 | 10.59 | 11.74 | 13.03 | 14.10 | 15.00 | 13.40 | 12.93 | 11.93 | 10.83 | 9.72 | 8.61

DER1 559 | 6.15 | 6.70 | 6.70 | 7.10 | 8.46 | 9.07 | 10.48 | 11.95 | 12.25 | 11.15 | 10.34 | 9.66 | 10.91 | 12.41 | 13.91 | 14.10 | 14.96 | 13.36 | 12.56 | 11.56 | 10.46 | 9.35 | 8.24

MG2 DER2 496 | 552 ] 6.07 | 6.07 | 642 ]| 646 | 652 | 7.09 | 8.09 | 895 | 7.85 | 9.31 840 | 7.64 | 8.00 | 9.50 | 11.00 | 11.68 | 10.08 | 9.11 8.11 | 7.01 | 590 | 479
DER3 582|638 693|693 813|929 | 939 | 10.84 | 11.85 | 11.45 | 10.35 | 10.29 | 10.34 | 11.67 | 13.07 | 14.57 | 14.83 | 14.95 | 13.35 | 12.58 | 11.58 | 10.48 | 9.37 | 8.26

DERI1 5.16 | 571 | 627 | 627 | 7.16 | 833 | 859 | 9.66 | 10.22 | 11.22 | 10.12 | 10.05 | 9.05 | 10.21 | 11.51 | 12.48 | 13.48 | 14.13 | 12.53 | 11.57 | 10.57 | 9.47 | 836 | 7.25

MG3 DER2 6.03 | 659 | 7.15 | 7.15 | 848 | 939 | 9.15 | 10.65 | 12.13 | 13.35 | 12.25 | 12.49 | 13.13 | 14.53 | 14.98 | 14.94 | 15.00 | 15.00 | 13.40 | 13.14 | 12.14 | 11.04 | 9.93 | 8.82
DER3 537 593|648 648 | 780|870 ] 9.08 | 998 | 11.23 | 11.28 | 10.18 | 9.98 | 9.03 | 10.26 | 11.69 | 13.17 | 13.44 | 1440 | 12.80 | 11.83 | 10.83 | 9.73 | 8.62 | 7.51

TABLE VIII. DERs’ contribution in supplying the network demand in a real distributed UC including all constraints in presence of nine DERs

ADMM (third scenario)

using quantum-

Scheduling time (h)
MGNo. [DERNo. | 1 | 2 | 3 [ 4 [ 5] 6 ] 7 | 8 [ 9 [ 10 11 | 12 13 [ 14 | 15 [ 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24
Generated power (kW)

DERI1 6.03 | 7.01 | 7.54 | 7.54 | 839 | 9.79 | 10.19 | 11.64 | 11.95 | 12.70 | 12.01 | 11.75 | 11.65 | 12.31 | 11.93 | 11.56 | 12.00 | 11.00 | 11.95 | 10.95 | 11.07 | 11.09 | 10.03 | 8.93

MG1 DER2 539 | 483 | 555 | 555|654 | 6.62 | 7.02 7.93 8.60 7.88 6.93 7.18 7.64 7.50 8.78 9.69 9.97 9.79 | 10.15 | 9.79 9.88 9.34 8.05 | 7.19
DER3 5.60 | 6.66 | 6.65 | 6.65 | 7.94 | 943 | 9.73 | 11.07 | 10.87 | 10.70 | 9.93 | 10.02 | 10.93 | 10.86 | 10.29 | 9.61 | 9.33 | 9.99 | 10.43 | 10.00 | 9.84 | 9.66 | 8.60 | 7.50

DERI1 559 | 6.80 | 6.92 | 6.92 | 795 | 9.41 | 9.33 | 10.82 | 10.50 | 9.89 | 10.76 | 10.20 | 10.98 | 10.92 | 10.33 | 9.68 | 9.59 | 9.96 | 9.47 | 9.97 | 10.12 | 11.25 | 10.19 | 9.10

MG2 DER2 496 | 526 | 5.89 | 589 | 7.33 | 7.60 | 787 | 827 | 787 | 849 | 775 | 815 | 730 | 7.14 | 849 | 9.00 | 890 | 9.36 | 9.11 9.36 | 944 | 8.64 | 7.58 | 6.10
DER3 582|650 | 7.15 | 7.15 | 8.18 | 9.62 | 9.94 | 11.25 | 11.09 | 10.65 | 11.50 | 11.42 | 10.68 | 10.57 | 10.36 | 9.99 | 10.20 | 10.20 | 9.64 | 10.20 | 9.97 | 11.15 | 10.09 | 9.00

DERI1 5.16 | 6.08 | 6.55 | 6.55 | 7.52 | 7.62 | 7.27 7.73 7.88 8.80 8.43 8.76 8.06 8.01 7.44 8.42 9.58 9.54 9.61 9.55 9.54 8.86 7.80 | 6.71

MG3 DER2 6.03 | 591 | 7.26 | 7.26 | 8.39 | 9.89 | 10.06 | 11.42 | 11.49 | 11.33 | 12.08 | 11.73 | 11.02 | 11.02 | 10.73 | 11.02 | 10.35 | 10.41 | 10.38 | 10.42 | 10.54 | 10.87 | 9.81 | 8.71
DER3 537 593|649 | 649 | 7.73 | 801 | 857 | 9.86 | 9.72 | 9.56 | 10.61 | 10.78 | 10.59 | 11.66 | 11.64 | 11.03 | 10.09 | 9.75 | 9.25 | 9.76 | 9.58 | 8.91 7.85 | 6.75

TABLE IX. Comparison of Operation cost of MGs in distributed oper-
ation mode in a real UC problem without line power flow constraint

TABLE X. Operation cost of MGs in different operation modes

(second scenario) | Method || Scenario 1 || Scenario 2 || Scenario 3 |
MG No. || Classical computing || Quantum Centralized || $27621.24 || $27492.45 || $28962.19
(Gurobi) computing Eg?llr% 1113tll)n g
(L R Quantum || $27621.23 || $27492.41 | $28062.18
MG2 || $8019.50 §8019.48 ADMM
MG3 $9321.41 $9321.40
Total $27492.45 $27492.41

scenario (Table VII) demonstrates the impact of power ramp rate
constraints, where differentiate the optimized generation level
of DERs in different scheduling hours.

Table IX demonstrates the operation cost of microgrids for a
real UC problem subject to power ramp rate and minimum up
time and down time constraints in the distributed operation of
microgrids.

Third scenario: A real distributed UC problem including
line power flow constraint. In this scenario, the distributed UC
problem including the line power flow limit is solved [35]. Table
VIII is provided to describe the contribution of each DER after
solving distributed UC in presence of all constraints including
the line power flow constraint.

According to Table X, three different scenarios of distributed
UC are considered to compare the obtained operation cost of

0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

microgrids by Q-ADMM with those results obtained by Gurobi
solver in the centralized operation mode of microgrids so that
the ADMM method is not involved.

V. DISCUSSION ON QUANTUM OPTIMIZATION

In this section, we briefly discuss current capabilities and
barriers of quantum computing especially in solving quantum
optimization problems:

o Qubit connectivity. In quantum algorithm development, the
ideal qubit connectivity is considered in corresponding
quantum circuit. In an ideal qubit connectivity, multi-qubit
quantum gates are allowed to be operated between any
existing qubits. Fig. 1 shows the connectivity graph G
of all-to-all connected devices. However, in reality, the
physical architectures almost allows two-qubit operations
between limited qubits, which necessitates surplus routing
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operations or teleportation protocols. Therefore, the circuit
depth will increase. To deal with this issue, co-design
of quantum algorithms as well as quantum hardware is
an active research area. To this end, error correction is
considered in developing quantum algorithms as well as
building quantum computers [36].

o Number of qubits. The number of qubits is one of the
important factors in determining the size of the problem. At
this time, IBM quantum machine, namely IBM Quantum
Manhattan with 65 qubits, is a real machine with highest
qubit number. Moreover, according to the road map of
IBM, 1000-qubit machine, called IBM Quantum Condor
will be developed until the end of 2023 [8]. This advance-
ment in quantum machine technology can fully realize the
quantum supremacy over classical computing.

VI. CONCLUSION

This paper devised a quantum distributed method to solve the
unit commitment problem in quantum computing framework.
The quantum formulation of UC problem was further presented
to prepare the subproblems for distributed optimization. The
results showed that the idea of quantum distributed operation
can successfully solve the UC problem in presence of more
DERs than the quantum centralized optimization. However, in
the distributed version, the number of subproblems should be
in accordance to the available qubits. Comparing the obtained
results with those from its classical counterpart ensured the
superiority of QC in terms of computing performance.

Although, current noisy intermediate-scale quantum comput-
ers are using limited qubits in the computation process and only
a small number of operations can be handled, our paper is a
crucial step to push the frontier in solving the power system
problems in a quantum architecture. The future work could
investigate the application of quantum computing on stochastic
analysis of power system reliability and optimization.
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