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Abstract

Serverless platforms today impose rigid trade-offs between
resource use and user-perceived performance. Limited con-
trols, provided via toggling sandboxes between warm and
cold states and keep-alives, force operators to sacrifice signif-
icant resources to achieve good performance. We present a
serverless framework, Medes, that breaks the rigid trade-off
and allows operators to navigate the trade-off space smoothly.
Medes leverages the fact that the warm sandboxes running
on serverless platforms have a high fraction of duplication in
their memory footprints. We exploit these redundant chunks
to develop a new sandbox state, called a dedup state, that
is more memory-efficient than the warm state and faster to
restore from than the cold state. We develop novel mecha-
nisms to identify memory redundancy at minimal overhead
while ensuring that the dedup containers’ memory footprint
is small. Finally, we develop a simple sandbox management
policy that exposes a narrow, intuitive interface for operators
to trade-off performance for memory by jointly controlling
warm and dedup sandboxes. Detailed experiments with a
prototype using real-world serverless workloads demonstrate
that Medes can provide up to 1x-2.75% improvements in the
end-to-end latencies. The benefits of Medes are enhanced in
memory pressure situations, where Medes can provide up to
3.8x improvements in end-to-end latencies. Medes achieves
this by reducing the number of cold starts incurred by 10-50%
against the state-of-the-art baselines.

CCS Concepts: » Networks — Cloud computing; * Infor-
mation systems — Computing platforms; Data centers; ¢
Software and its engineering — n-tier architectures.

Keywords: Serverless, Memory Deduplication, Cloud Com-
puting, Virtualization

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).

EuroSys ’22, April 5-8, 2022, RENNES, France

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9162-7/22/04.
https://doi.org/10.1145/3492321.3524272

Tao Ji

The University of Texas at Austin

Arjun Singhvi

University of Wisconsin-Madison

Aditya Akella

The University of Texas at Austin

ACM Reference Format:

Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya
Akella. 2022. Memory Deduplication for Serverless Computing with
Medes. In Seventeenth European Conference on Computer Systems
(EuroSys ’22), April 5-8, 2022, RENNES, France. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3492321.3524272

1 Introduction

In the serverless computing paradigm, developers submit a
piece of code (function) to the serverless platform. A function
instance is invoked based on a developer provided-trigger
and launched to execute in a sandbox (e.g., a container) with
the needed libraries and dependencies loaded. The platform
scales the number of functions instances (up or down) based
on the number of function invocations per unit time. Server-
less computing has become quite popular because (1) it en-
ables application developers to focus on application logic by
shifting the burden of provisioning, managing, and scaling
resources onto the cloud providers, and (2) it offers cost-
efficiency via fine-grained billing where developers only pay
for the time when their functions were actually running.
With more demanding applications and workloads migrat-
ing to serverless platforms, a key question for providers is
how to meet tight performance requirements while also ensur-
ing resource efficiency. Performance heavily depends on how
quickly a function instance can start acting on an end-user
request. Resource efficiency is achieved by closely matching
actively operating sandboxes to the incoming demand.
Serverless platforms today manage performance and effi-
ciency by toggling sandboxes between two states: cold and
warm (or paused). A “cold” sandbox does not use any memory
resources but induces long cold startup delays (which could
be in the order of seconds, depending on the platform and
runtime [38]) due to the needs for the execution environment
of a function to be initialized and loaded before a function in-
stance can execute in the sandbox [10, 11, 13, 16, 26, 29, 38].
“Warm” or paused sandboxes are kept in memory for a cer-
tain amount of time — the keep-alive period [29, 38] — after
the completion of function execution, consuming significant
memory. However, they enable sandbox reuse — subsequent
function invocations that arrive before the keep-alive expiry
run on these sandboxes experiencing a “warm startup” which
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is significantly smaller (varying from 1ms to 20ms depending
on the runtimes [38]).

Unfortunately, today’s platforms induce highly constrain-
ing trade-offs between performance and efficiency, with good
performance achievable only at significant resource expense,
and make it difficult for operators to control such trade-offs,
i.e., tune the achieved performance by controlling resource
use. In this paper, we present a new mechanism that increases
the flexibility of the trade-off space, enabling better perfor-
mance (efficiency) for the same efficiency (performance) as
platforms today, and a simple way for operators to navigate
the trade-off space.

Prior works have attempted to improve trade-offs in a few
different ways, but they are either ineffective in practice or do
not offer enough flexibility to navigate the trade-offs. For ex-
ample, techniques such as eschewing fixed keep-alives (used
today [16, 29]) in favor of adaptive [29] keep-alive policies,
or provisioning sandbox resources in anticipation of future
invocations [6, 30] fall short because the unpredictable nature
of serverless workloads makes it very difficult to design a gen-
eral keep alive or pre-warming policy (Section 7.5). Recent
proposals [10, 11, 13] to reduce startup times offer cold starts
that are still orders of magnitude slower than warm starts or
sacrifice code compatibility/isolation, which precludes their
widespread adoption [8] (Section 8).

Our work improves the trade-off space today by introduc-
ing a new sandbox state with a memory footprint and startup
performance in between those of cold and warm states. The
third state is built on extending the “reusable sandbox” con-
struct that underlies the warm state today to that of a reusable
sandbox chunk (RSC). An RSC corresponds to any memory
chunk of warm sandboxes that can be “re-used” by other sand-
boxes. Our empirical study (Section 2) shows the promise
of RSCs — we find evidence of significant duplication in the
memory states of warm sandboxes; specifically, we find that
(1) sandboxes of the same function can have upto 85% du-
plication in their memory state; (2) even across sandboxes
of different functions, we can identify upto 80-90% duplica-
tion. Essentially, the RSC notion works by removing such
redundant memory chunks across sandboxes, thereby signifi-
cantly improving serverless platforms’ memory-performance
trade-offs.

The new sandbox state that RSCs help us introduce is
called the deduplicated state (or dedup for short). In this
state, all the redundant memory chunks of the sandbox are
“removed” and only “unique” chunks are stored in memory.
Specifically: (1) we store only one copy of an RSC in a
“base” sandbox, and dedup-ed sandboxes’ memory contents
exist as a collection of local completely-unique chunks and
redundant RSCs in multiple remote base sandboxes; (2) prior
to launching a function, we restore a dedup-ed sandbox by
putting together unique local chunks with redundant RSCs
read over the network from remote base sandboxes.
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Our deduplication approach ensures that the dedup state
has a significantly smaller memory footprint than warm star-
tups and that dedup startups are significantly faster than cold
starts. By deduplicating more sandboxes, the overall memory
usage is smaller than that of a platform which only has warm
sandboxes. Further, we can utilize this saved memory to keep
more sandboxes, leading to improved performance. Thus,
we can leverage the dedup state to improve the flexibility
and scope of the memory-performance trade-off in serverless
computing.

We present Medes (Memory Deduplication for Serverless),
a novel serverless framework that incorporates the dedup
sandbox state. Medes makes use of a novel deduplication
mechanism that can identify potentially similar chunks in the
memory states of sandboxes across the cluster. Calculating
the amount of chunk-level duplication between the memory
states of two sandboxes, and exploiting said redundancy is
not trivial on a serverless platform, where a large number of
sandboxes could be in memory at the same time, each having
tens of thousands of pages in its memory state. Medes tackles
this by using three techniques (details in Section 4). First, to
ensure scaling and to lower the computational costs of dedu-
plication, while we identify redundancy at the chunk-level
(because it is the most effective), we perform deduplication
at the page granularity: for each page of a dedup sandbox,
Medes identifies a similar (base) memory page on the clus-
ter and computes a “patch” with respect to it. The choice
of this base page is based on an estimate of the number of
RSCs in common between the two pages. Second, to fur-
ther improve scaling, we restrict the number of base pages
to keep track of by demarcating certain sandboxes as base
sandboxes and using only the memory pages of these base
sandboxes as reference for computing patches. Third, we
leverage value-sampled fingerprints [9] to lower the computa-
tional and storage costs of redundancy identification - which
leads to overall faster function startup times than cold starts
and hence promises better function performance.

Medes allows serverless platform operators to control the
memory-performance easily trade-offs and navigate the trade-
off space via a novel sandbox management policy. Our policy
jointly controls the number of warm and dedup sandboxes in
memory and offers a narrow interface with simple, intuitive
parameters through which operators can: (a) reason about the
performance achieved for a given resource footprint, (b) con-
trol performance (memory) by directly and adjusting memory
footprint (performance goals), and (c) customize the policy
for different serverless functions.

We evaluate Medes against state-of-the-art keep-alive-based
sandbox management policies on real-world serverless work-
loads. We observe that Medes can deliver on its promise of
better performance and efficiency across a spectrum of set-
tings. Medes can provide up to 1x-2.75x smaller function
startups in the tail by reducing the number of cold starts in-
curred by 10-50% against the baselines. Medes achieves this
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Benchmark

Te Python Libraries Description

estcase

Vanilla Math, Time Simple mathematical computation.
LinAlg Numpy, Time Linear algebra functions.
ImagePro Numpy, Pillow Image processing operations.
VideoPro Numpy, OpenCV Video processing functions.

MapReduce| Multiprocessing
HTTPServe| Chameleon, JSON Serve an HTML table over HTTP.
AuthEnc Pyaes, ISON Encryption/decryption.
Scikit-learn Tf Idf Vector- | Data preprocessing and feature
izer, Pandas generation operations.

Serve an RNN model using server-
less functions.

Multi-process mapreduce job.

FeatureGen

ModelServe| Pytorch

Scikit-learn Tf Idf Vectorizer

ModelTrain and Logistic Regression

Train a classifier.

Table 1. Description of various python libraries in FunctionBench used in
our measurement study in Section 2.

by heavily deduplicating warm containers, using which it
can keep 7.74-37.7% more sandboxes in memory compared
to current state-of-the-art alternatives. Crucially, we observe
that the benefits provided by Medes increase under memory
pressure, where it provides up to 3.8x improvement in the
end-to-end latencies.

2 Background and Motivation

We begin by showing evidence of significant memory redun-
dancy in realistic serverless workloads through a measure-
ment study. We then describe the opportunity that memory
redundancy provides to make serverless platforms more per-
formant and memory-efficient.

2.1 Memory Redundancy in Serverless Workloads

Our initial hypothesis is that serverless workloads should
exhibit memory redundancy at any given point of time. The
intuition is that there are likely multiple warm sandboxes
corresponding to the same function in the cluster. Moreover,
we expect to see redundancy across different functions as
well because different functions can use the same runtime and
libraries depending on the use case (see Table 1).

To verify our hypothesis, we compare the memory state
of sandboxes corresponding to several real-world serverless
functions. We use the FunctionBench [20] suite which con-
sists of python serverless functions corresponding to common
use cases such as linear algebra, authentication, HTTP serv-
ing, image and data processing, as well as model training and
serving. The Python libraries in each use-case are summarized
in Table 1. The memory state is obtained by checkpointing
sandboxes using CRIU [3] and we initially turn off address
space layout randomization (ASLR) to measure the upper
bound on redundancy.

To compute the redundancy between two different sand-
boxes (say A and B), we use the Rabin fingerprinting ap-
proach [33], where we sample a chunk of K bytes at regular
fixed offsets of 2K bytes (the choice of K is discussed later).
Then, we compute the SHA1 hash values of sandbox A’s
chunks at this offset, add them to a hash table, and then check
for sandbox B’s chunks in the hash table. If there is a match,
we check if the actual bytes were the same. Thereafter, we
extend both the chunks to include the non-hashed bytes in
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the memory state to a maximum of 2K bytes. We take the
maximum common subsequence of bytes from this 2K byte
sequence. The redundancy of sandbox B with respect to sand-
box A is calculated as the percentage of duplicated bytes in
sandbox B.

Same Function Sandboxes. We first measure the redun-
dancy present in sandboxes belonging to the same function.
Figure 1a demonstrates that there is significant redundancy
— as high as 90% — in sandboxes belonging to the same
function. Moreover, we see that the amount of redundancy re-
duces as the chunk size increases. This is because with larger
chunk sizes, the probability of one of the bits differing, in
the two chunks, increases. In a nutshell, we see that with a
sufficiently fine-grained chunk size, serverless functions ex-
hibit a high degree of redundancy across its sandboxes. We
observe that even after enabling ASLR, we can still identify
significant duplication in the memory states (see Figure 1b).
This is because we use a high sampling frequency to generate
fingerprints and the chunk sizes are smaller than the page
level address randomization employed by ASLR. The small
drop in duplication (~5% for 64B chunks) is because ASLR
employs stack address randomization at the granularity of
16B. However, the sandbox memory state comprises majorly
of heap memory, file mappings, and shared libraries, across
which redundancy still exists.

Different Function Sandboxes. Next, we measure redun-
dancy across different function sandboxes. To do so, we mea-
sure the redundancy of each serverless function in Function-
Bench relative to the other serverless functions (using a chunk
size of 64B). We see in Figure 1c that there exists redundancy
across sandboxes corresponding to different functions and the
extent depends on the underlying runtime and libraries that
are common across the functions. For example, FeatureGen
and ModelTrain both use the common module of TfIdfVec-
torizer. This implies that the entire memory state that the
TfldfVectorizer maintains will likely be largely present in
both functions.

Real-world Serverless Workload. Finally, we estimate the
amount of memory savings that can be obtained in real-world
serverless workloads by leveraging the memory redundancy
existing in serverless functions. To do so, we use the various
arrival patterns in the serverless production traces (30 min
duration) released by Azure [29] and assign them to the use
cases in FunctionBench. Figure 2 shows the amount of mem-
ory saving that could be achieved in real-world serverless
workloads, if we were to tap into the memory redundancy
that exists in warm sandboxes. Specifically, we observe that
we could get up to 30% memory savings relative to current
state-of-the-art platforms that do not leverage the redundancy.

2.2 Deduplicated Sandboxes via RSCs

We view this memory state redundancy among warm sand-
boxes as an opportunity to overcome the rigid tradeoff im-
posed by cold and warm starts today. Specifically, we leverage
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Figure 1. Memory redundancy in serverless workloads. Redundancy between sandboxes of the same function w.r.t. chunk size (a) with ASLR disabled and (b)
with ASLR enabled. (c) Cross function redundancy - redundancy of functions on vertical axis w.r.t. those on horizontal axis with 64B chunk size.
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Figure 2. Possible memory savings in real-world serverless workloads by
eliminating memory redundancy.

such redundancy by introducing a new sandbox state called
the deduplicated state (or dedup in short), which is a middle
ground between cold and warm in that it keeps only part of
a sandbox’s memory state that is unique in the cluster and
eliminates the chunks that exist in a warm sandbox.

For a dedup sandbox to recover, the duplicate chunks are
read from the location of the existing copy. In other words, we
are reusing the existing chunks in warm sandboxes. Therefore,
we call them reusable sandbox chunks (RSCs). We choose
64 bytes as the size of RSC for the rest of this paper for it
yields the highest redundancy, as discussed above. The dedup
state, as we will show later, on the one hand, saves memory
compared to the warm state - allowing more sandboxes to be
kept in memory at the same time, while on the other hand
shortens the start time compared to the cold state - reducing
the latency of individual function requests.

Section 8 discusses additional recent efforts that strive to
improve the performance and efficiency of serverless clusters.

3 Medes Overview

We present Medes, a serverless platform that incorporates
the dedup state and provides an easy interface to navigate
the trade-off space of performance and memory by jointly
controlling warm and dedup sandboxes.

3.1 Architecture

Figure 3 shows the architecture of Medes. Medes consists of
a controller and several nodes where functions are executed,
interconnected by a cluster/datacenter network.

Node Controller
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Dedup '+ Periodicstate 1| FINGErPrint Registry _
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Figure 3. Medes Architecture.

The controller has four major components: 1) the interface
to clients, through which function requests are submitted, and
results are retrieved; 2) the scheduler that keeps track of the
system-wide status (e.g., the resource usage and the warm
and dedup sandboxes on each node) spawns a new sandbox
or assigns an existing sandbox to serve an incoming request
and decides whether to transition a sandbox that has finished
to the warm or dedup state; 3) the fingerprint registry, which
is a hash table that contains the hash values of RSCs and their
corresponding location in the cluster for deduplication; and
4) the policy module that stores policy parameters such as
the latency and memory constraints. Specifically, to support
deduplication, Medes adds the latter two components to the
controller used by serverless platforms today for authentica-
tion and dispatching all incoming user requests [4]. Medes
takes several critical design decisions to ensure that the dedu-
plication overheads on the controller are minimal, which we
discuss in Sections 4.1.3 and 4.2. Additionally, we discuss
how the controller can be distributed across multiple nodes
to avoid a single node controller from being a scalability
bottleneck in Section 4.3.

Each node consists of 1) the daemon that manipulates local
sandboxes upon the controller’s directives and updates the
controller of the node’s status; and 2) the dedup agent that
performs the deduplication for local sandboxes as indicated by
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the controller (via the daemon), and restores local sandboxes
from the dedup state when requests are assigned to them.
Next, we provide intuition behind the functionality of these
components, outlining their operation at the chunk level and
ignoring concerns such as overhead and scale. In Sections 4
and 5, we provide a deep-dive into how Medes actually im-
plements these functionalities and addresses these concerns.

3.2 Basic Workflows at a High-Level

The client submits a function request to the controller’s in-
terface in the form of an RPC. The scheduler chooses an
available warm or dedup sandbox that can run the function
according to its knowledge of the status of the nodes, and
hands over the request to the daemon on the chosen sand-
box’s node. If such a sandbox does not exist, the scheduler
by default requests the daemon on the node with the least
memory usage to spawn a new one (as long as other resource
requirements of the function are met). The daemon prepares
the execution environment in case of a new sandbox, while a
warm sandbox needs minimal preparation to start. If a dedup
sandbox is chosen, the daemon invokes the dedup agent to
perform a procedure called the restore operation, in which
the dedup agent reconstructs the sandbox by reading back a
list of RSCs from their locations in the cluster. This list is
generated when the sandbox is put into the dedup state.

When a function finishes, the sandbox is moved to the
warm state, where the controller may decide whether to dedup
the sandbox. The decision is made according to the policy
module pre-configured by the administrator (discussed in Sec-
tion 5). If the controller decides to dedup, the dedup agent
invokes a procedure called dedup operation. The agent then
checks the chunks against the RSC hash values in the fin-
gerprint registry, purges the part of the state that is deemed
redundant and records the locations of the RSCs obtained
from the fingerprint registry, locally at the dedup agent. We
describe Medes’s implementation of the dedup and restore
operations in greater detail in Section 4.

3.3 Sandbox Lifecycle

As another perspective to Medes’ operation, Figures 4a and 4b
contrast the sandbox lifecycle state machine on existing plat-
forms and that with the dedup state under Medes. Upon com-
pleting execution, the sandbox goes into a warm state in both
cases. The sandbox is removed at the expiry of a ‘keep-alive’
period or if it is evicted in the face of memory pressure (to
make room for more sandboxes of other functions). In con-
trast with today’s platforms where a sandbox is purged after
a single keep-alive period, Medes allows running a custom
policy to determine which state the sandbox is to be tran-
sitioned into in order to manage memory and performance.
The policy is executed at the global controller to make use of
cluster-wide metrics to make decisions. This policy module
is invoked periodically by the dedup agent to get decisions
for sandboxes. To this end, Medes introduces two knobs in
addition to the ‘keep-alive’ period of traditional keep-alive
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Figure 4. Lifecycle of a sandbox running on (a) Existing Platforms (b) Medes

policies. The first is called the ‘idle period’. When a sandbox
is in a warm state, upon expiry of this period, the local node’s
daemon checks with the Medes controller regarding whether
to transition the sandbox to a dedup state or keep it warm. The
second parameter is the ‘keep-dedup period’. When this ex-
pires, the local node purges the dedup sandbox from memory.
This is similar to the ‘keep-alive’ period, but separating the
two enables Medes to keep dedup sandboxes for a different
duration of time, based on the memory-performance trade-off
imposed by dedup sandboxes.

4 Medes Dedup and Restore Operations

To extract the complete benefits offered via the dedup sandbox
state, the deduplication (dedup) and restoration operations
need to be scalable and fast as typically a serverless platform
handles execution requests corresponding to different func-
tions (possibly from different tenants) whose load can grow
arbitrarily.

Conversion of a warm sandbox to a dedup sandbox, through
the deduplication operation consists of the two high-level
steps - redundancy identification and redundancy elimination
(see Figure 5). The local dedup agent on the machine initiates
the memory checkpoint of the warm sandbox, which gives a
dump of the corresponding memory state. Given this memory
state, the dedup agent identifies duplicate memory chunks by
interacting with the controller, which maintains a complete
view of the already existing unique memory chunks strewn
across the cluster in the form of RSCs. Having identified the
redundancies, the dedup agent eliminates (removes) the du-
plicate memory chunks at the granularity of entire pages and,
in doing so, computes a patch for the page being eliminated
relative to the base page(s) corresponding to its RSCs. In this
manner, Medes reduces the memory footprint of a dedupli-
cated sandbox as it only maintains patches (including any
unique leftover pages and memory chunks).

The restore operation converts a deduplicated sandbox to a
warm one. This operation involves reading the base pages on
which the patches corresponding to this sandbox were calcu-
lated and then reconstructing the original pages and recreating
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Figure 5. Medes Workflow of the Deduplication Mechanism: 1. Sandbox
checkpoint gives the dump of the memory state. 2. RSCs from the mem-
ory state are sent to the global hash table on the controller for lookup. 3.
The controller sends back the information about redundant RSCs. 4. The
Dedup Agent reads all the physical addresses sent by the controller and
computes patches of the pages with RSCs. 5. Finally, the memory checkpoint
is removed, and only the (smaller) patch is kept in memory.

the memory checkpoint. Finally, the sandbox transitions to
the warm state via restoration from this checkpoint.

We now discuss the various design choices we made to
ensure that both these operations are fast, scalable, and effec-
tive.

4.1 Dedup Op Deep-Dive

We now discuss the granularities of redundancy identification
and of redundancy elimination, and the implications for scale,
low overhead, and deduplication effectiveness.

4.1.1 Redundancy Identification Granularity.

The redundancy identification granularity, which also corre-
sponds to the size of RSCs, plays a crucial role in identifying
duplicate memory chunks. Smaller identification granularities
lead to identifying more redundant chunks, but they can lead
to hash collisions in the fingerprint registry (as we show in
Section 7.8). On the other hand, large identification granulari-
ties lead to lesser hash collisions but identify fewer redundant
chunks.

In Medes, we balance this trade-off and choose 64B mem-
ory chunks as the granularities for identifying redundancies.
We empirically observe that this setting enables us to find
significant redundant chunks (see Figs. l1a-1c), leading to
memory efficiency while having minimal hash collisions.

4.1.2 Redundancy Elimination Granularity.

Once redundant memory chunk identification occurs at the
small 64B identification granularity, the next step is to re-
move the redundant memory chunks. As discussed earlier,
the dedup agents need to interact with the controller to get
information about the RSCs corresponding to the duplicate
memory chunks. A naive approach would eliminate chunks
at the same granularity of identification. However, this would
imply storing metadata for each small chunk (because we will
need to retrieve them during restoration). We observed that
sandbox memory states could span up to 100MB on the used
benchmarks, which corresponds to nearly ~25K pages, and
using all 64B chunks imply metadata for nearly 1.6M chunks
for just one sandbox.
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With Medes, our key insight is to decouple the granularities
of redundancy identification and redundancy elimination. To
avoid scalability bottlenecks, we default to memory pages as
the granularity for redundancy elimination. We now discuss
how to identify a redundant page given the RSC information
stored in the fingerprint registry.

A strawman approach would be to see if all the 64B mem-

ory chunks of the page have their RSCs present in the clus-
ter. However, this would again lead to the communication
channel between the dedup agent and controller becoming a
bottleneck. Instead, we use page fingerprints to reduce the
communication overhead and identify the best “base page’
corresponding to the page that is under consideration for
deduplication.
Page Fingerprints. With Medes, we use a small subset of
memory chunks, value sampled based on the last two bytes
of the chunk; i.e., we conduct a scan of each page over a
rolling 64B window and select a 64B chunk as a fingerprint if
it is last two bytes match a specific pattern. This approach is
straightforward and computationally lightweight as it involves
a single linear scan and a lightweight equality check over two
bytes.

We use five such value-sampled chunks per page (sensi-

tivity to this evaluated in Section 7.8). This unordered set
of five chunk hashes then acts as a fingerprint of the page.
The number of overlapping fingerprints between two pages
represents the similarity between the two pages. The use of
value sampling reduces the communication bottleneck. Still,
it delivers on memory efficiency via deduplication as two
‘similar’ pages typically have a high count of other duplicate
memory chunks between them.
Base Page. Given the page fingerprint, each value sampled
memory chunk is looked up in the fingerprint registry. For
each memory chunk found on the registry, we get a list of
candidate pages that have the corresponding RSC. Combining
all the candidate pages, we get a candidate set for each mem-
ory page. To keep the per-page metadata maintained at the
agent small, we choose a single best candidate page from this
candidate set - which we call the ‘base page’ for the respec-
tive dedup page. The candidate with the maximum number
of duplicate chunks amongst the sampled chunks is chosen
to be the base page. If more than one candidate has the same
maximum duplication, then the page available locally on the
same machine as the page to be deduplicated is chosen.

In this manner, Medes uses the 64B identification granu-
larity to identify a similar ‘base’ page. Thereafter, a diff or a
patch is computed for the deduplicated page against the base
page. This patch consists of the unique bytes of the dedu-
plicated page and short metadata information about which
range of bytes from the base pages should be appended at
what offsets on the patch. Since the base page is likely to be
significantly similar to the dedup page, the computed patch
is smaller in size than the original page, resulting in a lower
memory footprint per page. We use the Xdelta3 [1] library

bl
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to compute patches of binary pages. Xdelta3 provides ten
compression levels - 0 through 9 (0 indicating no compres-
sion while 9 indicating maximum compression), and we use
the compression level of 1 to make the restore op fast (see
Section 4.2).

4.1.3 Low-footprint Fingerprint Registry.

Until now, we focused on how redundancy identification and
elimination occur by leveraging the deduplication informa-
tion present in the fingerprint registry. We now discuss which
sandboxes to use to populate the registry. Inserting memory
chunks from all sandboxes would cause the memory footprint
of the registry to explode. Given the sampling as mentioned
above, we still have nearly ~100K chunks to be stored for
each sandbox. In our experiments, we observed that the plat-
form could have thousands of sandboxes at the same point in
time. Storing the RSCs from all of these sandboxes can lead
to high memory usage.

Hence, we demarcate specific warm sandboxes on the plat-
form as ‘base sandboxes’. Only the unique memory chunks
of these base sandboxes get inserted into the registry. This
design choice is based on the fact that the percentage of mem-
ory duplication between any two sandboxes of a given pair
of functions F1 and F2 remains the same. We leverage this
property to reduce the amount of warm state by just using
the memory chunks of any sandbox (among all sandboxes
that ran function F1, for example), we can identify the dupli-
cate chunks in all other sandboxes as well. To ensure that the
memory state of the base sandbox is not purged, a refcount is
maintained by the controller for each base sandbox.

To reduce the impact of the unavailability of a base sand-
box, we increment the number of base sandboxes as the num-
ber of dedup sandboxes for a function increases. Specifically,
we choose a threshold T and demarcate one more base sand-
box, when D/B > T, where D is the number of dedup sand-
boxes for a function, and B is the number of base sandboxes.
This approach reduces the size of the fingerprint registry to
the order of the number of base sandboxes (controlled by
the factor T), which is a small number compared to the total
number of sandboxes running on the platform.

For our implementation, we use T to be 40. We observe
in our evaluation that such an optimization is enough to effi-
ciently fulfill 5X magnified production traces without incur-
ring significant overheads (discussed in Section 7.7). Further,
increasing the number of base images may not always help
because the different base images are also likely to have a
high amount of redundancy, which imposes an unnecessary
memory cost.

4.2 Restore Op Deep-Dive

Deduplicated sandboxes would be required to serve requests
when all the existing warm sandboxes (if any) corresponding
to this function are busy. However, given that we only store
patches relative to the base pages for a deduplicated sandbox,
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Figure 6. Workflow of the Restoration Mechanism: 1. The scheduler decides
when to make a dedup start. 2. The Dedup Agent fetches duplication infor-
mation about the sandbox from its local data structure. Then, it reads the
base pages from the respective nodes. 3. Original (pre-deduplicated) pages
of the dedup sandbox are computed using the patch and the base page. These
pages are collated to create the memory dump of the sandbox. 4. A container
restore mechanism puts the container back into its running state.

such a sandbox needs to be restored before it can serve the
incoming request.

The restore operation involves reconstructing the sandbox
using the stored patches and the corresponding (possibly re-
mote) base pages. Figure 6 shows a pictorial representation
of the restoration procedure. The key challenge is to ensure
that the reconstruction and restoration process is fast. In other
words, the time taken to reconstruct the memory state of a
dedup sandbox should be significantly smaller than the time
required to load a new sandbox in memory. Ensuring this
makes dedup starts significantly faster than cold starts and an
intermediate state between warm and cold.

Medes employs three techniques towards this goal. First,
dedup starts require restoration of the sandbox, which, apart
from restoring the sandbox memory state from the patches
and their base pages, involves additional steps such as sand-
box namespace creation as well as reconstruction of the pro-
cess tree (inturn invokes multiple fork () system calls) [3].
To speed up the sandbox restoration, Medes performs these
additional time-consuming [26] steps prior to deduplicating
the sandbox, leaving only memory state restoration during
dedup starts. Additionally, Medes saves the container mem-
ory checkpoints in-memory to ensure fast restores rather than
restoring from disk. In our implementation, these optimiza-
tions brought down the time spent to restore the memory state
of the dedup-sandbox (before beginning function execution)
from 650ms to ~140ms. Secondly, the information required
to complete the restoration (e.g., patches and the address of
the base page) is stored locally on the machine where the
deduped sandbox resides and is managed by the dedup agent.
Finally, we leverage the RDMA read operation to directly
fetch base pages from the remote machine’s memory, which
avoids the use of remote CPU for communication and (also)
yields low latency [40].



EuroSys '22, April 5-8, 2022, RENNES, France

4.3 Controller Scalability

Medes adds two components to the serverless controller —
fingerprint registry and the policy module — to support dedu-
plication. Through key design decisions of using represen-
tative page fingerprints, populating only base sandboxes to
the fingerprint registry and avoiding communication with the
controller during restores, Medes reduces the overheads at
the controller so that it does not become a bottleneck and
can cater to workloads of varying scales. To further scale the
Medes controller, it can be seamlessly distributed on the same
lines as proposed by prior works for centralized serverless
controllers [17, 28, 30, 32]. Accesses to the fingerprint reg-
istry are independent lookups for each page and the policy
module runs the policy on a per-sandbox basis. Therefore,
these components can be distributed using conventional tech-
niques for sharding or key-based partitioning [12, 25] along
with chain replication [27] (for fault tolerance).

5 Sandbox Management Policy

With Medes, we expose an intuitive interface for the providers
to specify the performance and efficiency expectations on a
per-function basis. In turn, the platform leverages the ability to
deduplicate sandboxes to navigate the memory-performance
tradeoff. To this end, we develop a policy that decides whether
sandboxes should be kept in the warm state or deduplicated.
The policy runs after a warm sandbox does not receive any
request for the ‘idle period’ duration.

Ideally, such a policy should determine the optimal number
of warm and dedup sandboxes for any given function, such
that it can meet the request arrival rates for that function
while efficiently using cluster resources. Hence, the policy
must make decisions based on: (i) request arrival rates for the
function, (ii) cluster memory pressure, (iii) memory savings
because of deduplication, and (iv) overheads of restoring
deduplicated sandboxes.

5.1 Dedup and Restore Overhead Considerations

To develop a policy that can make well informed sandbox-
granular decisions, we need to account for the fact that the
dedup state imposes memory and performance overheads
compared to warm starts.

To quantitatively estimate the impact of dedup starts on
function performance, we define the sandbox reuse period as
the minimum time interval between two function invocations
on the same sandbox. This equals the request execution time
plus the sandbox startup time. If the sandbox reuse period is
R, then in time T, the sandbox can serve a maximum of T/R
requests. Compared to warm sandboxes, dedup sandboxes
have a higher reuse period (due to the additional time to
reconstruct the sandbox checkpoint and restore the sandbox
memory state from the checkpoint). They hence can serve
fewer requests in a given interval.

Furthermore, the reconstruction of the memory state during
the restore op entails additional memory to read the base
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pages and compute patches. Hence, frequent dedup starts can
lead to memory overheads outweighing the memory savings.

5.2 Optimization Problem

The sandbox management policy must decide how many
sandboxes must be kept in the dedup state, given a certain load
requirement while satisfying a latency bound and a memory
constraint and accounting for dedup overheads.

5.2.1 Platform Constraints

We denote the current number of sandboxes on the platform
by C and the maximum request arrival rate that must be met
by Amax- Then, denoting the number of dedup sandboxes be
D and the number of warm sandboxes be W, we have

W+D=C (D

If C is insufficient to handle the load, the controller spins up
additional sandboxes (moves them from cold to warm states).
Similarly, the load-to-meet maps to:

w D

—+— > 2

RW RD max ( )
where Ry is the warm sandbox reuse period, and Rp is the

dedup sandbox reuse period.

5.2.2 Platform Efficiency and Latency Measures
Denoting the memory footprint of warm sandboxes as myy,
the memory footprint of dedup sandboxes as mp and the
overhead of dedup starts as mg, we can express the total
memory usage of D dedup and W warm sandboxes as:

M =W Xmy + D X (mp + mg) 3)

If all the dedup and warm sandboxes on the platform were
used to fulfill N requests in time T, then the average startup
latency shall be given by:

1 T T
S=—[WX—Xs,, + DX — Xs4 4)

N Rw Rp
where sy, is the warm startup latency, sp is the dedup startup

latency, and Ry and Rp have the same meaning as above.

5.2.3 Policy Interface

Using the platform constraints mentioned above, as well as ef-
ficiency and performance metrics, our framework can provide
easy access to the providers to control these metrics while
meeting the constraints. For example, in Medes, providers
can configure the policy in two ways (combinations of these
can also be configured trivially):

Meet an average startup latency target. Suppose the target
is a - sy, where ¢ > 1. In this case, the policy optimally
keeps sandboxes so as to occupy least memory footprints
while meeting the latency targets:

Min M
W.D
s.it.S<asy
and constraints 1, 2 are satisfied.

Limit the cluster memory usage. Suppose the maximum
desired memory usage is My. The policy optimally manages
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sandboxes so as to get the best startup latency, using the
following optimization problem:

Min S
Ww,D
s.t. M < M,

and constraints 1, 2 are satisfied.

The solution to the above optimization problem acts as a
guidepost for the decisions of the sandbox management policy.
If the solution is feasible (i.e., the above system of equations is
consistent), the policy computes decisions for each function in
order to converge to the optimal number of dedup sandboxes
for that function. If, however, the solution is infeasible (for
example, if the solution gives negative values for D or D > C),
the policy aggressively employs deduplication and keeps the
sandboxes warm only if enough memory is available and the
available sandboxes are not enough to suffice the request rate.

5.3 Multi-function Policy

The sandbox management policy described in Section 5.2
gives the policy for a single function. This has the advantage
that the provider can regulate memory and performance met-
rics for each function separately. For example, critical func-
tions can be run on a tight latency constraint while best-effort
functions can be run on a loose latency constraint. Addition-
ally, the provider may also want to limit the overall serverless
platform memory usage. Medes can also support memory
constraint for multi-function workloads by dividing the to-
tal memory budget between functions in proportion of their
average request arrival rates.

6 Implementation

We build a prototype for Medes in C++ (~6K sloc). We use
Docker as the sandbox environment. We implement the two
core components of Medes - a global controller and a ser-
vice module for each machine. The controller consists of
three major components - the scheduler, policy module, and
the fingerprint registry. The service module consists of three
components - the daemon, the dedup agent (to deduplicate
memory states and restore them), and the RDMA module
(for making remote memory accesses). We use REST APIs
to interact with the Docker daemon. The dedup agent and the
controller interact with each other using protocol buffers [5].
Additionally, Section 4 discusses the various implementation
choices we made related to dedup and restore ops.

7 Evaluation

We evaluate the performance benefits of Medes and its flexibil-
ity in navigating the performance-cost trade-off by answering
the following questions:

e Can Medes improve the function startup latencies?
(Section 7.2)

e Can Medes help reduce the overall memory footprints?
(Section 7.3)

¢ Can tuning fixed keep-alive policies achieve the same
performance-memory tradeoffs as Medes? (Section 7.5)
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Notation Function Environment ?:;gig;ii}:e- r:;;:ry
Vanilla Empty Environment 150ms 17MB
LinAlg Linear Algebra 250ms 32MB
ImagePro Image Processing 1200ms 26.4MB
VideoPro Video Processing 2000ms 48MB
MapReduce Map Reduce 500ms 32MB
HTMLServe | HTML Serving Application | 400ms 22.3MB
AuthEnc Authentication / Encryption | 400ms 22.3MB
FeatureGen Feature Generation 1000ms 66MB
RNNModel RNN Model Serve 1000ms 90MB
ModelTrain Regression Model Training | 3000ms 87.5MB

Table 2. Execution time and memory footprint for various functions in the
FunctionBench suite.
e How does Medes perform under memory pressure situ-
ations? (Section 7.4)
e What are the overheads of using the dedup state? (Sec-
tion 7.7)

7.1 Experimental Setup

We evaluate Medes on a 20 node cluster on CloudLab [15].
All nodes have 64GB memory and a 10Gbps NIC. One node
out of these acts as the controller. No sandbox runs on the con-
troller. The remaining nodes are all accessible via an RDMA
network.

Baselines: We compare Medes against state-of-the-art server-
less platforms using two baselines - first, we use the fixed
keep-alive policy, which is used by several commercial server-
less providers such as AWS Lambda as well as open-source
platforms like OpenFaas and OpenWhisk. For our experi-
ments, we take a fixed ten-minute duration as the keep-alive
period. We evaluate the baseline over a diverse range of keep-
warm periods in Section 7.5 and we found ten minutes to have
the best performance on our workloads. Additionally, we also
compare against an adaptive keep-alive policy [29] which is
adopted by Azure Functions, wherein the keep-alive period is
chosen based on the request inter-arrival times.

Workloads: For the request arrival patterns, we use arrival
patterns from the Azure Function trace [29]. We found that
the per function arrival rates were low; hence we scale up the
request rates 5X. We use multiple such one-hour traces for
our evaluation.

For the function environments, we use all ten functions
from the FunctionBench [20] suite (as tabulated in Table 1).
The execution time and the memory usage of each of the
functions we used are given in Table 2. We construct a full
benchmark trace, assigning each function a one-hour trace
chosen from the production traces. We use this workload
for evaluating performance and memory benefits of Medes
in Sections 7.2, 7.3 and 7.4. We use another smaller repre-
sentative trace for microbenchmarks (Section 7.5- 7.6) and
sensitivity analysis (Section 7.8).
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Figure 7. (a) Distribution of factor(og improvement (ratio of per-request
end-to-end latencies) over Fixed keep-alive and Adaptive keep-alive policies.
(b) Function-wise improvements in the number of cold starts and 99.9th
percentile of end-to-end latencies.

7.2 Function Startup Time

We begin by evaluating whether Medes can provide better
function startup times and, in turn, evaluate the impact on
end-to-end latencies.

Methodology: To evaluate the function performance in Medes,
we operate the platform policy with latency as the objective
function (P1; Section 5).

Additionally, we keep a fixed software-defined limit on the

per-node memory usage of the testbed and provide this as
the parameter to the sandbox management policy. We use a
memory limit of 2GB per node to ensure that the cluster is
oversubscribed. This entails that the memory usage of all the
different policies remains the same, and we can evaluate the
trade-offs by comparing the function performance.
Metrics: Since cold starts impact the tail performance of a
system, we use the number of cold starts as a metric for com-
parison in our experiments. We also evaluate the improvement
factor of the end-to-end latencies of Medes compared to those
of the baselines on a request by request basis and then show a
distribution of this factor of improvement. We evaluate these
metrics on a per-application basis.

Figure 7 shows the application-wise performance benefits
of using Medes over the baselines. We observe that Medes
can provide up to 2.25x and 2.75X improvements in the end-
to-end latencies (Figure 7a). These figures also show that for
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Figure 8. Breakdown of dedup start times vs the cold start times for various
applications.

a small number of requests (< 1%), Medes leads to larger
end-to-end latencies. We observe that this is because some
requests, which would otherwise have been served by warm
sandboxes, are served by dedup sandboxes in Medes. How-
ever, in the tail Medes provides better performance because
the tail performance is impacted by cold starts. Figure 7b
demonstrate these improvements in the 99.9th percentile la-
tencies for the ten functions. We observe that Medes gives
1-2.24x improvements in the 99.9th percentile against the
Fixed keep-alive policy. Likewise, Medes gives up to 2.3x
improvements in the 99.9th percentile against the Adaptive
keep-alive policy.

Since the cluster memory pool is chosen to be oversub-
scribed — this improvement in function startup times demon-
strates that Medes is able to strike a better trade-off than the
baselines.

7.2.1 Sources of Improvement

The primary source of improvement is the reduction in the
number of cold starts for each of the functions (as shown in
Fig 7b). We observe that Medes can provide up to 1.85x and
6.2x reductions in the number of cold starts across applica-
tions, compared to the fixed and adaptive keep-alive policies,
respectively. Because of a significant drop in the number of
cold starts, we see a benefit in the tail latencies. This reduction
in the number of cold starts is because, on average, Medes
deduplicates about 39% of all sandboxes. This deduplica-
tion helps Medes to keep 7.74% and 37.7% more sandboxes
in memory compared to the fixed keep-alive and adaptive
keep-alive policies.

Insights: It is noteworthy that the tail latency improvements
not only depend on the number of cold starts but also on the
cold start overheads - which varies for different functions.
Figure 8 compares the dedup startup latencies against the
cold start latencies and shows that the dedup starts are signifi-
cantly faster than cold starts consistently across all functions.
It also breaks down the dedup startup latencies into the three
critical phases of sandbox restore - reading base pages, com-
puting original pages, and restoring the dump (as mentioned
in Section 4.2). Figure 7b also shows that Medes gains more
performance benefits for functions with larger memory us-
age (e.g., ModelTrain, FeatureGen and RNNModel) - this is
because deduplicating more memory-consuming functions
gives more memory savings.
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Function Environment Percent Savings

Vanilla L.MB = 27.06%

LinAlg 10 5MB — 32.81%
ImagePro 1216'?4(’%;3 =43.03%
VideoPro 124'821\2%3 = 25.46%
MapReduce 53;%3 =15.94%
HTMLServe g.88MB = 44.30%
AuthEnc S IMB = 21.48%
FeatureGen 256'661\7,11\]/313 =38.89%
RNNModel L2 = 58.03%
ModelTrain 2867'?%? =30.09%

Table 3. Percent memory savings for each function environment

Enabling ASLR reduces memory savings because a finger-
print size of 5 chunks is insufficient to capture page similarity
fully. Specifically, we observe that the average memory sav-
ings per sandbox reduced from 28.8MB in the ASLR enabled
case to 12.1MB in the ASLR enabled case. However, increas-
ing the fingerprint size (number of chunks in the fingerprint)
would get similar memory savings even with ASLR enabled.

7.3 Cluster Memory Usage

In this section, we study the extent to which deduplicated
sandboxes save memory and how effective is Medes in identi-
fying the reusable sandbox chunks.

Methodology: To evaluate maximum memory savings possi-
ble in Medes, we operate the policy with memory usage as the
objective function, and we run the multi-function workload
as earlier. Since the fixed and adaptive keep-alive policies do
not have any method to ensure that a latency bound is met,
we use a tight latency bound for the workload (« in Policy P1
is set to be 2.5).

Total cluster memory usage: Figure 9a shows that Medes
uses 11.4% less memory on average compared to the fixed
keep-alive policy, while meeting the same latency targets. The
adaptive keep-alive policy has a smaller memory usage as its
short keep-warm periods lead to reduced memory usage, but
that comes at the cost of increased number of cold starts - it in-
curs at least 50% more cold starts than Medes (see Figure 9b).
We further observe that Medes can provide up to 1.58x im-
provement in the number of cold starts over the fixed keep
alive policy, which results in up to 1.9X improvements in the
end-to-end tail latencies. This is because the flexible policy
implemented by Medes allows it to deduplicate sandboxes
of functions with larger memory footprints, making more
space to keep warm sandboxes for other (smaller) functions
- such that both functions meet their respective latency tar-
gets. For example, by aggressively deduplicating sandboxes
of RNNModel and not keeping warm ones, Medes reduce the
memory usage at the expense of cold starts to the extent that
the latency targets are met. The resulting memory savings
can also be used to keep more warm sandboxes of other func-
tions. Overall, Medes can meet the latency targets in a smaller
memory footprint as compared to fixed keep-alive policies.
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Figure 9. Memory savings on Medes while meeting latency targets.

7.3.1 Sources of Improvement

We attribute the smaller memory footprint of Medes com-
pared to the fixed keep-alive policy to the memory savings
due to deduplication. Specifically, we calculate the dedup
benefit for each deduplicated sandbox. We calculate the total
size of saved bytes (= (page size - patch size)) for all dedupli-
cated pages of a dedup sandbox. Then we report the average
duplication of all the dedup sandboxes of a function. We find
in our experiments that for the smallest function (Vanilla),
our deduplication mechanism leads to a savings of *5MB
per sandbox, while for the largest function (RNN Model),
we can obtain *52MB of savings per sandbox. Using this
and the average memory usage of a sandbox as mentioned
in Table 2, we can calculate how much percent of the sand-
box memory actually got removed during the deduplication
operation. Table 3 calculates these savings.

Cross Function Duplication: In our evaluation, we observed
that among all the pages that were deduplicated - only 32.86
% were deduplicated with a page belonging to the same func-
tion, and roughly 67 % were deduplicated with a different
function. This cross-function duplication is critical to gain
the aforementioned memory savings (Section 2).

7.4 Medes under Memory Pressure

We now study the impact of Medes under memory pressure
using the same multi-function workload used in Section 7.2.
We decrease the overall memory pool of the platform by de-
creasing the software limit for the memory available per node.
We observe that the benefits provided by Medes relative to
the keep-alive baselines increase as the memory pressure in-
creases - in comparison to the fixed keep-alive policy, the
number of cold starts are improved by 22% in the no memory
pressure case to 37% and 40.67% in the memory pressure
cases (see Figure 10). Similarly, the number of cold starts re-
duces by about 52% in comparison to the adaptive keep-alive
policy, in all the three memory pressure situations. This is
primarily due to the keep-alive baselines incurring more cold
starts relative to Medes as they evict sandboxes under memory
pressure whereas with Medes, the memory footprint of sand-
boxes decreases due to deduplication. We observe that even
under extreme memory pressure situations, Medes can keep
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Figure 11. Improvements in end-to-end latencies under (a) small memory
pressure, and (b) extreme memory pressure.
42.98% and 55.7% more sandboxes compared to fixed keep-
alive and adaptive keep-alive, respectively. This translates into
3.8x improvement in the tail latencies over these baselines
under memory pressure situations (see Figure 11). Further, we
observe that functions with larger memory footprint and setup
overheads see the most benefits due to Medes (see Feature-
Gen and ModelTrain functions in Figure 11). Deduplicating
large sandboxes helps in two ways - first, dedup starts being
faster than cold starts lead to improved function slowdowns,
and second, it also gives more memory savings - relieving the
memory pressure (Section 7.3).

7.5 Medes Vs. Different Keep-Alive Baseline Setting

In Section 7.2, we demonstrate that Medes outperforms a
standard fixed keep-alive policy as well as the adaptive keep-
alive policy. In this section, we answer the question - ‘Can
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Figure 12. A sweep over various keep-warm periods and comparison with
Medes.

varying the keep warm period give the same performance vs.
memory trade-offs as Medes?’

To this end, we use a smaller set of the multi-function work-
load used in Section 7.2, and run several keep-warm policies
that make use of various fixed keep-warm periods. We group
functions that observed roughly similar benefits (for function
startups and memory savings). We choose a representative set
of {LinAlg, FeatureGen, and ModelTrain} to carry out this
experiment. Figure 12 shows the performance of the various
keep warm policies along with Medes. We observe that as the
keep-alive period increases from 5 min to 10 min, it leads to a
9.4% reduction in the number of cold starts. However, going
from a keep-alive period of 10 min to 15 min and 20 min
gives a 3% and 36% increase in the number of cold starts -
thereby degrading the performance. We reconcile that beyond
a threshold - keeping these sandboxes in memory becomes
increasingly prohibitive as a lot of idle sandboxes lead to
evictions in the face of memory pressure (for example, keep
warm period of 20 minutes leads to more cold starts because
sandboxes are evicted before they hit the keep warm time-
out). Medes strikes a better trade-off owing to the smaller
footprints of deduplicated sandboxes, and gives a 38.2% re-
duction in the number of cold starts compared to the best
fixed keep-alive policy (=10 min).

7.6 Medes + Optimized Checkpoint-Restore

Many recent works have tried to bridge the gaps between
warm and cold starts by heavily optimizing the cold startup
times using checkpoint-restore mechanisms [8, 13, 26]. All
these works target redundancy of function memory state be-
tween subsequent invocations. Medes goes one step further
and also optimizes the redundancy between functions that
are in memory at the same time but in different locations. In
this section, we demonstrate that Medes can further improve
systems that make use of optimized checkpoint restore mech-
anisms by reducing the memory footprint needed to keep
sandboxes in memory. To this end, we emulate the sandbox
template method of Catalyzer [13]. We replace all cold starts
in the workload by a sandbox restore. We run this emulated
setup with and without Medes on the representative workload
used in Section 7.5. Figure 13 shows the improvement in the
number of cold starts when memory deduplication is used in
conjunction with sandbox restore optimizations. This is due
to the heavy deduplication employed by Medes leading to
42.8% of the sandboxes being deduplicated.
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7.7 Medes Overheads

In this section, we discuss the overheads of Medes at the
Dedup Agent and the controller.

Dedup Agent: In our experiments running 5X magnified
production traces, we did not observe significant overhead
due to Medes. The metadata and base sandbox checkpoint
maintained at the Dedup Agent was below 10% of the total
memory usage on each node. Further, even including this
metadata, Medes can provide a smaller memory footprint
compared to the baselines (Section 7.3) - owing to the memory
savings of deduplication.

Controller Overheads: While we avoid communication with
the controller during the critical path of sandbox restores,
these operations still happen in the background. In our exper-
iment running the complete function benchmark, we found
that the total time for deduplicating a sandbox varied from
2s for the Vanilla function to 3.3s for the ModelTrain func-
tion. This includes sending the page fingerprints over to the
controller and performing a lookup on the global fingerprint
registry. Specifically, the total time to lookup and identify
base pages for all pages of a dedup sandbox took from 130ms
for Vanilla (total 4k pages) to 1850ms for ModelTrain (total
22k pages). This amounts to a processing time of ~80us per
page in our single-threaded implementation. To further reduce
these overheads, the lookups can be parallelized given they
are independent (Section 4.3).

Further, we observe that compared to the baselines, the
memory usage at the controller only increases by 11.8%, due
to the addition of fingerprint registry and policy metadata.
7.8 Sensitivity Analysis
We now understand the sensitivity of Medes to the following
aspects of the design using the representative multi-function
workload, as described in Section 7.5.

Chunk Size: In Medes, we use a chunk size of 64 bytes
for RSCs. Medes samples 64B chunks by value from each
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page. Thus, the redundancy identification granularity is at 64
bytes. We evaluate the impact of choosing a larger or smaller
chunk size for RSCs. Figure 14 shows the number of cold
starts incurred by Medes for chunk sizes of 32B, 64B and
128B. We observe that using a larger size chunk reduces the
benefit of deduplication and the average memory savings per
sandbox drop to 22.8MB (compared to 28.8MB for 64B).
Hence, smaller memory savings lead to more evictions and
more cold starts. On the other hand, using a 32B chunk leads
to hash collisions on the fingerprint table - causing dis-similar
chunks to be labeled similar, which again leads to ineffective
deduplication. This is evident by the average patch size, which
increases to 940 Bytes (from 611B for 64B chunks).
Keep-Dedup Period: The keep-dedup parameter determines
how long a sandbox remains deduplicated. We vary the keep-
dedup parameter from 5 to 20 mins in increments of Smins.
Figure 15 show that initially, as the keep-dedup period in-
creases, the number of cold starts improves by 10%-38% due
to the reduction in cold starts as there are dedup sandboxes
available. We observe that a longer keep-dedup parameter
implies that a dedup sandbox shall be around for a longer
time, courtesy of which 38% of the requests that would other-
wise incur cold starts now incur faster dedup starts. However,
we see that beyond a threshold, the benefits due to Medes
decrease (see Figure 15 Keep-Dedup-20mins), as deduped
sandboxes are kept around for unnecessarily long times —
resulting in more cold starts due to memory pressure.
Fingerprint Set Cardinality: The fingerprint set cardinal-
ity corresponds to the number of 64B chunks whose hashes
jointly represent the identity of the base page. As expected,
with higher cardinality, we get a more accurate representation
of the page, leading to higher redundancy identification and
elimination, leading to more memory savings — we observed
an increase in per-sandbox savings from 28.8 MB to 31.5 MB
to 32.54 MB. However, as we increase the set cardinality, we
observe that the tail latencies inflate due to more cold starts
(see Figures 16a- 16b). This is primarily due to the dedup
restore time increasing from 378ms to 478ms to 554ms as
the set cardinality increases as more fingerprints lead to more
base pages being needed for restoration.

8 Related Work

Serverless Workload Characterization. [21, 24, 31, 34, 38,
39] reverse engineer aspects of serverless platforms by ob-
serving the visible metrics. [29] characterizes workloads from
Azure Functions. Complimentary to these efforts, we look

0
Fingerprint Set Cardinality
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at the degree of memory redundancy present in serverless
workloads.

Memory Deduplication. Prior works have developed tech-
niques for memory deduplication to reduce memory require-
ments for virtual machines. They have also been deployed
in popular production systems ([36] in VMWare and [7] in
the Linux kernel). Such inter-VM deduplication approaches
employ coarse-grained intra-machine page sharing. Both [36]
and [7] employ memory scans to identify identical pages and
remap them. These approaches impose high deduplication
overhead as they require frequent scans over large chunks
of memory. Further, these approaches are insufficient to real-
ize the full performance benefits of the memory redundancy
that exists at the sub-page chunk granularity and the inter-
machine memory redundancy. Both of which are exploited
by Medes, without making expensive memory scans or any
guest OS modifications. [18] is an inter-VM approach that
also uses sub-page deduplication similar to Medes. However,
the deduplication by Difference Engine falls short as it takes
chunks at random offsets in a page to act as the fingerprint.
Medes uses value-sampled fingerprints, which is more ef-
fective at identifying sub-page level small-sized redundant
chunks [9]. Additionally, Medes reboots this sub-page dedu-
plication mechanism to deduplicate sandboxes on-demand on
a serverless platform efficiently while dealing with the chal-
lenges of the platform’s scale, deduplicating and restoring
sandboxes on-demand, and performing fast sandbox restores.
Reducing Sandbox Overheads. [29] proposes setting keep-
alive windows in a workload-aware manner. Likewise, in-
spired by traditional caching, [16] proposes a workload-aware
keep-alive policy that considers additional function character-
istics such as function size and initialization costs. However,
they are still required to choose between performance or ef-
ficiency and offer little flexibility. In contrast, through the
introduction of the dedup state, Medes improves the flexibil-
ity of navigating the memory-performance trade-off.

[11, 23] propose using unikernels to reduce overheads.
However, this limits their practical adoption due to code com-
patibility issues [8]. Photon [14] demonstrates memory redun-
dancy between invocations of the same function and proposes
to co-locate concurrent invocations of the a function on the
same sandbox. Hence, Photon exploits redundancy for func-
tions in execution (while running user code) while sacrificing
isolation. A similar approach is used by [19] to optimize inter-
function calls by trading off isolation as it proposes running
multiple chained functions in the same container. Medes takes
an aggressive approach to deduplication and reduces memory
footprints for warm functions (even when the sandbox is not
executing user code) between sandboxes of not just the same
function but different functions as well.

Function snapshotting proposals (Catalyzer [13], REAP [35])
reduce the startup overheads by restoring a sandbox from a
snapshot, either stored on disk or shared in memory. Catalyzer
employs an on-demand page restore mechanism, where only
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minimal pages are loaded at cold-start, and subsequent pages
are fetched via page faults during execution. While this re-
duces cold start latencies, it significantly increases function
execution times [35]. On the other hand, REAP [35] avoids
in-execution page faults by pre-fetching all the pages of a
function working set. The basis is again that invocations of
the same function have nearly the same working set. Pre-
fetching is an expensive task but the assumption is that such
pre-fetching is needed infrequently. However, this assumption
is limiting for the fast-evolving serverless environment with
increasing support for microservices that may require frequent
invocations [37]. These works reduce memory overheads for
each function type independently and within a machine. In
contrast, Medes can reduce memory overheads and hence,
improve startup latencies by deduplicating across different
function types without any additional function execution costs.
In our evaluations, we observed that using Medes in combina-
tion with these snapshotting mechanisms can further improve
their performance (Section 7.6).

[10, 26] leverage fork-based techniques to reduce over-
heads. [2, 22] aim to use a sandbox per trust domain. However,
these proposals by design still have limited flexibility to navi-
gate the performance-memory trade-off space and sacrifice
isolation during request execution.

9 Summary

We propose a new serverless framework, Medes, that breaks
the rigid trade-off between memory efficiency and perfor-
mance in today’s platforms. We leverage the fact that warm
sandboxes have a high fraction of duplication in their memory
footprints and introduce the notion of a redundant sandbox
chunk and a new dedup sandbox state. We develop algorithms
to identify and eliminate duplication at low computation and
memory costs, move sandboxes to dedup states, and quickly
restore dedup sandboxes. We then propose a simple sandbox
management policy that allows operators to flexibly meet
memory efficiency and performance targets. Our results show
that Medes results in up to 1x-2.75x% lesser end-to-end laten-
cies on real serverless workloads while occupying the same
memory footprints as the state-of-the-art alternatives. At the
same time, Medes can meet the same latency targets as the
fixed keep-alive policy while occupying 11.4% lesser mem-
ory on average. These benefits are primarily due to 10-50%
fewer cold starts, which we achieve by keeping 7.74-37.7%
more sandboxes in memory by heavily deduplicating idle
sandboxes.
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