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Testing network protocol implementations is difficult mainly because of the temporal uncertain nature of
network events. To evaluate the worst-case performance or detect the bugs of a network protocol implemen-
tation using network simulators, we need to systematically simulate the behavior of the network protocol
under all possible cases of the temporal uncertain events, which is time consuming. The recently proposed
Symbolic Execution based Interval Branching (SEIB) simulates a group of uncertain cases together in a single
simulation branch and thus is more efficient than brute force testing. In this article, we argue that the effi-
ciency of SEIB could be further significantly improved by eliminating unnecessary comparisons of the event
timestamps. Specifically, we summarize and present three general types of unnecessary comparisons when
SEIB is applied to a general network simulator, and then correspondingly propose three novel techniques to
eliminate them. Our extensive simulations show that our techniques can improve the efficiency of SEIB by
several orders of magnitude, such as from days to minutes.
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1 INTRODUCTION

Testing network protocol implementations is difficult mainly because of the temporal uncertain
nature of network events. An event is called a temporal uncertain event (or just uncertain event for
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short) if it may occur at any time in an interval instead of a single time instant. For example, the
arrival event of a packet at a node is an uncertain event if the packet may experience an uncertain
delay in a network. Many network protocol issues are related to uncertain events and can be
detected only in corner cases with low probabilities. For example, most of the recently found TCP
issues [13] are related to low-probability uncertain events. As another example, many issues of
wireless sensor networks [37] are related to low-probability uncertain events, and they are hard
to detect and costly to fix once deployed in the fields.

In this article, we consider network protocol testing methods using network simulators, such as
NS-3 [31], because network simulators are popular tools for testing network protocols. Specifically,
we consider the testing methods that use network simulators to simulate and check the behaviors
of a network protocol under all possible cases of uncertain events. These testing methods are
useful for evaluating the worst-case performance a network protocol and detecting the design
and implementation bugs of a network protocol in corner cases. It is, however, very challenging
to check the behaviors of a network protocol under all possible cases of uncertain events. Let us
consider a network protocol with n packets, each experiencing k possible packet delays. For this
example, we need to simulate and check the behavior of the network protocol for all K possible
uncertainty cases (i.e., packet delay combinations), which is time consuming as k is usually very
large. For instance, for a packet delay in (0, 1] second, k is 10* with a millisecond resolution, and
10° with a microsecond resolution.

State of the art. There are two general classes of network protocol testing methods using net-
work simulators: (1) random testing simulates randomly selected uncertainty cases, such as random
packet delays according to a distribution; (2) systematic testing aims to enumerate and simulate all
uncertainty cases. Random testing is more suitable for evaluating the performance of a network
protocol in normal cases, whereas systematic testing is more suitable for checking the behavior of
a network protocol under all possible cases.

Systematic testing methods can be further classified into two categories. One category is brute
force testing, which separately simulates and checks a network protocol for each uncertainty case. It
is inefficient, but it is simple and can be used for any general network simulator. A second category
is interval branching [34], which simulates multiple uncertainty cases together by associating the
timestamp of a simulation event with an interval. The interval of an event indicates the set of all
possible occurrence times of the event, and two events overlap if the intersection of their intervals
is not empty. When overlapping, interval branching forks to cover all possible occurrence orders
of the events, and each branch continues with updated timestamp intervals for the involved events.
Therefore, interval branching is more efficient than brute force testing.

Interval branching can be implemented in two different ways. The first way is direct interval
branching. Interval branching was originally implemented by directly modifying a simulator [34];
however, it requires substantial changes to the simulator, especially nontrivial work for forking.
This cumbersome implementation has considerably slowed the adoption of interval branching by
the networking community. The second way is Symbolic Execution based Interval Branch-
ing (SEIB): interval branching has been recently implemented [18, 45, 46] by leveraging symbolic
execution [10], a popular program analysis technique in the software testing and verification com-
munity. Conceptually, a tester declares the timestamp variable of an event in a simulator as a
symbolic variable that can take multiple values, then executes the simulator using a symbolic exe-
cution engine that automatically takes care of forking the simulator when comparing overlapping
symbolic variables. As SEIB greatly simplifies the work to fork the simulator and manage multiple
copies of the simulator, it is more likely to be widely adopted than direct interval branching.

The efficiency (e.g., testing time and consumed memory) of SEIB mainly depends on the to-
tal number of generated SEIB branches, which in turn mainly depends on the total number of
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comparisons of overlapping timestamps in the simulation. Specifically, the number of branches is
approximately an exponential function of the number of comparisons of overlapping timestamps,
and thus it is still time consuming for SEIB to check the behavior of a network protocol under all
possible cases.

Our work. In this article, we argue that the efficiency of SEIB could be significantly improved
by eliminating unnecessary comparisons of overlapping timestamps. By doing so, we can signifi-
cantly reduce the number of generated branches and then the testing time and consumed memory.
This is because an unnecessary comparison, if not eliminated, generates a new branch that may
continuously fork and generate new branches. Specifically, we summarize and present three gen-
eral types of unnecessary comparisons when SEIB is applied to a general network simulator (e.g.,
NS-3), then correspondingly propose three techniques to modify the simulator to eliminate these
unnecessary comparisons.

The first type is the unnecessary comparisons due to simultaneous events. We find that a sim-
ulator may compare the timestamps of two events for multiple times instead of once, to check
the special case where two events happen at exactly the same time instant. These unnecessary
comparisons can be eliminated by reorganizing the comparison code of the simulator.

The second type is the unnecessary comparisons due to conditional ineffective events. We find
that a simulator may have various types of conditional ineffective events, which have no impact on
the simulation result under some conditions but their timestamps are unnecessarily compared with
other events, such as an uncertain event that might happen after the end of a simulation, and a TCP
retransmission timeout event that might be cancelled by an uncertain ACK. These unnecessary
comparisons can be eliminated by identifying when these conditional ineffective events become
ineffective and then removing them from the simulation.

The third type is the unnecessary comparisons due to independent events. Two events on differ-
ent network nodes are independent if they do not have any impact on each other. As a result, two
independent events can be executed in any order in a simulation, and it is not necessary to compare
their timestamps. The general idea of exploring independent events to speed up software testing
and verification (e.g., in model checking) is not new. The novelty of our work is that we apply
it to SEIB and propose to eliminate unnecessary comparisons of independent events on different
nodes by decomposing the network simulation into multiple synchronized node simulations. Our
decomposition technique is similar to and inspired by the traditional parallel simulation methods.
Different from a parallel simulator that runs on multiple processors with the aim to speed up the
parallel simulation, our work still runs on a single processor with the aim to reduce the number
of branches.

Our contributions are threefold. First, we propose three novel techniques to significantly im-
prove the efficiency of SEIB for testing the behavior of a network protocol under all possible cases
of temporal uncertain events. For each proposed technique, its correctness and efficiency can be
formally proved. Second, we modify the popular general network simulator, NS-3, to make it more
symbolic-execution-friendly using our proposed techniques. To the best of our knowledge, this
is the first time that SEIB is applied to a large general network simulator that has been widely
used in the networking community. Third, we evaluate the efficiency of our proposed techniques
by comparing the modified NS-3 with the original NS-3 using various network topologies and
protocols including TCP, UDP, and IP routing. The results show that when executed by SEIB,
the modified NS-3 achieves several orders of magnitude shorter testing times than the original
NS-3, such as from days to minutes. Our evaluation also shows that our techniques are several
orders of magnitude more efficient than traditional parallel simulation methods when executed by
SEIB.
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Pseudocode 1: A discrete-event network simulator
: variables for network state

—_

2: array: list[ ] > global event list
3: variable: clock > global clock
4: function Run
5: repeat
6: e « FindEvent()
7 ExecuteEvent(e)
8: until /ist is empty or e is an end-of-simulation event
9: function FindEvent
10: e « list[0] > The earliest one
11 Remove list[0] from list
12: return e
13: function ExecuteEvent(e)
14: clock « e.t > Advance the clock
15: Simulate e (update state variables, generate new events, cancel events)
16: for each new event new_e generated by e do
17: InsertEvent(new_e) > Insert to [ist[ ]

2 BACKGROUND
2.1 Network Simulation

Network simulation is usually conducted using a discrete-event network simulator, which simu-
lates a network using a sequence of events and updates the simulation variables only when an
event occurs.

Pseudocode 1 shows the major data structures and functions of a discrete-event network sim-
ulator. It maintains three types of data structures: (1) the network state variables, which describe
the current state of the whole network; (2) the global list of pending events in the whole net-
work, which are sorted in the ascending order of their timestamps; and (3) the global clock,
which is the current time in a simulation. The simulator has three major functions. Function
Run at line 4 repeatedly finds and executes the earliest event e in list until e is the last event
or the end of the simulation. Function FindEvent at line 9 finds the first event in [list that is
the one with the earliest timestamp to avoid causal violations, which happen when a future
event affects a past event. Function ExecuteEvent at line 13 advances the global clock to the
timestamp e.t of event e, updates related network state variables, generates zero or more new
events that will be inserted into list using function InsertEvent, and may cancel some exist-
ing events (e.g., timeouts). Function InsertEvent (not shown in this pseudocode but will be dis-
cussed later) inserts a new event new_e to the appropriate position of list using some sorting
algorithm.

Current discrete-event network simulators, such as NS-3 [31], are not originally designed for
symbolic execution that is described in the next section. In this article, we propose to mod-
ify discrete-event network simulators using NS-3 as an example to make them more symbolic-
execution-friendly using our proposed techniques. We choose NS-3 because it is an open source
discrete-event network simulator widely used in the networking community. Currently, NS-3
has approximate 350,000 lines of C++ code, and users can write their own simulation script-
s/code in C++ or Python. It supports both sequential simulations on a single processor and
parallel simulations on multiple processors. We consider only sequential simulations in this
article.
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Program code

Execution branches

init: 1 < x < 1000,501 < y < 1500

line 1: sym 1 < x < 1000

line 2: sym 501 < y < 1500

|
! 1
! |
|

|
! I
! I
|

|
| :
: line 3:if (x < y) :
! 1
! 1
|

1
! 1
! |
|

|
! |
! |
|

I

line 4: ...

branch 1 branch 2
line 5: else 1< x <1000 1< x <1000
line 6: ... 501 <y < 1500 501 <y < 1500
line 7: end if r<y xzy

Fig. 1. A symbolic execution example with symbolic variables x and y.

2.2 Symbolic Execution

Instead of running a program directly, symbolic execution [16, 26] runs a program with symbolic
variables using a symbolic execution engine. Different from normal program variables that take
concrete values, a symbolic variable takes a symbolic value represented as symbolic constraints. In
other words, a symbolic variable can take all possible values satisfying the symbolic constraints.
Figure 1 shows an example. The first two lines of the program declare two symbolic variables x
and y with their initial constraints. For example, x can take any integer values between 1 and 1,000.
Once the execution reaches an i f(cond) statement involving symbolic variables, the symbolic ex-
ecution engine queries a constraint solver to check the feasibility of both possibilities (i.e., cond =
true or false) under the current constraints. For example, for cond = “x < y” in line 3, because both
possibilities are feasible, the current execution forks into two branches. The true branch continues
with additional constraint x < y, and the false branch continues with additional constraint x > y.

Symbolic execution is a powerful technique widely used in the software testing and verification
community, because it can automatically divide all possible combinations of the symbolic variable
values into equivalence classes. The combinations in the same equivalence class have the same
execution path, and they are executed together using the same branch. For Figure 1, there are a
total of 1,000 X 1,000 = 10° combinations of x and y. Without symbolic execution, we need to
execute the program 10° times, one for each combination, to check all possible behaviors of the
program. With symbolic execution, we execute the program using only two branches. For example,
all combinations satisfying constraints 1 < x < 1,000, 501 < y < 1,500, and x < y have the same
execution path (i.e., lines 1, 2, 3, 4, 7) and are executed together as branch 1.

In this work, we use S?E [14], which is a powerful symbolic execution platform that can sym-
bolically execute NS-3 in a virtual machine. The virtual machine is emulated using the QEMU
machine emulator [4], and the symbolic execution is conducted using the KLEE symbolic execu-
tion engine [9].

3 SYMBOLIC EXECUTION BASED INTERVAL BRANCHING

This section introduces basic definitions, explains how SEIB works, and discusses the advantages
and limitations of current SEIB.

3.1 Definitions and Notation

In this work, we consider only temporal uncertain events caused by uncertain network delays,
which are the major uncertainty source for network protocols. In the following, let us consider an
example, where two nodes are connected with a link, and a node sends three packets p;, i € [1, 3],
to the other one.
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Fig. 2. Example: Three uncertain packet arrival events. The double-headed arrows indicate their timestamp
intervals.

For each packet p;, let d,, denote its delay over the link, and let delay interval D), denote the set
(or range) of all possible values of d,,. We say that delay d,, is uncertain if D), contains more than
one value (i.e., |D,,| > 1). The delay space D of a simulation is the cross product of all delay intervals
in the simulation, and a vector d € Dis called a delay vector. For the example, D = D, X Dy, X D,

is a three-dimensional space, and d = (dp,,dp,,dp,). Suppose that each packet p; has the same
D,, = [1,1,000] ms assuming a millisecond resolution, then |D,,| = 1,000 and [D| = 10°. In other
words, D has a total of 10° possible delay vectors.

Pseudocode 2: Part of a simulation code for the three-packet example in Section 3

1: function Main
2 sym 1 < dp, <1000 > symbolic variable
3 sym 1 < dp, < 1000 > symbolic variable
4 sym 1 < dp; < 1000 > symbolic variable
5:
6 ep, .t — 0+dp, > ep, .t is symbolic
7 ep,-t < 500 + dp, > ep,.t is symbolic
8 ep;.t < 1000 + dp, > ep, .t is symbolic
9: InsertEvent(ep,)

10: InsertEvent(ep,)

11: InsertEvent(ep,)

12:

13: Run() > Pseudocode 1

14:

15: assert(checking simulation results)

16: function InsertEvent(new_e)
17: for k < 0; k < list.size; k «<— k +1do

18: if new_e.t < list[k].t) then > Forks into two branches, if new_e.t and list[k].t overlap
19: Insert new_e to position k in list

20: return

21: end if

22: Append new_e to the end of list

For each event e in a simulation, let e.t denote its timestamp, and let timestamp interval [e.t] de-
note the set (or range) of all possible values of e.t. We say that event e or timestamp e.t is uncertain
if [e.t] contains more than one value. To simplify our discussion in this section, let us consider only
the arrival events of these packets in the example. For each packet p;, let e,, denote its arrival event
at the destination node and then e,, .t is the packet arrival time. Suppose that the three packets in
the example depart from their source node at 0, 500, and 1,000 ms, respectively, and have the same
Dy, = [1,1,000] ms. We have ej, .t = 0+ dp,, ep,.t = 500 + dp,, and e,,.t = 1,000 + d,,,. Therefore,
lep, -] = [1,1,000], [ep,.t] = [501,1,500], and [e,,.t] = [1,001, 2,000], as shown in Figure 2.

We say that two timestamps overlap if their timestamp intervals overlap (i.e., nonempty intersec-
tion). For example, e, .t and e,, .t overlap because [e,,.t]N[ey,.t] = [1,1,000] N [501, 1,500] = [501,
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list: (€p1)

‘ InsertEvent(ey,) ‘

false

list: (€p2,€p1) list: (€p1,€p2)
y y

‘ InsertEvent(eys) ‘ ‘ InsertEvent(es) ‘

branch 1 branch 2 branch 3
list: (epZIeplrep3) list: (epl,epg,epz) list: (epl,epz,ep3)

Fig. 3. Three branches generated when Pseudocode 2 and Pseudocode 1 are executed by SEIB, due to two
comparisons of overlapping timestamps (shaded).

1,000]. Intuitively, this means e,, and e,, may occur in different orders. As another example, e, .t
and e,,.t do not overlap, and this means that e,, and e, may occur in only one order.

3.2 SEIB

Both random testing and brute force testing directly run a network simulator, whereas SEIB runs
a network simulator with symbolic delay variables using a symbolic execution platform, such as
S?E [14]. SEIB does not change the functions of a network simulator, except declaring the packet
delay variables as symbolic variables. Pseudocode 2 illustrates a possible simulation code for the
three-packet example with symbolic packet delay variables. The Main function (lines 2 through
4) declares each delay d,, as a symbolic variable with the initial constraints defined according to
its delay interval Dj,. As a result, all other variables depending on these symbolic variables are
automatically handled as symbolic variables by the symbolic execution engine of SEIB. For ex-
ample, timestamp e,, .t assigned in line 6 is also a symbolic variable, and its timestamp interval
[ep, -t] is implicitly defined by the constraints of d;,. Lines 9 through 11 call function InsertEvent
(defined at line 16) to insert the events to [list. Line 13 calls function Run defined in Pseu-
docode 1 to run the simulation. Finally, line 15 checks the simulation results and detects possible
bugs.

Figure 3 shows the symbolic execution of lines 10 and 11 of Pseudocode 2, when Pseudocode 2
together with Pseudocode 1 is executed by SEIB. Before executing line 10, we have list = (ep,).
When executing line 10, function InsertEvent compares whether e, happens before e, using the
if statement at line 18. The symbolic execution engine of SEIB finds out that both possibilities are
feasible according to the current constraints. As a result, SEIB forks the current execution into two
branches: the true branch continues to line 19 and the false branch to line 20. Each branch then
continues with different lists (shown in Figure 3) and different updated constraints (not shown in
Figure 3).
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We can see that the total number of branches depends on the number of comparisons of over-
lapping timestamps, which are indicated by shaded diamonds in Figure 3. Finally, a total of three
branches are generated due to two comparisons of overlapping timestamps. This is because a
comparison of non-overlapping timestamps does not generate any new branches. For example,
[ep,-t] = [1,1,000] does not overlap with [e,,.t] = [1,001,2,000], and thus e,,.t < e,,.t is always
false. Note that when InsertEvent(e,,) is called in branch 1, [ep,.t] and [ep,.t] do not overlap any-
more and specifically ey, .t < e,,.t is always false. This is because the constraints of branch 1 have
been updated with additional constraint e,,.t < e, .t after calling InsertEvent(ep, ).

3.3 Advantage and Limitation of SEIB

SEIB is more efficient than brute force testing when checking the behavior in all possible cases
of uncertain events. For the example, brute force testing needs to run the simulation for a total of
|D| = 10? times, one for each delay vector by changing lines 2 through 4 of Pseudocode 2 to specific
delays. In contrast, SEIB only needs to execute the simulation once with three generated branches,
and the assertion at line 15 is checked for each branch. However, the number of SEIB branches is
approximately an exponential function of the number of comparisons of overlapping timestamps,
because SEIB forks into two branches every time the simulator compares two overlapping times-
tamps. As a result, the number of SEIB branches still increases quickly and consequently causes
poor testing efficiency. Specifically, the more the number of SEIB branches, the longer the total
testing time, and the larger the total amount of consumed memory (because each SEIB branch is
a virtual machine in S?E).

4 OUR METHOD
4.1 Overview

Current SEIB works [18, 45, 46] demonstrate the promising potential of SEIB, but they use only
small and simple network simulators. For example, SPD [45] writes a toy simulator to simulate only
two nodes connected by a link. In this work, for the first time, we apply SEIB to a large, general,
and widely used network simulator, NS-3. Specifically, we propose multiple novel techniques to
modify some functions of NS-3 to eliminate several general types of unnecessary comparisons of
overlapping timestamps to significantly improve the efficiency of SEIB. Note that SEIB declares
packet delay variables as symbolic variables but still uses the original NS-3 functions, whereas our
proposed techniques declare packet delay variables as symbolic variables and modify some NS-3
functions. Also note that our proposed techniques do not modify the symbolic execution platform.

When describing each proposed technique, we present only the proposed modification against
the original NS-3 functions, which are illustrated in Pseudocode 1 and Pseudocode 3 that together
define five NS-3 functions: Run, FindEvent, ExecuteEvent, InsertEvent, and Be fore. Each pro-
posed technique modifies one or more of these functions. Although all our proposed techniques
can be combined together as shown and evaluated in Section 5, we will not present the modified
NS-3 functions for the combined techniques because of the page limit and because it is straight-
forward to combine them.

Our proposed techniques can significantly reduce the number of branches because an unneces-
sary comparison, if not eliminated, forks the current branch into two branches, each of which con-
tinuously forks for all the remaining comparisons of overlapping timestamps. For each proposed
technique, we prove its correctness and efficiency. First, a technique is correct if the modified sim-
ulator always generates the same simulation result as the original one for each delay vector in the
delay space. Second, a technique is efficient if the SEIB branches of the modified simulator are no
more than those of the original one for the same delay space.
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Pseudocode 3: Original NS-3 functions: Pseudocode 1 plus the following functions

1: function InsertEvent(new_e)
2 for k < 0; k < list.size; k «— k +1do
3 if Before(new_e, list[k]) then
4 Insert new_e to position k in list
5: return
6 end if
7 Append new_e to the end of list
8: function Be fore(eq, e2)
9 if e1.t < ey.t then
10: return True
11: else if e;.t = ey.t then
12: if eq1.id < ey.id then
13: return True
14: return False

Pseudocode 4: Modified NS-3 function for efficiently handling simultaneous events

function Before(el, e2)
if e1.id < ey.id then

if e1.t < ey.t then

return True

if e1.t < ey.t then
return True

1:
2
3
4:
5: else
6
7
8 return False

4.2 Unnecessary Comparisons Due to Simultaneous Events

4.2.1 Simultaneous Events. We say that two events are simultaneous if they occur at the same
time instant. Simultaneous events are handled differently by different network simulators. NS-3
associates each event with an event ID, which is a concrete and unique number. When comparing
two simultaneous events, NS-3 puts the one with a smaller event ID before the other one in the
event list. Specifically, NS-3 uses functions InsertEvent and Be fore defined in Pseudocode 3 to
insert a new event and compare the timestamp of the new event with existing events. Function
InsertEvent of Pseudocode 3 is the same as that of Pseudocode 2, except it compares the times-
tamps using function Before to handle simultaneous events. We can see that function Before
defined in Pseudocode 3 compares the timestamps e;.t and e;.t of two events e; and e, twice at
lines 9 and 11, respectively.

4.2.2  Our Technique. We propose to modify function Be fore of NS-3 as shown in Pseudocode 4,
which compares the timestamps e;.t and e;.t only once at either line 3 or line 6. Intuitively, for
each pair of e;.t and e;.t (i.e., a delay vector), our proposed technique combines potentially two
comparisons of e;.t and e;.t into a single one (i.e., efficiency) without changing the simulation
result (i.e., correctness).

4.2.3 Correctness. The following theorem proves the correctness of our modified NS-3 with
proposed Pseudocode 4.

THEOREM 1. The modified NS-3 with Pseudocode 4 always generates the same simulation result as
the original NS-3 (i.e., Pseudocode 1 and 3) for each delay vector in the delay space.
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Proor. There are four possible cases. Case 1: When e;.t < e,.t, both the modified and original
NS-3 return true. Case 2: When e;.t > e,.t, both return false. Case 3: When e;.t = e;.t and e;.id <
ey.id, both return true. Case 4: When e;.t = e,.t and e;.id > e,.id, both return false. O

4.2.4  Efficiency. For non-overlapping e;.t and e;.t, both the modified and original NS-3 gener-
ate only one branch. The following theorem considers overlapping e;.t and e;.t.

THEOREM 2. The modified NS-3 with Pseudocode 4 never generates more branches than the original
NS-3 (i.e., Pseudocode 1 and 3) for overlapping timestamps.

Proor. In the general case of overlapping e;.t and e;.t, the original NS-3 forks twice and gener-
ates three branches. For example, if [e;.t] = [1,1,000] and [e,.t] = [501, 1,500], the original NS-3
generates three branches corresponding to three cases: e; occurs before, at the same time, or after
ez. In this case, the modified NS-3 generates only two branches.

A special case for overlapping e;.t and e,.t is when one timestamp interval contains only one
time instant and is the left end or right end of another timestamp interval. For example, if [e;.t] =
[1,1,000] and [e,.t] = [1,000], the original NS-3 generates two branches. In this special case, the
modified NS-3 generates one or two branches depending on their event ids. ]

To have a better understanding of the impact of our proposed technique for simultaneous
events, let us consider a simplified simulation example, which calls function Be fore on two over-
lapping timestamps for Npefore times. The original NS-3 generates 3Noetore hranches, whereas our
modified NS-3 generates 2™fore branches. Note that this reduction of branches can be potentially
achieved using path merging techniques [2, 23, 28, 39] that can automatically merge certain types
of branches but require special support from the symbolic execution engine. Our proposed tech-
nique reduces the number of branches without requiring any special support from the symbolic
execution engine.

4.3 Unnecessary Comparisons Due to Conditional Ineffective Events

A simulator may have various types of conditional ineffective events, which have no impact on the
simulation results under some conditions. We have identified two major types of conditional inef-
fective events in NS-3. First, an uncertain event that might happen after the end of a simulation. NS-3
function Simulator::Stop(t) creates a special end-of-simulation event with timestamp ¢ so that the
simulation stops at time ¢ (see line 8 in Pseudocode 1). If the timestamp interval of an uncertain
event is sufficiently long, its interval might contain t. In other words, the event may happen before
or after t. In the cases when the event happens after ¢ (referred to as a beyond-the-end event), it has
no impact on the simulation result. However, NS-3 still keeps these beyond-the-end events in [list,
which leads to unnecessary comparisons among these beyond-the-end events. Second, a timeout
event. NS-3 simulates multiple types of timeout events, such as TCP retransmission timeout events,
which might be cancelled by other events. For example, a TCP retransmission timeout event will
be cancelled if the corresponding ACK arrives before the timeout. If cancelled, NS-3 only sets a
flag of the timeout event to indicate that it is cancelled but still keeps the cancelled timeout event
in list, which leads to unnecessary comparisons with other events.

4.3.1 Events That Might Happen After the End of a Simulation.

Our technique. We propose to modify function InsertEvent of NS-3 as shown in Pseudocode 5,
which detects and then discards those beyond-the-end events. Specifically, line 6 checks whether
new event new_e happens after the end of simulation (i.e., new_e happens after current event
list[k], and list[k] is an end-of-simulation event). If so, line 7 discards event new_e because it has
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Pseudocode 5: Modified NS-3 function for efficiently handling events that might happen after the
end of a simulation

1: function InsertEvent(new_e)
2: for k « 0; k < list.size; k «<— k +1do
if Before(new_e, list[k]) then
Insert new_e to position k in list
return
else if list[k] is an end-of-simulation event then > new_e is a beyond-the-end event?
Discard new_e > If so, discard it
return
end if
Append new_e to the end of list

R I A L

-
=4

no impact on the simulation result. Note that our technique assumes that an end-of-simulation
event will never be cancelled in a simulation.

Correctness. The following theorem proves the correctness of our modified NS-3 with proposed
Pseudocode 5.

THEOREM 3. The modified NS-3 with Pseudocode 5 always produces the same simulation result as
the original NS-3 (i.e., Pseudocode 1 and 3) for each delay vector in the delay space.

Proor. Although the modified NS-3 discards those beyond-the-end events and the original NS-
3 keeps those events in list, both of them run the simulation until an end-of-simulation event. As
a result, neither of them executes any of those beyond-the-end events, and thus both generate the
same simulation result. O

Efficiency. The following theorem proves the efficiency of our modified NS-3 with proposed
Pseudocode 5.

THEOREM 4. The modified NS-3 with Pseudocode 5 never generates more branches than the original
NS-3 (i.e., Pseudocodes 1 and 3).

Proor. We consider two cases depending on the number of beyond-the-end events in a simu-
lation. First, if there is no or only one beyond-the-end event, both the modified and original NS-3
generate the same number of branches. Second, if there are at least two beyond-the-end events,
the modified NS-3 generates no more branches than the original NS-3. This is because the mod-
ified NS-3 discards all these beyond-the-end events and then these events will not be compared
among themselves, whereas the original NS-3 keeps all these beyond-the-end events in list and
then these events will be unnecessarily compared with one another, which might generate more
branches. O

Note that our proposed technique does not work for the special cases where the beyond-the-end
events are generated and inserted into /ist even before an end-of-simulation event is inserted into
list. NS-3 simulations usually create an end-of-simulation event using function Simulator::Stop(t)
in simulation scripts/code when initializing the simulations. Therefore, the proposed technique
works well for NS-3 simulations.

Note that our proposed technique works for an event new_e whose timestamp overlaps with
the end of simulation (i.e., might happen before or after an end-of-simulation event). When func-
tion InsertEvent in Pseudocode 5 handles event new_e, it forks into two branches at line 3 when
comparing with end-of-simulation event list[k]: the event new_e associated with the true branch
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Pseudocode 6: Modified NS-3 function for efficiently handling cancelled timeout events

1: function ExecuteEvent(e)

2 clock «— e.t

3 Simulate e (update state variables, generate new events, cancel events)
4: for each timeout event cancelled_e cancelled by e do

5 Remove cancelled_e from list

6 for each new event new_e generated by e do

7 InsertEvent(new_e)

happens before list[k] and is then inserted into list, and the event new_e associated with the false
branch is a beyond-the-end event and is then discarded.

4.3.2 Timeout Events.

Our technique. A timeout event has three possible states in a simulation: outstanding, cancelled,
and expired. For example, once a TCP retransmission timeout event is created with an expiration
time ¢, its state is outstanding until it is cancelled or expired. If TCP receives the corresponding
ACK before time ¢, the timeout event is cancelled; otherwise, the timeout event expires at time
t. We propose two techniques to eliminate unnecessary comparisons of a timeout event at the
outstanding and cancelled states.

Technique to efficiently handle cancelled timeout events. We propose to modify function
ExecuteEvent of NS-3 as shown in Pseudocode 6 to remove all cancelled timeout events from
list. Specifically, line 4 checks whether each timeout event in list has been just cancelled by the
simulated event e. If so, line 5 removes the cancelled timeout from list. If not removed (as the
original NS-3 does), a cancelled timeout remains in list and will be compared with the new events,
which in turn leads to unnecessary comparisons.

To better understand the difference between the original NS-3 (i.e., Pseudocodes 1 and 3) and
modified NS-3 with Pseudocode 6, let us consider a cancelled timeout event cancelled_e. Let tyep,
denote the clock time (i.e., value of clock) when the event is generated in NS-3, let ey, denote
the original expiration time of the event (i.e., the event timestamp cancelled_e.t), and let t;q4,
denote the clock time when the event is cancelled. Both the original and modified NS-3 insert
event cancelled_e into list at time t4.,,. The original NS-3 keeps event cancelled_e in list until the
event becomes the first one in list (i.e., list[0]) and then removes the event from list at line 11
of Pseudocode 1. In other words, the original NS-3 removes event cancelled_e at time t,x,. The
modified NS-3 removes event cancelled e from list at line 5 of Pseudocode 6 as soon as the event
is cancelled. In other words, the modified NS-3 removes event cancelled_e at t.q,. For example,
suppose that a TCP retransmission timeout event is generated at time tye, = 100 ms with an
expiration time tx, = 1,000 and is cancelled at t.,, = 200 ms. Both the original and modified NS-
3 insert the event into list at t;., = 100 ms, but the original NS-3 removes the event at t.,, = 1,000
ms, whereas the modified NS-3 removes the event at t.,, = 200 ms.

Correctness and efficiency. The following two theorems prove the correctness and efficiency of
our modified NS-3 with Pseudocode 6.

THEOREM 5. The modified NS-3 with Pseudocode 6 always produces the same simulation result as
the original NS-3 (i.e., Pseudocodes 1 and 3) for each delay vector in the delay space.

Proor. Because a cancelled timeout event cancelled_e does not have any impact on the simu-
lation result in both the original and modified NS-3, the original and modified NS-3 generate the
same simulation result, although they remove the event cancelled_e at different times. m]
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Pseudocode 7: Modified NS-3 functions for efficiently handling both outstanding and cancelled
timeout events

1: function FindEvent
2: e « list[0]

3: if (e is an outstanding timeout event) and (e.waitinglist is not empty) then
4: tmp_list < e.waitinglist
5: e.waitinglist « empty
6: fori < 0;i < tmp_list.size;i < i+ 1do
7: InsertEvent(tmp_list[i], 0) > Case 1
8: e « list[0] > list[0] may be changed
9: Remove list[0] from list
10: return e
11: function ExecuteEvent(e)
12: clock « e.t
13: Simulate e (update state variables, generate new events, cancel events)
14: for each timeout event cancelled_e cancelled by e do
15: j « the index of cancelled_e in list
16: Remove cancelled_e from list > Remove cancelled timeout
17: fori « 0;i < cancelled_e.waitinglist.size;i < i +1do
18: InsertEvent(cancelled_e.waitinglist[i], j) > Case 2
19: for each new event new_e generated by e do
20: InsertEvent(new_e, 0)
21: function InsertEvent(new_e, start_index)
22: for k « start_index; k < list.size;k « k +1do
23: if (list[k] is an outstanding timeout event) and (k != 0) then
24: Append new_e to the end of list[k].waitinglist » Delay comparisons with outstanding timeout
25: return
26: else if Before(new_e, list[k]) then
27: Insert new_e to position k in list
28: return

29: Append new_e to the end of list

THEOREM 6. The modified NS-3 with Pseudocode 6 never generates more branches than the original
NS-3 (i.e., Pseudocodes 1 and 3).

Proor. For a cancelled timeout event cancelled_e, we consider two cases depending on the num-
ber of new events generated between t.4, and .. First, when there is no new event generated
between fc4, and t.xp, the modified and original NS-3 generate the same number of branches. Sec-
ond, when there is at least one new event generated between t.,, and e, the modified NS-3 does
not compare event cancelled_e with any of these new events because event cancelled_e has already
been removed from list at t.4,. The original NS-3 might unnecessarily compare event cancelled_e
with these new events (depending on their timestamps) when inserting these new events into list
at line 17 of Pseudocode 1 and thus possibly generates more branches. O

Technique to efficiently handle both outstanding and cancelled timeout events. Different from the
previous technique that eliminates unnecessary comparisons due to cancelled timeout events, this
new technique eliminates unnecessary comparisons due to both outstanding and cancelled timeout
events. Let us still consider the example where a TCP retransmission timeout event is generated
at time tg., = 100 ms with an expiration time t., = 1,000 ms and is cancelled at .4, = 200 ms.
The previous technique eliminates unnecessary comparisons between the cancelled timeout event
and new events generated between t.,, = 200 and t.,, = 1,000. However, new events may also be
generated between tg., = 100 and tc4, = 200, and then may be unnecessarily compared with the
timeout event that is still outstanding at that time and will be cancelled at a future time. Therefore,
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Fig. 4. An example of the modified NS-3 with Pseudocode 7. e; is a timeout event generated at tgen with
expiration time texp and cancelled at teqpn. The timestamp (i.e., e2.t = texp) of e is an interval that overlaps
with the timestamps of e3 and e4. ez indicates cancelled ey. Finally, the modified NS-3 has only one branch,
whereas the original NS-3 has three branches.

we propose another technique to eliminate unnecessary comparisons due to both outstanding and
cancelled timeout events. In other words, this new technique eliminates unnecessary comparisons
between the timeout event and new events generated between tge, = 100 and f.x, = 1,000 instead
of just between t.q, = 200 and t,,, = 1,000.

We propose to modify functions FindEvent, ExecuteEvent, and Insert Event of NS-3 as shown in
Pseudocode 7. The basic idea of this technique is to delay the comparisons involving an outstanding
timeout event as late as possible until either we must compare the outstanding timeout event
with other events to find the earliest event to execute (case 1) or the outstanding timeout event
is cancelled (case 2). The delay of comparisons is implemented in function InsertEvent, case 1 is
handled by function FindEvent, and case 2 is handled by function ExecuteEvent. An unsorted
event waiting list e.waitinglist is created for each outstanding timeout event e to keep track of all
the events that have not been compared with event e.

In the following, we explain how the three functions of Pseudocode 7 work. First, function
InsertEvent of Pseudocode 7 is similar to the original InsertEvent function of NS-3 (i.e., Pseu-
docode 3) with the following two differences. One difference is that it can insert event new_e
to list from index start_index instead of always from 0, so as to support the modified function
ExecuteEvent. Another difference is if it encounters an outstanding timeout event list[k], it does
not compare event new_e with list[k] and just adds new_e to the waiting list of list[k], so as to
delay the comparisons with list[k]. Note that we do not sort the events in the waiting list and
simply append new_e to the end of the waiting list. Also note that function InsertEvent does not
delay the comparisons with list[0] (line 23) even if it is an outstanding event, because these com-
parisons cannot be further delayed. Second, function FindEvent is modified to handle case 1 where
list[0] is an outstanding timeout event with a non-empty waiting list. In this case, we must insert
all the events in the waiting list of [ist[0] to list, to find the earliest event to execute. Note that
line 8 resets e to list[0] because list[0] may have been changed. Third, function ExecuteEvent is
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modified to handle case 2 where an outstanding timeout event cancelled_e is cancelled. In this
case, we remove cancelled_e at line 16. If cancelled_e has a non-empty waiting list, the events in
the waiting list are inserted to list starting from index j at line 18, where j is the original index of
cancelled_e in list. This is because these events have already been compared with all the events
before cancelled_e in list.

Figure 4 shows an example to demonstrate how modified NS-3 with Pseudocode 7 works. Event
e, is a timeout event generated at t4., with expiration time t,,, and cancelled at t4,. The times-
tamp (i.e., e3.t = texp) of ez is an interval that overlaps with the timestamps of event e; and ey,
so events e; and es may happen in different orders and events e; and e, may happen in different
orders. For the clarity of the figure, the events that generate events ey, e, e3, and e4 and the event
that cancels event e; are not shown in the figure. At time t4¢,, the modified NS-3 has the same
list = (e1, ez) as the original NS-3. When e3 is generated between t4., and tcqp, the modified NS-3
only adds event e; into the waiting list of ez, whereas the original NS-3 compares the timestamps
of e; and e3 and thus leads to two branches with different lists as shown in the figure. At time ¢4,
the modified NS-3 removes the cancelled e; and reinserts the events (i.e., e3) in its waiting list to
list, whereas the original NS-3 only marks e, as a cancelled event (indicated by e;) but still keeps
ez in list. When ey is generated between tc,, and t.p, the modified NS-3 still has_only one branch
because it does not compare the removed e, with e4, whereas the original NS-3 compares the times-
tamps of the cancelled e, and e4 and thus leads to a total of three branches with different lists as
shown in the figure. Therefore, we can see that the modified NS-3 with Pseudocode 7 eliminates
unnecessary comparisons between event e; and new events generated between tg¢, and tey, (ie.,
events e; and ey).

Correctness and efficiency. The following two theorems prove the correctness and efficiency of
our modified NS-3 with Pseudocode 7.

THEOREM 7. The modified NS-3 with Pseudocode 7 always produces the same simulation result as
the original NS-3 (i.e., Pseudocodes 1 and 3) for each delay vector in the delay space.

Proor. We prove the correctness of the modified NS-3 by showing that event e returned by
function FindEvent of Pseudocode 7 is the earliest event among all the events in list and in the
waiting lists of all outstanding timeout events in list. There are two cases depending on whether
e = list[0] assigned at line 2 of Pseudocode 7 is a timeout event with a non-empty waiting list or
not.

First, if e assigned at line 2 is not a timeout event or is a timeout event but with an empty
waiting list, its timestamp is before (defined by function Be fore) the timestamps of all other events
in list. This is because function InsertEvent ensures that [ist[0].t is before list[k].t for Yk > 0.
In addition, its timestamp is before the timestamps of all the events in the waiting lists of all
outstanding timeout events in list. This is because function InsertEvent also ensures that list[0].¢
is before list[k].waitinglist[i].t for Yk > 0 and for Vi > 0 if list[k] is an outstanding timeout event.
Therefore, in this case, e assigned at line 2 is the earliest event and is the e returned by function
FindEvent.

Second, if e assigned at line 2 is a timeout event with a non-empty waiting list, it may or may
not be the earliest event depending on the events in its waiting list. Therefore, function FindEvent
empties its waiting list and inserts all the events in its waiting list to list. Note that these events
will not be added back to the waiting list of e while e remains as the front event in list due to the
condition k != 0 at line 23. As a result, the e = list[0] reassigned at line 8 is guaranteed to be a
non-timeout event or a timeout event with an empty waiting list. Thus, the e returned by function
FindEvent is the earliest event. O
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THEOREM 8. The modified NS-3 with Pseudocode 7 never generates more branches than the original
NS-3 (i.e., Pseudocodes 1 and 3).

Proor. Let us consider a cancelled timeout event cancelled_e that is generated at t4., with
the original expiration time f., (i.e., the timestamp) and is cancelled at f.,,. The modified NS-3
eliminates two types of comparisons involving cancelled_e when compared with the original NS-
3. First, when cancelled_e is cancelled, it is removed from list at line 16 of Pseudocode 7. Thus,
the modified NS-3 does not compare cancelled_e with the new events generated between t.4,
and t,, as the original NS-3. Second, when cancelled_e is cancelled, the events in its waiting list
(i.e., the new events generated between t4¢, and t.,,) are inserted to list without comparing with
cancelled_e at line 18 of Pseudocode 7. Thus, the modified NS-3 does not compare cancelled_e
with the new events generated between tg., and tc4, as the original NS-3. O

To have a better understanding on the impact of our proposed techniques for the timeout
events, let us consider a simplified simulation example, which has Niimeout back-to-back timeout
events. In other words, the next timeout event is generated when the current one is cancelled
(e.g., TCP usually schedules a new retransmission timer when the current one is cancelled). For
each timeout event, let Nppanen denote the number of new branches generated due to non-timeout
events during the time interval from the generation to the cancellation of the timeout event, and
let Noyerlap denote the number of events overlapping with the timeout event. In Figure 4, there
iS Niimeout = 1 timeout event, Npranch = 1 branch generated due to non-timeout events, and
Noverlap = 2 events overlapping with the timeout event. For this simulation example, the original
NS-3 finally generates (Npranch X (Noverlap + 1))Nimeout branches, whereas our modified NS-3 finally
generates (Npranch X 1)Mimeout branches. For Figure 4, the original NS-3 generates (1 X (2+1))! =3
branches, whereas our modified NS-3 generates only (1 X 1)! = 1 branch.

4.4 Unnecessary Comparisons Due to Independent Events

4.4.1 Independent Events. We first define the node e.node associated with an event e. There
are two general types of events: link events and node events. First, a link event e simulates the
propagation of a packet over a link from a source node e.src to one (or more) destination node
e.dst. Event e is usually called a packet arrival event at node e.dst, and we say that it is associated
with node e.dst (i.e., e.node = e.dst). Second, a node event e simulates an event at a node i, and we
say it is associated with node i (i.e., e.node = i). For example, a timeout event at a node is a node
event.

We use a general event dependency model [30] for general networking protocols. We say that
two events e; and e; are independent of each other if neither e; — ejnore; — e; holds, where — isa
relation defined by the following three cases. First, e; — e; if e;.node = e;j.node and Be fore(e;, e;).
Second, e; — e; for a link event e; if e; generates e; (then e;.node = e;.src). Third, e; — e; if
there exists an event e, such that e; — e and e — e;. Intuitively, e; — e; means that e; has an
impact on e;. If e; and e; are independent, they do not have any impact on each other. Therefore,
two independent events can be executed in any order in a simulation, and it is not necessary to
compare their timestamps.

4.4.2  Overview. NS-3 sorts all events using relation Be fore, which is a strict total order (i.e.,
irreflexive, antisymmetric, transitive, and connex). When NS-3 is executed by SEIB, the number
of branches is in the order of the number of different total orders of the events with respect to
relation Be fore.

We propose to modify NS-3 to sort all events using relation —, which is a strict partial order
(i.e., irreflexive, antisymmetric, and transitive). As result, when the modified NS-3 is executed by
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SEIB, the number of branches is in the order of the number of different partial orders of the events
with respect to relation —.

The general idea of exploring partial ordering of event dependency to speed up software testing
and verification (e.g., in model checking) is not new. The novelty of our work is that we apply it to
SEIB, and we propose to achieve partial ordering for SEIB by decomposing the network simulation
into multiple synchronized node simulations.

4.4.3 Differences from Traditional Parallel Simulation. Our decomposition technique is similar
to and inspired by the traditional parallel simulation methods [20]. Both our decomposition tech-
nique and parallel simulation decompose the simulation of a network into multiple simulations of
the nodes. Different from a parallel simulator that runs on multiple parallel processors with the
aim to speed up the simulation, our work still runs on a single processor with the aim to reduce
the number of branches. Thus, they have different design choices.

The first difference is about the synchronization among multiple node simulations. Parallel sim-
ulation considers how to reduce the communication overhead of the synchronization among dif-
ferent processors. Our decomposition technique considers how to eliminate unnecessary compar-
isons of independent events in the synchronization, but not about communication overhead.

The second difference is about the lookahead that is the minimum latency for an event on a
node to have an impact on another node and is usually the propagation delay from the first node
to the second one. Lookahead is widely used in many parallel simulation methods to improve the
parallelism of different node simulations. For example, event e; on a node can be executed before
ej on a different node if e;.t < e;.t + lookahead (i.e., e; has no impact on e;). However, it is possible
that e;.t and e;.t + lookahead overlaps even if e;.t and e;.t do not overlap, which leads to more
branches. Thus, lookahead is not always helpful and is not used in our decomposition technique.

4.4.4  Our Technique. Pseudocode 8 shows our modified NS-3 to efficiently handle independent
events, and it assumes a static network topology where the neighbors of a node do not change.
By comparing the first three lines of Pseudocode 1 (i.e., original NS-3) and Pseudocode 8 (i.e.,
modified NS-3), we can see that the modified NS-3 still keeps the original network state variables
but changes the one-dimensional array list to a two-dimensional array local_list and changes the
variable clock to a one-dimensional array local_clock so that each node i has its own event list
local_list[i] and its own clock local_clock[i]. In the following, we use local_list to refer to the set
of all the events in a network and local_list[i] to refer to the sorted list of all the events at node
i. The modified NS-3 has the same Run function as the original NS-3 but has different FindEvent,
ExecuteEvent, and InsertEvent functions, which are explained in the following.

Function FindEvent needs to find an event e that is safe to execute, to avoid causal violations.
An event e in local_list is safe if there does not exist any event e’ in local_list such that e’ — e.
Because relation — is a strict partial order, there may exist multiple safe events. For a node i,
its local earliest event local_list[i][0] may not be safe. There are two general ways to determine
whether local_list[i][0] is safe: global synchronization using the global time information of all
the nodes and local synchronization using only the local time information of the neighbors of
node i. To reduce the unnecessary timestamp comparisons among different nodes, we choose local
synchronization.

Function LocalSynchronization implements our local synchronization method, which is moti-
vated by the local causal constraint [20] in the traditional parallel simulation. The basic idea is
that the local earliest event local_list[i][0] at node i is safe if local_list[i] contains at least one
packet arrival event from each neighbor and the non-decreasing arrival condition is met. The
non-decreasing arrival condition requires that the packet arrival events from a source node j to a
destination node i must be added into local_list[i] in the non-decreasing order of their timestamps.
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Pseudocode 8: Modified NS-3 functions for efficiently handling independent events

1: variables for network state
2: array: local_list[node][ ] > local event lists
3: array: local_clock[node] > local clocks
4: function FindEvent
5: e « LocalSynchronization()
6: if e = null then
7: e « GlobalDeadlockRecovery()
8: return e
9: function LocalSynchronization
10: repeat
11: for each node i do
12: while local_list[i] contains at least one arrival event from each neighbor do
13: e « local_list[i][0]
14: Remove local_list[i][0] from local_list[i]
15: if (e is arrival event) and (i # e.dst) then
16: InsertEvent (e, e.dst) > Ensures non-decreasing arrival
17: else
18: return e
19: until no more moving of arrival events
20: return null
21: function GlobalDeadlockRecovery()
22: for each node i do
23: for each node j # i do
24: safe « True
25: if not Be fore(local_list[i][0], local_list[j][0]) then
26: safe « False
27: break;
28: if safe then
29: e « local_list[i][0]
30: Remove local_list[i][0] from local_list[i]
31: return e
32: function ExecuteEvent(e)
33: local_clock[e.node] « e.t
34: Simulate e (update state variables, generate new events, cancel events)
35: for each new event new_e generated by e do
36: InsertEvent(new_e, e.node) > Insert into the local list
37: function InsertEvent(new_e, node)
38: for k « 0; k < local_list[node].size; k «— k + 1 do
39: if Before(new_e,local_list[node][k]) then
40: Insert new_e to position k in local_list[node]
41: return
42: end if

43: Append new_e to the end of local_list[node]

Note that because of the uncertain delay, the timestamp order of packet arrival events to node i may
not be the same as the order that they are generated at source node j. To achieve the non-decreasing
arrival condition, a newly generated packet arrival event is first inserted into local_list[j] of source
node j (line 36). When this event becomes the local earliest event in local_list[j], it is moved to
local_list[i] of destination node i (line 16).
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Fig. 5. One possible branch of the modified NS-3 with Pseudocode 8 for a simulation with three nodes. Sup-
pose that in local_list[0] of node 0, event ey is an arrival event from neighbor node 1, and in local_list[2] of
node 2, event ep3 is an arrival event from neighbor node 1. All four events can be executed without comparing
the events between local_list[0] and local_list[2].

However, deadlock may occur in LocalSynchronization, which happens when each node is wait-
ing for a packet arrival event from one or more of its neighbors. In this case, LocalSynchronization
could not find any safe event and returns null. The deadlock can be recovered in two general ways:
global recovery using global time information of all the nodes and local recovery using the local
time information of the neighboring nodes. However, a limitation of local recovery (e.g., the null
message method [20]) is the time-creeping problem, where the local clock of each node advances
iteratively but slowly when comparing with the timestamps of its events, and leads to multiple un-
necessary timestamp comparisons. Thus, we choose global recovery as explained in the following.

Function GlobalDeadlockRecovery finds the globally earliest event in case of the deadlock.
Specifically, if the local earliest event local_list[i][0] of node i happens before the local earliest
events at every other node, it is the globally earliest event and is a safe event. As explained before,
we do not use the lookahead information when determining whether local_list[i][0] is safe or not.

Finally, function ExecuteEvent updates the local clock of node e.node, updates related state
variables, and inserts any newly generated events to its local event list using function InsertEvent.

Figure 5(a) shows a possible branch of the modified NS-3 with Pseudocode 8 for a simulation
with a network topology shown in Figure 5(b). There are three nodes and thus three local_list[]
instead of one global list. Suppose that in local_list[0] of node 0, event e, is an arrival event
from node 1 that is the only neighbor of node 0. Because local_list[0] contains at least one arrival
event from each neighbor of node 0, its local earliest event e, is considered safe by function
LocalSynchronization. Also suppose that in local_list[2] of node 2, event ey3 is an arrival event
from node 1 that is the only neighbor of node 2. Because local_list[2] contains at least one arrival
event from each neighbor of node 2, its local earliest event e,; is considered safe by function
LocalSynchronization. It does not matter whether function LocalSynchronization returns e, or
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ep1 as both are safe. The branch in Figure 5(a) returns e,. As illustrated in Figure 5, the modified
NS-3 with Pseudocode 8 finally executes all four events of nodes 0 and 2 without comparing the
events between nodes 0 and 2. This is why our modified NS-3 is more efficient than the original
NS-3. In general simulations, function LocalSynchronization sometimes may not find any safe
event and then returns null. Then, function GlobalDeadlockRecovery compares the timestamps
of the local earliest events of different nodes to find the globally earliest one.

4.4.5 Correctness. We prove the correctness of the modified NS-3 with Pseudocode 8 by proving
that the events returned by LocalSynchronization and DeadlockRecovery are safe. In other words,
they do not violate the causal constraints and thus do not change the simulation results.

THEOREM 9. The event e returned by function LocalSynchronization is a safe event.

Proor. We prove that there does not exist any event e’ in local_list such that ¢’ — e. Let i
denote the node of event e. In other words, e = local_list[i][0].

First, let us consider all the events at node i. Because e = local_list[i][0], e has the earliest times-
tamp among all the events in local_list[i]. Thus, there does not exist any event e’ in local_list[i]
such that e’ — e.

Second, let us consider all the events on other node j # i. Because local_list[i] contains at least
one arrival event from each neighbor and the non-decreasing arrival condition is met, there does
not exist any event e’ in local_list[j] such that e’ — e. O

THEOREM 10. The event e returned by function DeadlockRecovery is a safe event.

Proor. Let i denote the node of event e. In other words, e = local_list[i][0]. Because e happens
before the local earliest event at every other node j (line 25), e is the globally earliest event in
local _list and is safe. |

4.4.6  Efficiency. We consider two extreme cases of the modified NS-3 with Pseudocode 8. The
first case is the best case when LocalSynchronization never returns null. In other words, deadlock
never occurs. The second case is the worst case when LocalSynchronization always returns null.
In other words, deadlock always occurs. We prove that in both cases, the modified NS-3 with
Pseudocode 8 generates no more branches than the original NS-3 (i.e., Pseudocodes 1 and 3)

THEOREM 11. In the best case, the modified NS-3 with Pseudocode 8 is more efficient than the
original NS-3 (i.e., Pseudocodes 1 and 3).

Proor. In the best case, the modified NS-3 only compares an event e with other events at the
same node (line 36) when e is generated, or compares it with other events at the destination node
(line 16) if e is a packet arrival event. Thus, the modified NS-3 does not have any unnecessary
comparisons of events on different nodes as the original NS-3. O

THEOREM 12. In the worst case, the modified NS-3 with Pseudocode 8 has the same efficiency as the
original NS-3 (i.e., Pseudocodes 1 and 3).

Proor. In the worst case, the modified NS-3 compares the events on different nodes (lines 25
and 16) and the same node (line 36) using relation Be fore. The original NS-3 maintains only a
single global event list and thus also compares the events on different nodes and same node. As
a result, the modified NS-3 and original NS-3 might have different total numbers of comparisons,
but they have the same number of comparisons of overlapping timestamps. ]
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Overall, the number of branches generated by the modified NS-3 is in the order of the number
of different partial orders of the events with respect to relation — in the best case, and is in the
order of the number of different total orders of the events with respect to relation Be fore in the
worst case that is the same as the original NS-3.

To have a better understanding of the impact of our proposed techniques for the independent
events, let us consider a simplified simulation example based on Figure 5. Suppose that when events
ep0 and ey are executed, each generates Ny new events. To simplify the analysis, we assume that
all these 2 X Npey, events have the same timestamp intervals and all happen before pending events
ep2 and ep3. The original NS-3 inserts and compares all these 2 X Ny, new events into the global
list, and thus finally generates a total of (2 X Npey)! branches (i.e., all possible total orders of these
events with respect to relation Be fore ). The modified NS-3 with our proposed techniques inserts
and compares the Npey events generated by e into local_[ist[0] of node 0 and the Ny, events
generated by ey into local_list[2] of node 2. Thus, the modified NS-3 finally generates a total of
Npew! X Npew! branches (i.e., all possible partial orders of these events with respect to relation —).

5 EVALUATION

We evaluate the efficiency of our proposed techniques using NS-3 with various protocols and net-
work topologies.

5.1 Simulation Setup

Table 1 lists all the testing methods to evaluate in this section. First, the brute force testing method
directly and repeatedly runs the original NS-3 for each delay vector in the delay space (referred
to as Brute). Second, the original SEIB method uses S?E to execute the original NS-3 with sym-
bolic delay variables (referred to as Original). Third, all our proposed techniques including the
technique for simultaneous events (referred to as S), the technique for the conditional ineffective
events that might happen after the end of a simulation (referred to as C.), the technique for the
conditional ineffective events that are cancelled timeout events (referred to as C.), the technique
for the conditional ineffective events that are outstanding or cancelled timeout events (referred
to as Cy), the technique for all the conditional ineffective events (referred to as C), and the tech-
nique for the independent events (referred to as I) use S?E to execute modified NS-3 with symbolic
delay variables. Fourth, we have different combinations of techniques S, C, and I. For example,
SCI means that all three techniques are used. Fifth, we also use S?E to execute NS-3 using the
parallel simulation methods. NS-3 itself supports both sequential and parallel simulation methods.
However, we find that the parallel simulation methods of NS-3 do not work under S°E because
the communication messages sent by their synchronization mechanisms do not support symbolic
variables. Therefore, we have implemented two popular parallel simulation methods [20] using
shared variables instead of communication messages for synchronization: the global safe window
method (referred to as technique P,) and the null message method (referred to as technique Pp).
The source code of all our proposed techniques is available on GitHub.!

We run each testing method for each experiment for at most 24 hours on virtual machines
configured with a 2.3-GHz four-core processor, 64 GB of RAM, and Ubuntu 14.04. The simulation
scripts used in the experiments are selected from the examples provided in the NS-3. We select
the following three examples, simple-error-model.cc, tcp-bulk-send.cc, and rip-simple-network.cc,
corresponding to the three most important Internet protocols, UDP, TCP, and IP, respectively. We
keep all the network topologies and parameter settings in the original simulation scripts, and we

Thttps://github.com/minhvu2/ns3-symbolic.
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Table 1. Testing Methods to Evaluate

Method |NS-3 Functions Symbolic|Description
Variables
Brute |Original (Pseudocodes 1 and 3) No |Brute force testing method
Original|Original (Pseudocodes 1 and 3) yes  |Original SEIB
S |Modified with Pseudocode 4 yes  |SEIB + technique for simultaneous events
C. |Modified with Pseudocode 5 yes  |SEIB + technique for events that might happen
after the end of a simulation
C. |Modified with Pseudocode 6 Yes |SEIB + technique for cancelled timeout events
Coc  |Modified with Pseudocode 7 Yes  |SEIB + technique for both outstanding
(contains Pseudocode 6) and cancelled timeout events
C Modified with Pseudocodes 5 and 7 Yes |Ce + Coc (i.e., all conditional ineffective events)
I Modified with Pseudocode 8 Yes |SEIB + technique for independent events

SC  |Modified with Pseudocodes 4, 5, and 7 Yes [S+C

SCI [Modified with Pseudocode 4, 5, 7, and 8 Yes S+C+1
SCP, |Modified with Pseudocode 4, 5, and 7, Yes |S + C + Global safe window
and global safe window [20]
SCP,, |Modified with Pseudocodes 4, 5, and 7, Yes S + C + Null message
and null message [20]

Node 0
[ Node 0 | Node 3
Node 1

Fig. 6. Network topology of the UDP experiments.

add uncertain packet delay to a group of selected packets. Please refer to the source code of these
scripts for detailed parameters, which will not be specified in the article.

5.2 UDP Experiments: Multiple Nodes

This group of experiments use the simple-error-model.cc of NS-3, which simulates a total of four
nodes as shown in Figure 6 that generate a total of about 2,000 packets. Node 0 continuously sends
UDP packets to node 2, and node 3 continuously sends UDP packets to node 1. We introduce
uncertain delays for the last n = 1, 2, 3,4 packets from node 0 to node 2. Each of these n packets
has an uncertain delay in D = [1, 1,024] ms with a millisecond resolution, and all other packets
still have their delays specified in the script. The uncertain delay range D is chosen to reflect the
range of most packet delays in the Internet [32].

Figure 7 shows the number of branches generated by methods Brute, Original, and SCI, and Fig-
ure 8 shows their total testing times. For Brute, the number of branches is the number of individual
NS-3 simulations. For example, with n = 1, Brute runs 1,024 simulations and takes 25 minutes. We
can see that Original has several orders of magnitude fewer branches and shorter testing times than
Brute. For example, with n = 2, Brute needs to run about 10® simulations and could not finish in 24
hours, whereas Original takes only 7 minutes. We can also see that SCI has even several orders of
magnitude fewer branches and shorter testing times than Original. For example, with n = 4, Original
could not finish in 24 hours, whereas SCI takes only 94 minutes.

To understand the efficiency of each technique, Table 2 shows the number of branches generated
by each technique and different combinations. The symbol O means that the test could not finish in
24 hours. We can see that all our techniques are more efficient than Original. Especially, technique
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experiments.

Table 2. Number of Branches of the UDP Experiments

n=1 n=2 n=3 n=4
Original 11 215 6,013 O
S 8 109 2,098 @)
C 8 130 3,184 O

I 5 41 677 13,591

SC 5 53 858 18,677

SCI 4 30 337 5,065
SCP, 15 310 9,179 O
SCP, 260 O O O

I is more efficient than techniques S and C in the UDP experiments, because there are four nodes
and thus a large number of independent events on different nodes.

By comparing the results of SCI with SCP, and SCP,, in Table 2, we can also see that our tech-
nique I has several orders of magnitude fewer branches than the two popular parallel simulation
methods P, and P,. This is because they are designed for speeding up parallel simulation and have
a large number of comparisons of timestamps.

5.3 TCP Experiments: Timeout Events

This group of experiments use the tcp-bulk-send.cc of NS-3, which simulates two nodes connected
over a link, and simulates a TCP connection over the link that generates a total of about 1,500
packets. We introduce uncertain delays for the last three data packets. Each of these three packets
has an uncertain delay in D = [1,d™**] ms with a millisecond resolution, and all other packets
still have the delays specified in the script. We vary the maximum uncertain delay d"%* from 4 to
16,384 ms, which is chosen to be longer than most of the possible TCP timeout periods [38].

Figure 9 shows the number of branches generated by different testing methods. We can see that
all our techniques are more efficient than Original. Technique C is more efficient than techniques S
and I. This is because there are a large number of TCP outstanding timeout events, most of which
are cancelled by ACK and then become ineffective events. Again we see that SCI is several orders
of magnitude more efficient than Original.
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Fig. 9. Number of branches in the TCP experiments.
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Fig. 10. Number of branches in the TCP experiment by different techniques for conditional ineffective events.

Figure 10 shows the number of branches generated by different testing methods for the con-
ditional ineffective events. Most outstanding TCP timeouts are cancelled in the simulations, and
therefore there are a large number of cancelled timeout events in the simulations. As a result,
techniques C,, Cy¢, and C that eliminate some or all unnecessary comparisons of outstanding and
cancelled timeout events are more efficient than technique C, that only eliminates unnecessary
comparisons of the beyond-the-end events.

Note that although we introduce uncertain delay to only three packets in this group of experi-
ments, there are already a large number of branches, especially for Original (i.e., the original SEIB)
as shown in Figure 9. This is because the uncertain delay of a packet has an impact not only on the
packet itself but also on all the following events triggered by the packet. For example, the uncertain
delay of a TCP data packet also affects the transmission event and arrival event of the ACK packet
triggered by the data packet, and affects the simulation clock, the calculated round-trip time, the
calculated timeout period, and then the following retransmission timeout events.

5.4 IP Routing Experiments: A Use Case

This group of experiments demonstrates a use case of our proposed techniques, where we check the
behavior and evaluate the worst-case performance of a routing protocol under uncertain events.
We use the rip-simple-network.cc of NS-3, which simulates a total of six nodes including four
routers interconnected over a network shown in Figure 11. The routers communicate with one
another to run the RIP routing protocols. A total of about 100 IP packets are generated in the
simulation. The link between routers B and D is broken at 40 seconds. All the packets from routers
C to A after 40 seconds have uncertain delays in D = [1,d™*] ms, and all other packets still
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Fig. 11. Network topology of the IP routing experiments.
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Fig. 12. Testing time of the IP routing experiments. Fig. 13. Longest update time of the routing tables
in the IP experiments.

have the delays specified in the script. We vary the maximum uncertain delay d”** from 2,048 to
16,384 ms.

First, if the routing protocol works correctly, all the routing tables will be correctly updated.
Figure 12 shows the testing times for Original and SCI. After the test, every Original branch and
every SCI branch report that all the routing tables have been correctly updated. In other words,
the routing protocol works correctly under all possible cases of these uncertain events.

Second, for each d™**, we measure the longest time for correctly updating all routing tables
among all possible cases of these uncertain events. Figure 13 shows the results of Original and
SCI. We can see that Original and SCI report the same result. This is expected and implies that SCI
generates the same simulation result as Original. Overall, we can see that SCI can be used to test
the behavior and evaluate the worst-case performance of a network protocol under all possible
cases of these uncertain events, and it takes significantly shorter time than Original as shown
in Figure 12.

5.5 Performance Overhead in Concrete Executions

The experiments in the previous sections show the significant performance improvement of our
proposed techniques in symbolic executions (i.e., SEIB), and the experiments in this section eval-
uate the performance of our proposed techniques in concrete executions (i.e., normal executions).
If our proposed techniques do not introduce any performance overhead in concrete executions, it
is more likely to be integrated into NS-3 and to be potentially used by both concrete executions
and symbolic executions. We conduct two groups of experiments similar to the previous UDP and
TCP experiments to measure the potential performance overhead for different network topologies
and different network protocols.

The group of UDP experiments still uses the simple-error-model.cc of NS-3. Different from the
UDP experiments in Section 5.2, this group of experiments runs all the methods in concrete exe-
cutions, including the original NS-3 (still referred to as Original) and the modified NS-3 with our
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proposed techniques (still referred to as S, C, I, and SCI). The UDP experiments in Section 5.2
obtain the results for all these methods for up to three packets (see Table 2) with uncertain de-
lays in D = [1,1024] ms, and thus accordingly this group of experiments varies the concrete
delays of the same three packets from 1, to 4, 16, 64, 256, and 1,024 ms. We repeat the simula-
tion for each delay and each method for 100 times, and report the average simulation time. Fig-
ure 14 shows the measured average simulation times. We can see that there is only minor differ-
ence between the simulation times of Original and all our proposed techniques. In other words,
our proposed techniques do not introduce any major performance overhead into the concrete
executions.

The group of TCP experiments still uses the tcp-bulk-send.cc of NS-3. Different from the TCP
experiments in Section 5.3, this group of experiments runs all the methods in concrete executions,
including Original, S, C, I, SCI, and these techniques for conditional ineffective events: C, C., and
Coc- This group of experiments varies the concrete delays of the same three packets as the TCP
experiments in Section 5.3 from 4 to 16,384 ms. We repeat the simulation for each delay and each
method for 100 times, and report the average simulation time. Figures 15 and 16 show the measured
average simulation times. We can see that there is only minor difference between the simulation
times of Original and all our proposed techniques. In other words, our proposed techniques do not
introduce any major performance overhead into the concrete executions.

Compared with the experimental results in the previous sections, we can see that our proposed
techniques make only minor impact on the simulation time of NS-3 in each concrete execution
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(e.g., Figures 14, 15, and 16) but make a significant impact on the total testing time of NS-3 in
symbolic execution (e.g., Table 2, and Figures 9 and 10). Intuitively, this is because a comparison
eliminated by our techniques has a linear impact on concrete execution but a multiplicative impact
on symbolic execution. For example, let us consider a simulation with a total of N¢y, independent
comparisons of timestamps. To simplify our discussion, we assume that the simulation time of
each concrete execution is proportional to the number of comparisons, and the total testing time
of symbolic execution is proportional to the number of branches. With the original NS-3, the sim-
ulation time of each concrete execution is proportional to Nemp, and the total testing of symbolic
execution (i.e., SEIB) is proportional to 2Vew_ If a proposed technique eliminates Nej; out of Nemp
comparisons, the simulation time of the modified NS-3 in each concrete execution is proportional
to Nemp — Neij, and the total testing time of the modified NS-3 in symbolic execution is proportional
to 2Nemp=Neii Tn other words, a proposed technique has a linear impact on each concrete execution
(i.e., from Nemp to Nemp — Neij) and has a multiplicative impact on symbolic execution (i.e., from
2Nemp to 2Nemp=Neil) When Ny is much smaller than Nemp (e.g., few packets with uncertain delays in
our experiments), a proposed technique has a minor impact on concrete execution but a significant
impact on symbolic execution.

6 DISCUSSIONS

Are the proposed techniques specific to NS-3? We describe our proposed techniques using NS-3 [31]
as an example because it is the most popular open source discrete-event network simulator. The
general ideas of the three proposed techniques are not specific to NS-3, although the implemen-
tations (e.g., the pseudocode) are specific to NS-3. All three types of unnecessary comparisons
discussed in the article are common in many discrete-event network simulators, such as another
popular network simulator OMNeT++ [48], because these unnecessary comparisons greatly sim-
plify the simulators and yet do not significantly affect the simulation performance of concrete
executions. In other words, the general ideas of our proposed techniques can be applied to many
other discrete-event network simulators.

What is the prevalence of the three types of events in general network simulations? It is hard to
accurately measure the prevalence of the three types of events in general network simulations,
so we intuitively explain when and why they are common in SEIB. First, simultaneous events
are common in simulations with any number of nodes and any network protocol. As long as the
timestamp intervals of two events overlap (note that not necessarily the same), they are likely to
happen at the same time. Second, there are two types of conditional ineffective events: the events
that might happen after the end of a simulation and the timeout events, both of which depend on
the specific simulation. For example, if a simulation simulates TCP, then it always maintains an
outstanding timeout event and potentially multiple cancelled timeout events for each TCP flow. If
a simulation simulates only UDP, then it does not have any timeout events. Third, independent
events are common for simulations with multiple nodes, especially among the nodes that are not
neighbors.

Is SEIB scalable to a large number of packets with uncertain delays? SEIB and the proposed tech-
niques are designed to systematically test network protocols for a small number of packets with
uncertain delays and for a small number of nodes. This is based on the traditional “small scope
hypothesis” [1, 25] in software testing stating that a high proportion of bugs can be detected by
systematically testing a program for all possible input values in a small scope, and it is based on
similar findings in network systems [29, 51, 52] in which a high proportion of bugs can be detected
by systematically testing a small number of packets or nodes. Nevertheless, SEIB and our proposed
techniques can be combined with other types of testing methods, such as random testing as in our
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previous works [47, 50], to test network protocols with a large number of uncertain packets and/or
a large number of nodes.

What are the differences between SEIB and current simulation-based performance evaluations of
network protocols? SEIB and the proposed techniques are different from and complementary to
the simulation-based performance evaluations. The former is used to systematically test network
protocols with a small number of uncertain packets and a small number of nodes for correctness
testing or worse-case performance evaluation, whereas the latter is used to evaluate the normal
case or special case performance of network protocols with a large number of packets and/or a
large number of nodes.

7 RELATED WORK

Network protocols have been tested in network environments with two general types of sym-
bolic variables: (1) networks where packets have symbolic delays or loss, such as in KleeNET [37],
SymTime [18, 35], SPD [45, 46], and Chiron [24]; (2) networks where packets have symbolic head-
ers, such as in DiCE [11], SymbexNet [41], NICE [12], SOFT [29], Chiron [24], BUZZ [19], Sym-
Net [43, 44], PIC [33], and MAX [27]. Different from the preceding works that model specific and
simple network environments, our work considers general and various network environments
built upon NS-3.

There are other efforts to extend network simulators for testing purpose. The J-Sim [40] network
simulator is extended for model checking, and VeriSim [5] extends NS-2 for formal trace analysis.
Different from these works, our work extends NS-3 for symbolic execution.

There is a large body of works to improve the efficiency of symbolic execution engines, such as
compositional symbolic execution [17, 21], redundant path elimination [6, 7], path prioritization
using static analysis information [3, 8], path merging [2, 23, 28, 39], state mapping methods [35, 36],
and combination with random testing [15, 22, 42]. These methods are complementary to and can
be used together with our proposed techniques.

8 CONCLUSION

In this article, for the first time, we apply SEIB to a large general network simulator NS-3 and
propose three techniques to modify NS-3 to significantly improve the efficiency of SEIB. The
efficiency of our proposed techniques depends on the simulated network protocols and topologies.
For example, technique I is more efficient for simulations with multiple nodes, and technique
C is more efficient for simulations with a large number of cancelled timeout events as in TCP
simulations. In this work, we introduce only symbolic packet delays to NS-3 to efficiently test
network protocols with temporal uncertain events. In the future, we plan to introduce symbolic
packet headers to NS-3 to efficiently test network protocols with uncertain packet headers.
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