
Symbolic ns-3 for Efficient Exhaustive Testing: Design,
Implementation, and Simulations

Jianfei Shao
University of Nebraska-Lincoln

Lincoln, Nebraska, USA
jianfei.shao@huskers.unl.edu

Minh Vu
University of Nebraska-Lincoln

Lincoln, Nebraska, USA
minh.vu@huskers.unl.edu

Mingrui Zhang
University of Nebraska-Lincoln

Lincoln, Nebraska, USA
mzhang23@huskers.unl.edu

Asmita Jayswal
University of Nebraska-Lincoln

Lincoln, Nebraska, USA
asmita.jayswal@huskers.unl.edu

Lisong Xu
University of Nebraska-Lincoln

Lincoln, Nebraska, USA
xu@unl.edu

ABSTRACT
Exhaustive testing is an important type of simulation, where a user
exhaustively simulates a protocol for all possible cases with respect
to some uncertain factors, such as all possible packet delays or head-
ers. It is useful for completely evaluating the protocol performance,
finding the worst-case performance, and detecting possible design
or implementation bugs of a protocol. It is, however, time consum-
ing to use the brute force method with current ns-3 for exhaustive
testing. In this paper, we present our work on sym-ns-3 for more
efficient exhaustive testing, which leverages a powerful program
analysis technique called symbolic execution. Intuitively, sym-ns-3
groups all the cases leading to the same simulator execution path
together as an equivalence class, and simulates a protocol only
once for each equivalence class. We present our design choices and
implementation details on how we extend ns-3 to support symbolic
execution, and also present several exhaustive testing results to
demonstrate the significantly improved testing speeds of sym-ns-3
over current ns-3.

CCS CONCEPTS
• Networks→ Network simulations.

KEYWORDS
Exhaustive testing, Symbolic execution, Packet dynamic and se-
mantics

ACM Reference Format:
Jianfei Shao, Minh Vu, Mingrui Zhang, Asmita Jayswal, and Lisong Xu. 2022.
Symbolic ns-3 for Efficient Exhaustive Testing: Design, Implementation,
and Simulations. In Proceedings of the WNS3 2022 (WNS3 2022), June 22–
23, 2022, Virtual Event, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3532577.3532604

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WNS3 2022, June 22–23, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9651-6/22/06. . . $15.00
https://doi.org/10.1145/3532577.3532604

1 INTRODUCTION
ns-3 [14] is a popular network simulator that has been widely used
in the networking community. It is usually used to evaluate the
normal-case or special-case performance of a network protocol,
where a user simulates the protocol for some normal or special
cases. In this paper, we consider an important type of simulation
(referred to as exhaustive testing hereinafter), where a user exhaus-
tively simulates a protocol for all possible cases with respect to
some uncertain factors, such as all possible packet delays or headers.
Exhaustive testing is useful for completely evaluating the perfor-
mance of a protocol for all possible cases, finding the worst-case
performance of a protocol, and for detecting possible design or
implementation bugs of a protocol as many bugs happen only in
corner cases.

It is, however, time consuming to use the current ns-3 for ex-
haustive testing, because a user needs to enumerate and simulate
a protocol for each possible case (referred to as the brute force
method). Let’s consider a simple motivating example, where we
need to exhaustively test a protocol in the network shown in Fig-
ure 1, where the propagation delay di of link i = 0, 1 could be any
value of between 1 ms and 1000 ms with a resolution of 1 ms. Thus,
the test space (d0,d1) contains a total of 103 × 103 = 106 possible
testing cases. The brute force method runs ns-3 to enumerate and
individually simulate each of the 106 cases in the test space, and
thus takes a long time. The details can be found in Section 2.

In this paper, we present our work on Symbolic ns-3 (sym-ns-3
for short), which extends ns-3 to support the symbolic execution
method [3, 11] that is a powerful and popular program analysis
technique widely used in the software testing and verification com-
munity. Intuitively, the symbolic execution method divides the
test space (d0,d1) into equivalence classes, each equivalence class
containing all the cases leading to the same simulator execution
path. The symbolic execution method simulates all the cases in an
equivalence class together instead of individually as the brute force
method. By doing so, the symbolic execution method can more
efficiently exhaustively test the same test space (d0,d1) than the
brute force method. The details can also be found in Section 2.

Symbolic execution has been used to test network protocols.
KleeNET [16], SymTime [7], SPD [20], and Chiron [9] test net-
work protocols with symbolic packet delays or loss. DiCE [4],

49

https://doi.org/10.1145/3532577.3532604
https://doi.org/10.1145/3532577.3532604
https://doi.org/10.1145/3532577.3532604

WNS3 2022, June 22–23, 2022, Virtual Event, USA Jianfei Shao, Minh Vu, Mingrui Zhang, Asmita Jayswal, and Lisong Xu

node 0 node 1 node 2
link 0 link 1

delay d0 delay d1

Figure 1: Network Topology of the Motivating Example

SymbexNet [18], NICE [5], SOFT [13], Chiron [9], BUZZ [8], Sym-
Net [19], PIC [15], and MAX [12] test network protocols with sym-
bolic packet headers. Different from these works that consider only
simple and specific network environments, sym-ns-3 attempts to
support general network environments by leveraging ns-3.

We make the following contributions in this paper: 1) Symbolic
variable management: We present our design choices and imple-
mentation of symbolic variables in sym-ns-3 that are the foundation
of symbolic execution. A symbolic variable takes a set of values
instead of a single value as a normal variable. We have explored
multiple different ways to introduce symbolic variables to sym-ns-3
so that sym-ns-3 users can easily manage symbolic variables and
sym-ns-3 developers can easily maintain and upgrade sym-ns-3.

2) More efficient packet semantics testing: There are two types of
exhaustive testing: 1) packet dynamic testing: checking a protocol
with all possible packet dynamics (e.g., delays), 2) packet seman-
tics testing: checking a protocol for all possible packet header and
payload semantics. We have already presented several techniques
to further improve the testing speed of sym-ns-3 for packet dy-
namic testing in our previous work [21], and we present several
techniques to further improve the testing speed of sym-ns-3 for
packet semantics testing in this paper.

3) Simulations: We present several exhaustive testing simulations
to demonstrate how to use sym-ns-3 and the significantly improved
testing speeds of the symbolic execution method using sym-ns-3
compared to the brute force method using current ns-3.

2 MOTIVATING EXAMPLE
In this section, we present a simple exhaustive testing example to
illustrate the difference between the brute force method of current
ns-3 and the symbolic execution method of our proposed sym-ns-3.

2.1 An Exhaustive Testing Problem
Let’s consider a network shown in Figure 1, where three nodes
are connected by two point-to-point links. Nodes 0 and 2 each
simultaneously sends a UDP packet to node 1. The propagation
delay di of link i = 0, 1 could be any value between 1 ms and 1000
ms. An exhaustive testing problem is to find the range of all possible
diff among a total of 106 testing cases (i.e., combinations) of d0 and
d1, where diff is the arrival time difference at node 1 between the
packets from node 0 and node 2.

In order to make it easier for the readers to understand, this
exhaustive testing problem is very simple as we can manually infer
that the range of diff should be [-999, 999] ms. More realistic and
complicated examples are demonstrated in Section 6.

2.2 Brute Force using Current ns-3
To find the range of diff using the brute force method with the cur-
rent ns-3, we write shell script repeatCurrentDemo.sh as shown
in Code 1 to enumerate all possible 106 cases of d0 and d1, and run
an ns-3 simulation for each case.

Code 1: Shell Script repeatCurrentDemo.sh to Enumerate
All Possible Cases
1 #!/bin/bash

2 for delay0 in {1..1000}

3 do

4 for delay1 in {1..1000}

5 do

6 ./waf --run "currentDemo␣--d0=$delay0␣--d1=$delay1"

7 done

8 done

We also write ns-3 script currentDemo.cc as shown in Code 2
to simulate the network according to the link delays specified in
the arguments. To simplify the example, we calculate diff directly
in this script instead of modifying file udp-server.cc or creating
a trace sink to measure the packet arrival times at the receiver and
then calculate diff.

Code 2: ns-3 Script currentDemo.cc to Simulate Each Case
1 ... // Other setup code

2 p2p [0]. SetChannelAttribute("Delay",TimeValue(Time(d0)));

3 p2p [1]. SetChannelAttribute("Delay",TimeValue(Time(d1)));

4 ... // Simulation execution

5 Time diff = Time(d0)-Time(d1);

6 std::cout <<"diff␣is␣"<<diff <<std::endl;

It takes about a half second to run a single case and thus a total
of about six days to run all the cases. The total reported range of
diff is [-999, 999] ms.

2.3 Symbolic Execution using sym-ns-3
To find the range of diff using the symbolic execution method with
our sym-ns-3, we write only one script symDemo.cc as shown in
Code 3 to simulate the network with two symbolic link delays,
each in the range of [1, 1000] ms. Also, to simplify the example, we
calculate diff directly in the script.

Code 3: sym-ns-3 Script symDemo.cc
1 ... // Other setup code

2 Ptr <Symbolic > sym0 = CreateObject <Symbolic >();

3 sym0 ->SetMinMax(1, 1000);

4 uint32_t d0 = sym0 ->GetSymbolicUintValue ();

5 Ptr <Symbolic > sym1 = CreateObject <Symbolic >();

6 sym1 ->SetMinMax(1, 1000);

7 uint32_t d1 = sym1 ->GetSymbolicUintValue ();

8 p2p [0]. SetChannelAttribute("Delay",TimeValue(Time(d0)));

9 p2p [1]. SetChannelAttribute("Delay",TimeValue(Time(d1)));

10 ... // Simulation execution

11 Symbolic diff=sym0 -sym1;

12 diff.PrintRange("diff");

It takes a total of about a minute to execute the code using a
symbolic execution engine, which is several orders of magnitude
faster than the brute force method. The total reported range of diff
is also [-999, 999] ms, the same as the range reported by the brute
force method.

3 OVERVIEW
3.1 Architecture of sym-ns-3
Figure 2 illustrates the different architectures of the brute force
method with current ns-3 and the symbolic execution method with
sym-ns-3. Different from the brute force method that directly exe-
cutes ns-3, the symbolic execution method uses symbolic execution
platform S2E [6] to symbolically execute sym-ns-3 in virtual ma-
chines. The reason that we choose S2E is that it supports virtual

50

Symbolic ns-3 for Efficient Exhaustive Testing: Design, Implementation, and Simulations WNS3 2022, June 22–23, 2022, Virtual Event, USA

sym-ns-3 Simulator

Symbolic execution platform

Guest operating system

Host operating system

ns-3

Operating system

a) brute force method

with current ns-3

b) symbolic execution method

with sym-ns-3

Figure 2: Architectures of the Brute Force and Symbolic Ex-
ecution Methods

machine symbolic execution and thus is easier to symbolically
execute big software systems, such as ns-3, involving multiple lan-
guages, multiple dependent packages, and heavy operating system
interactions. Specifically, S2E emulates the virtual machines using
the QEMU machine emulator [1] and conducts symbolic execution
using the KLEE symbolic execution engine [2]. Different from the
brute force method where each variable can take only a value at a
time, the symbolic execution method introduces symbolic variables,
each of which can take a set of values described by a group of
constraints.

3.2 Symbolic Execution
We use the C-like pseudocode shown in Code 4 as an example
to explain how S2E works. S2E initially runs the code on a single
virtual machine. Lines 1 and 2 define two symbolic variables d0
and d1 with the same initial constraints, and thus each of them
initially takes a set of values in the range of 1 and 1000. When
S2E reaches an if statement involving symbolic variables, such as
lines 3 and 5, it calls a constraint solver to determine which branch
is feasible. If both branches are feasible, it conceptually forks the
current virtual machine into two virtual machines (called branches)
using lightweight snapshots and backtracking. For example, when
the if statement at line 3 is executed, S2E forks the current virtual
machine into two virtual machines, where the true branch continues
to line 4 with additional constraint d0 > d1 and the false branch
continues to line 5 with additional constraint d0 <= d1. Similarly
for the if statement at line 5.

Code 4: An Example for Symbolic Execution
1 sym 1<= d0 <= 1000

2 sym 1<= d1 <= 1000

3 if (d0 > d1){

4 ... // simulate accordingly

5 }else if (d0==d1){

6 ... // simulate accordingly

7 }else{

8 ... // simulate accordingly

9 }

10 diff = d0 - d1;

Finally, S2E stops with three branches as illustrated in Figure 3,
where the final constraints for each branch are also listed. Using
these final constraints, S2E can then calculate the possible range of
variable diff defined in line 10. Specifically, the range of diff is [1,
999] ms for branch 1, [0, 0] ms for branch 2, and [-999, -1] ms for

line 3: d0 > d1

line 5: d0 == d1

initial constraints

line 1: 1<= d0 <= 1000

line 2: 1<= d1 <= 1000

final constraints

line 1: 1<= d0 <= 1000

line 2: 1<= d1 <= 1000

line 3: d0 > d1 final constraints

line 1: 1<= d0 <= 1000

line 2: 1<= d1 <= 1000

line 3: d0 <= d1

line 5: d0 == d1

final constraints

line 1: 1<= d0 <= 1000

line 2: 1<= d1 <= 1000

line 3: d0 <= d1

line 5: d0 != d1

add constraint

d0 > d1

TRUE FALSE

add constraint

d0 <= d1

add constraint

d0 == d1

TRUE

add constraint

d0 != d1

FALSE

Branch 1

Branch 2 Branch 3

Figure 3: Three Branches Generated during the Symbolic Ex-
ecution of Code 4

branch 3. The total range of diff is the union of these ranges and
thus is [-999, 999] ms.

Symbolic execution consumes more CPU and memory resources
than normal execution. For example, for the motivating example in
Section 2, the symbolic execution method using sym-ns-3 consumes
a total of about 2 GBytes ofmemory, whereas the brute forcemethod
using current ns-3 consumes only about 200 MBytes of memory.

3.3 Design Goals
sym-ns-3 is designed with the following design goals.

(1) Easy to use: It is easy for current ns-3 users to use sym-ns-3
for exhaustive testing. Specifically, a sym-ns-3 user writes a
sym-ns-3 testing script in a way very similar to an ns-3 user
writing an ns-3 testing script.

(2) Easy to develop: It is easy for sym-ns-3 developers to maintain
and upgrade sym-ns-3. Specifically, sym-ns-3 makes as little
change as possible to current ns-3, especially, to existing
ns-3 modules.

(3) Efficient: It is more efficient to conduct exhaustive testing
using sym-ns-3 than current ns-3. Although symbolic execu-
tion already makes sym-ns-3 more efficient for exhaustive
testing than brute force with current ns-3, we propose several
techniques to further improve the efficiency of sym-ns-3.

4 SYMBOLIC VARIABLE MANAGEMENT
In this section, we describe how to design sym-ns-3 so that a sym-
ns-3 user can easily use symbolic variables (i.e., the first design
goal) and a sym-ns-3 developer can easily develop sym-ns-3 (i.e.,
the second design goal).

4.1 Managing Symbolic Variables
Exhaustive testing simulates a network for all possible cases with
respect to some uncertain factors, which can be tested using sym-
bolic variables in sym-ns-3. For example, the motivating example
simulates a network for all possible link delays d0 and d1, which
are tested using symbolic variables.

There are two different ways to change a normal variable to
a symbolic variable in sym-ns-3. 1) Direct Symbolization: We can

51

WNS3 2022, June 22–23, 2022, Virtual Event, USA Jianfei Shao, Minh Vu, Mingrui Zhang, Asmita Jayswal, and Lisong Xu

use S2E functions to make a normal variable symbolic. For ex-
ample, function s2e_make_symbolic(&x,sizeof(x),"x") makes
variable x a symbolic variable by marking sizeof(x) number of
bytes at address &x symbolic. We can make most basic data types,
such as integers and strings, symbolic, except floating-point data
types because S2E (and KLEE) currently supports limited symbolic
floating-point computation. For an ns-3 class, such as Time, we can
make its data members symbolic. 2) Assignment Symbolization: If a
normal variable y is set to the value of an expression involving a
symbolic variable x, variable y also becomes a symbolic variable.
For example, if symbolic variable x has a symbolic value between
1 and 1000, variable y will have a symbolic value between 2 and
1001 after executing assignment y = x+1. Specifically, S2E marks
variable y symbolic and associates it with symbolic expression x+1.

We need to provide users with the following types of functions to
manage the symbolic variables. 1) Initialization functions: We need
to provide users with functions to set the initial constraint of a sym-
bolic variable. For example, d0 in the motivating example should be
defined as a symbolic variable with an initial constraint of between
1 and 1000 ms. 2) Operation functions: We need to provide users
with functions to operate on symbol variables, such as functions to
perform math operations (e.g., addition, subtraction) of symbolic
variables, and functions to change the type of a symbolic variable
(e.g., change from unsigned to Time). 3) Inquiry functions: Different
from a normal variable that takes a single value, a symbolic variable
takes a set of values described by a group of constraints. Further-
more, the constraints of a symbolic variable may change as the
simulation continues. For example, the three branches in Figure 3
each has a different group of constraints for symbolic variables d0
and d1. Thus, we need to provide functions for users to inquire and
print out the current range of a symbolic variable, such as the max,
min, and sample values.

We have explored three different methods to manage the sym-
bolic variables in sym-ns-3. Below we explain these methods using
the propagation delay of link 0 in the motivating example, which is
a point to point channel PointToPointChannel. Its propagation de-
lay is defined as a Time variable named m_delay. We have explored
three different methods to make m_delay symbolic.

4.2 Method 1: In-module Direct Symbolization
This method directly modifies existing ns-3 modules that are in-
volved in an exhaustive test. For the motivating example, this
method directly modifies PointToPointChannel by adding new
channel attributes and modifying its code accordingly. For example,
Code 5 shows a part of a different script symDemo.cc implemented
using this method. Specifically, we add three new channel attributes
SymbolicMode, DelayMin, and DelayMax. If SymbolicMode is true,
s2e_make_symbolic(&m_delay,sizeof(m_delay) ,"m_delay")
is called to make m_delay symbolic, and then its minimum and
maximum values are set to DelayMin, and DelayMax, respectively.

Code 5: Method 1
1 p2p [0]. SetChannelAttribute("SymbolicMode",BooleanValue(true));

2 p2p [0]. SetChannelAttribute("DelayMin",TimeValue(Time("1ms")));

3 p2p [0]. SetChannelAttribute("DelayMax",TimeValue(Time("1000ms")

));

Weoriginally adopted thismethod at the beginning of our project,
because the advantage of this method is that it can flexibly imple-
ment more module-specific functionalities. For example, instead of
all the packets on the link experiencing the same symbolic delay
m_delay, we can introduce a new attribute to specify that only a
certain type of packets experience the symbolic delay (e.g., only
data packets of a specific TCP flow), and a new attribute to specific
that different packets experience different symbolic delays (e.g., to
introduce packet reordering).

We later explored other methods, because this method has two
disadvantages that make it hard to develop (i.e., the second design
goal). First, this method makes a big change to an ns-3 module,
because we need to modify and add many functions to the ns-3
module in order to add and implement all the new channel attributes
and to implement the initialization, operation, and inquiry functions
to manage the symbolic variables. Second, this method makes big
changes to many ns-3 modules, because we have to modify each ns-
3 module for which we need to add symbolic variables. For example,
if we want to exhaustively test other channels, such as wireless
channels, we need to modify all these channels.

4.3 Method 2: Assignment Symbolization using
New Attributes

Method 2 makes less change to existing ns-3 modules thanmethod 1
by defining and managing symbolic objects using a new class called
Symbolic, which we have developed for sym-ns-3. For example,
Code 6 shows a part of a different script symDemo.cc implemented
using this method. It first creates a symbolic variable symObj0
which is a Symbolic class variable. The Symbolic class implements
all the functions tomanage symbolic variables, such as initialization,
operation, and inquiry functions, so that existing ns-3 modules do
not need to implement these functions as in Method 1. For example,
line 2 sets the initial range of symObj0 using function SetMinMax.

Method 2 still changes PointToPointChannel by adding a new
attribute SymbolicDelay, which takes a pointer value of symObj0
whose value is then assigned to variable m_delay.

Code 6: Method 2
1 Ptr <Symbolic > symObj0 = CreateObject <Symbolic >();

2 symObj0 ->SetMinMax(1, 1000);

3 p2p [0]. SetChannelAttribute ("SymbolicDelay", PointerValue (

symObj0));

The advantage of this method is that it can flexibly implement
the same module-specific functionalities as Method 1 while making
less changes to existing ns-3 modules than Method 1. For exam-
ple, similar to Method 1, instead of all the packets on the link
experiencing the same symbolic delay m_delay, Method 2 can also
introduce a new attribute to specify only a certain type of pack-
ets to experience the symbolic delay (e.g., only TCP data packets).
But different from Method 1, Method 2 does not need to change
PointToPointChannel to implement the initialization, operation,
and inquiry functions to manage symbolic variables.

The disadvantage of this method is that it still makes changes
(although just adding new attributes) to many ns-3 modules, be-
cause we have to modify each ns-3 module for which we need to
add symbolic variables.

52

Symbolic ns-3 for Efficient Exhaustive Testing: Design, Implementation, and Simulations WNS3 2022, June 22–23, 2022, Virtual Event, USA

4.4 Method 3: Assignment Symbolization using
Existing Attributes (Motivating Example)

This method does not modify existing ns-3 modules at all. Because
it does not add any new attributes to an ns-3 module, we have
to use the existing attributes. For example, Code 7 shows a part
of script symDemo.cc implemented using this method, which is
just the one illustrated in the motivating example in Section 2.3.
It first creates the same symbolic variable symObj0 as Method 2.
Then it gets the corresponding symbolic unsigned integer d0 from
symObj0, and then passes d0 to p2p[0] (i.e., link 0) using the exist-
ing PointToPointChannel attribute Delay. Note that variable d0
is also a symbolic variable with the same set of values as symObj0,
as explained in the assignment symbolization in Section 4.1.

Code 7: Method 3
1 Ptr <Symbolic > symObj0 = CreateObject <Symbolic >();

2 symObj0 ->SetMinMax(1, 1000);

3 uint32_t d0 = symObj0 ->GetSymbolicUintValue ();

4 p2p [0]. SetChannelAttribute("Delay",TimeValue(Time(d0)));

The advantage of this method is that it does not make any
changes to the existing ns-3 modules. As a result, it is easy for
sym-ns-3 developers to maintain and upgrade sym-ns-3 (i.e., the
second design goal), and it is easy to apply this method to any
ns-3 modules, in addition to PointToPointChannel used in the
example.

The disadvantage of this method is that it uses only the existing
attributes of ns-3 modules, and thus supports only limited module-
specific functionalities. For example, all the packets on the link
have to experience the same symbolic delay, and we cannot specify
only a certain type of packets to experience the symbolic delay.

4.5 Comparison of the Three Methods
Figure 4 compares the methods to manage symbolic variables.
Method 1 makes the biggest changes to existing ns-3 modules,
whereas Method 3 does not make any changes. On the other side,
Methods 1 and 2 support more module-specific functionalities than
Method 3 that supports only basic functionalities.

While all methods make sym-ns-3 easy to use for current ns-
3 users (i.e., design goal 1), Method 3 is the easiest for sym-ns-3
developers to develop (i.e., design goal 2). Therefore, for the current
release of sym-ns-3, we choose Method 3 so that symbolic variables
can be used with all current ns-3 modules. One possible method that
we plan to explore in the future is to combine these methods. For
example, we use Method 3 for most ns-3 modules, but use Method
2 for some ns-3 modules requiring module-specific functionalities.

Changes to existing NS-3 modules

Supported

module

functionality

less

high

more

method 3

method 2 method 1

none

Figure 4: Methods to Manage Symbolic Variables

5 MAKING SYM-NS-3 MORE EFFICIENT
Although the methods proposed in the previous section already
make sym-ns-3 more efficient for exhaustive testing than ns-3,
we have noticed that we can make sym-ns-3 even more efficient
by redesigning some of ns-3 modules (i.e., the third design goal).
Intuitively, this is because ns-3 was not originally designed and im-
plemented for symbolic execution, and thus we have proposed some
techniques to redesign and make it symbolic execution friendly.

We have proposed two types of techniques for two general types
of exhaustive testing using sym-ns-3. 1) Exhaustive packet dynamic
testing: It tests a network protocol in a network with all possible
packet dynamics, such as all possible packet delays in themotivating
example. For this type of testing, sym-ns-3 changes some time-
related variables to symbolic variables, such as d0 in the motivating
example. As a result, the timestamps of events become symbolic.
In our previous work [21], we have proposed several techniques
to redesign the event schedulers of sym-ns-3 so that it can more
efficiently compare the symbolic timestamps of the events.

2) Exhaustive packet semantics testing: It tests a network protocol
for packets with all possible header and payload semantics, such
as all possible destination IP addresses. For this type of testing,
sym-ns-3 changes the packet header fields or packet payload to
symbolic variables. In this paper, we consider the destination IP
address field of a packet, which is one of the most important fields
of a packet header. Below, we propose two techniques to redesign
the IP routing protocol of sym-ns-3 so that it can more efficiently
handle packets with symbolic destination IP addresses.

5.1 Symbolic IP Address
A symbolic IP address can be used for exhaustive testing of a packet
with a set of destination IP addresses. For example, an IP reachability
test [10, 19] checks whether a packet from a node can reach another
node. However, it is time consuming to find all possible nodes that
can be reached by a packet from a node, if we exhaustively try all
possible destination IP addresses for the packet. With the help of
a symbolic destination IP address, we can more efficiently find all
possible nodes that can be reached from a node. Code 8 shows how
a symbolic IP address can be defined with an initial range of IP
addresses 10.1.0.0 to 10.2.255.255 in sym-ns-3.

Code 8: Defining a Symbolic IP Address in sym-ns-3
1 Ptr <Symbolic > symObj0 = CreateObject <Symbolic >();

2 symObj0 ->SetMinMax (0xa010000 , 0xa02ffff);

3 Ipv4Address symIP0 = symObj0 ->GetSymbolicIpv4Add ();

5.2 How Current ns-3 Simulates IP Routing?
We describe how current ns-3 simulates an IP routing table in
this subsection, and then explain why it is not friendly to symbolic
execution and howwemodify it in the following subsections. Below
we briefly demonstrate how current ns-3 maintains a routing table,
checks a table entry for possible match, and finds the best match
for the whole table, as each of them will be redesigned in sym-ns-3.

ns-3 maintains an unsorted routing table, where a new table
entry is added to the end of the table. For example, Table 1 shows
a possible routing table at a node. For a table entry with network
destination entry.ip and mask entry.mask, ns-3 checks whether

53

WNS3 2022, June 22–23, 2022, Virtual Event, USA Jianfei Shao, Minh Vu, Mingrui Zhang, Asmita Jayswal, and Lisong Xu

Table 1: Routing Table Example of Current ns-3

Destination Mask Interface Metric
127.0.0.0 255.0.0.0 0 1
10.1.0.0 255.255.0.0 2 10
10.2.0.0 255.255.0.0 2 10
0.0.0.0 0.0.0.0 1 1

the destination IP address dst of a packet matches the entry using
function IsMatch as illustrated in Pseudocode 9.

Code 9: Pseudocode of Function IsMatch in ns-3
1 IsMatch (IP Address dst , Table Entry entry)

2 if ((dst & entry.mask) == (entry.ip & entry.mask))

3 return true;

4 else

5 return false;

ns-3 checks every table entry to find the best match, which is
the entry with the longest mask among all matching entries. If
there are multiple matching entries with the same longest length of
masks, the one with the shortest metric is the best match. The code
is illustrated as function Lookup in Pseudocode 10. For example, if
dst=10.1.0.1, there are two matching entries in Table 1: the entry
for 10.1.0.0 and the entry for 0.0.0.0. Because the former has a longer
mask than the latter, the best match is the former.

Code 10: Pseudocode of Function Lookup in ns-3
1 Lookup (IP Address dst , IP Table table)

2 for each entry in the table

3 if IsMatch(dst , entry)

4 if (entry.masklen > bestmatch.masklen)

5 bestmatch = entry;

6 else if ((entry.masklen = bestmatch.masklen) and

7 (entry.metric < bestmatch.metric))

8 bestmatch = entry;

9 return bestmatch;

5.3 Why Current ns-3 is not Symbolic
Execution Friendly?

The efficiency of symbolic executionmainly depends on the number
of symbolic comparisons that are the conditional statements involv-
ing symbolic variables, such as lines 3 and 5 in Code 4. There are two
reasons. First, each symbolic comparison takes a non-trivial amount
of time for the constraint solver of symbolic execution to determine
whether the symbolic comparison is true or false or both with the
current branch constraints. Second, if the symbolic comparison
could be both true and false, symbolic execution forks the current
branch (i.e., virtual machine) into two branches, a true branch and
a false branch with correspondingly updated constraints. However,
branch forking (i.e., virtual machine forking) takes a significant
amount of time and space.

The IP routing simulation of current ns-3 is not friendly to sym-
bolic execution, because it compares a symbolic destination IP
address with each entry of a routing table. As an example, if we
symbolically run Pseudocode 10 on Table 1 with a symbolic desti-
nation IP address dst, then there are 4 symbolic comparisons in
Pseudocode 10 because it calls line 2 of Pseudocode 9 for each of
4 table entries. If the range of dst is from 10.1.0.0 to 10.2.255.255,

there are two best matches: entry 10.1.0.0 and entry 10.2.0.0. As a
result, there are finally two branches:

• one branch returns entry 10.1.0.0 (interface 2) for dst be-
tween 10.1.0.0 and 10.1.255.255,

• the other branch returns entry 10.2.0.0 (interface 2) for dst
between 10.2.0.0 and 10.2.255.255.

5.4 Proposed Techniques for more Efficient IP
Simulations in sym-ns-3

We redesign the simulation of IP routing in sym-ns-3 to make it
more friendly to symbolic execution and thus more efficient. Specif-
ically, we propose two techniques: 1) the table sorting technique
that reduces the number of symbolic comparisons and thus reduces
the number of times to call the constraint solver, and 2) the group
comparison technique that reduces the number of branches (i.e.,
virtual machines).

The table sorting technique sorts a routing table according to
the priority of each table entry. An entry with a longer mask is
given a higher priority. If tie occurs, a shorter metric is given a
higher priority. If tie still occurs, the interface is used to break the
tie. All the entries with the same length of masks, same metric,
and same interface belong to the same priority group. For example,
Table 2 shows the sorted result of Table 1. With a sorted routing
table, sym-ns-3 only needs to find the first matching priority group,
but does not need to check all the remaining entries. By doing so,
sym-ns-3 can reduce the number of symbolic comparisons.

Table 2: Sorted Routing Table in sym-ns-3

Destination Mask Interface Metric Priority group
10.1.0.0 255.255.0.0 2 10 1
10.2.0.0 255.255.0.0 2 10 1
127.0.0.0 255.0.0.0 0 1 2
0.0.0.0 0.0.0.0 1 1 3

The group comparison technique checks all the table entries
within the same priority group together using only one symbolic
comparison. Specifically, it replaces function IsMatch in Pseu-
docode 9 with Pseudocode 11, which returns the same result but
without using a symbolic comparison. The actual code implements
the logical not operator ! at line 2 in the pseudocode using a se-
quence of bit-wise operations. It also replaces function Lookup in
Pseudocode 10 with Pseudocode 12, which checks whether there
is at least one matching entry in a priority group using only one
symbolic comparison (i.e., line 6). Thus it generates at most one
new branch for all the entries in a priority group.

Code 11: Pseudocode of Function IsMatch in sym-ns-3
1 IsMatch (IP Address dst , Table Entry entry)

2 return !((dst&entry.mask)^(entry.ip&entry.mask));

Code 12: Pseudocode of Function Lookup in sym-ns-3
1 Lookup (IP Address dst , IP Table table)

2 for each priority group in the table

3 flag = false;

4 for each entry in the priority group

5 flag = flag | IsMatch(dst , entry);

6 if (flag) // check the whole group together

7 return the group;

54

Symbolic ns-3 for Efficient Exhaustive Testing: Design, Implementation, and Simulations WNS3 2022, June 22–23, 2022, Virtual Event, USA

We can see that these two techniques (i.e., Pseudocode 12, Pseu-
docode 11, and sorted Table 2) generate the same simulation results
as current ns-3 (i.e., Pseudocode 10, Pseudocode 9, and unsorted Ta-
ble 1). Both of them find the best match among all the table entries.
For example, if dst=10.1.0.1, both return the entry for 10.1.0.0.

We can also see that sym-ns-3 with these two techniques has
less symbolic comparisons and less branches than sym-ns-3 with-
out these two techniques. Let’s consider the same example in Sec-
tion 5.3, where we search for a symbolic dst ranging from 10.1.0.0
to 10.2.255.255. If we symbolically run Pseudocode 12 on Table 2,
then there is only 1 symbolic comparison in Pseudocode 12 because
it calls line 6 only once for the two entries in priority group 1 and
then returns priority group 1 (i.e., interface 2). Also note that the
remaining priority groups (i.e., last two entries) of Table 2 are not
checked. That is, our proposed techniques reduce the number of
symbolic comparisons from 4 (see Section 5.3) to 1. In addition,
there is finally only one branch as follows,

• one branch returns priority group 1 (interface 2) for dst
between 10.1.0.0 and 10.2.255.255,

because although dstmatches both entry 10.1.0.0 and entry 10.2.0.0,
Pseudocode 12 checks their match results together only once at line
6. That is, our proposed techniques reduce the number of branches
from 2 (see Section 5.3) to 1.

The complete proof of correctness and efficiency can be found
in [17]. Note that although these two techniques need additional
time to sort a routing table, the time to call constraint solvers and
fork virtual machines is significantly more than the time to sort a
routing table.

Our techniques are inspired by SymNet [19], which proposes
a new symbolic execution friendly language to model computer
networks including routing tables, whereas our techniques modify
ns-3 code to be friendly to symbolic execution.

6 EXPERIMENTS
6.1 Simulation Setup
We evaluate the following three methods. 1) Brute force using cur-
rent ns-3, which is referred to as Brute Force. 2) Symbolic execution
using sym-ns-3 with the symbolic variable management proposed
in Section 4, which is referred to as Basic SymEx. 3) Basic SymEx en-
hanced with the techniques proposed in Section 5 for more efficient
IP simulations, which is referred to as IP-Efficient SymEx.

All the experiment results were obtained using a Ubuntu desktop
with an Intel Core i5-8600 processor and 16 GigaByte of memory.
The source code of sym-ns-3 and all the experiments is available
at https://github.com/JeffShao96/Symbolic-NS3. More information
and documents can be found at https://symbolicns3.github.io.

6.2 Exhaustive Testing on TCP Performance
In this group of simulations, we exhaustively test the TCP perfor-
mance in a network shown in Figure 5, which has different and
independent delays in different directions between nodes 0 and 1.
Delay d0 from node 0 to node 1 is in the range of [1, 1000] ms, and
delay d1 from node 1 to node 0 is also in the range of [1, 1000] ms.
Node 0 starts to establish a TCP connection to node 1 at time 0 with
an initial congestion window of 1 segment, and then sends a total

node 0 node 1
delay d0

delay d1

Figure 5: NetworkTopology of theTCPPerformanceTesting

of 2 data segments to node 1. The TCP performance is measured by
the number of data segments received by node 1 within 2000 ms.

Brute Force runs a total of 1000 × 1000 = 106 ns-3 simulations
for all possible combinations of d0 and d1. The simulation of each
combination takes about a half second, and thus the total simulation
is estimated to take about 6 days. Basic SymEx uses two symbolic
variables, one for d0 and the other for d1, and takes about 3 hours.
Basic SymEx finally generates about 140 branches (i.e., equivalence
classes of d0 and d1 values leading to the same simulator execution
paths). To help us verify the correctness of the reported TCP per-
formance, we also print out the ranges of 2d0 +d1 (i.e., the time for
the three-way handshake) and 3d0 + 2d1 (i.e., one round-trip time
after the three-way handshake) for each branch. The result of all
the branches is summarized and aggregated in Table 3. Note that
the link data rate is 5 Mbps, and the transmission time of a segment
is slightly less than 1 ms. We can see that Basic SymEx efficiently
and exhaustively reports the TCP performance for all possible combi-
nations of d0 and d1 in the specified ranges, and such information is
very time consuming to obtain using Brute Force with ns-3.

Table 3: Exhaustive TCP Performance Testing by SymEx

2d0 + d1 (ms) 3d0 + 2d1 (ms) Number of received segments
[1999, 3000] [2999, 5000] 0
[1000, 1998] [1999, 3497] 1
[3, 1331] [5,1998] 2

6.3 Exhaustive Testing on IP Reachability
In this group of simulations, we exhaustively test the IP reachability
from node 0 to all other nodes in a network shown in Figure 6.
Specifically, node 0 sends a ping packet with a destination IP in
the range of 10.0.0.0 and 10.255.255.255, and reports the round-trip
time (RTT) if it receives a reply. The routing table of each node is
automatically created by ns-3 function PopulateRoutingTables.

Brute Force runs a total of 2563 ns-3 simulations for all possible
destination IP addresses. The simulation of each IP address takes
about a half second, and thus the total simulation is estimated
to take about 100 days. Basic SymEx uses one symbolic variable
for all the destination IP addresses, and takes about 15 minutes.

node 0 node 1

node 2

node 3

node 4

node 5

node 6

node 7

5ms

1ms

3ms

7ms

30ms

50ms

70ms

10.1.0.1 10.1.0.2

10.2.0.1

10.3.0.1

10.4.0.1

10.2.0.2 10.5.0.1 10.5.0.2

10.3.0.2

10.6.0.1 10.6.0.2

10.4.0.2

10.7.0.1 10.7.0.2

Figure 6: Network Topology of the Reachability Testing

55

https://github.com/JeffShao96/Symbolic-NS3
https://symbolicns3.github.io

WNS3 2022, June 22–23, 2022, Virtual Event, USA Jianfei Shao, Minh Vu, Mingrui Zhang, Asmita Jayswal, and Lisong Xu

Table 4: Exhaustive IP Reachability Testing by SymEx

Destination IP Ping RTT (ms)
10.1.0.1 0

10.1.0.2, 10.1.255.255, 10.2.0.1
10.2.255.255, 10.3.0.1, 10.3.255.255 10

10.4.0.1, 10.4.255.255
10.2.0.2, 10.5.0.1, 10.5.255.255 70

10.5.0.2 72
10.3.0.2, 10.6.0.1, 10.6.255.255 110

10.6.0.2 116
10.4.0.2, 10.7.0.1, 10.7.255.255 150

10.7.0.2 164
All other IP addresses No reply

Basic SymEx finally generates about 30 branches. The result of all
branches is summarized in Table 4. An interesting case is that if the
destination is broadcast 10.5.255.255, the ping RTT is 70 ms that is
replied by node 2, and we got the same result using ns-3. We can
see that Basic SymEx efficiently and exhaustively reports the ping
RTTs for all possible destination IP addresses in the specified range.

6.4 Evaluating IP-Efficient SymEx
The previous two groups of simulations have relatively small rout-
ing tables, so there is not much difference between Basic SymEx
and IP-Efficient SymEx. In this group of simulations, we use a big
routing table to demonstrate the different performance of Basic and
IP-Efficient SymEx. Specifically, we manually add the following n
additional entries to the routing table of node 2 in Figure 6 for the
reachability simulations.

Table 5: Additional Table Entries for Node 2

Destination Mask Interface Metric
10.5.1.0 255.255.255.0 2 default

...
10.5.n.0 255.255.255.0 2 default

The simulation results shown in Figure 7 indicate that the num-
ber of branches generated by Basic SymEx increases proportionally
as the number n of additional table entries increases, whereas that
of IP-Efficient SymEx remains unchanged. Accordingly, the test-
ing time of Basic SymEx increases proportionally as n increases,
whereas that of IP-Efficient SymEx increases only slightly.

 50

 100

 150

 200

 250

 300

 50 100 150 200 250

N
u

m
b

e
r

o
f

b
ra

n
c
h

e
s

Number of additional table entries

Basic SymEx
IP−Efficient SymEx

Figure 7: IP-Efficient is More Efficient than Basic SymEx

7 CONCLUSIONS
In this paper, we present our current progress on sym-ns-3 for
more efficient exhaustive testing. Specifically, we present our de-
sign choices and implementation details on how we extend ns-3 to
support symbolic execution, and also the significantly improved
testing speeds of sym-ns-3 over ns-3. In the future, we plan to
study and improve the performance of sym-ns-3 for other types of
symbolic variables, such as symbolic data rates of channels.

ACKNOWLEDGMENTS
The work presented in this paper was supported in part by NSF
CCF-1918204.

REFERENCES
[1] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-

ceedings of USENIX ATC. Anaheim, CA.
[2] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of USENIX OSDI. San Diego, CA.

[3] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (February 2013), 82–90.

[4] Marco Canini, Vojin Jovanović, Daniele Venzano, Boris Spasojević, Olivier
Crameri, and Dejan Kostić. 2011. Toward Online Testing of Federated and
Heterogeneous Distributed Systems. In Proceedings of USENIX ATC.

[5] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and Jennifer Rexford.
2012. A NICE Way to Test OpenFlow Applications. In Proceedings of USENIX
NSDI. San Jose, CA.

[6] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E Plat-
form: Design, Implementation, and Applications. ACM Transactions on Computer
Systems 30, 1 (February 2012).

[7] Oscar Dustmann. 2013. Symbolic Execution of Discrete Event Systems with
Uncertain Time. Lecture Notes in Informatics S-12 (2013), 19–22.

[8] Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar. 2016.
BUZZ: Testing Context-Dependent Policies in Stateful Networks. In Proceedings
of USENIX NSDI. Santa Clara, CA.

[9] Endadul Hoque, Omar Chowdhury, Sze Yiu Chau, Cristina Nita-Rotaru, and
Ninghui Li. 2017. Analyzing Operational Behavior of Stateful Protocol Imple-
mentations for Detecting Semantic Bugs. In Proceedings of IEEE/IFIP DSN.

[10] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of USENIX NSDI.

[11] James King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19,
7 (July 1976), 385–394.

[12] Nupur Kothari, Ratul Mahajan, Todd Millstein, Ramesh Govindan, and Madanlal
Musuvathi. 2011. Finding Protocol Manipulation Attacks. In Proceedings of ACM
SIGCOMM. Toronto, Canada.

[13] Maciej Kuzniar, Peter Peresini, Marco Canini, Daniele Venzano, and Dejan Kostic.
2012. A SOFT Way for OpenFlow Switch Interoperability Testing. In Proceedings
of ACM CoNEXT. Nice, France.

[14] Network Simulator 3. . A Discrete-Event Network Simulator for Internet Systems.
https://www.nsnam.org/.

[15] Luis Pedrosa, Ari Fogel, Nupur Kothari, Ramesh Govindan, Ratul Mahajan, and
Todd Millstein. 2015. Analyzing Protocol Implementations for Interoperability.
In Proceedings of USENIX NSDI. Oakland, CA.

[16] Raimondas Sasnauskas, Olaf Landsiedel, MuhammadAlizai, CarstenWeise, Stefan
Kowalewski, and Klaus Wehrle. 2010. KleeNet: Discovering Insidious Interac-
tion Bugs in Wireless Sensor Networks before Deployment. In Proceedings of
ACM/IEEE IPSN. Sweden, 186–196.

[17] Jianfei Shao. 2022. Symbolic ns-3 for Efficient Exhaustive Testing. Master Thesis,
School of Computing, University of Nebraska-Lincoln.

[18] JaeSeung Song, Cristian Cadar, and Peter Pietzuch. 2014. SymbexNet: Testing
Network Protocol Implementations with Symbolic Execution and Rule-based
Specifications. IEEE Transactions on Software Engineering 40, 7 (July 2014), 695–
709.

[19] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016. Sym-
Net: Scalable Symbolic Execution for Modern Networks. In Proceedings of ACM
SIGCOMM. Brazil, 314–327.

[20] Wei Sun, Lisong Xu, and Sebastian Elbaum. 2015. SPD: Automatically Test
Unmodified Network Programs with Symbolic Packet Dynamics. In Proceedings
of IEEE GLOBECOM. San Diego, CA.

[21] Minh Vu, Lisong Xu, Sebastian Elbaum, Wei Sun, and Kevin Qiao. 2022. Efficient
Protocol Testing with Temporal Uncertain Events using Discrete Event Simulator.
ACM Transactions on Modeling and Computer Simulation 32, 2 (April 2022), 1–30.

56

https://www.nsnam.org/

	Abstract
	1 Introduction
	2 Motivating example
	2.1 An Exhaustive Testing Problem
	2.2 Brute Force using Current ns-3
	2.3 Symbolic Execution using sym-ns-3

	3 Overview
	3.1 Architecture of sym-ns-3
	3.2 Symbolic Execution
	3.3 Design Goals

	4 Symbolic Variable Management
	4.1 Managing Symbolic Variables
	4.2 Method 1: In-module Direct Symbolization
	4.3 Method 2: Assignment Symbolization using New Attributes
	4.4 Method 3: Assignment Symbolization using Existing Attributes (Motivating Example)
	4.5 Comparison of the Three Methods

	5 Making sym-ns-3 More Efficient
	5.1 Symbolic IP Address
	5.2 How Current ns-3 Simulates IP Routing?
	5.3 Why Current ns-3 is not Symbolic Execution Friendly?
	5.4 Proposed Techniques for more Efficient IP Simulations in sym-ns-3

	6 Experiments
	6.1 Simulation Setup
	6.2 Exhaustive Testing on TCP Performance
	6.3 Exhaustive Testing on IP Reachability
	6.4 Evaluating IP-Efficient SymEx

	7 Conclusions
	Acknowledgments
	References

