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Abstract

We present a prior for manifold structured data, such
as surfaces of 3D shapes, where deep neural networks are
adopted to reconstruct a target shape using gradient de-
scent starting from a random initialization. We show that
surfaces generated this way are smooth, with limiting be-
havior characterized by Gaussian processes, and we mathe-
matically derive such properties for fully-connected as well
as convolutional networks. We demonstrate our method in
a variety of manifold reconstruction applications, such as
point cloud denoising and interpolation, achieving consid-
erably better results against competitive baselines while re-
quiring no training data. We also show that when training
data is available, our method allows developing alternate
parametrizations of surfaces under the framework of Atlas-
Net [14], leading to a compact network architecture and
better reconstruction results on standard image to shape re-
construction benchmarks.

1. Introduction
In recent years a variety of approaches have been pro-

posed to generate manifold data such as surfaces of 3D
shapes using deep networks. The goal of this work is to
characterize how the choice of the network architecture im-
pacts the properties of the resulting surfaces. We present a
deep manifold prior, an approach to represent a manifold
as a collection of transformations (atlas) of an Euclidean
space parameterized using deep networks (Section 3). We
show that random networks induce smooth surfaces whose
limiting behavior can be understood in terms of a Gaussian
process (GP) [6,21,37]. We derive the mean and covariance
function of the surface coordinates, and in some cases of the
surface normal and curvature, as a function of network ar-
chitecture (Section 4). Our analysis can also be used to de-
rive the properties of surfaces induced by the level-set of a
scalar field, f(x) = c, parameterized using a deep network.

As a concrete application we study the problem of in-
terpolating and denoising point clouds sampled from con-
tours or surfaces of shapes, as seen in Figures 1 and 2.

Figure 1: The deep manifold prior. Points interpolated using
deep networks to map points in a 2D grid (top) and 1D grid (bot-
tom) to the target shape (a 3D surface and a 2D curve respectively).
The networks are randomly initialized and trained to minimize the
Chamfer distance to the target.

The manifold parametrization allows us to efficiently sam-
ple point clouds, which can be combined with a Cham-
fer metric to measure a reconstruction error with respect
to the sampled data. We show that smooth surfaces are
obtained when the parameters of the networks are learned
to minimize the reconstruction error starting from a ran-
dom initialization (Figure 2). The approach is also effec-
tive for the level-set formulation, where the objective is to
learn a deep network that correctly classifies points as in-
side or outside the surface. However, an advantage of the
explicit parametrization is that it does not require the notion
of what is inside. In addition we introduce a regulariza-
tion that reduces self-intersections, overlaps, and distortion
of the parametrization, which is desirable for applications
such as texture mapping (Section 3). Our approach re-
quires no prior learning, works across a range of 3D shapes,
and outperforms strong baselines for point cloud denoising,
such as Screened Poisson Surface Reconstruction (SPSR)
and Robust Implicit Moving Least Squares (RIMLS). It is
also more lightweight than approaches that operate on vol-
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Figure 2: Manifold reconstruction pipeline. Manifold parametrizations are encoded by neural networks (fθi ) and trained to minimize
the reconstruction error with respect to the noisy target (left). Prior induced by the neural networks makes the generated surface much
closer to the ground-truth (right), without ever seeing any additional training data.

umetric representations of 3D shapes (Section 5).
Our analysis sheds lights on the impressive performance

of several recently proposed architectures for 3D surface
generation, such as MRTNet [12], AtlasNet [14], Fold-
ingNet [40], and Pixel2Mesh [36], as well as implicit sur-
face approaches [4, 13, 20, 24]. These can be be interpreted
as different ways of parameterizing a manifold. In partic-
ular, AtlasNet generates a 3D shape as a collection of sur-
faces, each represented as a transformation of a unit grid
using a fully-connected network. However, the generated
pieces exhibit significant overlap which results in a poor
surface reconstruction and is less desirable for applying ma-
terials and textures to the surface (Section 5). The proposed
regularization alleviates this problem. Moreover, by replac-
ing the fully-connected networks of AtlasNet with convo-
lutional variants we improve the performance on standard
benchmarks for shape generation [7] with networks that
have a fraction of the parameters, faster inference time, as
well as smaller memory footprint (Section 5).

2. Related Work

Manifold 3D shape generation 3D shape generation is
an active area of research with methods that generate 3D
shapes as volumetic representations such as occupancy
grids [7, 11, 15, 25, 32, 34, 39], signed distance functions [4,
13, 20, 24], mutliview depth and normals [18, 19, 29, 31],
or point clouds [1, 9, 10, 12]. Our work is closely related
to techniques for generating 3D shapes through a prede-
fined connectivity or parametrization structure over the sur-
face of the shape. Pixel2Mesh [36] utilizes graph con-
volutional networks to generate meshes that are homeo-
morphic to a sphere. AtlasNet [14] and FoldingNet [40]
learn a parametrization of a surface by adopting deep net-
works to transform point coordinates in a 2D plane to
the shape surface. Specifically, each point is generated
as
(
f1θ (x), f2θ (x), f3θ (x)

)
where f iθ is a deep network and

x = (x1, x2) is a point in the unit grid. Alternate ap-
proaches [4, 13, 20, 24] represent the surface as the level-
set of a scalar field, f(x) = 0, x ∈ R3, e.g., of the signed
distance function. While these have been applied for shape
generation by training on 3D shape datasets, our goal is to

analyze the role of these parameterizations as an implicit
prior for manifold denoising and interpolation tasks.

Deep implicit priors Our work is related to the deep im-
age prior [35] that generates images as a convolutional net-
work transformation of a random signal on a unit grid. By
optimizing the randomly initialized network to minimize a
reconstruction loss with respect to the noisy target, their
approach was shown to yield excellent denoising results.
Our approach generalizes this idea to manifold data, which
is more appropriate for interpolating and denoising con-
tours and surfaces (see Figure 6 for a comparison). Our
work is also related to the recently proposed deep geomet-
ric prior [38]. Their approach was used to estimate a sur-
face from point cloud data by partitioning the surface into
small overlapping patches and reconstructing the local man-
ifold using a deep network. Consistency in the overlapping
regions was enforced by minimizing the Earth Movers dis-
tance (EMD). In contrast to their work, we learn a small col-
lection of non-overlapping parametrizations (atlas) by min-
imizing a regularized term and Chamfer distance, which is
much more efficient than EMD. We also consider diverse
tasks such as point cloud denoising, interpolation, and shape
reconstruction across a category where the atlases needs to
be consistent across instances. Finally, we present a theoret-
ical analysis of the local properties of the generated surface
by analyzing its limiting behavior as a Gaussian process.

Embedding a manifold Our work is related to techniques
for embedding manifolds into a low-dimensional Euclidean
space (e.g., IsoMap [33] or LLE [26]). Our approach pa-
rameterizes the inverse mapping from the Euclidean space
to the data manifold using a deep network. Interestingly, in-
vertability can be guaranteed by using networks with easy to
compute inverses (e.g., NICE [8] or GLOW [17]). In com-
puter graphics, a number of techniques have been developed
for shape surface denoising and reconstruction. Screened
Poisson Reconstruction [16] constructs an implicit surface
on a 3D volumetric grid based on oriented point samples by
solving the Poisson equation. Approaches based on Moving
Least Squares [2,23,27] reconstruct a surface by estimating
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an approximation of each local patch, similar to the deep
geometric prior [38] approach. Our approach outperforms
these baselines by a significant margin (Table 1).

Deep networks and Gaussian processes A Gaussian
process (GP) is commonly viewed as a prior over functions.
Let T be an index set (e.g., T ∈ Rd), let µ(t) be a real-
valued mean function and K(t, t′) be a non-negative defi-
nite kernel or covariance function on T. If f ∼ GP (µ,K),
then, for any finite number of indices t1, ..., tn ∈ T ,
the vector (f(ti))

n
i=1 is Gaussian distributed with mean

vector (µ(ti))
n
i=1 and covariance matrix (K(ti, tj))

n
i,j=1.

Neal [21] showed that a two-layer network with infinite
number of hidden units approaches a GP. The mean and
covariance of commonly used non-linearities have been de-
rived in several subsequent works [6, 37]. We use this ma-
chinery to analyze the limiting GP of deep manifold priors.

3. Method

Background Our focus is to define priors over manifolds.
We first introduce some basic notation. A n-manifold is
a topological space M for which every point in M has a
neighborhood homeomorphic to the Euclidean space Rn.
Let U ⊂ M and V ⊂ Rn be open sets. A homeomor-
phism φ : U → V , φ(u) = (x1(u), x2(u), ..., xn(u)) is
a coordinate system on U and x1, x2, ..., xn are coordinate
functions. The pair 〈U , φ〉 is a chart, whereas ζ = φ−1 is
a parameterization of U . An atlas onM is a collection of
charts {Uα, φα} whose union covers M. Intuitively, sur-
faces are 2-manifolds where as contours are 1-manifolds.
Thus the dimensionality of the input of the parameterization
or the output of the chart corresponds to the order n of the
manifold. Atlases can be used to represent manifolds that
cannot be decomposed using a single parametrization (e.g.,
the surface of a sphere can be diffeomorphically mapped to
two planes but not one.)

General framework In our work we will replace the
search over U by a search over the parameters θ of the DNN
fθ that encodes the parameterization fθ = ζ = φ−1. More
specifically, given a set of points P ∈M, we aim to recover
the manifoldM by computing the following:

θ∗ = arg min
θ
LC(fθ,x∼Rn(x), P ). (1)

The approximated manifold can then be reconstructed in the
domain on which it is embedded fθ∗ . In practice, we restrict
x to the unit hypercube [0, 1]n. HereL is a loss function that
computes a discrepancy between sets. Thus, reconstructing
a manifold represented by an atlas of k charts is done by

computing the following:

θ∗1 , θ
∗
2 , ...θ

∗
k = arg min

θ1,θ2,...θk

LC(
k⋃
i=1

fθi(x), P ) (2)

Parameterization We explore two choices of parameter-
izations of the coordinate function fθ(x) as a deep neural
network. The first uses a multi-layer perception (MLP) to
represent the parameterization explicitly: the network re-
ceives as an input a value x ∈ Rn and outputs the coordi-
nates of point in the manifold. We use ReLU non-linearities
throughout the network, except for the last layer where we
use tanh. This representation is analogous to the ones used
in [14, 40]. The second choice is to encode M directly
through a convolutional network g(z), where z is a station-
ary signal (Gaussian noise). We use 2D convolutional lay-
ers followed by ReLU activations and bilinear upsampling,
except for the last layer where we use tanh. The convolu-
tional parametrization induces a stationary prior (see Sup-
plementary for details), and we observe the resulting archi-
tectures are more memory-efficient and compact than the
first choice.

Loss function A key part of our method is computing a
distance between two sets of points P1 and P2. Such dis-
tance metric needs to be differentiable and reasonably effi-
cient to compute, since the cardinality of the sets might be
large. Thus, similarly to previous work [12, 14, 36, 40], we
employ the Chamfer distance LC defined as follows:

LC(P1, P2) =
∑
p1∈P1

min
p2∈P2

‖p1 − p2‖22+
∑
p2∈P2

min
p1∈P1

‖p1 − p2‖22 .

Stretch regularization Representing the manifold as a
set of multiple parameterizations output by DNNs has some
drawbacks. First, there is no guarantee that the charts are in-
vertible, which means that a surface generated by fθ might
contain self-intersections. Second, multiple charts might be
representing the same region of the manifold. In theory this
is not a problem as long as overlapping regions are consis-
tent. However, in practice this consistency is hard to achieve
when point clouds are sparse and noisy. We propose to alle-
viate those issues by penalizing the stretch of the computed
parameterization. Let N (w) be the neighborhood of w in
Rn, the stretch regularization LS can be defined as follows:

LS(θ) = Ex∼[0,1]n

 ∑
x′∈N (x)

‖fθ(x)− fθ(x′)‖
2
2

 . (3)

Notice that we can compute the neighbors of x ahead of
time which makes the computation significantly cheaper. In
practice, we sample x from a set of predefined regularly
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spaced values in [0, 1] – a regular grid in the 2D case. Now
we can define our full loss function as follows.

L(θ) = LC(fθ,x∼Rn(x), P ) + λLS(θ), (4)

where θ = θ1, θ2, ...θk and fθ(x) =
k⋃
i=1

fθi(x).

Manifolds as deep level-sets An alternative approach is
to represent d-manifold as the level-set of a scalar function
over d + 1 dimensions. For example, a surface can be rep-
resented as the level set, f(x) = 0, where x ∈ R3. Prior
work [4, 13, 20, 24] has explored this approach to generate
a 3D surface by approximating its signed distance function.
Level-set formulation can naturally handle shapes with dif-
ferent topologies, but require the knowledge of what is in-
side the surface, which can be challenging to estimate for
imperfect point-cloud data. In this work, we also character-
ize and experiment with the manifold prior induced by the
level-set of a deep network fθ(x) = 0 initialized randomly.

4. Limiting GP for the Deep Manifold Prior

Consider the case when the manifold coordinates are
paramerized using a deep network fθ(x). We show that ran-
dom networks, e.g., whose parameters are drawn i.i.d. from
a Gaussian distribution, produces smooth manifolds. This
is done by analyzing the limiting behavior of the function as
a Gaussian process. In practice this is a good approximation
to networks that are relatively shallow and have hundreds of
hidden units in each layer.

Concretely, the mean Eθ[fθ(x)] and covariance
Eθ[fθ(x)fθ(y)T ] of the parameterization characterize the
structure of the generated manifold. For example, the
covariance function of a smooth manifold decays slowly
as a function of distance in the input space compared to a
rough one. Following prior work [6, 21, 37], we first derive
the mean and covariance for a two layer network with a
scalar output. We then generalize the analysis to vector
outputs and multi-layer networks.

Consider a two-layer fully-connected network on an in-
put x ∈ Rn. Let H be the number of units in the hidden
layer represented using parameters U = (u1, u2, . . . uH)
where uj ∈ Rn and the second layer has one output pa-
rameterized by weights v ∈ RH . Denote the non-linearity
applied to each unit as the scalar function h(·). The output
of the network is: f(x) =

∑H
k=1 vkh(uTk x). When the pa-

rameters U and v are drawn from a Gaussian distributions
N(0, σ2

uI) and N(0, σ2
vI) respectively, we have:

EU,v[f(x)] = EU,v

[
H∑
k=1

vkh
(
uTk x

)]
= 0,

since U and v are independent and zero mean. Similarly,
the covariance function K(x, y) can be shown to be:

K(x, y) = EU,v[f(x)f(y)] = Hσ2
vEU

[
h
(
uTk x

)
h
(
uTk y

)]
.

This follows since each uk is drawn i.i.d, each vk is
independent and drawn identically from a Gaussian dis-
tribution with zero mean. The quantity V (x, y) =
Eu
[
h(uTx)h(uT y)

]
can be computed analytically for var-

ious transfer functions. Williams [37] showed that when
h(t) = erf(t) = 2/

√
π
∫ t
0
e−t

2

dt, then

Verf(x, y) =
2

π
sin−1

xTΣy√
(xTΣx) (yTΣy)

. (5)

Here Σ = σ2I is the covariance of u. For the ReLU non-
linearity h(t) = max(0, t), Cho and Saul [6] derived the
expectation as:

Vrelu(x, y) =
1

π
‖x‖‖y‖ (sinψ + (π − ψ) cosψ) , (6)

where ψ = cos−1
(

xT y
‖x‖‖y‖

)
. We refer the reader to [6, 37]

for kernels corresponding of other transfer functions.
An application of the Central Limit Theorem shows that

by letting σ2
v scale as 1/H and H → ∞, the output of a

two layer convolutional network converges to a Gaussian
distribution with zero mean and covariance

K1(x, y) = EU,v [f(x)f(y)] = V (x, y) . (7)

Hence the limiting behavior of the DNN can be approx-
imated as a Gaussian process with a zero mean and covari-
ance function K(x, y) = V (x, y).

Extending to multiple outputs The above analysis can
be extended to the case when the function f(x) is vector
valued. For example a 2-manifold in 3D can be represented
as f(x) = (f1(x), f2(x), f3(x)), with x ∈ R2. In our case,
the functions share a common backbone and each f i(x) is
constructed from the ouputs of the last hidden layer param-
eterized with weights vi, i.e., f i(x) =

∑H
k=1 v

i
kh(uTk x).

From the earlier analysis we have that each f i(x) has zero
mean in expectation. And the covariance between dimen-
sion i and j of f is:

Ki,j
1 (x, y) = EU,vi,vj

[
f i(x)f j(y)

]
= V (x, y)1[i = j].

This follows from the fact that each vik is independent and
drawn from a zero mean distribution. Thus, the covariance
is a diagonal matrix with entries V (x, y) in its the diagonal.

Extending to multiple layers The analysis can be ex-
tended to multiple layers by recursively applying the for-
mula for the two-layer network. Denote K`(x, y) as the
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Figure 3: Characterizing the deep manifold prior. (left) a plot demonstrating the relationship between the network depth and the
covariance function for the limiting GP. (middle) Random curves generated by the coordinate (top rows) and arc-length (bottom rows)
parametrizations using deep networks with varying depths. (right) Random surfaces generated by deep networks of varying depths.

covariance function of a scalar valued fully-connected net-
work with ` + 1 layers and J(θ) = sin θ + (π − θ) cos θ.
Following [6] for the ReLU non-linearity we have the fol-
lowing recursion:

K`+1(x, y) =
1

π
(K`(x, x)K`(y, y))

1/2
J (ψ`) .

Where ψ`(x, y) = cos−1 K`(x,y)√
K`(x,x)K`(y,y)

and K0(x, y) =

xT y. Note that if in each layer we add a bias term sampled
from a N(0, σ2

b ) the covariance changes to K`(x, y) + σ2
b

and the mean remains unchanged at zero.

4.1. Discussion and Analysis

The above analysis shows that random networks induce
certain priors over the coordinates of the manifold. The
effect of increasing the depth of the network can be seen
by visualizing how the covariance cosψ`(x, y) varies as a
function of depth. Figure 3 plots cosψ`(x, y) at x = 0
for a curve as a function of the depth of the network for
σb = 0.01. The covariance decays faster with depth, in-
dicating that the deeper networks produce manifolds with
higher spatial frequencies (or curvatures). This can also be
seen in Figure 3 which shows random curves (middle) from
a surfaces (right) for networks with varying depths.

One potential drawback of fully-connected network pa-
rameterization is that the generated manifold does not have
a stationary (translationally invariant) covariance function.
A covariance functionK(x, y) is stationary if it can be writ-
ten as K(x, y) = k(x − y). On the other hand, a convolu-
tional network that produces coordinates through a series of
convolutional layers operating on a random noise has a sta-
tionary covariance [5]. This is identical to the approach for
generating natural images in the deep image prior [35] and
we explore this alternative in Section 5.2.

Normals and curvature While we have shown that the
outputs f(x) induced by random networks is a GP in

the limit, what can be said about intrinsic properties such
as normals and curvature? Consider the curve γ(t) =
(x(t), y(t)). Since derivatives are linear operators, it fol-
lows that distribution of derivatives, ẋ and ẏ, are also Gaus-
sian [28]. The curvature is given by κ = (ẍẏ − ÿẋ)/(ẋ2 +

ẏ2)
3
2 . Unfortunately, since each of the derivatives converge

to a zero mean Gaussian distribution, the limiting distribu-
tion of the curvature κ does not exist. The pathology arises
because the parameterization has a speed ambiguity, i.e., re-
placing t with any monotonic function of t results in the
same curve. To avoid this one can directly parametrize the
derivatives as ẋ = cos(f(t)) and ẏ = sin(f(t)) where
f is a deep network. This is an arc-length (unit speed)
parametrization since ẋ2 + ẏ2 = 1. Once the derivatives
are generated, the curve can be reconstructed by integra-
tion, i.e., x =

∫ t
0

cos(f(t))dt. In this case the limiting dis-
tribution of the coordinates, normal, and curvature all exist
and are also GPs. We derive the mean and covariance func-
tion in the Supplementary material. Figure 3-middle shows
draws from the GP with direct (top) and arc-length (bottom)
parametrizations. One can see that arc-length parametriza-
tions lead to more length-uniform curves.

Unlike curves, it is much more challenging to design arc-
length parametrizations of surfaces. The difficulty arises
due to the fact the gradients need to satisfy additional con-
straints for the surface to be integrable [30]. Hence, we di-
rectly parameterized the coordinate function and proposed
the stretch regularization to minimize distortion. Alterna-
tives ways of parameterizing the surface to satisfy proper-
ties such as conformality [22] is left for future work.

Deep level-set prior Finally, the GP analysis applies in a
straightforward manner to the level-set formation fθ(x) = 0
where fθ is a ReLU network mapping the 3D position
x ∈ R3 to a scalar. The induced distribution over the scalar
field is a GP for random networks. Since for a differentiable
function f with non-zero gradient, the gradient is orthogo-
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Surface Contour Implicit RIMLS [23] SPSR [16]
bunny 2.71E-04 6.64E-04 5.52E-04 1.43E-03 3.96E-04
dragon 4.18E-04 6.12E-04 1.20E-03 1.65E-03 1.46E-02
car 2.73E-04 4.57E-04 6.83E-02 1.50E-03 2.10E-03
cup 2.59E-04 5.80E-04 2.64E-02 1.74E-03 1.00E-02
mobius 3.51E-04 4.95E-04 3.26E-03 1.96E-03 1.89E-02
chair 3.95E-04 4.22E-04 7.32E-03 2.09E-03 2.58E-02
spiral 1.05E-03 7.31E-04 1.64E-02 2.98E-03 7.90E-02
ring 5.69E-04 5.54E-04 4.81E-02 2.46E-03 3.76E-02
avg. 4.48E-04 5.65E-04 2.13E-02 1.98E-03 2.36E-02

Table 1: Quantitative results for point cloud denoising. Sur-
face, Contour and Implicit represent different deep manifold priors
based on a 2-manifold, 1-manifold and level-set paramertization.

nal to the level set, one can characterize the surface by ana-
lyzing the gradient field ∇f . The limiting distribution over
the gradient field is also a GP and one can estimate the mean
and convariance functions by a similar analysis (see Supple-
mentary material for details). However, the training objec-
tive of the level-set prior is different from the explicit pa-
rameterization as the network must classify points as inside
or outside the surface. This supervision can be challenging
to obtain from noisy data, especially for thin structures. We
provide a comparison with this approach in Section 5.

5. Experiments
In this section we will present quantitative and qualita-

tive results for applying the manifold prior to multiple man-
ifold reconstruction tasks. All the experiments in this paper
were implemented using Python 3.6 and PyTorch. Compu-
tation was performed on TitanX GPUs.

5.1. Denoising and Interpolation

Benchmark Our benchmark consists of 8 different 3D
shapes with diverse characteristics. The shapes are normal-
ized to fit a unit cube and 16K points are sampled on their
surfaces. The point positions are perturbed by a Gaussian
noise with standard deviation 2×10−3 and zero mean. Fig-
ure 7 shows the ground-truth shapes as well as their noisy
counterpart. Since the level-set representation and the base-
line methods (RIMLS [23], SPSR [16]) require normal in-
formation, we estimate the normal for every point by using
the local frame defined by its nearest neighbors. We exper-
imented multiple numbers of neighbors for both baselines
and used the value that led to the best results: 20 neigh-
bors for SPSR and the level-set representation, 30 neighbors
for RIMLS. The network used in the level-set representa-
tion follows the same architecture and training protocol as
the one used for the explicit parametrizations (described in
the next paragraph). However, it is trained to predict ev-
ery point as outside (+1) or inside the surface (-1). Points
with positive values are generated by translating every point
in the point cloud along the normal direction for a distance
ε = 2× 10−3. Points with negative values are generated in
the same way, but applying a displacement to the opposite

direction. For RIMLS, we used a relative spatial filter size
of 10, 15 projection iterations and a volumetric grid with
2003 resolution. For SPSR, we used an octree with depth 7
and 8 iterations.

Experimental setup Our method performs denoising by
minimizing Equation 4. In this framework, P is the noisy
point cloud we are trying to reconstruct and fθ is a neu-
ral network. In all experiments we use a neural network
with 3 fully connected layers, where the layers have 256,
128 and 64 hidden units, respectively. The output of the
networks is a point in R3. The input can be either a point
in R (1-manifold) or R2 (2-manifold). We use ReLU acti-
vations followed by batch normalization at each layer, ex-
cept for the last, where we use a tanh non-linearity. We
vary the architecture of fθ with respect to the number of
parameterizations (1 or 8) and dimensionality (1 or 2). Ad-
ditionally, we try each one of these architectural variations
with λ = 0 and λ = 1.0. When using 8 parametrizations,
4096 points are sampled per parametrization. When using
just one parametrization, 16K points are sampled. We opti-
mize our objective through gradient descent using the Adam
optimizer with learning rate 10−3. For evaluation, we uni-
formly sampled 16K points in the computed manifold (rep-
resented as a triangular mesh) and compute the Chamfer
distance with respect to the ground-truth.

Results and discussion. Our methods significantly out-
perform the baselines for most of the shapes. Quantitative
results can be seen in Table 1 and the qualitative results
are shown in Figure 7. The numbers are computed using
8 parametrizations (for surfaces and curves) and λ = 1.0.
A comparison between different variations of our approach
is displayed in Table 2. RIMLS, SPSR and level-set repre-
sentations (Implicit in Table 1) have trouble reconstructing
point clouds with a significant amount of noise. This is due
to the fact that those methods rely on accurate surface nor-
mal estimates to infer inside/outside regions of the shape.
Besides, RIMLS and methods based on implicit functions
(SPSR and level-set representations) work better when deal-
ing with closed surfaces. Shapes that are better approxi-
mated by contours (ring, spiral, chair’s legs) are particu-
larly challenging for those approaches. On the other hand,
the networks parametrizing explicit functions (Surface and
Contour in Table 1) are able to adapt to different struc-
tures and present a fair performance across a diverse set of
shapes.

The results in Table 2 suggest that using multiple
parametrizations gives a better approximation than just us-
ing a single one. This happens because complex shapes
are easier to represent by multiple parametrizations. For
example, while using a single 2-manifold parametrization,
the ring tends to be approximated by a disk, which signif-
icantly increases the reconstruction error when the points
are uniformly sampled over the final mesh. This behavior
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S1R S8R S1 S8 C1R C8R C1 C8 RIMLS [23] SPSR [16]
avg. 4.48E-03 4.48E-04 2.75E-03 1.35E-03 1.08E-03 5.77E-04 1.00E-03 5.82E-04 1.98E-03 2.36E-02

Table 2: Ablation studies. Comparison between different variations of our approach. Naming follows the following convention: S
corresponds to a 2-manifold parameterization (surface), whereas C corresponds to a 1-manifold (contour). The following number (1 or 8)
corresponds to the number of parameterizations. A R letter is added if stretch regularization was used (λ = 1.0).

1.00.10.050.0 1.00.10.050.0

Figure 4: Effect of the regularization weight on the reconstructed manifold. For this experiment, we use our method to reconstruct
a sphere using an atlas with 8 charts and render each one with a different color. Without any regularization, there is a significant amount
of deformation applied to each surface (hence the space between the points) and a considerable amount of overlap between different parts.
As the regularization weight increases, those aspects are noticeably reduced.

input

Figure 5: Interpolation results on the top. Stretch regularization
(λ = 1.0) helps generate smoother surfaces. On the bottom, de-
noising using one vs. multiple parametrizations. Shapes on the
left were reconstructed using a single parameterization, whereas
shapes on the right used 8 parameterizations. Using multiple pa-
rameterizations helps reconstruct complex shapes.

is illustrated in Figure 5. Our ablation studies also indi-
cate that using stretch regularization helps parametrizations
of both surfaces and contours. Figure 4 shows the effect
of stretch regularization for two different shapes. As the
regularization weight increases, the overlap between differ-
ent parameterizations becomes smaller. When overlaps ex-
ist, the manifold representation is suboptimal – the same
regions are being generated multiple times.

Interpolation We also explored using the manifold prior
for point cloud interpolation. This experiment follows the
same experimental setup as denoising. However, instead
of perturbing the points with Gaussian noise, we randomly
select 1K points out of 16K. Interpolation is performed by
minimizing Equation 4. Results can be seen in Figure 5. For

input Deep Image Prior Deep Manifold Prior

Figure 6: Comparison to the deep image prior [35]. Image-
based prior (middle) is not able to connect the dots in the input
image (left). On the other hand, the manifold prior is able to rea-
sonably interpolate the dotted drawing.

these experiments we use a single parameterization and in-
clude stretch regularization, without which the surface has
holes and significant folds. Our method is able to recon-
struct reasonable surfaces from a small set of points.

Comparison with the deep image prior We also com-
pare our approach to the deep image prior [35] for interpo-
lating points in 2D images. Results are presented in Fig-
ure 6. We use the same architecture from [35] while min-
imizing the mean squared error with respect to the image
pixels. For the manifold prior, we use a single 1-manifold
parameterization following the architecture described be-
fore, differing only in the dimensionality of the output:
points this this case are in R2 instead of R3. Coordinates
of the black pixels in the input image are used to form a
point cloud and the manifold is computed by minimizing
Chamfer distance with respect to it.

5.2. Learning from data

Finally, we show how the insights presented in the earlier
sections, in particular convolutional parameterization and
stretch regularization, can also improve generative models
of 3D shapes when trained on a large collection of shapes.

To measure the effect of the stretch regularization in a
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Figure 7: Qualitative comparison between different denoising methods. Rows display different methods, whereas columns display
different shapes. Baseline methods do not perform as well as the deep manifold prior, even for closed surfaces like the bunny (first column)
and the dragon (fifth column). As we can see, 2-manifold parameterizations are better for reconstructing surfaces, whereas 1-manifold
counterparts reconstruct the curves (last two columns) more acurattely.

Figure 8: Autoencoder results. Results on using AtlasNet [14]
trained w/o (top) and w/ (bottom) stretch regularization. The lat-
ter results in meshes with reduced deformation and overlap, and
removes artifacts where the chair’s back is incorrectly filled.

learning-based scenario, we train a model using the same
architecture as AtlasNet [14] on a subset of 50, 000 shapes
across 13 categories of the ShapeNet dataset [3]. Adding
stretch regularization did not significantly impact the Cham-
fer metric – error of 1.46 × 10−3 and 1.47 × 10−3 with
and without regularization. However, the results are qual-
itatively better. As seen in Figure 8 the regularization re-
duces the stretch and overlap of the generated surfaces, and
eliminates artifacts where holes are incorrectly filled.

We also train a convolutional decoder with stretch regu-
larization on the single-view reconstruction benchmark [7].
Our approach called ConvAtlas is compared against Atlas-
Net and MRTNet [12] in Table 3. For a fair comparison, we

Architecture mean/cat. mean/inst. #params.
MRTNet 4.80 4.26 81.6M
AtlasNet 4.74 4.38 42.6M
ConvAtlas 4.53 4.00 14.5M

Table 3: Quantitative results for single-view image-to-shape
reconstruction. The table reports the mean Chamfer distance met-
ric (scaled by 103) computed per category and per instance.

use 4K points for evaluation across all methods. ConvAtlas
outperforms both approaches in terms of per-category and
per-instance error, and also leads to more compact models.
Per-category results and experimental details are in the Sup-
plementary material.

6. Conclusion
We presented a manifold prior induced by deep neu-

ral networks. Our experiments show that the prior can be
effectively used for a variety of manifold reconstruction
tasks: denoising, interpolation and single-view reconstruc-
tion. Besides, we analyzed the influence of the architecture
in the characteristics of the prior by posing the models as
GP. In conjunction to the prior induced by deep networks,
we showed that using a stretch regularization procedure en-
ables better manifold approximation and improves the qual-
ity of the generated meshes, reducing large deformations
and overlaps between different parameterizations.
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