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Abstract

While language identification is a fundamental

speech and language processing task, for many

languages and language families it remains a

challenging task. For many low-resource and

endangered languages this is in part due to re-

source availability: where larger datasets ex-

ist, they may be single-speaker or have differ-

ent domains than desired application scenar-

ios, demanding a need for domain and speaker-

invariant language identification systems. This

year’s shared task on robust spoken language

identification sought to investigate just this sce-

nario: systems were to be trained on largely

single-speaker speech from one domain, but

evaluated on data in other domains recorded

from speakers under different recording cir-

cumstances, mimicking realistic low-resource

scenarios. We see that domain and speaker

mismatch proves very challenging for current

methods which can perform above 95% accu-

racy in-domain, which domain adaptation can

address to some degree, but that these condi-

tions merit further investigation to make spo-

ken language identification accessible in many

scenarios.

1 Introduction

Depending on how we count, there are roughly

7000 languages spoken around the world today.

The field of linguistic typology is concerned with

the study and categorization of the world’s lan-

guages based on their linguistic structural proper-

ties (Comrie, 1988; Croft, 2002). While two lan-

guages may share structural properties across some

typological dimensions, they may vary across oth-

ers. For example, two languages could have identi-

cal speech sounds in their phonetic inventory, yet

be perceived as dissimilar because each has its own

unique set of phonological rules governing possi-

ble sound combinations. This leads to tremendous

variation and diversity in speech patterns across the
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world languages (Tucker and Wright, 2020), the ef-

fects of which are understudied across many down-

stream applications due in part to lack of available

resources. Building robust speech technologies

which are applicable to any language is crucial to

equal access as well as the preservation, documen-

tation, and categorization of the world’s languages,

especially for endangered languages with a declin-

ing speaker community.

Unfortunately, robust (spoken) language tech-

nologies are only available for a small number

of languages, mainly for speaker communities

with strong economic power. The main hurdle

for the development of speech technologies for

under-represented languages is the lack of high-

quality transcribed speech resources (see Joshi et al.

(2020) for a detailed discussion on linguistic di-

versity in language technology research). The

largest multilingual speech resource in terms of

language coverage is the CMU Wilderness dataset

(Black, 2019), which consists of read speech seg-

ments from the Bible in ∼700 languages. Al-

though this wide-coverage resource provides an

opportunity to study many endangered and under-

represented languages, it has a narrow domain and

lacks speaker diversity as the vast majority of seg-

ments are recorded by low-pitch male speakers. It

remains unclear whether such resources can be ex-

ploited to build generalizable speech technologies

for under-resourced languages.

Spoken language identification (SLID) is an en-

abling technology for multilingual speech commu-

nication with a wide range of applications. Earlier

SLID systems addressed the problem using the

phonotactic approach whereby generative models

are trained on sequences of phones transduced from

the speech signal using an acoustic model (Lamel

and Gauvain, 1994; Li and Ma, 2005). Most cur-

rent state-of-the-art SLID systems are based on

deep neural networks which are trained end-to-end

from a spectral representation of the acoustic sig-
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nal (e.g., MFCC feature vectors) without any inter-

mediate symbolic representations (Lopez-Moreno

et al., 2014; Gonzalez-Dominguez et al., 2014).

In addition to their ability to effectively learn to

discriminate between closely related language vari-

eties (Gelly et al., 2016; Shon et al., 2018), it has

been shown that neural networks can capture the

degree of relatedness and similarity between lan-

guages in their emergent representations (Abdullah

et al., 2020).

Several SLID evaluation campaigns have been

organized in the past, including the NIST Language

Recognition Evaluation (Lee et al., 2016; Sadjadi

et al., 2018), focusing on different aspects of this

task including closely related languages, and typi-

cally used conversational telephone speech. How-

ever, the languages were not sampled according

to typologically-aware criteria but rather were ge-

ographic or resource-driven choices. Therefore,

while the NIST task languages may represent a

diverse subset of the world’s languages, there are

many languages and language families which have

not been observed in past tasks. In this shared task,

we aim to address this limitation by broadening the

language coverage to a set of typologically diverse

languages across seven languages families. We also

aim to assess the degree to which single-speaker

speech resources from a narrow domain can be uti-

lized to build robust speech language technologies.

2 Task Description

While language identification is a fundamental

speech and language processing task, it remains a

challenging task, especially when going beyond the

small set of languages past evaluation has focused

on. Further, for many low-resource and endan-

gered languages, only single-speaker recordings

may be available, demanding a need for domain

and speaker-invariant language identification sys-

tems.

We selected 16 typologically diverse languages,

some of which share phonological features, and

others where these have been lost or gained due to

language contact, to perform what we call robust

language identification: systems were to be trained

on largely single-speaker speech from one domain,

but evaluated on data in other domains recorded

from speakers under different recording circum-

stances, mimicking more realistic low-resource sce-

narios.

2.1 Provided Data

To train models, we provided participants with

speech data from the CMU Wilderness dataset

(Black, 2019), which contains utterance-aligned

read speech from the Bible in 699 languages,1 but

predominantly recorded from a single speaker per

language, typically male. Evaluation was con-

ducted on data from other sources—in particu-

lar, multi-speaker datasets recorded in a variety

of conditions, testing systems’ capacity to gen-

eralize to new domains, new speakers, and new

recording settings. Languages were chosen from

the CMU Wilderness dataset given availability of

additional data in a different setting, and include

several language families as well as more closely-

related challenge pairs such as Javanese and Sun-

danese. These included data from the Common

Voice project (CV; Ardila et al., 2020) which is

read speech typically recorded using built-in lap-

top microphones; radio news data (SLR24; Juan

et al., 2014, 2015); crowd-sourced recordings using

portable electronics (SLR35, SLR36; Kjartansson

et al., 2018); cleanly recorded microphone data

(SLR64, SLR65, SLR66, SLR79; He et al., 2020);

and a collection of recordings from varied sources

(SS; Shukla, 2020). Table 1 shows the task lan-

guages and their data sources for evaluation splits

for the robust language identification task.

We strove to provide balanced data to ensure

signal comes from salient information about the

language rather than spurious correlations about

e.g. utterance length. We selected and/or trimmed

utterances from the CMU Wilderness dataset to

between 3 to 7 seconds in length. Training data

for all languages comprised 4,000 samples each.

We selected evaluation sources for validation and

blind test sets to ensure no possible overlap with

CMU Wilderness speakers. We held out speakers

between validation and test splits, and balanced

speaker gender within splits to the degree possible

where annotations were available. We note that

the Marathi dataset is female-only. Validation and

blind test sets each comprised 500 samples per

language. We release the data as derivative MFCC

features.

3 Evaluation

The robust language identification shared task al-

lowed two kinds of submissions: first, constrained

submissions, for which only the provided training

1Data source: bible.is
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ISO Wilderness ID Language name Family Genus Macroarea Train Eval

kab KABCEB Kabyle Afro-Asiatic Berber Africa Wilderness CV

iba IBATIV Iban Austronesian Malayo-Sumbawan Papunesia Wilderness SLR24

ind INZTSI Indonesian Austronesian Malayo-Sumbawan Papunesia Wilderness CV

sun SUNIBS Sundanese Austronesian Malayo-Sumbawan Papunesia Wilderness SLR36

jav JAVNRF Javanese Austronesian Javanese Papunesia Wilderness SLR35

eus EUSEAB Euskara Basque Basque Eurasia Wilderness CV

tam TCVWTC Tamil Dravidian Southern Dravidian Eurasia Wilderness SLR65

kan ERVWTC Kannada Dravidian Southern Dravidian Eurasia Wilderness SLR79

tel TCWWTC Telugu Dravidian South-Central Dravidian Eurasia Wilderness SLR66

hin HNDSKV Hindi Indo-European Indic Eurasia Wilderness SS

por PORARA Portuguese Indo-European Romance Eurasia Wilderness CV

rus RUSS76 Russian Indo-European Slavic Eurasia Wilderness CV

eng EN1NIV English Indo-European Germanic Eurasia Wilderness CV

mar MARWTC Marathi Indo-European Indic Eurasia Wilderness SLR64

cnh CNHBSM Chin, Hakha Niger-Congo Gur Africa Wilderness CV

tha THATSV Thai Tai-Kadai Kam-Tai Eurasia Wilderness CV

Table 1: Provided data with language family and macroarea information. ISO shows ISO 639-3 codes. Training

data (Train) for all languages is taken from CMU Wilderness dataset; validation and evaluation data (Eval) is

derived from multiple data sources.

data was used; and second, unconstrained submis-

sions, in which the training data may be extended

with any external source of information (e.g. pre-

trained models, additional data, etc.).

3.1 Evaluation Metrics

We evaluate task performance using precision, re-

call, and F1. For each metric we report both micro-

averages, meaning that the metric average is com-

puted equally-weighted across all samples for all

languages, and macro-averages, meaning that we

first computed the metric for each language and

then averaged these aggregates to see whether sub-

missions behave differently on different languages.

Participant submissions were ranked according to

macro-averaged F1.

3.2 Baseline

For our baseline SLID system, we use a deep con-

volutional neural network (CNN) as sequence clas-

sification model. The model can be viewed as two

components trained end-to-end: a segment-level

feature extractor (f ) and a language classifier (g).

Given as input a speech segment parametrized as se-

quence of MFCC frames x1:T = (x1, . . . ,xT ) ∈
R
k×T , where T is the number of frames and k

is the number of the spectral coefficients, the

segment-level feature extractor first transforms

x1:T into a segment-level representation as u =
f(x1:T ;θf ) ∈ R

d. Then, the language classifier

transforms u into a logit vector ŷ ∈ R
|Y|, where

Y is the set of languages, through a series of non-

linear transformations as ŷ = g(u;θg). The logit

vector ŷ is then fed to a softmax function to get a

probability distribution over the languages.

The segment-level feature extractor consists of

three 1-dimensional, temporal convolution layers

with 64, 128, 256 filters of widths 16, 32, 48

for each layer and a fixed stride of 1 step. Fol-

lowing each convolutional operation, we apply

batch normalization, ReLU non-linearity, and unit

dropout with probability which was tuned over

{0.0, 0.4, 0.6}. We apply average pooling to down-

sample the representation only at the end of the

convolution block, which yields a segment repre-

sentation u ∈ R
256. The language classifier con-

sists of 3 fully-connected layers (256 → 256 →
256 → 16), with a unit dropout with probability

0.4 between the layers, before the softmax layer.

The model is trained with the ADAM optimizer

with a batch size of 256 for 50 epochs. We report

the results of the best epoch on the validation set

as our baseline results.

3.3 Submissions

We received three constrained submissions from

three teams, as described below.

Anlirika (Shcherbakov et al., 2021, composite)

The submitted system (constrained) consists of sev-

eral recurrent, convolutional, and dense layers. The

neural architecture starts with a dense layer that is

designed to remove sound harmonics from a raw

spectral pattern. This is followed by a 1D convolu-

tional layer that extracts audio frequency patterns
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(features). Then the features are fed into a stack of

LSTMs that focuses on ‘local’ temporal constructs.

The output of the stack of LSTMs is then addition-

ally concatenated with the CNN features and is fed

into one more LSTM module. Using the resulting

representation, the final (dense) layer evaluates a

categorical loss across 16 classes. The network was

trained with Adam optimizer, the learning rate was

set to be 5 × 10−4. In addition, similar to Lipsia,

the team implemented a data augmentation strat-

egy: samples from validation set have been added

to the training data.

Lipsia (Celano, 2021, Universität Leipzig) sub-

mitted a constrained system based on the ResNet-

50 (He et al., 2016), a deep (50 layers) CNN-based

neural architecture. The choice of the model is

supported by a comparative analysis with more

shallow architectures such as ResNet-34 and a 3-

layer CNNs that all were shown to overfit to the

training data. In addition, the authors proposed

transforming MFCC features into corresponding

640x480 spectrograms since this data format is

more suitable for CNNs. The output layer of the

network is dense and evaluates the probabilities

of 16 language classes.2 Finally, the authors aug-

mented the training data with 60% of the samples

from the validation set because the training set did

not present enough variety in terms of domains and

speakers while the validation data included signif-

icantly more. Use of the validation data in this

way seems to have greatly improved generalization

ability of the model.

The model performed relatively well with no

fine-tuning or transfer-learning applied after aug-

mentation.3

NTR (Bedyakin and Mikhaylovskiy, 2021, NTR

Labs composite), submitted an essentially con-

strained4 system which uses a CNN with a self-

attentive pooling layer. The architecture of the

network was QuartzNet ASR following Kriman

et al. (2020), with the decoder mechanism replaced

with a linear classification mechanism. The authors

also used a similar approach in another challenge

on low-resource ASR, Dialog-2021 ASR5. They

applied several augmentation techniques, namely

2The submitted system actually predicts one out of 18 classes
as two other languages that weren’t part of the eventual test
set were included. The system predicted these two languages
for 27 of 8000 test examples, i.e., ≈ 0.34%.

3The authors trained ResNet-50 from scratch.
4Although technically external noise data was used when aug-
menting the dataset, no language-specific resources were.

5http://www.dialog-21.ru/en/evaluation/

shifting samples in range (-5ms; +5ms), MFCC per-

turbations (SpecAugment; Park et al., 2019), and

adding background noise.

4 Results and Analysis

The main results in Table 2 show all systems greatly

varying in performance, with the Lipsia system

clearly coming out on top, boasting best accuracy

and average F1 score, and reaching the best F1

score for nearly each language individually.6

All four systems’ performance varies greatly on

average, but nevertheless some interesting over-

all trends emerge. Figure 1 shows that while the

Anlirika and Lipsia systems’ performance on the

different languages do not correlate with the base-

line system (linear fit with Pearson’s R2 = 0.00
and p > 0.8 and R2 = 0.02 and p > 0.5, re-

spectively), the NTR system’s struggle correlates

at least somewhat with the same languages that

the baseline system struggles with: a linear fit has

R2 = 0.15 with p > 0.1. More interestingly, in

correlations amongst themselves, the Anlirika and

Lipsia systems do clearly correlate (R2 = 0.57
and p < 0.001), and the NTR system correlates

again at least somewhat with the Anlirika system

(R2 = 0.11 and p > 0.2) and the Lipsia system

(R2 = 0.19 and p > 0.05).

Note that most systems submitted are power-

ful enough to fit the training data: our baseline

achieves a macro-averaged F1 score of .98 (±.01)

on the training data, the Lipsia system similarly

achieves .97 (±.03), the NTR system reaches a

score of .99 (±.02). An outlier, the Anlirika sys-

tem reaches only .75 (±.09). On held-out data

from CMU Wilderness which matches the training

data domain, the baseline achieves .96 F1. This

suggests an inability to generalize across domains

and/or speakers without additional data for adapta-

tion.

Diving deeper into performance on different lan-

guages and families, Figure 2 shows confusion ma-

trices for precision and recall, grouped by language

family. We can see the superiority of the Lipsia

6Each of the “wins” indicated by boldface in Table 2 is sta-
tistically significant under a paired-permutation significance
test (note that as we are not in a multiple-hypothesis testing
setting, we do not apply Bonferroni or similar corrections).
There are no significant differences between the baseline
and the Anlirika system for kab, ind, por, rus, and eng; be-
tween the baseline and the Lipsia system for sun; between the
baseline and the NTR system for ind, iba, and cnh; between
Anlirika and Lipsia on rus; between Lipsia and NTR on rus;
between Anlirika and NTR on ind and rus.
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ISO Anlirika Baseline Lipsia NTR

Valid. Test Valid. Test Valid. Test Valid. Test

Family: Afro-Asiatic .329 .214 .181 .235 .670 .453 .102 .082

kab .329 .214 .181 .235 .670 .453 .102 .082

Family: Austronesian .429 .368 .082 .094 .578 .498 .065 .060

iba .692 .696 .029 .018 .980 .968 .020 .031

ind .350 .108 .033 .105 .700 .338 .096 .074

sun .406 .369 .160 .149 .090 .140 .086 .082

jav .267 .300 .106 .106 .540 .547 .059 .053

Family: Basque .565 .405 .100 .090 .850 .792 .077 .016

eus .565 .405 .100 .090 .850 .792 .077 .016

Family: Dravidian .351 .246 .202 .138 .807 .572 .074 .053

tam .342 .272 .348 .204 .800 .609 .172 .046

kan .188 .168 .000 .042 .820 .557 .004 .015

tel .523 .298 .259 .168 .800 .550 .046 .097

Family: Indo-European .439 .225 .130 .144 .722 .402 .114 .047

hin .458 .378 .091 .099 .780 .635 .021 .011

por .211 .143 .157 .166 .550 .358 .102 .068

rus .630 .034 .014 .014 .900 .065 .050 .049

eng .194 .148 .161 .179 .460 .414 .270 .099

mar .701 .423 .229 .263 .920 .539 .126 .010

Family: Niger-Congo .516 .403 .138 .063 .860 .763 .122 .038

cnh .516 .403 .138 .063 .860 .763 .122 .038

Family: Tai-Kadai .362 .156 .086 .052 .780 .401 .025 .015

tha .362 .156 .086 .052 .780 .401 .025 .015

F1, Macro Avg. .421 .282 .131 .122 .719 .508 .086 .049

F1, Micro Avg. .436 .298 .145 .137 .532 .063

Accuracy 29.9% 13.7% 53.1% 6.3%

Table 2: F1 scores, their macro-averages per family, and overall accuracies of submitted predictions on validation

and test data (validation results are self-reported by participants). The Lipsia system performed best across nearly

all languages and consistently achieves the highest averages.

system and to a lesser degree the Anlirika system

over the generally more noisy and unreliable base-

line system and the NTR system which was likely

overtrained: it classifies 23% of examples as tel,

20% as kab, and 16% as eng, with the remaining

41% spread across the remaining 13 languages (so

≈ 3.2% per language).

Interestingly, the other three systems all struggle

to tell apart sun and jav, the Anlirika and baseline

systems classifying both mostly as sun and the Lip-

sia system classifying both mostly as jav. Note that

the baseline system tends to label many languages’

examples as sun (most notably mar, the test data for

which contains only female speakers), eus (most

notably also rus), and eng (most notably also iba),

despite balanced training data. In a similar pattern,

the Anlirika predicts tam for many languages, in

particular ind, the other two Dravidian languages

kan and tel, por, rus, eng, cnh, and tha.

Looking more closely at the clearly best-

performing system, the Lipsia system, and its per-

formance and confusions, we furthermore find that

the biggest divergence from the diagonal after the

sun/jav confusion is a tendency to label rus as por,

and the second biggest divergence is that mar ex-

amples are also sometimes labeled as kan and tel;

while the first one is within the same family, in the

second case, these are neighbouring languages in
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Figure 1: Correlating submitted systems’ F1 scores for our 16 languages on the test set. The lines are linear

regressions as described in Section 4.
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Figure 2: Visualization of Precision (P), Recall (R), and confusion matrices (scores are counts normalized by

number of gold entries) for the Anlirika, baseline, Lipsia, and NTR system, grouped by language families.

contact and mar shares some typological proper-

ties with kan (and kan and tel belong to the same

language family).

5 Conclusion

This paper describes the SIGTYP shared task on

robust spoken language identification (SLID). This

task investigated the ability of current SLID mod-

els to generalize across speakers and domains. The

best system achieved a macro-averaged accuracy

of 53% by training on validation data, indicating

that even then the task is far from solved. Further

exploration of few-shot domain and speaker adap-

tation is necessary for SLID systems to be applied

outside typical well-matched data scenarios.
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