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Abstract

Standard autoregressive language models per-
form only polynomial-time computation to
compute the probability of the next symbol.
While this is attractive, it means they cannot
model distributions whose next-symbol prob-
ability is hard to compute. Indeed, they can-
not even model them well enough to solve
associated easy decision problems for which
an engineer might want to consult a language
model. These limitations apply no matter how
much computation and data are used to train
the model, unless the model is given access to
oracle parameters that grow superpolynomially
in sequence length.

Thus, simply training larger autoregressive lan-
guage models is not a panacea for NLP. Al-
ternatives include energy-based models (which
give up efficient sampling) and latent-variable
autoregressive models (which give up efficient
scoring of a given string). Both are powerful
enough to escape the above limitations.

1 Introduction

Sequence modeling is a core NLP problem. Many
sequence models p are efficient at scoring strings:
given a string X, its score p(X) can be computed in
O (poly(|x|)). For example, an RNN (Mikolov et al.,
2011) scores x in time O(|x|) while a Transformer
(Vaswani et al., 2017) does so in time O(|x|?). The
score may be an unnormalized probability, and can
be used to rank candidate strings.

Many sequence models also make it easy to
compute marginal properties of p. They support ef-
ficient sampling of strings x (which allows unbiased
approximation of marginal expectations). And they
support efficient computation of the normalizing
constant Z = Y, p(x) (or simply guarantee Z = 1)
for any value of the model parameters.

How about training? Briefly: If a sequence model
can efficiently compute p(x) (and its derivatives
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Figure 1: Valid answers to hard natural language inference
problems can be hard to find (Munroe, 2009), but in many
cases can be checked efficiently (e.g. the KNaPsack problem
in the comic). Given a large enough parametric autoregressive
model with correct parameters, we can efficiently solve all
problem instances with input length n, and efficiently verify the
solutions — but the required model size can grow superpolyno-
mially in n. (This allows the model to store precomputed results
that we can look up in O (n) at test time.) A main observation of
this paper is that assuming NP ¢ P/poly, then without such a
superpolynomial growth in model size, autoregressive models
cannot even be used to verify answers to some problems where
polynomial-time verification algorithms do exist.

with respect to model parameters), then it is efficient
to compute parameter updates for noise-contrastive
estimation (Gutmann and Hyvirinen, 2010; Gut-
mann and Hyvérinen, 2012) or score-matching
(Hyvirinen, 2005). If sampling X or computing
Z (and its derivatives) is also efficient, then it is
efficient to compute parameter updates for ordinary
MLE training.

Finally, popular sequence models are compact.
Usually a fixed-size model is used to score strings x
of all lengths. More generally, it might be reasonable
to use an O(poly(n))-sized parameter vector 6,
when x has length n, at least if parameter vectors
can be obtained (perhaps from an oracle) for all
needed lengths. In this paper, we investigate what
can and cannot be achieved with models that are
compact in this sense. This setup allows us to discuss
the asymptotic behavior of model families.

Standard autoregressive models have the form



: Compact Efficient Efficient sampling
Model family parameters? scoring? and normalization? Support can be ...
ELN/ELNCP: Autoregressive models (§3.1) v v v some but not all L € P
EC/ECCP: Energy-based models (§4.1) v v X all L € Pbutno L € NPC
Lightly marginalized ELNCP: Latent-variable autoregressive models v/ X v/ all L € NP
(§4.2)
Lookup models (§4.3) X v v anything

Table 1: A feature matrix of parametric model families discussed in this paper. Also see Figure 2 in the appendices.

p(x) = TT; p(x; | X<;)! where each factor is ef-
ficient to compute from a fixed parameter vector.
These models satisfy all three of the desiderata
above. By using flexible neural network architec-
tures, standard autoregressive models have achieved
stellar empirical results in many applications (Oord
et al., 2016; Child et al., 2019; Zellers et al., 2019;
Brown et al., 2020). However there are still tasks
that they have not mastered: e.g., it is reported that
they struggle at deep logical structure, even when
initialized to huge pretrained models (Wang et al.,
2019a).

We point out that, unfortunately, there are certain
sequence distributions whose unnormalized string
probabilities p(x) are easy to compute individually,
yet whose autoregressive factors p(x; | X<;) are
NP-hard to compute or even approximate, or are
even uncomputable. Thus, standard autoregressive
models are misspecified for these distributions (can-
not fit them). It does not help much to focus on
strings of bounded length, or to enlarge the model:
under the common complexity-theoretic assumption
NP ¢ P/poly, the parameter size |6,,| must grow
superpolynomially in n to efficiently approximate
the probabilities of all strings of length up to n.

Indeed, one of our main findings is that there
exist unweighted languages L € P for which no
standard autoregressive model has L as its support,
i.e., assigns weight > 0 to just the strings x € L.
This is downright depressing, considering the costs
invested in training huge parametric autoregressive
models (Bender et al., 2021). Since L € P, it is
trivial to build an efficient scoring function j(x)
with fixed parameters that has L as its support—
just not an autoregressive one. The problem holds
for all standard autoregressive models, regardless of
how much computation and training data are used
to learn the model parameters.

That is, for an NP-hard problem, scoring a string
x under a standard autoregressive model p(x) can-
not be used to verify a witness. Nor can finding a
witness be solved by prompting such a model with

n this paper we use the shorthand x<; £ x1...x;_1.

a description of a problem instance and sampling
a continuation x of that string. Such problems are
abundant in NLP: for example, surface realization
under Optimality Theory (Idsardi, 2006), decoding
text from an AMR parse (Cai and Knight, 2013),
phrase alignment between two sentences (DeNero
and Klein, 2008), and in general inference for propo-
sitional logic (Cook, 1971), which underlies the
NP-hardness of general natural language inference,
as in Figure 1. In other words, our results imply
that standard autoregressive models do not have the
right structure to capture important linguistic regu-
larities: e.g., that observed sequences were in fact
constructed to be phonologically optimal, expressive
of a semantic form, or logically coherent!

Our work is also relevant to autoregressive mod-
els of fixed-dimensional vectors, such as NADE
(Uria et al., 2016). These can be extended to arbi-
trary n-dimensional vectors by providing separate
parameters 8,, for each n. Our constructions imply
that for some distributions, |6, | must grow super-
polynomially in n, even though this would be not
be necessary if the models were not autoregressive.

In the remainder of this paper, we formalize our
three desiderata for sequence models. We formalize
compact autoregressive models and describe some
limitations on their expressiveness. We then show
that it can help to choose an alternative model family
that relaxes any one of the three desiderata (Table 1).

2 Background

2.1 Weighted languages

An unweighted language L C V* is a set of strings
x over a finite alphabet V. A weighted language p is
afunction p : V* — Ry¢. [tmay be regarded as spec-
ifying an unweighted language L = support(p) =
{x : p(x) # 0} along with positive weights for the
strings in L. We say that a weighted language p is
normalizable if its global normalizing constant
Z £ Yxev+ P(X) is finite and strictly positive. When
p is normalizable, p(x) £ j(x)/Z is a probability
distribution over L. A distribution is any weighted
language whose global normalizing constant is 1.



Let X < x mean that X is a prefix of x € V* (not
necessarily a strict prefix). If p is normalizable,
then Z(X) £ Yxeves<x P(X) is < Z for any X € V*,
yielding a marginal prefix probability Z(x)/Z. If
the prefix X has positive prefix probability, then it
admits a local conditional probability p(x | X) =
Z(Xx)/Z(X) for each symbol x € V, where the
denominator is interpreted as a local normalizing
constant. This is the conditional probability that
if a random string starts with the prefix X, the next
symbol is x. There is also a probability p($ | X) =
1->xev p(x | X) = p(X)/Z(X) = 0 that the string
ends immediately after X; the special symbol § ¢ V
represents “‘end of string.”

2.2 Computation for weighted languages

We define a weighted language p to be computable
if it is defined by a Turing machine (also called p)
that maps any x € V* to p(x) € Qo in finite time.
The Turing machine does not have to compute Z.

While the computable weighted languages allow
any computable function as p, most architectures
for defining weighted languages (e.g., RNNs or
Transformers) do only a bounded or linear amount
of work per input symbol. As a result, they com-
pute p(x) in time O(poly(|x|)) (that is, p € FP).
We refer to such weighted languages as efficiently
computable (EC). This does not imply that the nor-
malized version p is efficiently computable, since
finding the denominator Z requires summing over
all of V*.

If we tried to construct the same normalized
distribution p as in the previous paragraph using
a standard autoregressive model, we would model
it as a product of local conditional probabilities,
p(x) = (I p( | X<))p($ | X). Most such
architectures again do only a bounded or linear
amount of work per input symbol. Yet one suspects
that this may not always be enough work to do
the job: the local conditional probabilities of the
original p are expensive to compute (unless p has
some special structure making Z(X) tractable).

Indeed, the observation of this paper is that for
some efficiently computable weighted languages
P, the local conditional probabilities are expensive
to compute or even to approximate well. More
precisely, autoregressive models cannot fit the local
conditional probabilities unless they are superpoly-
nomial either in their runtime or in their number
of parameters (where the parameters may be pre-
computed at training time). We now explain how to

formalize these notions.

2.3 Non-uniform computation

In the machine learning approach to sequence mod-
eling, we usually do not manually design the Turing
machine behind p. Rather, we design a model M
with parameters 6. M is a Turing machine that
reads € and outputs a specialized Turing machine

P9 = M(0) that can score strings x and hence

defines a weighted language. Without loss of gen-

erality, we will express 6 as a string in B* (where

B = {0, 1}). For each 6, we obtain a potentially

different weighted language.

Strings vary in length, and accurate modeling of
longer strings may sometimes require more complex
computations with more parameters. For example,
when V is a natural language alphabet, a recurrent
neural network may require more hidden units
to model sentences of the language rather than
individual words, and even more units to model
whole documents. To accommodate this, we allow
an infinite sequence of parameter vectors, @ = {0,, €
B* | n € N}, which yields an infinite sequence of
Turing machines {p, | n € N} via p,, = M(60,,).
We then define pg(x) = p|x|(x), so a string of
length n is scored by the p,, machine. This is known
as non-uniform computation. Of course, it is legal
(and common) for all of the 8,, to be equal, or empty,
but if desired, we can obtain more power by allowing
the number of parameters to grow with 7 if needed.

We can now consider how rapidly the parametric
and runtime complexity may grow.

e If |6,,] is permitted to grow exponentially, then
one can fit any weighted language p (even an
uncomputable one).? Simply use 6, to encode a
trie with O(|V|™*!) nodes that maps x — j(x)
for any |x| of length n, and design M such that the
Turing machine j, = M(8,) has a (large) state
transition table that mirrors the structure of this
trie. The resulting collection of Turing machines
{Pn | n € N} can then compute j(x) exactly for
any x, with only linear runtime O (|x|) (which is
used to traverse the trie).

» Separately, if unbounded runtime is permitted
for M, then one can exactly fit any computable
weighted language p. Simply have M, when run
on 6,,, compute and return the large trie-structured
Pn that was mentioned above. In this case, M
need not even use the parameters 6,,, except to
determine n.

2See our remark on computability in Appendix A.



* Finally, if unbounded runtime is permitted for p,,,
then again one can exactly fit any computable
weighted language p. In this case, M trivially
returns p, = p for all n.

* However, if the parameters ® are “compact” in
the sense that |6,,| grows only as O (poly(n)), and
also p, = M(6,) is constructed by M in time
O(poly(n)), and p, scores any x of length » in
time O (poly(n)), then we say that the resulting
weighted language p is efficiently computable
with compact parameters (ECCP).> We refer
to M paired with a parameter space of possible
compact values for ® as an ECCP model.
Neural models of weighted languages are typi-

cally ECCP models. The construction and execution

of the neural network p,, may perform a polynomial
amount of total computation to score the string

x. This computation may involve parameters that

were precomputed using any amount of effort (e.g.,

training on data) or even obtained from an oracle

(they need not be computable). However, the ex-

ponentially many strings of length n» must share a

polynomial-size parameter vector 6,,, which pre-

vents the solution given in the first bullet point
above.
In practice one takes 6,, = @ for all n and obtains

0 < R? by training. However, we do not consider

whether such parameters are easy to estimate or

even computable. We simply ask, for a given target
language p, whether there exists a polynomially
growing sequence @ of “good” parameter vectors
for any parametric model M. When not, there can
be no scheme for estimating arbitrarily long finite
prefixes of such a sequence. So for any polynomial

f, any training scheme that purports to return a

trained model of size f(n) that works “well” for

strings of length < n must fail for large enough n —
even if unlimited data, computation, and oracles are
allowed at training time.

24 P, P/poly, and NP/poly

The phrase “efficiently computable with compact
parameters” means that without access to those
parameters, the ECCP weighted language may no
longer be efficiently computable. Indeed, it need
not be computable at all, if the parameter vectors
store the outputs of some uncomputable function.

Our definitions above of EC and ECCP weighted

3Since we require M to run in polytime, it can only look
at a polynomial-sized portion of 6,,. Hence it is not really
crucial for the parameters 02 to be compact, but we nonetheless
include this intuitive condition, without loss of generality.

languages are weighted generalizations of complex-
ity classes P and P/poly, respectively,* and their
supports are always unweighted languages in P and
P/poly, respectively. An unweighted language L
is in P iff there is a deterministic Turing machine
that decides in O(poly(|x|)) time whether x € L.
And an unweighted language L’ is in P/poly iff>
there exist Turing machines {M,, : n € N} such
that M,, decides in O(poly(n)) time whether x of
length nis in L’, where each M,, can be constructed
in O(poly(n)) time as M (@,,), for some Turing
machine M and some sequence of polynomially-
sized advice strings ® = {6, | n € N} with
|6,,| € O(poly(n)). We define the language class
NP/poly similarly to P/poly: the only difference is
the family {M,, : n € N} consists of nondeterminis-
tic Turing machines.

Naturally, P € P/poly. But P/poly is larger than
P: it contains all sparse languages, regardless of their
hardness — even sparse undecidable languages —
as well as many dense languages. The extra power
of P/poly comes from its access to compact advice
strings that do not have to be recursively enumer-
able, let alone efficient to find. This corresponds to
statistical modeling, where the trained model has a
computationally efficient architecture plus access to
parameters that might have taken a long time to find.

2.5 NP-completeness and SAT

NP-complete decision problems have solutions
that are efficient to validate but inefficient to find
(assuming P # NP). One of the most well-known
NP-complete problems is the boolean satisfiability
problem (Sat) (Cook, 1971). Given a boolean
formula ¢, SAT accepts ¢ iff ¢ can be satisfied by
some value assignment. For example, the formula
(A1 V=AyV A3) A (A V—Ay)isin SaT, since there
is a satisfying assignment A;__ 4 = 1101. We denote

4Namely the nonnegative functions in FP and FP/poly.

50ur presentation of P/poly is a variant of Arora and
Barak (2009, §6), in which inputs x of length n are evaluated
by a polytime function M that is given an advice string
6, as an auxiliary argument. This corresponds to a neural
architecture M that can consult trained parameters 6, at
runtime. We have replaced the standard call M(6,,,x) with
the “curried” expression M (8,,)(x), which we still require to
execute in polynomial total time. Here the intermediate result
M, = M(6,,) corresponds to a trained runtime model for inputs
of length n. Our Turing machines M, have size polynomial
in n (because they are constructed by M in polynomial time).
They correspond to the polynomial-sized boolean circuits
M,, that are used to evaluate inputs of length » under the
classical definition of P/poly (Ladner, 1975). We exposed
these intermediate results M, only to observe in §2.3 and
§4.3 that if we had allowed the M;, to grow exponentially, they
would have been able to encode the answers in tries.



the number of satisfying assignments to ¢ as #(¢).

It is widely believed that no NP-complete lan-
guages are in P/poly. Otherwise we would have
all of NP C P/poly and the polynomial hierarchy
would collapse at the second level (Karp and Lipton,
1980).

A capacity limitation of EC/ECCP weighted
languages naturally follows from this belief:®

Lemma 1. For any L € P, there exists an EC
weighted language with support L. For any L €
P/poly, there exists an ECCP language with support
L. But for any L € NP-complete, there exists no
ECCP language with support L (assuming NP ¢
P/poly).

In addition to not capturing the support of NP-
complete languages, ECCP weighted languages
cannot help solve other NP-hard problems, either.
For example, many structured prediction problems
in NLP can be formulated as argmax, ¢ ., p(X): we
are given a prefix X as input and look for its optimal
continuation under p. But if this problem is NP-hard
for a particular p, then it is not in P/poly (assuming
NP ¢ P/poly), so it cannot be accomplished by any
polytime algorithm that queries an ECCP model.

3 Autoregressive ECCP models (ELNCP
models) have reduced capacity

In this section we formally define autoregressive
ECCP models, and prove that they have strictly less
capacity than general ECCP models or even just EC
models. Our proofs rely on the construction of a
EC model p where computing the local conditional
probabilities p(x | X) is NP-hard, so they cannot
be computed with compact parameters, if NP ¢

P/poly.
3.1 ELN and ELNCP models

Many parameter estimation techniques and inference
methods specifically work with local conditional
probabilities p(x | X). Thus, it is common to use
parametric models where such quantities can be
computed in time O (poly(|X|)) (given the parame-
ters).” These are the “standard autoregressive mod-

6All omitted proofs are in Appendix A.

7An autoregressive model architecture generally defines
p(x) as an efficiently computable (§2.2) product of local
conditional probabilities. However, the parametrization usually
ensures only that 3y cy pg(x | X) = 1 for all prefixes X. Some
parameter settings may give rise to inconsistent distributions
where Z £ Yxey+ pg(X) < 1 because the generative process
terminates with probability < 1 (Chen et al., 2018). In this
case, the factors pg(x | X) defined by the autoregressive model
are not actually the conditional probabilities of the weighted

els” we discussed in §1. We say that the resulting
distributions are efficiently locally normalizable,
or ELN.

We may again generalize ELNs to allow the
use of compact parameters. For any weighted
language p, the Turing machine M9 efficiently
locally normalizes p with compact parameters
0= {0} | n e N} if
« the parameter size |0, | grows only as O (poly(n))
« M9(8}) returns a Turing machine ¢, (similar to

P in §2.3) in time O (poly(n))

* p is normalizable (so p exists)
* ¢, maps Xx — p(x | X) forall x € VU {$} and

all prefixes X € V* with |X| < nand Z(X) > 0
* ¢, runs on those inputs Xx in time O (poly(n))
If there is M9 that efficiently locally normalizes
a weighted language p with compact parameters
04, we say p is efficiently locally normalizable
with compact parameters, or ELNCP. Note that
this is a property of the weighted language itself.
In this case, it is obvious that p is ECCP:

Lemma 2. An ELNCP model p is also ECCP.
Likewise, an ELN model is also EC.

If we define ELNCP models analogously to
ECCP models, Lemma 2 means that locally
normalized models do not provide any extra power.
Their distributions can always be captured by
globally normalized models (of an appropriate
architecture that we used in the proof). But we will
see in Theorem 1 that the converse is likely not true:
provided that NP ¢ P/poly, there are efficiently
computable weighted languages that cannot be
efficiently locally normalized, even with the help
of compact parameters. That is, they are EC (hence
ECCP), yet they are not ELNCP (hence not ELN).

3.2 ELNCP models cannot exactly capture all
EC (or ECCP) distributions

We reduce SAT to computing certain local condi-
tional probabilities of p (as defined in §2.1). Each
decision Sat(¢) (where ¢ ranges over formulas)
corresponds to a particular local conditional proba-
bility, implying that there is no polytime scheme

language (as defined by §2.1). It is true that training @ with
a likelihood objective does encourage finding a weighted
language whose generative process always terminates (hence
Z = 1), since this is the behavior observed in the training
corpus (Chi and Geman, 1998; Chen et al., 2018; Welleck
et al., 2020). Our definitions of ELN(CP) models require the
actual conditional probabilities to be efficiently computable.
Autoregressive models that do not sum to 1, whose normalized
probabilities can be uncomputable, are not ruled out by our
theorems that concern ELN(CP).



for computing all of these probabilities, even with
polynomially sized advice strings (i.e., parameters).

Without loss of generality, we consider only for-
mulae ¢ such that the set of variables mentioned
at least once in ¢ is {Ay,..., A;} for some j € N;
we use |¢| to denote the number of variables j
in ¢. We say that a satisfies ¢ if a € B!?! and
(A1 =ai,...,A|p| = a|s)) is a satisfying assign-
ment. Finally, let boldface ¢ € B* denote enc(¢)
where enc is a prefix-free encoding function. We
can now define the unweighted language L = {¢a |
¢ is a formula and a € B!?! and a satisfies ¢} over
alphabet B, which contains each possible SAT prob-
lem concatenated to each of its solutions.?

We now convert L to a weighted language p,
definedby p(x) = p(¢,a) = (%)|X|+l forx € L (oth-
erwise p(x) = 0). p is normalizable since Z is both
finite (Z = Yyxep p(X) < Sxer ()M = 1) and
positive (Z > 0 because the example string in foot-
note § has weight > 0). The conditional distribution
p(a | @) is uniform over the satisfying assignments
a of ¢, as they all have the same length |¢|.

p is efficiently computable, and so is p = p/Z.°
Yet deciding whether the local conditional prob-
abilities of p are greater than O is NP-hard. In
particular, we show that SAT can be reduced to de-
ciding whether certain local probabilities are greater
than 0, namely the ones that condition on prefixes
X that consist only of a formula: X = ¢ for some
¢. This implies, assuming NP ¢ P/poly, that no
(M1, ®@9) can efficiently locally normalize p with
compact parameters. Granted, the restriction of p
to the finite set {x € B* : |x| < n} can be locally
normalized by some polytime Turing machine ¢,,,
using the same trie trick sketched in §2.3. But such
tries have sizes growing exponentially in n, and
it is not possible to produce a sequence of such
machines, {q, : n € N}, via a single master Turing
machine MY that runs in O(poly(#)) on @5. That
is:

Theorem 1. Assuming NP ¢ P/poly, there exists
an efficiently computable normalizable weighted
language p that is not ELNCP.

Proof sketch. Take p to be the weighted language
we defined earlier in this section. p is clearly effi-
ciently computable. We will show that if it is ELNCP

8For example, L contains the string ¢a where ¢ =
enc((A; V—-Ar,V A3) A(A] V—-Ay)) anda = 1101.

9Almost. This Z could be irrational, but at least it is
computable to any desired precision. For any rational Z ~ Z,
we can say p = p/Z ~ p is EC, via a Turing machine MP that
stores Z. Further remarks on irrationality appear in Appendix A.

via (M4, %), then the NP-complete problem SAT
is in P/poly, contradicting the assumption. We must
give a method for using (M4, @%) to decide SAT in
polytime and with compact parameters @. Given ¢,
our method constructs a simple related formula ¢’
such that
* ¢’ has at least one satisfying assignment (so
Z(¢’) > 0 and thus p(1 | ¢’) is defined)
* ¢’ has satisfying assignments with A; = 1 (i.e.,
p(1] ¢’) > 0)if and only if ¢ is satisfiable
Our construction also provides a polynomial func-
tion f such that |¢’| is guaranteed to be < f(|¢@]).
We now define @ by 0,, = qu ) (Vn). When our
Sat algorithm with compact parameters @ is given
¢ of length n, it can use the polynomial-size advice
string 6, to ask (M9, ®%) in polynomial time for
p(1| ¢’). Sat(¢) returns true iff that probability is
> (.10 ]

3.3 ELNCP models cannot even capture all
EC (or ECCP) supports or rankings

We can strengthen Theorem 1 as follows:

Theorem 2. Assuming NP & P/poly, there exists
an efficiently computable normalizable weighted
language p where there is no ELNCP g such that

support(p) = support(§).

Proof. Observe that for any two weighted languages
p and g with the same support, VX € V*, Z5(X) >
0 & Z;(X) > 0(where Z; and Z; return the pre-
fix probabilities of p and § respectively). Thus, for
any X with Z5(X) > 0, p(1 | X) = Z;5(X1)/Z5(X)
and g(1 | X) = Z5(X1)/Z;(X) are well-defined and
p(l]X) >0 < ¢(1]|X) > 0.If § is ELNCP,
then all such probabilities g(1 | X) can be computed
in polytime with compact parameters, so it is like-
wise efficient to determine whether p(1 | X) > 0.
But this cannot be the case when p is the weighted
language used in the proof of Theorem 1, since
that would suffice to establish that Sat € P/poly,
following the proof of that theorem. O

To put this another way, there exists an unweighted
language in P (namely support(p)) that is not the
support of any ELNCP distribution.

If they have different support, normalizable lan-
guages also differ in their ranking of strings:

Lemma 3. Let p,G be normalizable weighted
languages with support(p) # support(§). Then

10See also the remark on implications for seq2seq models
following the proof in Appendix A.



xy, xp € V* such that p(x1) < p(xz) but
g(x1) = G(x2).

Therefore, no ELNCP ¢ captures the string rank-
ing of p from Theorem 2. And for some p, any
ELNCP § misranks even string pairs of “similar”
lengths:

Theorem 3. Assuming NP ¢ P/poly, there exists
an efficiently computable normalizable weighted lan-
guage p such that no ELNCP § with support(g) 2
support() has j(x1) < p(x2) = G(x1) < G(x2)
forall x1,x, € V*. Indeed, any such § has a coun-
terexample where p(x1) = 0. Moreover, there is
a polynomial f5 : N — N such that a counterex-
ample exists for every x| such that p(x,) = 0 and
g(x1) > 0, where the X, in this counterexample
always satisfies [xa| < f(|x1]).

Theorem 3 is relevant if one wishes to train
a model § to rerank strings that are proposed by
another method (e.g., beam search on g, or exact
k-best decoding from a more tractable distribution).
If the desired rankings are given by Theorem 3’s
P, any smoothed! ELNCP model § will misrank
some sets of candidate strings, even sets all of
whose strings are “close” in length, by failing
to rank an impossible string (x; with p(x;) = 0)
below a possible one (x; with p(x;) > 0).

3.4 ELNCP models cannot even approximate
EC (or ECCP) distributions

Theorem 2 implies that there exists p whose local
probabilities p(x | X) are not approximated by any
ELNCP g to within any constant factor 4, since that
would perfectly distinguish zeroes from non-zeroes
and the resulting support sets would be equal.1?
However, this demonstration hinges on the diffi-
culty of multiplicative approximation of zeroes —
whereas real-world distributions may lack zeroes.
Below we further show that it is hard even to approx-
imate the non-zero local conditional probabilities
(even with the additional help of randomness).

Theorem 4. Assuming NP & P/poly, there exists
an efficiently computable weighted language p :
V* — Rso such that there is no (M9, %) where

1Smoothing is used to avoid ever incorrectly predicting O (a
“false negative”) by ensuring support(§) 2 support(p). E.g.,
autoregressive language models often define g(x | X) using a
softmax over V U {$}, ensuring that ¢(x) > 0 for all x € V*.

2Dropping the normalization requirement on the approxi-
mated local probabilities (so that possibly X xey g(x | X) # 1)
does not help. Otherwise, again, SAT could be solved in poly-
nomial time (with the help of polysize advice strings) by using
q(1 | ¢’) to determine in the proof of Theorem 1 whether

p(1]¢’)>0.

@9 = {6} | n € N} that satisfies all of the following

properties (similar to §3.1):

o the parameter size |@5\| grows only as O (poly(n))

o MY(0}) returns a probabilistic Turing machine
qn in time O (poly(n))

e there exists A > 1 such that for each x € V U {$}
and X € V* with |X| < nand p(x | X) > O, the
probabilistic computation g, (Xx) has probability
> 2/3 of approximating p(x | X) to within a factor
of A (that is, qn(Xx)/p(x | X) € [1/4,1])

* gn runs on those inputs Xx in time O (poly(n))

Moreover, the statement above remains true

(a) when the approximation guarantee is
only required to hold for prefixes X where
{x: X < X} is finite (so p(x | X) is computable
by brute force)

(b) or, when support(p) = V*

3.5 ELN models are unconditionally weak

Our above results rely on the NP-hardness of com-
puting or approximating an EC distribution’s au-
toregressive factors p(- | X<;). In Appendix A,
we show that these factors can even be uncom-
putable. In such cases, the distribution cannot be
ELN (Theorem 5), though sometimes it is still EL-
NCP (Theorem 6). This result does not assume
P # NP or NP ¢ P/poly.

3.6 ELN(CP) models cannot correctly model
propositional logic

In §1 we have asserted that autoregressive models do
not make correct verifiers for formulae under propo-
sitional logic — one of the simplest logic formalisms
where polynomial-time sound and complete proof
systems exist. Below is a formal claim:

Theorem 7. Let L be a language of propositions
under the natural deduction system. Let L; C L
be the set of all tautological propositions in L,
and Ly C L be the set of all contradictory propo-
sitions in L. There is no ELN model p where
Vx| € L;,Vxp € Ly, p(X1) > p(X2). Moreover, as-
suming NP ¢ P/poly, the results hold for all ELNCP
p’s.

Theorem 7 has several implications: first, entirely
autoregressive proof generators (Gontier et al., 2020)
will assign higher probabilities to ‘proofs’ that are
patently wrong (i.e. proofs that those ‘proofs’ are
wrong can be verified in polynomial-time) than
to some correct proofs. Theorem 7 also implies
that correct reasoning cannot be guaranteed under
standard autoregressive models, suggesting that



the performance gap of reasoning between ora-
cles and huge parametric autoregressive models
(Hendrycks et al., 2021) cannot be closed regardless
of model parametrization choice, unless we resort
to a superpolynomial growth of parameters.

4 Alternative model families

We now discuss alternative families of sequence
distributions that trade away efficiency or compact-
ness in exchange for greater capacity, as shown in
Table 1.

4.1 Energy-based models (EBMs)

Energy-based models (LeCun et al., 2006) of dis-
crete sequences (Rosenfeld et al., 2001; Sandbank,
2008; Huang et al., 2018) traditionally refer to the
EC models of §2.2. Only the unnormalized probabil-
ities pg(x) are required to be efficiently computable.
Lemmas 1 and 2 showed that this model family
contains all ELN languages and can achieve any
support in P. While EBMss are known for their
flexible model-specifying mechanisms, we formally
show that a capacity gap exists between EBMs and
autoregressive models (and therefore autoregressive
approximations of EBMs (Khalifa et al., 2021) in
general will be imperfect.) Specifically, Theorem 1
shows that it also contains languages that are not
ELN or even ELNCP: intuitively, the reason is
that the sums Z(X) needed to compute the local
normalizing constants (see §2.1) can be intractable.

If we generalize energy-based sequence models
to include all ECCP models — that is, we allow non-
uniform computation with compact parameters —
then Lemmas 1 and 2 guarantee that they can capture
all ELNCP languages and furthermore all languages
in P/poly (though still not NP-complete languages).

Experiments on different parameterizations.
Maximum-likelihood parameter estimation (MLE)
can be expensive in an EBM because the likelihood
formula involves the expensive summation
Z = Yxev+ Po(x). This forces us in practice to use
alternative estimators that do not require computing
normalized probabilities, such as noise-contrastive
estimation (NCE) or score matching (§1), which
are less statistically efficient. In pilot experiments
we found that both RNN- and Transformer-based
EBMs trained with NCE achieved worse held-out
perplexity than comparable locally normalized
models trained with MLE.13

13This might be due to a capacity limitation of the specific
globally normalized architectures (i.e., no parameters work

Fortunately, it is possible to infuse a globally
normalized architecture with the inductive bias
of a locally normalized one, which empirically
yields good results. Residual energy-based mod-
els (REBMs) (Bakhtin et al., 2021) are a simple
hybrid architecture:

po(X) & pg(X) = po(X) - exp go(X)

This simply multiplies our previous weight by a new
factor po(x). The base model pg : L — (0, 1] is a
locally normalized neural sequence model (ELN
model) that was pretrained on the same distribu-
tion. gg : V* — R is a learnable function (with
parameters 6) that is used to adjust po, yielding
a weighted language py with the same support L.
We implemented REBMs, again with NCE training,
and evaluated them on two different neural architec-
tures (GRU- and Transformer-based) and 3 datasets
(WikiText (Merity et al., 2017), Yelp (Yelp), and
RealNews (Zellers et al., 2019)). In each setting we
tried, the REBM slightly but significantly improved
the perplexity of the base model pg (p < 0.05).14

4.2 Latent-variable models

Autoregressive models have Z = 1 for any setting of
the parameters (or at least any setting that guarantees
consistency: see footnote 7). Clearly Z = 1 ensures
that Z is both finite and tractable. Can we find a
model family that retains this convenience (unlike
EBMs), while still being expressive enough to have
any non-empty language in P as support?

Autoregressive latent-variable models form such
a family. As in directed graphical models, the use
of latent variables provides a natural way to model
partial observations of an underlying stochastic
sequence of events. We will model an observed
sequence x of length n as a function of a latent
string z of length O(poly(n)). As in EBMs, the
probability p(x) can be computationally intractable,
allowing these models to break the expressivity bot-
tleneck of ordinary autoregressive models. However,
well), or excess capacity (i.e., too many parameters work well on
the finite sample), or statistical inefficiency of the estimator (the
NCE objective on the finite sample, with the noise distribution
we chose, does not distinguish among parameters as well as
MLE does), or an optimization difficulty caused by local optima
in the NCE optimization landscape.

14We independently conceived of and implemented the
REBM idea proposed in Bakhtin et al. (2021). Details of
neural architecture choice, model parameter sizes, training
regimen, and evaluation (Appendices B-D) differ between
our work and theirs, which also reported positive empirical
results (on different datasets). We regard the two independent

positive findings as a strong indication that the REBM design
is effective.



the intractability no longer comes from exponen-
tially many summands in the denominator Z, but
rather from exponentially many summands in the
numerator — namely, the summation over all latent
z that could have produced x. Notice that as a result,
even unnormalized string weights are now hard to
compute, although once computed they are already
normalized.

Formally, we define marginalized weighted lan-
guages. We say that p is a marginalization of
the weighted language 7 if it can be expressed as
P(X) = Xzu(z)=x7(z), where u : § — V* is some
function (the marginalization operator). We say it
is a light marginalization if |z| € O (poly(|u(z)|))
and u runs in time O (poly(|z|)).'® Typically u(z)
extracts a subsequence of z; it can be regarded as
keeping the observed symbols while throwing away
a polynomially bounded number of latent symbols.

Light marginalizations of ELN distributions are
a reasonable formalization of latent-variable autore-
gressive models. They are more powerful than ELN
distributions, and even include some distributions
that (by Lemma 1) are not even ELNCP or ECCP:

Theorem 8. There exists a light marginalization p
of an ELN distribution, such that support(p) is an
NP-complete language.

Our proof of Theorem 8 relies on special structure
of a certain NP-complete language (SaT) and does
not evidently generalize to all languages in NP.

However, light marginalizations of ELNCP distri-
butions are more powerful still,’® and can have any
language € NP or even NP/poly (§2.4) as support:

Theorem 9. The following statements are equiva-
lent for any nonempty L C V*:
(a) L € NP/poly.
(b) L is the support of a light marginalization of
an ELNCP distribution.
(c) L is the support of a light marginalization of
an ECCP weighted language.

Theorems 8 and 9 make use of unrestricted latent-
variable autoregressive models. There exist more
practical restricted families of such models that
admit tractable computation of p(x) (Lafferty et al.,
2001; Rastogi et al., 2016; Wu et al., 2018; Buys and
Blunsom, 2018). Such models are EC (and indeed,

15WLOG, u can be required to run in linear time O (|z|), as
it does in our constructions below.

16The capacity established by Theorem 9 does not need
the full power of marginalization. We could similarly de-
fine light maximizations of ELNCP distributions, p(x) =
maxy. , (z)=x 7(2). Replacing sum by max does not change the
support.

typically ELN) — but this limits their expressivity,
by Theorem 1. Both Lin et al. (2019) and Buys and
Blunsom (2018) observed that such models yield
worse empirical results than models that do not have
tractable exact inference methods. The tractability
requirement is dropped in “self-talk” (blixt, 2020;
Gontier et al., 2020; Shwartz et al., 2020), where
a neural autoregressive language model generates
an analysis of the prefix X via latent intermediate
symbols before predicting the next output symbol. "’

We remark that for autoregressive models, the po-
sition of the latent variables is significant. Marginal-
izing out latent variables at the end of the string
adds no power. More precisely, if an ELNCP dis-
tribution is over strings z of the form x#y, then its
marginalization via u(x#y) = x can be expressed
more simply as an ELNCP language. Thus, by Theo-
rem 2, marginalizations of such distributions cannot
have arbitrary NP languages as support. Our proofs
of Theorems 8 and 9 instead use latent strings of
the form y#x, where all latent variables precede all
observed ones (as in Kingma and Welling, 2014).
(This simple design can always be used without loss
of generality.) Trying to reorder those latent strings
as x#y while preserving their weights would have
yielded a non-ELNCP distribution p (x#y) (because
if it were ELNCP, then p(x) would be ELNCP also,
and we know from Lemma 1 that it cannot be for
any distribution whose support is an NP-complete
language).

How about lightly marginalizing ECCP languages
instead of ELNCP ones? This cannot model any ad-
ditional unweighted languages, by Theorem 9. But it
may be able to model more probability distributions.
One can easily construct a light marginalization p
of an ECCP distribution such that #(¢) = ¢, - p(¢),
where #(¢) is the number of satisfying assignments
of ¢ and the constant c¢,, depends only on n = |¢@|.
We conjecture that this is not possible with lightly
marginalized ELNCP distributions.

4.3 Lookup models

§2.3 noted that with exponential growth in stored pa-
rameters, it is possible to fit any weighted language
up to length n, with local probabilities computed in

"Here the marginal distribution of the next observed
symbol can require superpolynomial time to compute (if
#P # FP, which follows from NP ¢ P/poly). Theorem 1
could likewise be evaded by other autoregressive approaches
that invest superpolynomial computation in predicting the
next symbol (Graves, 2016). Each autoregressive step might
explicitly invoke lookahead or reasoning algorithms, just as
feed-forward network layers can invoke optimizers or solvers
(Amos and Kolter, 2017; Wang et al., 2019b).



only O(n) time by lookup. Of course this rapidly
becomes impractical as n increases, even if the
amount of training data increases accordingly. How-
ever, there has been some recent movement toward
storage-heavy models. Such models are typically
semiparametric: they use a parametric neural model,
such as an autoregressive model, together with an
external knowledge base of text strings or factoids
that are not memorized in the layer weights. The neu-
ral model generates queries against the knowledge
base and combines their results. Examples include
kNNLMs (Khandelwal et al., 2020) and semipara-
metric LMs (Yogatama et al., 2021). The knowledge
base grows linearly with the training data rather
than compressing the data into a smaller parameter
vector. Itis in fact a copy of the training data, indexed
to allow fast lookup (Indyk and Motwani, 1998).
(Preparing the index is much cheaper than neural
network training.) Access to the large knowledge
base may reduce the amount of computation needed
to find the local conditional probabilities, much as
in the trie construction of §2.3.

5 Related work

Chen et al. (2018) show that it is hard to map RNN
parameters to properties of the resulting autore-
gressive weighted language, such as consistency
(Z = 1). We focus on cases where the RNN pa-
rameters are already known to be consistent, so
the RNN efficiently maps a string X to its local
conditional distribution p(- | X). Our point is that
for some weighted languages, this is not possible
(even allowing polynomially larger RNNs for longer
strings), so consistent RNNs and their ilk cannot be
used to describe such languages.

In a Bayes network — which is really just an
autoregressive model of fixed-length strings — ap-
proximate marginal inference is NP-hard (Roth,
1996). Assuming NP ¢ P/poly and the grid-minor
hypothesis, Chandrasekaran et al. (2008, Theorem
5.6) further showed that for any infinite sequence of
graphs G, G, ... where G, has treewidth n, there
is no sequence of algorithms M, M>, . .. such that
M,, performs approximate marginal inference in
time O (poly(n)) on graphical models of structure
G,. This remarkable negative result says that in
any graph sequence of unbounded treewidth, ap-
proximating the normalizing constant for G,, given
arbitrary parameters is hard (not O (poly(n))), even
with advice strings. Our negative result (Theorem 4)
focuses on one particular infinite weighted language,

showing that approximating local conditional prob-
abilities given an arbitrary length-n prefix is hard in
the same way. (So this language cannot be captured
by an RNN, even with advice strings.)

6 Conclusion and future work

Autoregressive models are suited to those proba-
bility distributions whose prefix probabilities are
efficiently computable. This efficiency is convenient
for training and sampling. But unless we sacrifice
it and allow runtime or parameter size to grow
superpolynomially in input length, autoregressive
models are less expressive than models whose prefix
probabilities expensively marginalize over suffixes
or latent variables.

All model families we have discussed in this paper
can be seen as making compromises between differ-
ent desiderata (Table 1). Natural follow-up questions
include ‘Are there model families that win on all
fronts?’ ‘What are other modeling desiderata?’

While some languages € P cannot be supports
of ELNCPs, we do not know if the same can be
said for most languages € P. This problem seems to
be closely related to the average complexity of NP-
complete languages, where most questions remain
open (Levin, 1986; Bogdanov and Trevisan, 2000).
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Lookup Models

Lightly Marginalized ELNCP Models

ELNCP

NPG

EC

= P/poly

NP/poly

P(V7*)(all unweighted languages)

Figure 2: The space of unweighted languages. We assume in this diagram that NP ¢ P/poly. Each rectangular
outline corresponds to a complexity class (named in its lower right corner) and encloses the languages whose
decision problems fall into that class. Each bold-italic label (colored to match its shape outline) names a model
family and encloses the languages that can be expressed as the support of some weighted language in that family.
All induced partitions in the figure are non-empty sets: shape A properly encloses shape B if and only if language
class A is a strict superset of language class B. As mentioned in Table 1, standard autoregressive models (ELN
models) have support languages that form a strict subset of P (Lemmas 1 and 2, Theorem 5, and §2.4). ELNCP
models (§3.1) extend ELN models by allowing the parameter size to grow polynomially in string length, allowing
them to capture both more languages inside P (Theorem 6) and languages outside P (including undecidable but
sparse languages) that can be characterized autoregressively with the help of these compact parameters. All of
those languages belong in the class P/poly. Theorem 2 establishes that energy-based (EC) and ECCP models go
strictly further than ELN and ELNCP models, respectively (Theorem 2): they correspond to the entire classes P
and P/poly (Lemma 1). However, even ECCP does not capture any NP-complete languages under our assumption
NP ¢ P/poly. Allowing a polynomial number of latent symbols extends the power further still: lightly marginalized
ELNCP or ECCP distributions cover exactly the languages € NP/poly (Theorem 9). Finally, if we were to drop the
requirement that the parameters ® must be compact, we could store lookup tries to model any weighted language

(84.3).



A Proofs

Lemma 1. For any L € P, there exists an EC
weighted language with support L. For any L €
P/poly, there exists an ECCP language with support
L. But for any L € NP-complete, there exists no
ECCP language with support L (assuming NP ¢
P/poly).

This simple lemma relates our classes EC and
ECCP of weighted languages to the complexity
classes P and P/poly of their supports, which are
unweighted formal languages (§2). It holds because
computing a string’s weight can be made as easy
as determining whether that weight is nonzero (if
we set the weights in a simple way), but is certainly
no easier. We spell out the trivial proof to help the
reader gain familiarity with the formalism.

Proof. Given L, define a weighted language p with
support L by p(x) = 1 if x € L and p(x) = 0
otherwise.

If L € P, then clearly p is EC since the return
value of 1 or 0 can be determined in polytime.

If L € P/poly, L can be described as a tuple
(M, ®) following our characterization in §2.4. It
is easy to show that p is ECCP, using the same
polynomially-sized advice strings @. We simply
construct MP such that MP(8,,) returns 1 or O on
input x according to whether M (6,,) accepts or
rejects X. Both MP(6,,) and MP(8,,)(x) are com-
puted in time O (poly(n)) if |x| = n. (The technical
construction is that MP simulates the operation of
M on the input 6, to obtain the description of the
Turing machine M,, = M(0,,), and then outputs a
slightly modified version of this description that
will write 1 or O on an output tape.)

For the second half of the lemma, we use the re-
verse construction. Suppose p is an ECCP weighted
language with support L. p can be characterized by
a tuple (MP, ©). It is easy to show that L € P/poly,
using the same polynomially-sized advice strings
©. We simply construct M such that M(6,,) ac-
cepts x iff MP(8,,)(x) > 0. Then by the assumption,
L ¢ NP-complete. O

Lemma 2. An ELNCP model p is also ECCP.
Likewise, an ELN model is also EC.

Proof. Let p be an ELNCP language. This implies
that p is normalizable, so let p(x) = p(x)/Z as
usual. Specifically, let M efficiently locally nor-
malize p with compact parameters @9 = {6} |
n € N}. It is simple to define a Turing machine

M" that maps each parameter string 65 to a Tur-
ing machine r,, where r,(x) simply computes

(H:lzl qn(x; |X<t)) - qn($ | x). Then for all x

of length n, 74 (x) = (T2, p(x, | X<0)) - p(S | %),

by the definition of local normalization, and thus

ra(%) = p(x).

M can be constructed by incorporating the def-
inition of M9, so that r,, = M"(6}) can include
gn = M9(0}) as a subroutine. This allows r,, to
query g, for local conditional probabilities and
multiply them together.

* Since M9 runs in polytime, it is straightforward
for this construction to ensure that M" runs in
polytime as well.

* Since ¢, (- | X) € O(poly(n)), this construction
can ensure that r, runs in polytime as well.

» We were given that |§}| € O(poly(n)) (compact
parameters).

Since p is the weighted language defined by

(M*",0%), and M" and ©Y have the properties

just discussed, we see that p is efficiently com-

putable with compact parameters (ECCP). Therefore

p(x) = Zp(x) is also ECCP.

In the case where p is more strongly known
to be ELN (the parameters @9 are not needed),
a simplification of this argument shows that it is
EC. m|

Theorem 1. Assuming NP € P/poly, there exists
an efficiently computable normalizable weighted
language p that is not ELNCP.

Proof. The proof was sketched in §3.2. Here we fill
in the details.

The unweighted language p defined in that section
is efficiently computable via the following simple
algorithm that outputs j(x) given x € B*. If x has a
prefix that encodes a formula ¢, and the remainder
of x is a satisfying assignment a to the variables
of ¢, then return (%) XI+1 Otherwise return 0. This
algorithm can be made to run in polynomial time
because whether an assignment satisfies a formula
can be determined in polynomial time (a fact that is
standardly used to establish that SaT € NP).

Given a formula ¢ with variables Ay, ..., A}, we
define (}5’ = (—|A1 A=-Ar AL A —|Aj A —|Aj+1) \Y%
(A1 A Shift(¢)), where Shift(¢) is a version of
¢ in which A; has been renamed to A;4; for all
1 < i < j. It is obvious that ¢’ and p have the
properties stated in the proof sketch. The strings in
L that begin with ¢ are precisely the strings of the
form ¢’a’” where a’ is a satisfying assignment of



¢’ — which happen just when a’ = /*! ora’ = 1a
where a is a satisfying assignment of ¢. At least
one string in L begins with ¢, namely ¢’0/*!,
so Z(¢’) > 0. Moreover, Z(¢’1) > 0 iff ¢ has
any satisfying assignments. Therefore the local
probability p(1 | ¢’) = Z(¢’1) /| Z(¢’) is defined
(see §2.1), and is > O iff SAT(¢).

Notice that the formal problem used in the proof
is a version of SAT whose inputs are encoded using
the same prefix-free encoding function enc that
was used by our definition of L in §3.2. We must
choose this encoding function to be concise in the
sense that ¢ = enc(¢) can be converted to and
from the conventional encoding of ¢ in polynomial
time. This ensures that our version of Sat is <} -
interreducible with the conventional version and
hence NP-complete. It also ensures that there is
a polynomial function f such that |¢’| < f(|¢]),
as required by the proof sketch, since there is a
polynomial-time function that maps ¢ — ¢ —
¢’ — ¢’ and the output length of this function is
bounded by its runtime. This is needed to show that
our version of Sat is in P/poly.

Specifically, to show that the existence of
(M4,019) implies Sat € P/poly, we use it to
construct an appropriate pair (M, ®) such that
(M(6,))(@) = Sat(9) if |@| = n. As mentioned in
the proof sketch, we define ® by @,, = 0(} (n)’ and
observe that |#,,| € O(poly(n)) (thanks to compact-
ness of the parameters @9 and the fact that f is poly-
nomially bounded). Finally, define M (6,,) to be a
Turing machine that maps its input ¢ of length n to ¢’
of length < f(n), then calls M9(0,,) = Mq(O?c (n))
on ¢’1 to obtain p(1 | ¢’), and returns true or false
according to whether p(1 | ¢") > 0. Computing ¢’
takes time polynomial in 7 (thanks to the properties
of enc). Constructing M9(6 s (,)) and calling it on
¢’ each take time polynomial in n (thanks to the
properties of f and M9). O

Remark on conditional models. While we fo-
cus on modeling joint sequence probabilities in
this work, we note that in many applications it of-
ten suffices to just model conditional probabilities
(Sutskever et al., 2014). Unfortunately, our proof of
Theorem 1 above implies that ELNCPs do not make
good conditional models either: specifically, there
exists ¢ such that deciding whether p(1 | ¢) > O s
NP-hard, and thus beyond ELNCP’s capability.

Remark on irrationality. In our definitions of
ECCP and ELNCP languages, we implicitly assumed

that the Turing machines that return weights or
probabilities would write them in full on the output
tape, presumably as the ratio of two integers. Such
a Turing machine can only return rational numbers.

But then our formulation of Theorem 1 allows an-
other proof. We could construct p such that the local
conditional probabilities p(x | X) = Z(Xx)/Z(X)
are sometimes irrational. In this case, they cannot
be output exactly by a Turing machine, implying
that p is not ELNCP. However, this proof exposes
only a trivial weakness of ELNCPs, namely the fact
that they can only define distributions whose local
marginal probabilities are rational.

We can correct this weakness by formulating
ELNCP languages slightly differently. A real number
is said to be computable if it can be output by a
Turing machine to any desired precision. That Turing
machine takes an extra input b which specifies the
number of bits of precision of the output. Similarly,
our definitions of ECCP and ELNCP can be modified
so that their respective Turing machines p,, and g,
take this form, are allowed to run in time O (poly (n+
b)), and have access to the respective parameter
vectors @i L and @3 L+ Since some of our results
concern the ability to distinguish zero from small
values (arbitrarily small in the case of Theorem 6),
our modified definitions also require p, and ¢,, to
output a bit indicating whether the output is exactly
zero. For simplicity, we suppressed these technical
details from our exposition.

Relatedly, in §4.3, we claimed that lookup models
can fit any weighted language up to length n. This
is not strictly true if the weights can be irrational.
A more precise statement is that for any weighted
language p, there is a lookup model that maps (x, b)
to the first b bits of j(x). Indeed, this holds even
when j(x) is uncomputable.

Remark on computability. In §2.1 we claimed
that any weighted language p that has a finite and
strictly positive Z can be normalized as p(x) =
p(x)/z. However, Z may be uncomputable: that is,
there is no algorithm that takes number of bits of
precision b as input, and outputs an approximation
of Z within b bits of precision. Therefore, even
if p is computable, p may have weights that are
not merely irrational but even uncomputable. An
example appears in the proof of Theorem 6 below.
Weighted language classes (e.g. ELNCP) that only
model normalized languages will not be able to
model such languages, simply because the partition
function is uncomputable.



However, our proof of Theorem 1 does not rely
on this issue, because the p that it exhibits happens
to have a computable Z. For any b, Z may be
computed to b bits of precision as the explicit sum
2x:|x|<N P (X) for a certain large N that depends on
b.

Remark on RNNs. Our proof of Theorem 1
showed that our problematic language p is efficiently
computable (though not by any locally normalized
architecture with compact parameters). Because
this paper is in part a response to popular neural
architectures, we now show that p can in fact be
computed efficiently by a recurrent neural network
(RNN) with compact parameters. Thus, this is an
example where a simple globally normalized RNN
parameterization is fundamentally more efficient
(in runtime or parameters) than any locally normal-
ized parameterization of any architecture (RNN,
Transformer, etc.).

Since we showed that p is efficiently computable,
the existence of an RNN implementation is es-
tablished in some sense by the ability of finite
rational-weighted RNNs to simulate Turing ma-
chines (Siegelmann and Sontag, 1992), as well as
an extension to Chen et al. (2018, Thm. 11) to a
family of RNNs, where each RNN instance also
takes some formula encoding as input. However, it is
straightforward to give a concrete construction, for
each n € N, for a simple RNN that maps each string
x € B" to p(x). Here p(x) will be either (%)”Jr1 or
0, according to whether x has the form ¢a where
¢ encodes a 3-CNF-Sat formula ¢ that is satisfied
by a.'® The basic idea is that ¢ has j < n variables,
so there are only O(n?) possible 3-CNF clauses.
The RNN allocates one hidden unit to each of these.
When reading ¢a, each clause encountered in ¢
causes the corresponding hidden unit to turn on,
and then each literal encountered in a turns off the
hidden units for all clauses that would be satisfied
by that literal. If any hidden units remain on after
x has been fully read, then ¢ was not satisfied by
a, and the RNN’s final output unit should return O.
Otherwise it should return (%)"*1, which is constant
for this RNN. To obtain digital behaviors such as
turning hidden units on and off, it is most conve-

18The restriction to 3-CNF-Sat formulas is convenient, but
makes this a slightly different definition of L and j than we
used in the proofs above. Those proofs can be adjusted to show
that this p, too, cannot be efficiently locally normalized with
compact parameters. The only change is that in the construction
of Theorem 1, ¢’ must be converted to 3-CNF. The proof then

obtains its contradiction by showing that 3-CNF-Sat € P/poly
(which suffices since 3-CNF-Sart is also NP-complete).

nient to use ramp activation functions for the hidden
units and the final output unit, rather than sigmoid
activation functions. Note that our use of a separate
RNN MENN for each input length n is an example
of using more hidden units for larger problems,
a key idea that we introduced in §2.3 in order to
look at asymptotic behavior. The RNN’s parameter
sequence ORNN = {68NN | € N} is obviously
compact, as 8NN only has to store the input length
n. With our alphabet B for p, |05NN| € O(logn).

Lemma 3. Let p,§ be normalizable weighted
languages with support(p) # support(§). Then
Ixy, xo € V* such that p(x1) < p(xp) but
g(x1) = 4(x2).

Proof. Suppose that the claim is false, i.e., p and §
have the same ranking of strings. Then the minimum-
weight strings under p must also be minimum-
weight under §. WLOG, there exists x € V* with
p(x) = 0 and G(x) = ¢ > 0. Then ¢ > O is
the minimum weight of strings in §. But this is
not possible for a normalizable language g, since it
means that Z; = Yy cy+ g(X’) > Xyey- cdiverges.

O

Theorem 3. Assuming NP & P/poly, there exists
an efficiently computable normalizable weighted lan-
guage p such that no ELNCP § with support(g) 2
support(j) has p(x1) < p(x2) = G(x1) < G(x2)
for all x1,x, € V*. Indeed, any such ¢ has a coun-
terexample where p(x1) = 0. Moreover, there is
a polynomial fg : N — N such that a counterex-
ample exists for every x| such that p(x) = 0 and
G(x1) > 0, where the X, in this counterexample
always satisfies |x2| < f5(|x1]).

Proof. Let p be the weighted language from The-
orem 2. Given an ELNCP 4. By Theorem 2,
support(§) # support(p), so there must exist a
string x; that is in one support language but
not the other. With the additional assumption
that support(g) 2 support(p), it must be that
X € support(§), so p(x;) = 0 but §(x;) > 0.

Given any such x| with p(x;) = 0but §(x;) > 0,
we must find a x, of length O(poly(|x;|)) with
P(x2) > 0but G(x2) < g(xy).

To ensure that j(x») > 0, let us use the structure
of p. For any j, we can construct a tautological
formula ¢ over variables A1,...A;,as ¢ = (A1 V
=A1) A=A (A V=-Aj). It follows that p(da) > 0
forany a € B/. We will take x, = ¢pa fora particular
choice of j and a.



Specifically, we choose them to ensure that
g(x3) < g(x1). Since ¢ is ELNCP, it is normalizable

and hence has a finite Z. Thus, > ,gi §(da) < Z.

So there must exist some a € B/ such that
g(ga) < Z/2i. We choose that a, after choosing
J large enough such that Z/2/ < §(x;1). Then
4(x2) = G(da) < 2/ < G(xy).

To achieve the last claim of the theorem, we must
also ensure that |x;| € O(poly(|x;])). Observe that
g(x1) can be computed in polytime (with access
to compact parameters), by Lemma 2. But this
means that the representation of §(x;) > O as
a rational number must have < g(|x;|) bits for
some polynomial g. Then §(x;) > 278D and it
suffices to choose j = [g(|x1|) +log, Z] to ensure
that Z/2/ < 2781l < G(x;) as required above.

But then j € O(poly(|x1])). Also, recall that the
encoding function enc used in the construction of p
is guaranteed to have only polynomial blowup (see
the proof of Theorem 2). Thus, |x3| = |@| + |a| =
lenc(9)] + j € O(poly(j) S O(poly(lxi)) as
required by the theorem. O

Lemma A.1. The first part of Theorem 4 (without
the modifications (a) and (b)).

We first prove the first part of Theorem 4 (which
is restated in full below). In this case we will use a
distribution p that does not have support V* (so it
does not prove modification (b)).

Proof. We take p to be the weighted language that
was defined in §3.2, which was already shown to
be efficiently computable. Suppose (M9, @9, 1) is
a counterexample to Lemma A.1. Choose integer
k > 1 in a manner (dependent only on 1) to be
described at the end of the proof.

Suppose we would like to answer SAT where
¢ is a formula with variables Ay, ..., A;. Define
(f)’ = (—|A1 A-Ar AL .. /\—lAj /\ﬂAj_H /\—lAj+k) \Y
(A; A Shift(¢)). Note that ¢’ augments ¢ with

k additional variables, namely A; and Ao k.

For k = 1, this is the same construction as in the
proof of Theorem 1. Let n = |¢’| and note that n is
polynomial in the size of ¢ (holding k constant).

The strings in L = support(5) that begin with ¢’
are precisely the strings of the form ¢’a’” where a’
is a satisfying assignment of ¢’. This is achieved
precisely when a’ = 8/*% ora’ = lab where a is a
satisfying assignment of ¢ and b € BK1.

By our definition of p, all strings in L that begin
with ¢ have equal weight under p. Call this weight

w." Clearly Z(¢'0) = w, and Z(¢'1) = w - 2K-1.
(number of satisfying assignments of ¢).

Recall that p(0 | ¢') = Z(¢'0)/(Z(¢'0) +
Z(¢’1)). Let us abbreviate this quantity by p. It
follows from the previous paragraph that if ¢ is
unsatisfiable, then p = 1, but if ¢ is satisfiable, then
p < 1/(1+2%"). By hypothesis, p is approximated
(with error probability < 1/3) by the possibly random
quantity (M q(0(|1¢, |)) (¢’0), which we abbreviate by
g, to within a factor of A. Thatis, p € [¢/4, Aq].
By choosing k large enough?2° such that [¢/A, 1¢]
cannot contain both 1 and !/(1+2%-"), we can use ¢
to determine whether p = 1 or p < 1/(1+2%-!). This
allows us to determine Sat(¢) in polynomial time
with error probability < 1/3, since by hypothesis g is
computable in polynomial time with compact param-
eters. This shows that Sat € BPP/poly = P/poly,
implying NP C P/poly, contrary to our assumption.
(BPP/poly is similar to P/poly but allows M1 to be
a bounded-error probabilistic Turing machine.) O

Theorem 4. Assuming NP ¢ P/poly, there exists
an efficiently computable weighted language p :
V* — Rsq such that there is no (M9, ®%) where
@9 = {0} | n € N} that satisfies all of the following
properties (similar to §3.1):

o the parameter size |@3\| grows only as O (poly(n))

« M9(8}) returns a probabilistic Turing machine
qn in time O (poly(n))

o there exists 1 > 1 such that for each x € V U {$}
and X € V* with |X] < nand p(x | X) > 0, the
probabilistic computation g, (Xx) has probability
> 2/3 of approximating p(x | X) to within a factor
of A (that is, gn(%x)/p(x | X) € [1/4,1])

* gy, runs on those inputs Xx in time O (poly(n))

Moreover, the statement above remains true

(a) when the approximation guarantee is
only required to hold for prefixes X where
{x: X < X} is finite (so p(x | X) is computable
by brute force)

(b) or, when support(p) = V*

Proof. Ttremains to show that the statement remains
true with modification (a) and with modification
(b). For (a), the proof of Lemma A.1 suffices, since
it reduces SAT to approximate local probability
queries of the stated form. That is, the true local
probabilities p(x | X) that can be computed with

©Specifically, each such string has length n + j + k, so p
gives it a weight of w = (%)"J’/'Jkarl .

201t suffices to ensure that 1+ 25~1 > A2, so take any
k> 1+logy(2%2-1).



finite summations, thanks to the structure of our
example language p, which guarantees that the
prefix X can only continue with suffixes of a fixed
length that is easily determined from X.

For modification (b), again let V = B = {0, 1}.
Choose some € > 0 (any choice will do), and let

(31 if x = ¢a where ¢ = enc(¢)
pi(x) = and a satisfies ¢

0 otherwise

P x) = ()10
PO = F1(X) + € pr(x)

We use Z;, Z;, and Z respectively to denote nor-
malizing constants of these three weighted lan-
guages. Note that p is the weighted language that
was previously used in the proofs of Theorem 1
and Lemma A.1. Our new p is intended to be very
similar while satisfying the additional condition (b).
It is easy to show that p is efficiently computable,
much as we showed for p; in Theorem 1. Also,
p is normalizable, since Z = Z| + € - Z,, where
Zi<(9)/(1-3)=1and Z = (5)/(1 - 5) = 5
are both finite.

The proof proceeds as in Lemma A.1, with ¢’
constructed from ¢ as before. Recall that ¢ has j
variables, ¢’ has j + k variables, and |¢’| = n. We
may assume WLOG that the encoding function
enc is such that an encoded formula always has at
least as many bits as the number of variables in the
formula, son > j + k.

Notice that Z; (¢’) sums over the satisfying as-
signments of ¢’, and there may be as few as one
of these (if ¢ is unsatisfiable). By contrast, Z;(¢’)
sums over an infinite number of continuations with
positive probability. The faster decay rate of é in po
was chosen to keep Z,(¢’) small relative to Z;(¢’)
despite this. Specifically,

Zl(¢,®) — (%)n+j+k+1
Zl(¢/1) — (%)n+j+k+l _2k—1
- (# of satisfying assignments of ¢)
Zy(¢'0) = ()" - 5 - (5/(1-3))
— % . (%)2(n+1)
<1.Z1(¢0)
(because 2(n+ 1) >n+j+k+1)

Zy(¢'1) = Z2(¢'9)

As in the proof of Lemma A.1, we will show that

p(0 | ¢’) is much larger when ¢ is unsatisfiable.

Recall that Z(X) = Z{(X) + € - Z»(X). When ¢ has
zero satisfying assignments,

N0
POL)= 70 + 2D
_ 2(4'0)
L@ e B0 re LD
2(9'0)
Z@9+2 5 Zi90)

whereas if ¢ has at least one satisfying assignment,
then

29
POIP) =20+ 2
. 249
ACOESACEY
L 29
= 200 + 19

This rewrites both probabilities in terms of Z.(¢'0)
quantities, which do not depend on the number of
satisfying assignments. So now we can see that the
first probability is at least (1 +2%71) / (1 + 2¢

times as large as the second probability. Choose &k
large enough?! such that [¢/A, Aq] cannot contain
both probabilities, and complete the proof as in
Lemma A.1. O

Theorem 5. The set {p : p is normalizable, p €
EC, p ¢ ELN} is not empty.

Theorem 35 states that some normalizable EC dis-
tributions cannot be expressed as ELN distributions.
The proof is based on the undecidability of the halt-
ing problem, rather than the assumed inefficiency
of the Boolean satisfiability problem. Thus, unlike
Theorem 1, it does not rely on the assumption that
NP ¢ P/poly, or even on the weaker assumption
that P # NP.

Proof. Given any unweighted language L C B*, we
can define a normalizable weighted language p with
support L by p(x) = 1/3%* forx € L and (x) = 0
otherwise. Moreover, if L € P, then p € EC.

For our purposes, we take L to consist of all
strings of the form xVx(? | for which there ex-
ists a deterministic Turing machine M such that
x(1) = enc(M) (where enc is a prefix-free encoding
function) and x? encodes an accepting execution
path of M on an empty input. (Such a path may be
represented as a sequence of transitions of M that

21t suffices to ensure that (1 +2571)/(1 + 275) > 12, s0
take any k > 1 +log2(/l2 (1 + 275) - 1.



begins with an initial state and ends at an accepting
state.) Note that any deterministic TM x!) can be
paired with at most one accepting execution path
x| and cannot be paired with any x? if it does
not halt.

Clearly L € P: given x € B*, we can decide
whether x € L by first checking if x can be expressed
as a concatenation of strings x(!) and x(? of the
required form. Then we build M from x(!) and
simulate it to check the transitions in x® on M
step-by-step. This can be done in O (poly(|x])) total
time. We conclude that the p derived from L is EC.

Now, Z(x(V) > 0 iff M halts on the empty
input. But this undecidable problem could be de-
cided if there were an ELN weighted language
that had support L, since then Z(x'") / Z could be
found as a product of local conditional probabilities,
H,'i(:) | p(xt(l) | x(<lt)), that could each be computed
by a Turing machine. Therefore p is not ELN. O

We have shown above that a certain unweighted
language L is not the support of any ELN distribu-
tion. We conjecture that it is also not the support of
any ELNCP distribution;?? a proof of this would
strengthen Theorem 5 to become an unconditional
version of Theorem 1. However, ELNCP weighted
languages do have more power than ELN weighted
languages, as we now show.

Theorem 6. The set {p : p is normalizable, p €
EC, p € ELNCP, p ¢ ELN} is not empty.

Theorem 6 justifies why this region is drawn
as non-empty in Figure 2. Again, it does not rely
on the assumption NP ¢ P/poly or P # NP. Note
that Theorem 5 can be regarded as a corollary of
Theorem 6.

Proof. The weighted language p constructed in
Theorem 5 is not necessarily ELNCP. To fix this,
we modify the construction to obtain a weighted
language p’ with sparse support L’. We will again
be able to show that p’ is EC and not ELN. To
show that p’ is also ELNCP, we will rely on the
sparsity of L’, meaning that prefixes(L’) = {X :
(Ix’ € L) &' < x’} contains at most O (poly(n))
strings X of length < n + 1. Thus, we can use
@, to store all of those strings & in polynomial

22We have not attempted to prove this. Our loose intuition is
that the compact parameters of an ELNCP language may help
it to memorize some small part of L, but the halting problem
would still be undecidable when restricted to the rest of L
(Myasnikov and Rybalov, 2008).

space, along with their Z(X") values.2? Notice that
all strings X" ¢ prefixes(L’) have Z(&") = 0, so they
need not be stored. Now for any %’ of length < n,
a Turing machine that consults #,, can compute
q(x | %) =Zz(X'x) | Z5 (X') in time O (poly(n))
as desired, establishing that p” is ELNCP.

We may define p’ as follows. Let sparsify(x)
be a version of x with many extra ® symbols in-
serted: specifically, it inserts 2’ copies of ® imme-
diately before the ™ bit of x, for all 1 < < |x].
We construct p’ so that p’(sparsify(x)) = p(x).
Specifically, let L” £ sparsify(L). The inverse func-
tion sparsify ! (x’) is defined on exactly x’ € L’,
and is unique when defined. For all x’ € B*, let
p/(xX') £ p(sparsify ™ (x’)) if sparsify ! (x’) is de-
fined, and p’(x’) £ 0 otherwise. This can be com-
puted in polytime, so p’ is EC. Also, its support L’
is sparse as claimed, so p’ is ELNCP.

Finally, we claim p’ is not ELN. A given deter-
ministic Turing machine M halts on the empty input
iff enc(M) € prefixes(L) iff sparsify(enc(M)) €
prefixes(L’) iff Z’(sparsify(enc(M))) > 0. But
as in the proof of Theorem 5, this would be de-
cidable if p’ were ELN as defined in §3.1, since
then we would have a Turing machine to compute
the local conditional probabilities p’(%; | X<;) for
X = sparsify(enc(M)). O

Theorem 8. There exists a light marginalization p
of an ELN distribution, such that support(p) is an
NP-complete language.

Proof. We will construct p such that support(p)
is the NP-complete language SaT of all satisfiable
boolean formulas. The idea is to construct an ELN
distribution r that can autoregressively generate
any assignment a followed by any formula ¢ that is
satisfied by a. Thus, if we delete the a prefixes, the
support consists of exactly the satisfiable formulas
¢ (or more precisely, their encodings ¢).

To be more precise, we will have support(r)
be the language L = {a#¢$ | a €
B* and ¢ is a formula satisfied by a}. This is de-
fined similarly to the support language L in §3.2, but
with the order of ¢ and a crucially swapped: r will
now generate the “solution” a before the “problem’
¢. The alphabet V of this language contains at least
the symbols {0, 1, #}, where # is a separator symbol,
and any other symbols needed to encode ¢ as ¢.
The marginalization operator u maps a#¢ to ¢.

)

23More precisely, the first b bits of Z(&") < 1 may be stored
in 02 +p> When ELNCP is defined as explained in our “Remark
on irrationality” above.



Let j = |a|. As in §3.2, we will require ¢ to
use all of the variables Ay, ..., A; (and only those
variables), implying that |¢| > j. This ensures
that marginalizing over the j + 1 latent symbols
is only light marginalization since j + 1 + |@| €
O (poly(|@])). For convenience, we will also require
¢ to be a CNF formula. These requirements shrink
support(p) but do not affect its NP-completeness.
The remaining challenge is to construct an autore-
gressive distribution » whose support is L. We can
think of this distribution as describing an efficient
procedure for randomly generating a string from left
to right so that the procedure generates the /™ sym-
bol in time O (poly(¢)), terminates with probability
1,24 has positive probability of producing any string
in L, and has zero probability of producing any
string not in L. Below we give such a procedure.?’
1. First, the procedure generates a# as a sequence
of random symbols from {0, 1, #}, making a
uniform draw at each step. It stops immediately
after generating # for the first time. The string
generated before # is called a and we let j = |a|.
For example, a = 010 and j = 3.

2. Second, the procedure must generate the en-
coding ¢ of a random CNF formula ¢ that
is satisfied by a, such as (A; V =A3 V =A; V
Ap) A (=A)) in our example. This involves
generating a random sequence of 0 or more
satisfied clauses connected by A. At each step,
the procedure decides whether to generate a
new clause or end the formula. The probability
of generating a new clause is ordinarily 1/2.
However, this probability is 1 if the previous
clauses do not yet mention all the variables
Ay, .. LA
How does it generate each satisfied clause?
This involves generating a sequence of literals
connected by V, at least one of which must
be true. At each step of this subroutine, it
uniformly chooses an integer i € [1, j], and
then flips a fair coin to decide whether to add
the literal A; or —A; to the current clause. If
the clause is now satisfied by a (i.e., at least
one of the literals is true), it then flips another

24Phase 1 almost surely terminates after a finite number of
bits. Phase 2 almost surely terminates after a finite number of
clauses, and each clause almost surely terminates after a finite
number of literals. “Almost surely” means “with probability 1.”

25Q0ur presentation here makes use of an infinite alphabet
that includes symbols such as A; and —A; for alli € N, as
well as symbols such as 0, 1, A, V. We implicitly invoke some
prefix-free encoding scheme to translate each symbol into a
fixed string over the finite alphabet V.

fair coin to decide whether to end the clause.

r is ELN because there exists a Turing ma-
chine that computes from input Xx —in time
O (poly(]X|)) — the probability that the next symbol
generated after the prefix X would be x, under the
above procedure. As discussed in footnote 7, that
probability equals r(x | X) — which is what our
Turing machine is required to return — because
the above procedure almost surely terminates (foot-
note 24), ensuring that r is a consistent probability
distribution over V* (that is, Y xey+ ¥(x) = 1). O

Theorem 9. The following statements are equiva-
lent for any nonempty L C V*:
(a) L € NP/poly.
(b) L is the support of a light marginalization of
an ELNCP distribution.
(c) L is the support of a light marginalization of
an ECCP weighted language.

Proof. (b)implies (c) since any ELNCP distribution
is an ECCP weighted language (Lemma 2). (c)
implies (a) by Lemma A.2 below. Finally, (a) implies
(b) by Lemma A.3 below. O

Lemma A.2. Forany ECCP weighted language 7, if
p is a light marginalization of 7, then support(p) €
NP/poly.

Notice that this lemma concerns the class
NP/poly,not P/poly (see §2.4). The proofis straight-
forward.

Proof. Suppose 7 is ECCP via (M',6"), and u
is the marginalization operator such that p(x) =
Yzu(z)=x7(z). By the light marginalization as-
sumption, there is a polynomial f such that |z| <
fu@)]).

To prove support(p) € NP/poly, we must show
that there exists (M, ®) such that for all n > 0,
a nondeterministic Turing machine M, can be
constructed as M (6,,) in time O (poly(n)), which
can in turn decide in time O(poly(n)) whether
p(x) > 0 for any x with |x| = n.

Deciding p(x) > 0 means deciding whether
(3z € V") u(z) = xand7(z) > 0. But if
|x| = n, the first condition u(z) = x implies
lz| < f(lu(@)]) = f(Ix]) = f(n). Thus, we need
M,, to nondeterministically check only the z of
length up to f(n) to see whether u(z) = x and
7(z) > 0.

How can M,, check a string z of length m? It
can decide the first condition u(z) = x in time
O (poly(m)), since the marginalization operator u is



a polytime function. To decide the second condition
7(z) > 0,itmust construct the (deterministic) Turing
machine M7(6" ) and then apply it to z to obtain 7#(z):
since 7 is ECCP, both steps take time O (poly(m)) =
O(poly(f(n))) € O(poly(n)) as required.
However, this means that M,, = M (6,,) must have
access to the parameter vectors 87 forallm < f(n).
We therefore make 6,, include this collection of
parameter vectors. Each |67 | € O(poly(m)) C
O (poly(n)) since 7 is ECCP. So |0,,| € O(poly(n))
as required. O

Lemma A.3. For any L € NP/poly, there exists a
light marginalization p of an ELNCP distribution,
such that support(p) = L.

Lemma A.3 resembles Theorem 8, but it con-
structs distributions for all L € NP/poly, not just
for one particular L € NPC. The proof is similar
but more complicated. In both cases, the goal is
to demonstrate how an ELNCP distribution » can
define a left-to-right stochastic string generation
process such that the suffix of the generated string
must be in L and can be any element of L.

Our string generation process in this case is
inspired by rejection sampling, a widely used method
for sampling from an energy-based model with
support L. The standard scheme is to first sample
a string x from a tractable distribution g such
that support(g) 2 L, then accept the sample with
an appropriate probability, which is 0 if x ¢ L.
The process is repeated until a sample is finally
accepted. There is no guarantee that this standard
scheme will terminate in polynomial time, however.
Fortunately, in our setting, we are not trying to
match our sampling distribution p to a given energy-
based model, but simply match its support to a
given language L. We make use of the polysize
parameter vectors of ELNCP languages to store
certain ‘fallback strings’ that are guaranteed to
be in the desired language L. Wherever ordinary
rejection sampling would reject a string and try
generating another, we switch to generating a stored
fallback string of an appropriate length. This scheme
places all of the rejected probability mass on the
small set of fallback strings (in contrast to rejection
sampling, which in effect throws away this mass
and renormalizes). The advantage is that it does not
iterate indefinitely. At a high level, r is a distribution
over strings z that record traces of this generative
story we describe above.

Proof. WLOG we assume L uses the alphabet

V = {0, 1, #}. In the case where L is finite, the
result is trivial. We simply define r(x) = 1/|L| for
x € L and r(x) = 0 otherwise. We then take p = r
(a trivial marginalization). It is easy to show that
r is ELN, and therefore ELNCP as desired, by
constructing an appropriate Turing machine that
maps Xx to r(x | X) in time O(|Xx|), for any X that
is a prefix of some string in L and any x € V U {$}.
The finite state table of the Turing machine includes
states that correspond to all possible strings Xx, with
transitions arranged in a trie. It reads the input string
Xx from left to right to reach the state corresponding
to Xx. If it detects the end of the input while in that
state, it writes r(x | X) on the output tape.

Now we consider the case where L is infinite.
For each j € N, let the “fallback string’ x/) be
some string in L of length > ;. For definiteness, let
us take it to be the shortest such string, breaking
ties lexicographically. At least one such string does
exist because L is infinite, so x\/) is well-defined.

Also, since L € NP/poly (§2.4), let (M, ®) be
an ordered pair and f be a polynomial such that
M ; = M(6;) nondeterministically accepts a within
< f(j) stepsiffa € L.

As in the proof of Theorem 8, we now describe
a procedure for randomly generating a string z
from left to right. z will have the form a#b#cd,
where d € L and the latent substring a#b#c will be
removed by the marginalization operator p.

1. First we generate a random string a € B*
followed by #, just as in the proof of Theorem 8.
Again let j = |a|.

2. Next, we must consider whether a € L. We
generate a random computation path b of M
on input a until it either accepts (in which case
we then generate #1 to record acceptance of
a) or has run for f(j) steps without accepting
(in which case we then generate #0 to record
rejection).

3. In the former case (¢ = 1) we finish by deter-
ministically generating d = a € L. In the latter
case (c =0),a ¢ L, so we fall back and finish
by deterministically generating d £ x/) € L.

Let r(z) be the probability that the above pro-

cedure generates z. support(r) is then the set of
strings that can be generated by the above procedure.
The marginalized language u(support(r)) keeps
just the d parts of those strings. It consists of all
strings a that are accepted by at least one path b of
M ) (which are exactly the strings in L) together
with the fallback strings (which form a subset of L).



Thus, u(support(r)) = L as desired.

We wish to show that r is ELNCP. In other
words, some Turing machine M1 efficiently locally
normalizes r with compact parameters @9, as de-
fined in §3.1. The parameters will be used to store
information about the infinite set of fallback strings.

In particular, for each n, 8;) must have enough
information to construct a Turing machine ¢, =
M4(8}) such that g, (2z) returns r(z | 2) for all
z € VU {$} and all Z with |Z| < n and Z(Z) > 0.
Here Z(Z) > 0 means that Z is a prefix of a string
z = a#b#cd that could be generated by the above
procedure. The computation ¢, (Zz) proceeds by
simulating the sequence of choices in the above pro-
cedure that would be required to generate Z, and then
returning the probability that the procedure would
generate symbol z next. That probability equals
r(z | Z) as desired because the above procedure
almost surely terminates (as explained at the end of
the proof of Theorem 8).

In general, the computation ¢, (Zz) may have to
construct M; = M(6;) and simulate it on a (for j =
|a|) if z falls in the b#c portion of Z, and it may have
to look up a character of the fallback string x/) § if z
falls in the d portion of Z or terminates that portion
with z = $. Fortunately j < n, and fortunately if
the computation looks up the ™ character of x(/) $
then 7 < n. Thus, constructing and simulating M
can be done in time O(poly(j)) € O(poly(n)),
and looking up the ™ character of x/)§ can be
achieved with access to the first n characters of
each of x(V, ..., x(" which can be stored by 02 in
space O (n?). It follows that M9 can construct and
apply ¢, in polynomial time with access to compact
parameters @9, so r is ELNCP.

B Implementation details of REBMs

B.1 Modeling finite subsets of infinite
languages

The experiments of this paper are conducted on
datasets where we only observe strings that are
finitely long. Given a possibly infinite language L,
we use the notation L.y = {x | x € L,|x| < T}
for the subset of strings that are most 7" symbols
long. Specific values of T for datasets used in our
experiments are listed in Appendix D.1.

B.2 Design of base models pg

Po can be any distribution over L <7 26 provided that
we can sample from it, and evaluate po(x),Vx €
L7, both in O(poly(|x])). In this work, we experi-
ment with two designs of pg: GRU- and Transformer-
based locally normalized language models. GRU-
based models are used in WikiText and Yelp ex-
periments. The GRU-based p’s are parametrized
with 2-layer GRUs with 500 hidden units, and word
embeddings of dimension size 500.

As for Transformer-based pg’s, we make use
of Grover models (Zellers et al., 2019), which ef-
fectively are GPT-2 models trained on the afore-
mentioned REALNEws dataset. In this work, we
experiment with the ‘base’ variant of public avail-
able weights, which are 12-layered Transformers,
with 12 heads, and 768 hidden units.

B.3 Design of discriminators gy

We formulate gg(x) as a summation of scores at
positions 1...|x|, passed through an activation
function f:

x|
go(x) = f (Z gt(X;O)) : (1)
i=1

To verify whether lower-bounding gg would help
with learning, as we discuss in §4.1, we experiment
with two variants of f:

* tanh: f(x) =2 - tanh(x)

* softplus: f(x) = —log(1 +exp(x +5))

The former one is bounded between (—2,2), while
the second one has range (—oo, 0). The offset term s
in the softplus activation function determines initial
values of Zg. In this paper we set s = 20.

The design of g,(x; #) follows their base model
counterparts: we use Bi-GRU discriminators for
GRU base models; and bi-directional Transformer
discriminators for Transformer ones. For GRUs
g:(x;0) = h; - x;, For Transformers g;(x; 8) = > h,
where h; are the hidden states at time step ¢. In both
cases, the discriminators have access to information
of the whole sequence x at any timestep: the Bi-
GRU discriminators achieve this through the bi-
directional RNNS, and the Transformers through the
attention mechanism without directional masking.

B.4 Training procedure

As we note in §4.1, MLE-based training methods
are generally not feasible for globally normalized

26Note that since pg does not have support over L, it has to
assign p($ | xi__7) = 1, which is generally not an issue.



models. We therefore opt to train our model using
the ranking variant of noise contrastive estimation
(NCE) (Ma and Collins, 2018), which does not
require samples from pg and has a simple form
for residual LMs. Using pg as a noise distribution,
NCE training requires minimizing the following
single-sequence loss, in expectation over the true
distribution p:

2
Luce(8,%,po, K) = ~log — 57—, ()

o Pe(x()

(0) o o Po(oy & Po(x) (1) (K) _
where'x _~x, Do (x) = po(x),andx .. X
po- Since py(x) = po(x) - exp gg(x), we have
%(X) = exp g¢(x). The NCE minimization ob-

jective (2) now reduces to the simple form

LNCE(07 X, Po, K)
= —g¢(X)

K
+log(exp go(x) + > expgoe(x¥)).  (3)
k=1

Notice that minimizing the expected loss with
stochastic gradient descent methods Ly, defined
in equation (3) requires only evaluating sequence
probabilities under gg, and tuning its parameters,
but not the base model pg. We only need to generate
the noise samples {x¥) ~ ¢ | k € [K]} from py.
This way we do not need to backpropagate through
parameters of the base model pg, which can speed
up training considerably when pg is backed by
a huge network. In fact, the training of gg can be
completely agnostic to the design of pg, allowing for
the application of finetuning any locally normalized
Po-

Given the same discriminator gg, the difference
of KL-divergence between the true model p and
residual language models py(x) = p((X)-exp gg(X),
and the KL-divergence between the true model
and py'(x) = p(/(x) - exp go(X), defined with base
models p() and p( respectively, can be written as

KL[pllpg]l = KL[pllpy]
’ 124 Z’
=KL[pllpy] = KL[pllpy] +log 7
“4)

where Z” = Ex-p; [exp go (x)], and Z" is similarly
defined with p(. As a direct result of equation (4),
we can see that finding p{| where KL[p||p(] <
KL[p||pg] implies improvementin KL [ p||p,'] over
KL[pl|pgl, under mild conditions:

Theorem B.1. If 3k > 0 such that

Ex- [expge(%)] )
Ex~p§lexpgs(X)J > exp(=k) and KL[pllp;] -

KL[pllpg1 > k then KL[p||pg] > KL[pl|pg].
Proof.

KL[pllpgl - KL[pllpg]
=E [log py (%) — log py(x)]

Py (X) exp go(x)
xpF Setor PY(X) expgo(X)
P (x) exp go(x)
® Sverr PY(X) expgo(x)
_ 5 [log P (x) exp go(X)
o By [oXp g ()]
P (x) exp go(x)
Ex~p[exp go(x)]
= E llog pf/(x) ~log pj(x)]

—1lo

— log

+ E [log E [expge(x)] —log E [expge(x)]]
X~p ¢ 4 X,NP(,),

x'~p;
=KL [pllp,] = KL[pllpy]
Ex~p; [exp go(x)]

+1lo .
% Ex—py [exp 2o ()]

&)

Exepy [ex0 20 (9]
Bxpy [XP 80 0]
and KL[p||p{] = KL[pl||p{] > k into equation (5),
KL[plIpj] - KLIpllp;] > 0. 0

Theorem B.1 suggests a training strategy that
we first train the base model pg, then finetune gq:
under a roughly uniform gg (e.g. when 6 is newly
initialized), Ex-p; [enge]/Eprg [expga] ~ exp(0); so
improvements on the inclusive KL-divergence of
base model KL[p||po] will mostly translate to
improvement in KL[p||fg]. Optimizing the base
model (i.e. finding p{ such that KL[p||p{] <
KL[pl|pg]) is much easier than directly minimizing
KL [p||pyl: the former can be done by minimizing
empirical cross entropy, which is computationally
efficient, while the latter involves an intractable
partition function Xxer - ﬁé(x).

Pseudocode for fine-tuning gy is listed in Algo-
rithm 1.

Plugging assumptions > exp(—k)

B.5 Computing normalized probabilities

The unnormalized probability pg(x) (in equa-
tion (1)) can be evaluated easily, and should suffice
for (re)ranking purposes (e.g. for ASR and MT
applications). However, the normalized probability



Algorithm 1: Pseudocode for training gg
Input:
e Training/validation corpora D (iin,dev)
* base model py : Ly — [0, 1]
* initial parameter vector ¢ € B4
* noise sample size K € N
Output: unnormalized residual language
model g : Lo — [0, 1]

0 — 6 ;
/¥ Lyce is defined in
equation (3) */

while >yc, Lic:(0,X, po, K) is still
decreasing do
foreach x € shuffle(Dsyyin) do
VoL = VoLuce(0,X, po, K);
0 — update-gradient(6, Vg Lxce);
end
end
return x — po(X) + exp go(X);

qe(x) = Zf ‘;5(9"())() does require computing the parti-

tion function Zy. An unbiased importance sampling
estimate of Xxer_, Po(X) is

> Pe(x)
xelcr

> po(x) exp go(x)

XELST

E [expgo(x)]

X~po
M

expgo(x'™) _
= —— =7 6
Z M OM > ( )

Zgy

m=1

where x(D .. x(M) < 4.
C Comparison between REBMs and

autoregressive models

We evaluate the effectiveness of REBMs on two dif-
ferent neural architectures (GRU- and Transformer-
based) and 3 datasets: WikiText (Merity et al.,2017),
Yelp (Yelp), and RealNews (Zellers et al., 2019),
on the task of modeling sequence probabilities. An
REBM pg has two components, gg and pg, and we
would like to see how pg competes against py itself.
We do not further tune po while training pg. As
a fair comparison, we also see how p( compares
against po, where p/ is simply a version of pg that
has been trained as many additional epochs as were
used to train pg.

po models are pretrained on moderately large
corpora (in GRU cases) or a very large corpus

(in the Transformer case).?” We compare residual
energy-based models py to further-fine-tuned base
models p(, on conservatively estimated (at the low
end of 95% confidence interval) token perplexity
and bootstrap-sampled log likelihood improvements.
The results are in Table 2. Residual energy-based
models show consistent perplexity improvement
compared to p( that are trained on the same data
using the same maximum numbers of iterations. Al-
though the improvement in log-likelihood of pg over
po is modest (especially for RealNews experiments,
where pg is a very strong baseline), we verify that
these improvements are all statistically significant
(p < 0.05) using bootstrapped test datasets.

We experiment with different designs of the
discriminator gy, evaluating the effectiveness of
bounding gg and varying its number of parameters.
We find that in Transformer-based experiments,
bounding gg considerably helps with performance;
but the opposite happens for GRU-based models.
We speculate that this is due to the base models’
performance: the Transformer base models have
high parameter count and were trained on a lot of
data; and the true distribution p likely is relatively
similar to pg, and benefits from a small hypothesis
space — even though we don’t know if the at-most-¢
error assumption in §4.1 holds. On the other hand
our GRU-based pg has neither the capacity, nor
the huge amount of training data. As a result, the
unbounded variant gg (and gg) may end up learning
a better approximation of p.

D Experimental details

D.1 Datasets

Residual language model experiments are conducted
on these datasets:

* Segmented WikiText: we take the standard
WikiText-2 corpus (Merity et al., 2017), and
segment it into sequences at new line breaks.
We discard all empty lines, and any line that
starts with the ‘=" token. In effect, we obtain
sequences that are mostly entire paragraphs.
We also only keep lines that are shorter than
800 tokens after BPE tokenization. Because of
our preprocessing, Segmented WikiText loses
much interparagraph context information, and
doesn’t have the ‘simple’ header sequences

27In the Transformer case we simply take p( to be the Grover
(Zellers et al., 2019) pretrained language model, which is based
on the GPT-2 (Radford et al., 2019) architecture and performs
competitively on news article generation.



Experiment (Architecture) Model Best configuration log likelihood improvement (95% CI)  perplexity improvement
RealNews (Transformer) Peo 4-layer, tanh (-0.18,-0.13), u = —0.15 .03%
RealNews (Transformer) p6 N/A N/A .00%
WikiText (GRU) Pe 1-layer/500, softplus (-1.85,-1.54), u = -1.69 1.44%
WikiText (GRU) P} N/A N/A .50%
Yelp (GRU) Pe 2-layer/500, softplus (-1.89,-1.67), u = —1.80 1.82%
Yelp (GRU) Py N/A N/A .49%

Table 2: Residual energy-based model py improvements over autoregressive base models p(. The perplexity numbers are
per-token, and log likelihood improvements are per sequence (in nats). We only report each dataset’s best model (according to
validation data) in this table. See Appendix D for experimental details.

that were in the original WikiText corpus, and
is much harder to language-model.

* Yelp: the Yelp dataset (Yelp) contains business
reviews. As in Segmented WikiText, We keep
reviews shorter than 800 tokens.

* REaALNEws: we make use of the standard
ReALNEwWs corpus comes from (Zellers et al.,
2019), which contains news articles that are
up to 1, 024 tokens long.

In all experiments we tokenize with BPE tokenizers
derived from the GPT-2 language models: the GRU
models use Huggingface’s implementation?® and the
Transformers use Grover’s?®. Number of sequences
in preprocessed datasets are listed in Table 3.

Train Dev Test
RealNews 3,855 1,533 6,158
WikiText 18,519 878 2,183
Yelp 10,951 9,964 994

Table 3: Number of sequences in preprocessed datasets
(for training and tuning the discriminators gy, and eval-
uation).

D.2 Pretraining base models p

We use a pretrained Grover model as the base model
in RealNews experiments. For GRU-based experi-
ments, we train base models on WikiText and Yelp
datasets using separate training and validation splits
than those of the discriminator gg (Table 4). The
base models are periodically (every 1, 000 itera-
tions) evaluated on the validation split for early
stopping, where we stop if there is no improvement
on validation perplexity for 10 consecutive eval-
uations. The base models gg achieve 113.98 for
Segmented WikiText, and 110.89 in test set per-
plexity, respectively. Note that these base models
are further fine-tuned on additional datasets in our
28https://github.com/huggingface/

transformers
2https://github.com/rowanz/grover

comparison against residual language models.

Train Dev
WikiText 17,556 1,841
Yelp 9,954 1,000

Table 4: Number of sequences in preprocessed datasets
(for training and tuning the base model ¢). Note that we
do not train our own base models for RealNews, but use
one of the pretrained models provided by (Zellers et al.,
2019).

D.3 Metrics

We evaluate the relative performance of residual
language models against autoregressive models
(i.e. fine-tuned base models) on two metrics, log
likelihood and perplexity improvement, which are
approximated as follows:

* Loglikelihood improvement: since p, pg and
qo are all distributions over L <7, we can quan-
titatively evaluate their difference in log like-
lihood. We measure the difference between

KL[pl|pe] and KL[p||po]:*°

KL[pllpe] — KL[p||pol
E [log pg(x) —log po(x)]

X~p
= Xlﬁp[log Po(x) —log po(x)] —log Zg
= E [go(x)] —log Zy
X~p
X ~
~ ZXED[eS[ g()( ) _ log ZoM’ (7)
| Dest|

where Zy,, is estimated using equation (6).
A negative value of log likelihood difference
indicates that §g approximates p better than
po in terms of KL-divergence.

30Note that pg here is the base model component of pjg.
While comparing between residual language models and
autoregressive models, we also finetune pg on additional data
to get a new model q(’), which has different parameters than p.



* Perplexity improvement: perplexity is a com-
mon language modeling metric. Following
(Rosenfeld et al., 2001), we compute

perplexity improvement of pg
|D|log Zons
W ( Drest)

T ene g0
eXp W (Diest)

exp

®)

where w (D) is the total token count of dataset

P, and |D] is the number of sequences of D.

Zou is ecomputed Appendix B.5
Both evaluation metrics involve estimating the parti-
tion function with Zg,,. For the perplexity improve-
ment metric, we obtain 32 estimates of Zg 3!, which
are normally distributed, and compute equation (8)
using Zg , the conservative end of a 95% confidence
level. To account for variance in our test datasets,
we further make use of bootstrapping estimation for
log likelihood improvement: we bootstrap-sample
1, 000 subsamples for each test dataset, and compute
equation (7) for each datapoint in the Cartesian
product (1, 000 x 32 in total). We then report results
at the 2.5% and 97.5% percentiles.

D.4 Hyperparameters

Transformer experiments. We train our models
on 64 GPUs across 8 nodes, with a total batch
size of 64 x 8 x 2 = 1,024, and with 1 noise
sequence (K = 1 in Appendix B.4) per batch. We
use an initial learning rate of S5e — 5. The rest of the
hyperparameters largely follow settings in (Zellers
et al., 2019). Optimization is done with the Grover
implementation of AdaFactor.

GRU experiments. We train our models on 8
GPUs on a single node, with a total batch size of
8 X2 = 16, and with 25 noise sequences (K = 25 in
Appendix B.4) per batch. We have an initial learning
rate of 1e — 4. Upon no improvement on validation
data, we half the learning rate, with patience =
1. The model parameters are [, regularized with
a coefficient of le — 5. We also apply dropout
regularization with p = 0.5. Optimization is done
with PyTorch-supplied Adam.

D.5 Configurations

We study the effects of these configurations:
* Bounding gy: we note in §4.1 that with the
strong hypothesis that the base model p( has
bounded error, gg will have a bounded range,

3'We set M = 512 in this paper.

and leads to a much smaller hypothesis space.
In this work we experiment with both bounded
and unbounded gg’s, with ranges (—oo, 0) and
(=2, 2) respectively. More details can be found
in Appendix B.3.

Model capability of gg: we hypothesize that
the expressiveness of gg does not need to be
as rich as the parametrization of pg, since
8o essentially only has to tell whether the se-
quence x comes from p or pg. For the GRU
+ WikiText experiments, we experiment with
{1, 2}-layer GRU models of gg. For 1-layer
models, we additionally experiment with a
setup that has only 250 hidden units. For the
Transformers/RealNews dataset, we experi-
ment with {12, 4}-layer Transformer models.

D.6 Log likelihood improvements under
different configurations

We also see in Table 5 that using tanh as the ac-
tivation function f does better than softplus for
Transformers; but performs very poorly for GRUs.
We also observe degeneracy problems. We speculate
that our Transformer-based base models gg have
already learned a good approximation of the true
distribution; and limiting the model capacity of gg
in exchange of smaller variance results in a favor-
able trade-off, and vice versa for GRUs. Regarding
discriminator capability: we see that performance is
not sensitive to model size. Our best Transformers
run actually is from the smaller-model runs. And
the 1-layer 500-unit GRU models achieve best per-
formance. Overall, results in Table 5 suggests that
performance is sensitive to the choice of model
configuration.



log likelihood improvement

Model Size  Activation
95% CI u
RealNews (Transformers)
12-layer softplus (—-0.13,0.08) -0.09
12-layer tanh (-0.14,-0.10) -0.12
4-layer softplus (—-0.15,2.62) -0.02
4-layer tanh (-0.18,-0.13) -0.16
WikiText (GRUs)
2-layer / 500 tanh (—0.00, 0.00) -0.00
2-layer / 500  softplus  (-1.32,-0.85) -1.18
1-layer / 500 tanh (-0.79, -0.64) -0.71
I-layer / 500  softplus  (—1.85,-1.54) -1.69
1-layer / 250 tanh (-0.02,0.02) -0.00
1-layer / 250  softplus  (—1.85,—-1.46) -1.67
Yelp (GRUs)
2-layer / 500 tanh (=0.03,0.01) -0.02
2-layer / 500  softplus  (-1.89,-1.67) —-1.80
1-layer / 500 tanh (-0.65,-0.57) -0.61
1-layer / 500  softplus  (—-2.62,-2.03) -2.43
1-layer / 250 tanh (—0.00, 0.00) -0.00
1-layer / 250  softplus  (-2.25,-1.99) -2.13

Table 5: Comparison of different configurations.



