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Abstract

Standard autoregressive language models per-

form only polynomial-time computation to

compute the probability of the next symbol.

While this is attractive, it means they cannot

model distributions whose next-symbol prob-

ability is hard to compute. Indeed, they can-

not even model them well enough to solve

associated easy decision problems for which

an engineer might want to consult a language

model. These limitations apply no matter how

much computation and data are used to train

the model, unless the model is given access to

oracle parameters that grow superpolynomially

in sequence length.

Thus, simply training larger autoregressive lan-

guage models is not a panacea for NLP. Al-

ternatives include energy-based models (which

give up efficient sampling) and latent-variable

autoregressive models (which give up efficient

scoring of a given string). Both are powerful

enough to escape the above limitations.

1 Introduction

Sequence modeling is a core NLP problem. Many

sequence models ?̃ are efficient at scoring strings:

given a string x, its score ?̃(x) can be computed in

$ (poly( |x|)). For example, an RNN (Mikolov et al.,

2011) scores x in time $ ( |x|) while a Transformer

(Vaswani et al., 2017) does so in time $ ( |x|2). The

score may be an unnormalized probability, and can

be used to rank candidate strings.

Many sequence models also make it easy to

compute marginal properties of ?̃. They support ef-

ficient sampling of strings x (which allows unbiased

approximation of marginal expectations). And they

support efficient computation of the normalizing

constant / =
∑

x ?̃(x) (or simply guarantee / = 1)

for any value of the model parameters.

How about training? Briefly: If a sequence model

can efficiently compute ?̃(x) (and its derivatives

∗Part of this work was done at Facebook AI.

Figure 1: Valid answers to hard natural language inference
problems can be hard to find (Munroe, 2009), but in many
cases can be checked efficiently (e.g. the Knapsack problem
in the comic). Given a large enough parametric autoregressive
model with correct parameters, we can efficiently solve all
problem instances with input length =, and efficiently verify the
solutions — but the required model size can grow superpolyno-
mially in =. (This allows the model to store precomputed results
that we can look up in$ (=) at test time.) A main observation of
this paper is that assuming NP * P/poly, then without such a
superpolynomial growth in model size, autoregressive models
cannot even be used to verify answers to some problems where
polynomial-time verification algorithms do exist.

with respect to model parameters), then it is efficient

to compute parameter updates for noise-contrastive

estimation (Gutmann and Hyvärinen, 2010; Gut-

mann and Hyvärinen, 2012) or score-matching

(Hyvärinen, 2005). If sampling x or computing

/ (and its derivatives) is also efficient, then it is

efficient to compute parameter updates for ordinary

MLE training.

Finally, popular sequence models are compact.

Usually a fixed-size model is used to score strings x

of all lengths. More generally, it might be reasonable

to use an $ (poly(=))-sized parameter vector )=
when x has length =, at least if parameter vectors

can be obtained (perhaps from an oracle) for all

needed lengths. In this paper, we investigate what

can and cannot be achieved with models that are

compact in this sense. This setup allows us to discuss

the asymptotic behavior of model families.

Standard autoregressive models have the form



Model family Compact
parameters?

Efficient
scoring?

Efficient sampling
and normalization?

Support can be . . .

ELN/ELNCP: Autoregressive models (§3.1) ✓ ✓ ✓ some but not all ! ∈ P

EC/ECCP: Energy-based models (§4.1) ✓ ✓ ✗ all ! ∈ P but no ! ∈ NPC

Lightly marginalized ELNCP: Latent-variable autoregressive models
(§4.2)

✓ ✗ ✓ all ! ∈ NP

Lookup models (§4.3) ✗ ✓ ✓ anything

Table 1: A feature matrix of parametric model families discussed in this paper. Also see Figure 2 in the appendices.

?(x) =
∏
C ?(GC | x<C )1 where each factor is ef-

ficient to compute from a fixed parameter vector.

These models satisfy all three of the desiderata

above. By using flexible neural network architec-

tures, standard autoregressive models have achieved

stellar empirical results in many applications (Oord

et al., 2016; Child et al., 2019; Zellers et al., 2019;

Brown et al., 2020). However there are still tasks

that they have not mastered: e.g., it is reported that

they struggle at deep logical structure, even when

initialized to huge pretrained models (Wang et al.,

2019a).

We point out that, unfortunately, there are certain

sequence distributions whose unnormalized string

probabilities ?̃(x) are easy to compute individually,

yet whose autoregressive factors ?(GC | x<C ) are

NP-hard to compute or even approximate, or are

even uncomputable. Thus, standard autoregressive

models are misspecified for these distributions (can-

not fit them). It does not help much to focus on

strings of bounded length, or to enlarge the model:

under the common complexity-theoretic assumption

NP * P/poly, the parameter size |)= | must grow

superpolynomially in = to efficiently approximate

the probabilities of all strings of length up to =.

Indeed, one of our main findings is that there

exist unweighted languages ! ∈ P for which no

standard autoregressive model has ! as its support,

i.e., assigns weight > 0 to just the strings x ∈ !.

This is downright depressing, considering the costs

invested in training huge parametric autoregressive

models (Bender et al., 2021). Since ! ∈ P, it is

trivial to build an efficient scoring function ?̃(x)

with fixed parameters that has ! as its support —

just not an autoregressive one. The problem holds

for all standard autoregressive models, regardless of

how much computation and training data are used

to learn the model parameters.

That is, for an NP-hard problem, scoring a string

x under a standard autoregressive model ?(x) can-

not be used to verify a witness. Nor can finding a

witness be solved by prompting such a model with

1In this paper we use the shorthand x<C , G1 . . . GC−1.

a description of a problem instance and sampling

a continuation x of that string. Such problems are

abundant in NLP: for example, surface realization

under Optimality Theory (Idsardi, 2006), decoding

text from an AMR parse (Cai and Knight, 2013),

phrase alignment between two sentences (DeNero

and Klein, 2008), and in general inference for propo-

sitional logic (Cook, 1971), which underlies the

NP-hardness of general natural language inference,

as in Figure 1. In other words, our results imply

that standard autoregressive models do not have the

right structure to capture important linguistic regu-

larities: e.g., that observed sequences were in fact

constructed to be phonologically optimal, expressive

of a semantic form, or logically coherent!

Our work is also relevant to autoregressive mod-

els of fixed-dimensional vectors, such as NADE

(Uria et al., 2016). These can be extended to arbi-

trary =-dimensional vectors by providing separate

parameters )= for each =. Our constructions imply

that for some distributions, |)= | must grow super-

polynomially in =, even though this would be not

be necessary if the models were not autoregressive.

In the remainder of this paper, we formalize our

three desiderata for sequence models. We formalize

compact autoregressive models and describe some

limitations on their expressiveness. We then show

that it can help to choose an alternative model family

that relaxes any one of the three desiderata (Table 1).

2 Background

2.1 Weighted languages

An unweighted language ! ⊆ +∗ is a set of strings

x over a finite alphabet+ . A weighted language ?̃ is

a function ?̃ : +∗ → R≥0. Itmay be regardedas spec-

ifying an unweighted language ! = support( ?̃) ,

{x : ?̃(x) ≠ 0} along with positive weights for the

strings in !. We say that a weighted language ?̃ is

normalizable if its global normalizing constant

/ ,
∑

x∈+ ∗ ?̃(x) is finite and strictly positive. When

?̃ is normalizable, ?(x) , ?̃(x)// is a probability

distribution over !. A distribution is any weighted

language whose global normalizing constant is 1.



Let x̂ � x mean that x̂ is a prefix of x ∈ +∗ (not

necessarily a strict prefix). If ?̃ is normalizable,

then / (x̂) ,
∑

x∈+ ∗:x̂�x ?̃(x) is ≤ / for any x̂ ∈ +∗,

yielding a marginal prefix probability / (x̂)// . If

the prefix x̂ has positive prefix probability, then it

admits a local conditional probability ?(G | x̂) ,

/ (x̂ G)// (x̂) for each symbol G ∈ + , where the

denominator is interpreted as a local normalizing

constant. This is the conditional probability that

if a random string starts with the prefix x̂, the next

symbol is G. There is also a probability ?($ | x̂) ,

1−
∑
G∈+ ?(G | x̂) = ?̃(x̂)// (x̂) ≥ 0 that the string

ends immediately after x̂; the special symbol $ ∉ +

represents “end of string.”

2.2 Computation for weighted languages

We define a weighted language ?̃ to be computable

if it is defined by a Turing machine (also called ?̃)

that maps any x ∈ +∗ to ?̃(x) ∈ Q≥0 in finite time.

The Turing machine does not have to compute / .

While the computable weighted languages allow

any computable function as ?̃, most architectures

for defining weighted languages (e.g., RNNs or

Transformers) do only a bounded or linear amount

of work per input symbol. As a result, they com-

pute ?̃(x) in time $ (poly( |x|)) (that is, ?̃ ∈ FP).

We refer to such weighted languages as efficiently

computable (EC). This does not imply that the nor-

malized version ? is efficiently computable, since

finding the denominator / requires summing over

all of +∗.

If we tried to construct the same normalized

distribution ? as in the previous paragraph using

a standard autoregressive model, we would model

it as a product of local conditional probabilities,

?(x) = (
∏ |x |
C=1

?(GC | x<C ))?($ | x). Most such

architectures again do only a bounded or linear

amount of work per input symbol. Yet one suspects

that this may not always be enough work to do

the job: the local conditional probabilities of the

original ?̃ are expensive to compute (unless ?̃ has

some special structure making / (x̂) tractable).

Indeed, the observation of this paper is that for

some efficiently computable weighted languages

?̃, the local conditional probabilities are expensive

to compute or even to approximate well. More

precisely, autoregressive models cannot fit the local

conditional probabilities unless they are superpoly-

nomial either in their runtime or in their number

of parameters (where the parameters may be pre-

computed at training time). We now explain how to

formalize these notions.

2.3 Non-uniform computation

In the machine learning approach to sequence mod-

eling, we usually do not manually design the Turing

machine behind ?̃. Rather, we design a model "

with parameters ). " is a Turing machine that

reads ) and outputs a specialized Turing machine

?̃) , " ()) that can score strings x and hence

defines a weighted language. Without loss of gen-

erality, we will express ) as a string in B∗ (where

B , {0, 1}). For each ), we obtain a potentially

different weighted language.

Strings vary in length, and accurate modeling of

longer strings may sometimes require more complex

computations with more parameters. For example,

when + is a natural language alphabet, a recurrent

neural network may require more hidden units

to model sentences of the language rather than

individual words, and even more units to model

whole documents. To accommodate this, we allow

an infinite sequence of parameter vectors,� = {)= ∈

B∗ | = ∈ N}, which yields an infinite sequence of

Turing machines { ?̃= | = ∈ N} via ?̃= , " ()=).

We then define ?̃�(x) , ?̃ |x | (x), so a string of

length = is scored by the ?̃= machine. This is known

as non-uniform computation. Of course, it is legal

(and common) for all of the )= to be equal, or empty,

but if desired, we can obtain more power by allowing

the number of parameters to grow with = if needed.

We can now consider how rapidly the parametric

and runtime complexity may grow.

• If |)= | is permitted to grow exponentially, then

one can fit any weighted language ?̃ (even an

uncomputable one).2 Simply use )= to encode a

trie with $ ( |+ |=+1) nodes that maps x ↦→ ?̃(x)

for any |x| of length =, and design " such that the

Turing machine ?̃= = " ()=) has a (large) state

transition table that mirrors the structure of this

trie. The resulting collection of Turing machines

{ ?̃= | = ∈ N} can then compute ?̃(x) exactly for

any x, with only linear runtime $ ( |x|) (which is

used to traverse the trie).

• Separately, if unbounded runtime is permitted

for ", then one can exactly fit any computable

weighted language ?̃. Simply have " , when run

on )=, compute and return the large trie-structured

?̃= that was mentioned above. In this case, "

need not even use the parameters )=, except to

determine =.

2See our remark on computability in Appendix A.



• Finally, if unbounded runtime is permitted for ?̃=,

then again one can exactly fit any computable

weighted language ?̃. In this case, " trivially

returns ?̃= = ?̃ for all =.

• However, if the parameters � are “compact” in

the sense that |)= | grows only as$ (poly(=)), and

also ?̃= = " ()=) is constructed by " in time

$ (poly(=)), and ?̃= scores any x of length = in

time $ (poly(=)), then we say that the resulting

weighted language ?̃ is efficiently computable

with compact parameters (ECCP).3 We refer

to " paired with a parameter space of possible

compact values for � as an ECCP model.

Neural models of weighted languages are typi-

cally ECCP models. The construction and execution

of the neural network ?̃= may perform a polynomial

amount of total computation to score the string

x. This computation may involve parameters that

were precomputed using any amount of effort (e.g.,

training on data) or even obtained from an oracle

(they need not be computable). However, the ex-

ponentially many strings of length = must share a

polynomial-size parameter vector )=, which pre-

vents the solution given in the first bullet point

above.

In practice one takes )= = ) for all = and obtains

) ∈ R3 by training. However, we do not consider

whether such parameters are easy to estimate or

even computable. We simply ask, for a given target

language ?̃, whether there exists a polynomially

growing sequence � of “good” parameter vectors

for any parametric model " . When not, there can

be no scheme for estimating arbitrarily long finite

prefixes of such a sequence. So for any polynomial

5 , any training scheme that purports to return a

trained model of size 5 (=) that works “well” for

strings of length ≤ = must fail for large enough =—

even if unlimited data, computation, and oracles are

allowed at training time.

2.4 P, P/poly, and NP/poly

The phrase “efficiently computable with compact

parameters” means that without access to those

parameters, the ECCP weighted language may no

longer be efficiently computable. Indeed, it need

not be computable at all, if the parameter vectors

store the outputs of some uncomputable function.

Our definitions above of EC and ECCP weighted

3Since we require " to run in polytime, it can only look
at a polynomial-sized portion of )=. Hence it is not really
crucial for the parameters )

p
= to be compact, but we nonetheless

include this intuitive condition, without loss of generality.

languages are weighted generalizations of complex-

ity classes P and P/poly, respectively,4 and their

supports are always unweighted languages in P and

P/poly, respectively. An unweighted language !

is in P iff there is a deterministic Turing machine

that decides in $ (poly( |x|)) time whether x ∈ !.

And an unweighted language ! ′ is in P/poly iff5

there exist Turing machines {"= : = ∈ N} such

that "= decides in $ (poly(=)) time whether x of

length = is in ! ′, where each "= can be constructed

in $ (poly(=)) time as " ()=), for some Turing

machine " and some sequence of polynomially-

sized advice strings � = {)= | = ∈ N} with

|)= | ∈ $ (poly(=)). We define the language class

NP/poly similarly to P/poly: the only difference is

the family {"= : = ∈ N} consists of nondeterminis-

tic Turing machines.

Naturally, P ⊆ P/poly. But P/poly is larger than

P: it contains all sparse languages, regardless of their

hardness — even sparse undecidable languages —

as well as many dense languages. The extra power

of P/poly comes from its access to compact advice

strings that do not have to be recursively enumer-

able, let alone efficient to find. This corresponds to

statistical modeling, where the trained model has a

computationally efficient architecture plus access to

parameters that might have taken a long time to find.

2.5 NP-completeness and Sat

NP-complete decision problems have solutions

that are efficient to validate but inefficient to find

(assuming P ≠ NP). One of the most well-known

NP-complete problems is the boolean satisfiability

problem (Sat) (Cook, 1971). Given a boolean

formula q, Sat accepts q iff q can be satisfied by

some value assignment. For example, the formula

(�1∨¬�2∨ �3) ∧ (�1∨¬�4) is in Sat, since there

is a satisfying assignment �1...4 = 1101. We denote

4Namely the nonnegative functions in FP and FP/poly.
5Our presentation of P/poly is a variant of Arora and

Barak (2009, §6), in which inputs x of length = are evaluated
by a polytime function " that is given an advice string
)= as an auxiliary argument. This corresponds to a neural
architecture " that can consult trained parameters )= at
runtime. We have replaced the standard call " ()=, x) with
the “curried” expression " ()=) (x), which we still require to
execute in polynomial total time. Here the intermediate result
"= = " ()=) corresponds to a trained runtime model for inputs
of length =. Our Turing machines "= have size polynomial
in = (because they are constructed by " in polynomial time).
They correspond to the polynomial-sized boolean circuits
"= that are used to evaluate inputs of length = under the
classical definition of P/poly (Ladner, 1975). We exposed
these intermediate results "= only to observe in §2.3 and
§4.3 that if we had allowed the "= to grow exponentially, they
would have been able to encode the answers in tries.



the number of satisfying assignments to q as #(q).

It is widely believed that no NP-complete lan-

guages are in P/poly. Otherwise we would have

all of NP ⊆ P/poly and the polynomial hierarchy

would collapse at the second level (Karp and Lipton,

1980).

A capacity limitation of EC/ECCP weighted

languages naturally follows from this belief:6

Lemma 1. For any ! ∈ P, there exists an EC

weighted language with support !. For any ! ∈

P/poly, there exists an ECCP language with support

!. But for any ! ∈ NP-complete, there exists no

ECCP language with support ! (assuming NP *

P/poly).

In addition to not capturing the support of NP-

complete languages, ECCP weighted languages

cannot help solve other NP-hard problems, either.

For example, many structured prediction problems

in NLP can be formulated as argmaxx:x̂�x ?̃(x): we

are given a prefix x̂ as input and look for its optimal

continuation under ?̃. But if this problem is NP-hard

for a particular ?̃, then it is not in P/poly (assuming

NP * P/poly), so it cannot be accomplished by any

polytime algorithm that queries an ECCP model.

3 Autoregressive ECCP models (ELNCP

models) have reduced capacity

In this section we formally define autoregressive

ECCP models, and prove that they have strictly less

capacity than general ECCP models or even just EC

models. Our proofs rely on the construction of a

EC model ?̃ where computing the local conditional

probabilities ?(G | x̂) is NP-hard, so they cannot

be computed with compact parameters, if NP *

P/poly.

3.1 ELN and ELNCP models

Many parameter estimation techniques and inference

methods specifically work with local conditional

probabilities ?(G | x̂). Thus, it is common to use

parametric models where such quantities can be

computed in time $ (poly( |x̂|)) (given the parame-

ters).7 These are the “standard autoregressive mod-

6All omitted proofs are in Appendix A.
7An autoregressive model architecture generally defines

?(x) as an efficiently computable (§2.2) product of local
conditional probabilities. However, the parametrization usually
ensures only that

∑
G∈+ ?) (G | x̂) = 1 for all prefixes x̂. Some

parameter settings may give rise to inconsistent distributions
where / ,

∑
x∈+ ∗ ?) (x) < 1 because the generative process

terminates with probability < 1 (Chen et al., 2018). In this
case, the factors ?) (G | x̂) defined by the autoregressive model
are not actually the conditional probabilities of the weighted

els” we discussed in §1. We say that the resulting

distributions are efficiently locally normalizable,

or ELN.

We may again generalize ELNs to allow the

use of compact parameters. For any weighted

language ?̃, the Turing machine "q efficiently

locally normalizes ?̃ with compact parameters

�
q
= {)

q
= | = ∈ N} if

• the parameter size |)
q
= | grows only as$ (poly(=))

• "q()
q
=) returns a Turing machine @= (similar to

?̃= in §2.3) in time $ (poly(=))

• ?̃ is normalizable (so ? exists)

• @= maps x̂G ↦→ ?(G | x̂) for all G ∈ + ∪ {$} and

all prefixes x̂ ∈ +∗ with |x̂| ≤ = and / (x̂) > 0

• @= runs on those inputs x̂G in time $ (poly(=))

If there is "q that efficiently locally normalizes

a weighted language ?̃ with compact parameters

�
q, we say ?̃ is efficiently locally normalizable

with compact parameters, or ELNCP. Note that

this is a property of the weighted language itself.

In this case, it is obvious that ?̃ is ECCP:

Lemma 2. An ELNCP model ?̃ is also ECCP.

Likewise, an ELN model is also EC.

If we define ELNCP models analogously to

ECCP models, Lemma 2 means that locally

normalized models do not provide any extra power.

Their distributions can always be captured by

globally normalized models (of an appropriate

architecture that we used in the proof). But we will

see in Theorem 1 that the converse is likely not true:

provided that NP * P/poly, there are efficiently

computable weighted languages that cannot be

efficiently locally normalized, even with the help

of compact parameters. That is, they are EC (hence

ECCP), yet they are not ELNCP (hence not ELN).

3.2 ELNCP models cannot exactly capture all

EC (or ECCP) distributions

We reduce Sat to computing certain local condi-

tional probabilities of ?̃ (as defined in §2.1). Each

decision Sat(q) (where q ranges over formulas)

corresponds to a particular local conditional proba-

bility, implying that there is no polytime scheme

language (as defined by §2.1). It is true that training ) with
a likelihood objective does encourage finding a weighted
language whose generative process always terminates (hence
/ = 1), since this is the behavior observed in the training
corpus (Chi and Geman, 1998; Chen et al., 2018; Welleck
et al., 2020). Our definitions of ELN(CP) models require the
actual conditional probabilities to be efficiently computable.
Autoregressive models that do not sum to 1, whose normalized
probabilities can be uncomputable, are not ruled out by our
theorems that concern ELN(CP).



for computing all of these probabilities, even with

polynomially sized advice strings (i.e., parameters).

Without loss of generality, we consider only for-

mulae q such that the set of variables mentioned

at least once in q is {�1, . . . , � 9} for some 9 ∈ N;

we use |q | to denote the number of variables 9

in q. We say that a satisfies q if a ∈ B |q | and

(�1 = 01, . . . , � |q | = 0 |q |) is a satisfying assign-

ment. Finally, let boldface 5 ∈ B∗ denote enc(q)

where enc is a prefix-free encoding function. We

can now define the unweighted language ! = {5a |

q is a formula and a ∈ B |q | and a satisfies q} over

alphabet B, which contains each possible Sat prob-

lem concatenated to each of its solutions.8

We now convert ! to a weighted language ?̃,

defined by ?̃(x) = ?̃(5, a) = ( 13 )
|x |+1 for x ∈ ! (oth-

erwise ?̃(x) = 0). ?̃ is normalizable since / is both

finite (/ =
∑

x∈B∗ ?̃(x) ≤
∑

x∈B∗ (
1
3 )
|x |+1

= 1) and

positive (/ > 0 because the example string in foot-

note 8 has weight > 0). The conditional distribution

?(a | 5) is uniform over the satisfying assignments

a of 5, as they all have the same length |q|.

?̃ is efficiently computable, and so is ? = ?̃// .9

Yet deciding whether the local conditional prob-

abilities of ?̃ are greater than 0 is NP-hard. In

particular, we show that Sat can be reduced to de-

ciding whether certain local probabilities are greater

than 0, namely the ones that condition on prefixes

x̂ that consist only of a formula: x̂ = 5 for some

q. This implies, assuming NP * P/poly, that no

("q,�q) can efficiently locally normalize ?̃ with

compact parameters. Granted, the restriction of ?̃

to the finite set {x ∈ B∗ : |x| ≤ =} can be locally

normalized by some polytime Turing machine @=,

using the same trie trick sketched in §2.3. But such

tries have sizes growing exponentially in =, and

it is not possible to produce a sequence of such

machines, {@= : = ∈ N}, via a single master Turing

machine "q that runs in $ (poly(=)) on )
q
=. That

is:

Theorem 1. Assuming NP * P/poly, there exists

an efficiently computable normalizable weighted

language ?̃ that is not ELNCP.

Proof sketch. Take ?̃ to be the weighted language

we defined earlier in this section. ?̃ is clearly effi-

ciently computable. We will show that if it is ELNCP

8For example, ! contains the string 5a where 5 =

enc((�1 ∨ ¬�2 ∨ �3) ∧ (�1 ∨ ¬�4)) and a = 1101.
9Almost. This / could be irrational, but at least it is

computable to any desired precision. For any rational /̂ ≈ / ,

we can say ?̂ = ?̃//̂ ≈ ? is EC, via a Turing machine " ?̂ that
stores /̂ . Further remarks on irrationality appear in Appendix A.

via ("q,�q), then the NP-complete problem Sat

is in P/poly, contradicting the assumption. We must

give a method for using ("q,�q) to decide Sat in

polytime and with compact parameters �. Given q,

our method constructs a simple related formula q′

such that

• q′ has at least one satisfying assignment (so

/ (5′) > 0 and thus ?(1 | 5′) is defined)

• q′ has satisfying assignments with �1 = 1 (i.e.,

?(1 | 5′) > 0) if and only if q is satisfiable

Our construction also provides a polynomial func-

tion 5 such that |5′ | is guaranteed to be ≤ 5 ( |5 |).

We now define � by )= = )
q

5 (=)
(∀=). When our

Sat algorithm with compact parameters � is given

5 of length =, it can use the polynomial-size advice

string )= to ask ("q,�q) in polynomial time for

?(1 | 5′). Sat(5) returns true iff that probability is

> 0.10 �

3.3 ELNCP models cannot even capture all

EC (or ECCP) supports or rankings

We can strengthen Theorem 1 as follows:

Theorem 2. Assuming NP * P/poly, there exists

an efficiently computable normalizable weighted

language ?̃ where there is no ELNCP @̃ such that

support( ?̃) = support(@̃).

Proof. Observe that for any two weighted languages

?̃ and @̃ with the same support, ∀x̂ ∈ +∗, / ?̃ (x̂) >

0 ⇐⇒ /@̃ (x̂) > 0 (where / ?̃ and /@̃ return the pre-

fix probabilities of ?̃ and @̃ respectively). Thus, for

any x̂ with / ?̃ (x̂) > 0, ?(1 | x̂) , / ?̃ (x̂1)// ?̃ (x̂)

and @(1 | x̂) , /@̃ (x̂1)//@̃ (x̂) are well-defined and

?(1 | x̂) > 0 ⇐⇒ @(1 | x̂) > 0. If @̃ is ELNCP,

then all such probabilities @(1 | x̂) can be computed

in polytime with compact parameters, so it is like-

wise efficient to determine whether ?(1 | x̂) > 0.

But this cannot be the case when ?̃ is the weighted

language used in the proof of Theorem 1, since

that would suffice to establish that Sat ∈ P/poly,

following the proof of that theorem. �

To put this another way, there exists an unweighted

language in P (namely support( ?̃)) that is not the

support of any ELNCP distribution.

If they have different support, normalizable lan-

guages also differ in their ranking of strings:

Lemma 3. Let ?̃, @̃ be normalizable weighted

languages with support( ?̃) ≠ support(@̃). Then

10See also the remark on implications for seq2seq models
following the proof in Appendix A.



∃x1, x2 ∈ +∗ such that ?̃(x1) < ?̃(x2) but

@̃(x1) ≥ @̃(x2).

Therefore, no ELNCP @̃ captures the string rank-

ing of ?̃ from Theorem 2. And for some ?̃, any

ELNCP @̃ misranks even string pairs of “similar”

lengths:

Theorem 3. Assuming NP * P/poly, there exists

an efficiently computable normalizable weighted lan-

guage ?̃ such that no ELNCP @̃ with support(@̃) ⊇

support( ?̃) has ?̃(x1) < ?̃(x2) ⇒ @̃(x1) < @̃(x2)

for all x1, x2 ∈ +
∗. Indeed, any such @̃ has a coun-

terexample where ?̃(x1) = 0. Moreover, there is

a polynomial 5@̃ : N → N such that a counterex-

ample exists for every x1 such that ?̃(x1) = 0 and

@̃(x1) > 0, where the x2 in this counterexample

always satisfies |x2 | ≤ 5@̃ ( |x1 |).

Theorem 3 is relevant if one wishes to train

a model @̃ to rerank strings that are proposed by

another method (e.g., beam search on @̃, or exact

:-best decoding from a more tractable distribution).

If the desired rankings are given by Theorem 3’s

?̃, any smoothed11 ELNCP model @̃ will misrank

some sets of candidate strings, even sets all of

whose strings are “close” in length, by failing

to rank an impossible string (x1 with ?̃(x1) = 0)

below a possible one (x2 with ?̃(x2) > 0).

3.4 ELNCP models cannot even approximate

EC (or ECCP) distributions

Theorem 2 implies that there exists ?̃ whose local

probabilities ?(G | x̂) are not approximated by any

ELNCP @ to within any constant factor _, since that

would perfectly distinguish zeroes from non-zeroes

and the resulting support sets would be equal.12

However, this demonstration hinges on the diffi-

culty of multiplicative approximation of zeroes —

whereas real-world distributions may lack zeroes.

Below we further show that it is hard even to approx-

imate the non-zero local conditional probabilities

(even with the additional help of randomness).

Theorem 4. Assuming NP * P/poly, there exists

an efficiently computable weighted language ?̃ :

+∗ → R≥0 such that there is no ("q,�q) where

11Smoothing is used to avoid ever incorrectly predicting 0 (a
“false negative”) by ensuring support(@̃) ⊇ support( ?̃). E.g.,
autoregressive language models often define @(G | x̂) using a
softmax over + ∪ {$}, ensuring that @(x) > 0 for all x ∈ +∗.

12Dropping the normalization requirement on the approxi-
mated local probabilities (so that possibly

∑
G∈+ @(G | x̂) ≠ 1)

does not help. Otherwise, again, Sat could be solved in poly-
nomial time (with the help of polysize advice strings) by using
@(1 | 5′) to determine in the proof of Theorem 1 whether
?(1 | 5′) > 0.

�
q
= {)

q
= | = ∈ N} that satisfies all of the following

properties (similar to §3.1):

• the parameter size |)
q
= | grows only as$ (poly(=))

• "q()
q
=) returns a probabilistic Turing machine

@= in time $ (poly(=))

• there exists _ ≥ 1 such that for each G ∈ + ∪ {$}

and x̂ ∈ +∗ with |x̂| ≤ = and ?(G | x̂) > 0, the

probabilistic computation @= (x̂G) has probability

> 2/3 of approximating ?(G | x̂) to within a factor

of _ (that is, @= (x̂G)/?(G | x̂) ∈ [1/_, _])

• @= runs on those inputs x̂G in time $ (poly(=))

Moreover, the statement above remains true

(a) when the approximation guarantee is

only required to hold for prefixes x̂ where

{x : x̂ � x} is finite (so ?(G | x̂) is computable

by brute force)

(b) or, when support( ?̃) = +∗

3.5 ELN models are unconditionally weak

Our above results rely on the NP-hardness of com-

puting or approximating an EC distribution’s au-

toregressive factors ?(· | x<C ). In Appendix A,

we show that these factors can even be uncom-

putable. In such cases, the distribution cannot be

ELN (Theorem 5), though sometimes it is still EL-

NCP (Theorem 6). This result does not assume

P ≠ NP or NP * P/poly.

3.6 ELN(CP) models cannot correctly model

propositional logic

In §1 we have asserted that autoregressive models do

not make correct verifiers for formulae under propo-

sitional logic — one of the simplest logic formalisms

where polynomial-time sound and complete proof

systems exist. Below is a formal claim:

Theorem 7. Let ! be a language of propositions

under the natural deduction system. Let !C ⊂ !

be the set of all tautological propositions in !,

and ! 5 ⊂ ! be the set of all contradictory propo-

sitions in !. There is no ELN model ?̃ where

∀x1 ∈ !C ,∀x2 ∈ ! 5 , ?̃(x1) > ?̃(x2). Moreover, as-

suming NP * P/poly, the results hold for all ELNCP

?̃’s.

Theorem 7 has several implications: first, entirely

autoregressive proof generators (Gontier et al., 2020)

will assign higher probabilities to ‘proofs’ that are

patently wrong (i.e. proofs that those ‘proofs’ are

wrong can be verified in polynomial-time) than

to some correct proofs. Theorem 7 also implies

that correct reasoning cannot be guaranteed under

standard autoregressive models, suggesting that



the performance gap of reasoning between ora-

cles and huge parametric autoregressive models

(Hendrycks et al., 2021) cannot be closed regardless

of model parametrization choice, unless we resort

to a superpolynomial growth of parameters.

4 Alternative model families

We now discuss alternative families of sequence

distributions that trade away efficiency or compact-

ness in exchange for greater capacity, as shown in

Table 1.

4.1 Energy-based models (EBMs)

Energy-based models (LeCun et al., 2006) of dis-

crete sequences (Rosenfeld et al., 2001; Sandbank,

2008; Huang et al., 2018) traditionally refer to the

EC models of §2.2. Only the unnormalized probabil-

ities ?̃) (x) are required to be efficiently computable.

Lemmas 1 and 2 showed that this model family

contains all ELN languages and can achieve any

support in P. While EBMss are known for their

flexible model-specifying mechanisms, we formally

show that a capacity gap exists between EBMs and

autoregressive models (and therefore autoregressive

approximations of EBMs (Khalifa et al., 2021) in

general will be imperfect.) Specifically, Theorem 1

shows that it also contains languages that are not

ELN or even ELNCP: intuitively, the reason is

that the sums / (x̂) needed to compute the local

normalizing constants (see §2.1) can be intractable.

If we generalize energy-based sequence models

to include all ECCP models — that is, we allow non-

uniform computation with compact parameters —

then Lemmas 1 and 2 guarantee that they can capture

all ELNCP languages and furthermore all languages

in P/poly (though still not NP-complete languages).

Experiments on different parameterizations.

Maximum-likelihood parameter estimation (MLE)

can be expensive in an EBM because the likelihood

formula involves the expensive summation

/ =
∑

x∈+ ∗ ?̃) (x). This forces us in practice to use

alternative estimators that do not require computing

normalized probabilities, such as noise-contrastive

estimation (NCE) or score matching (§1), which

are less statistically efficient. In pilot experiments

we found that both RNN- and Transformer-based

EBMs trained with NCE achieved worse held-out

perplexity than comparable locally normalized

models trained with MLE.13

13This might be due to a capacity limitation of the specific
globally normalized architectures (i.e., no parameters work

Fortunately, it is possible to infuse a globally

normalized architecture with the inductive bias

of a locally normalized one, which empirically

yields good results. Residual energy-based mod-

els (REBMs) (Bakhtin et al., 2021) are a simple

hybrid architecture:

?) (x) ∝ ?̃) (x) , ?0(x) · exp 6) (x)

This simply multiplies our previous weight by a new

factor ?0(x). The base model ?0 : ! → (0, 1] is a

locally normalized neural sequence model (ELN

model) that was pretrained on the same distribu-

tion. 6) : +∗ → R is a learnable function (with

parameters )) that is used to adjust ?0, yielding

a weighted language ?̃) with the same support !.

We implemented REBMs, again with NCE training,

and evaluated them on two different neural architec-

tures (GRU- and Transformer-based) and 3 datasets

(WikiText (Merity et al., 2017), Yelp (Yelp), and

RealNews (Zellers et al., 2019)). In each setting we

tried, the REBM slightly but significantly improved

the perplexity of the base model ?0 (? < 0.05).14

4.2 Latent-variable models

Autoregressive models have / = 1 for any setting of

the parameters (or at least any setting that guarantees

consistency: see footnote 7). Clearly / = 1 ensures

that / is both finite and tractable. Can we find a

model family that retains this convenience (unlike

EBMs), while still being expressive enough to have

any non-empty language in P as support?

Autoregressive latent-variable models form such

a family. As in directed graphical models, the use

of latent variables provides a natural way to model

partial observations of an underlying stochastic

sequence of events. We will model an observed

sequence x of length = as a function of a latent

string z of length $ (poly(=)). As in EBMs, the

probability ?(x) can be computationally intractable,

allowing these models to break the expressivity bot-

tleneck of ordinary autoregressive models. However,

well), or excess capacity (i.e., too many parameters work well on
the finite sample), or statistical inefficiency of the estimator (the
NCE objective on the finite sample, with the noise distribution
we chose, does not distinguish among parameters as well as
MLE does), or an optimization difficulty caused by local optima
in the NCE optimization landscape.

14We independently conceived of and implemented the
REBM idea proposed in Bakhtin et al. (2021). Details of
neural architecture choice, model parameter sizes, training
regimen, and evaluation (Appendices B–D) differ between
our work and theirs, which also reported positive empirical
results (on different datasets). We regard the two independent
positive findings as a strong indication that the REBM design
is effective.



the intractability no longer comes from exponen-

tially many summands in the denominator / , but

rather from exponentially many summands in the

numerator — namely, the summation over all latent

z that could have produced x. Notice that as a result,

even unnormalized string weights are now hard to

compute, although once computed they are already

normalized.

Formally, we define marginalized weighted lan-

guages. We say that ?̃ is a marginalization of

the weighted language Ã if it can be expressed as

?̃(x) =
∑

z:` (z)=x Ã (z), where ` : ( → +∗ is some

function (the marginalization operator). We say it

is a light marginalization if |z| ∈ $ (poly( |`(z) |))

and ` runs in time $ (poly( |z|)).15 Typically `(z)

extracts a subsequence of z; it can be regarded as

keeping the observed symbols while throwing away

a polynomially bounded number of latent symbols.

Light marginalizations of ELN distributions are

a reasonable formalization of latent-variable autore-

gressive models. They are more powerful than ELN

distributions, and even include some distributions

that (by Lemma 1) are not even ELNCP or ECCP:

Theorem 8. There exists a light marginalization ?

of an ELN distribution, such that support(?) is an

NP-complete language.

Our proof of Theorem 8 relies on special structure

of a certain NP-complete language (Sat) and does

not evidently generalize to all languages in NP.

However, light marginalizations of ELNCP distri-

butions are more powerful still,16 and can have any

language ∈ NP or even NP/poly (§2.4) as support:

Theorem 9. The following statements are equiva-

lent for any nonempty ! ⊆ +∗:

(a) ! ∈ NP/poly.

(b) ! is the support of a light marginalization of

an ELNCP distribution.

(c) ! is the support of a light marginalization of

an ECCP weighted language.

Theorems 8 and 9 make use of unrestricted latent-

variable autoregressive models. There exist more

practical restricted families of such models that

admit tractable computation of ?(x) (Lafferty et al.,

2001; Rastogi et al., 2016; Wu et al., 2018; Buys and

Blunsom, 2018). Such models are EC (and indeed,

15WLOG, ` can be required to run in linear time $ ( |z|), as
it does in our constructions below.

16The capacity established by Theorem 9 does not need
the full power of marginalization. We could similarly de-
fine light maximizations of ELNCP distributions, ?̃(x) =

maxz:` (z)=x Ã (z). Replacing sum by max does not change the
support.

typically ELN) — but this limits their expressivity,

by Theorem 1. Both Lin et al. (2019) and Buys and

Blunsom (2018) observed that such models yield

worse empirical results than models that do not have

tractable exact inference methods. The tractability

requirement is dropped in “self-talk” (blixt, 2020;

Gontier et al., 2020; Shwartz et al., 2020), where

a neural autoregressive language model generates

an analysis of the prefix x̂ via latent intermediate

symbols before predicting the next output symbol.17

We remark that for autoregressive models, the po-

sition of the latent variables is significant. Marginal-

izing out latent variables at the end of the string

adds no power. More precisely, if an ELNCP dis-

tribution is over strings z of the form x#y, then its

marginalization via `(x#y) = x can be expressed

more simply as an ELNCP language. Thus, by Theo-

rem 2, marginalizations of such distributions cannot

have arbitrary NP languages as support. Our proofs

of Theorems 8 and 9 instead use latent strings of

the form y#x, where all latent variables precede all

observed ones (as in Kingma and Welling, 2014).

(This simple design can always be used without loss

of generality.) Trying to reorder those latent strings

as x#y while preserving their weights would have

yielded a non-ELNCP distribution ?(x#y) (because

if it were ELNCP, then ?(x) would be ELNCP also,

and we know from Lemma 1 that it cannot be for

any distribution whose support is an NP-complete

language).

How about lightly marginalizing ECCP languages

instead of ELNCP ones? This cannot model any ad-

ditional unweighted languages, by Theorem 9. But it

may be able to model more probability distributions.

One can easily construct a light marginalization ?

of an ECCP distribution such that #(q) = 2= · ?(5),

where #(q) is the number of satisfying assignments

of q and the constant 2= depends only on = = |5|.

We conjecture that this is not possible with lightly

marginalized ELNCP distributions.

4.3 Lookup models

§2.3 noted that with exponential growth in stored pa-

rameters, it is possible to fit any weighted language

up to length =, with local probabilities computed in

17Here the marginal distribution of the next observed
symbol can require superpolynomial time to compute (if
#P ≠ FP, which follows from NP * P/poly). Theorem 1
could likewise be evaded by other autoregressive approaches
that invest superpolynomial computation in predicting the
next symbol (Graves, 2016). Each autoregressive step might
explicitly invoke lookahead or reasoning algorithms, just as
feed-forward network layers can invoke optimizers or solvers
(Amos and Kolter, 2017; Wang et al., 2019b).



only $ (=) time by lookup. Of course this rapidly

becomes impractical as = increases, even if the

amount of training data increases accordingly. How-

ever, there has been some recent movement toward

storage-heavy models. Such models are typically

semiparametric: they use a parametric neural model,

such as an autoregressive model, together with an

external knowledge base of text strings or factoids

that are not memorized in the layer weights. The neu-

ral model generates queries against the knowledge

base and combines their results. Examples include

:NNLMs (Khandelwal et al., 2020) and semipara-

metric LMs (Yogatama et al., 2021). The knowledge

base grows linearly with the training data rather

than compressing the data into a smaller parameter

vector. It is in fact a copy of the training data, indexed

to allow fast lookup (Indyk and Motwani, 1998).

(Preparing the index is much cheaper than neural

network training.) Access to the large knowledge

base may reduce the amount of computation needed

to find the local conditional probabilities, much as

in the trie construction of §2.3.

5 Related work

Chen et al. (2018) show that it is hard to map RNN

parameters to properties of the resulting autore-

gressive weighted language, such as consistency

(/ = 1). We focus on cases where the RNN pa-

rameters are already known to be consistent, so

the RNN efficiently maps a string x̂ to its local

conditional distribution ?(· | x̂). Our point is that

for some weighted languages, this is not possible

(even allowing polynomially larger RNNs for longer

strings), so consistent RNNs and their ilk cannot be

used to describe such languages.

In a Bayes network — which is really just an

autoregressive model of fixed-length strings — ap-

proximate marginal inference is NP-hard (Roth,

1996). Assuming NP * P/poly and the grid-minor

hypothesis, Chandrasekaran et al. (2008, Theorem

5.6) further showed that for any infinite sequence of

graphs �1, �2, . . . where �= has treewidth =, there

is no sequence of algorithms "1, "2, . . . such that

"= performs approximate marginal inference in

time $ (poly(=)) on graphical models of structure

�=. This remarkable negative result says that in

any graph sequence of unbounded treewidth, ap-

proximating the normalizing constant for �= given

arbitrary parameters is hard (not $ (poly(=))), even

with advice strings. Our negative result (Theorem 4)

focuses on one particular infinite weighted language,

showing that approximating local conditional prob-

abilities given an arbitrary length-= prefix is hard in

the same way. (So this language cannot be captured

by an RNN, even with advice strings.)

6 Conclusion and future work

Autoregressive models are suited to those proba-

bility distributions whose prefix probabilities are

efficiently computable. This efficiency is convenient

for training and sampling. But unless we sacrifice

it and allow runtime or parameter size to grow

superpolynomially in input length, autoregressive

models are less expressive than models whose prefix

probabilities expensively marginalize over suffixes

or latent variables.

All model families we have discussed in this paper

can be seen as making compromises between differ-

ent desiderata (Table 1). Natural follow-up questions

include ‘Are there model families that win on all

fronts?’ ‘What are other modeling desiderata?’

While some languages ∈ P cannot be supports

of ELNCPs, we do not know if the same can be

said for most languages ∈ P. This problem seems to

be closely related to the average complexity of NP-

complete languages, where most questions remain

open (Levin, 1986; Bogdanov and Trevisan, 2006).
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Lookup Models

Lightly Marginalized ELNCP Models

ELN

EC

(all unweighted languages)
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P(V ∗)

Figure 2: The space of unweighted languages. We assume in this diagram that NP * P/poly. Each rectangular

outline corresponds to a complexity class (named in its lower right corner) and encloses the languages whose

decision problems fall into that class. Each bold-italic label (colored to match its shape outline) names a model

family and encloses the languages that can be expressed as the support of some weighted language in that family.

All induced partitions in the figure are non-empty sets: shape A properly encloses shape B if and only if language

class A is a strict superset of language class B. As mentioned in Table 1, standard autoregressive models (ELN

models) have support languages that form a strict subset of P (Lemmas 1 and 2, Theorem 5, and §2.4). ELNCP

models (§3.1) extend ELN models by allowing the parameter size to grow polynomially in string length, allowing

them to capture both more languages inside P (Theorem 6) and languages outside P (including undecidable but

sparse languages) that can be characterized autoregressively with the help of these compact parameters. All of

those languages belong in the class P/poly. Theorem 2 establishes that energy-based (EC) and ECCP models go

strictly further than ELN and ELNCP models, respectively (Theorem 2): they correspond to the entire classes P

and P/poly (Lemma 1). However, even ECCP does not capture any NP-complete languages under our assumption

NP * P/poly. Allowing a polynomial number of latent symbols extends the power further still: lightly marginalized

ELNCP or ECCP distributions cover exactly the languages ∈ NP/poly (Theorem 9). Finally, if we were to drop the

requirement that the parameters � must be compact, we could store lookup tries to model any weighted language

(§4.3).



A Proofs

Lemma 1. For any ! ∈ P, there exists an EC

weighted language with support !. For any ! ∈

P/poly, there exists an ECCP language with support

!. But for any ! ∈ NP-complete, there exists no

ECCP language with support ! (assuming NP *

P/poly).

This simple lemma relates our classes EC and

ECCP of weighted languages to the complexity

classes P and P/poly of their supports, which are

unweighted formal languages (§2). It holds because

computing a string’s weight can be made as easy

as determining whether that weight is nonzero (if

we set the weights in a simple way), but is certainly

no easier. We spell out the trivial proof to help the

reader gain familiarity with the formalism.

Proof. Given !, define a weighted language ?̃ with

support ! by ?̃(x) = 1 if x ∈ ! and ?̃(x) = 0

otherwise.

If ! ∈ %, then clearly ?̃ is EC since the return

value of 1 or 0 can be determined in polytime.

If ! ∈ P/poly, ! can be described as a tuple

(",�) following our characterization in §2.4. It

is easy to show that ?̃ is ECCP, using the same

polynomially-sized advice strings �. We simply

construct " p̃ such that " p̃()=) returns 1 or 0 on

input x according to whether " ()=) accepts or

rejects x. Both " p̃()=) and " p̃()=) (x) are com-

puted in time $ (poly(=)) if |x| = =. (The technical

construction is that " p̃ simulates the operation of

" on the input )= to obtain the description of the

Turing machine "= = " ()=), and then outputs a

slightly modified version of this description that

will write 1 or 0 on an output tape.)

For the second half of the lemma, we use the re-

verse construction. Suppose ?̃ is an ECCP weighted

language with support !. ?̃ can be characterized by

a tuple (" p̃,�). It is easy to show that ! ∈ P/poly,

using the same polynomially-sized advice strings

�. We simply construct " such that " ()=) ac-

cepts x iff " p̃()=) (x) > 0. Then by the assumption,

! ∉ NP-complete. �

Lemma 2. An ELNCP model ?̃ is also ECCP.

Likewise, an ELN model is also EC.

Proof. Let ?̃ be an ELNCP language. This implies

that ?̃ is normalizable, so let ?(x) , ?̃(x) / / as

usual. Specifically, let "q efficiently locally nor-

malize ?̃ with compact parameters �
q
= {)

q
= |

= ∈ N}. It is simple to define a Turing machine

" r that maps each parameter string )
q
= to a Tur-

ing machine A=, where A= (x) simply computes(∏=
C=1
@= (GC | x<C )

)
· @= ($ | x). Then for all x

of length =, A= (x) =
(∏=

C=1
?(GC | x<C )

)
· ?($ | x),

by the definition of local normalization, and thus

A= (x) = ?(x).

" r can be constructed by incorporating the def-

inition of "q, so that A= = " r()
q
=) can include

@= = "q()
q
=) as a subroutine. This allows A= to

query @= for local conditional probabilities and

multiply them together.

• Since "q runs in polytime, it is straightforward

for this construction to ensure that " r runs in

polytime as well.

• Since @= (· | x̂) ∈ $ (poly(=)), this construction

can ensure that A= runs in polytime as well.

• We were given that |)
q
= | ∈ $ (poly(=)) (compact

parameters).

Since ? is the weighted language defined by

(" r,�q), and " r and �
q have the properties

just discussed, we see that ? is efficiently com-

putable with compact parameters (ECCP). Therefore

?̃(x) = /?(x) is also ECCP.

In the case where ?̃ is more strongly known

to be ELN (the parameters �
q are not needed),

a simplification of this argument shows that it is

EC. �

Theorem 1. Assuming NP * P/poly, there exists

an efficiently computable normalizable weighted

language ?̃ that is not ELNCP.

Proof. The proof was sketched in §3.2. Here we fill

in the details.

The unweighted language ?̃ defined in that section

is efficiently computable via the following simple

algorithm that outputs ?̃(x) given x ∈ B∗. If x has a

prefix that encodes a formula q, and the remainder

of x is a satisfying assignment a to the variables

of q, then return ( 13 )
|x |+1. Otherwise return 0. This

algorithm can be made to run in polynomial time

because whether an assignment satisfies a formula

can be determined in polynomial time (a fact that is

standardly used to establish that Sat ∈ NP).

Given a formula q with variables �1, . . . , � 9 , we

define q′ = (¬�1 ∧ ¬�2 ∧ . . . ∧ ¬� 9 ∧ ¬� 9+1) ∨

(�1 ∧ Shift(q)), where Shift(q) is a version of

q in which �8 has been renamed to �8+1 for all

1 ≤ 8 ≤ 9 . It is obvious that q′ and ? have the

properties stated in the proof sketch. The strings in

! that begin with 5′ are precisely the strings of the

form 5′a′ where a′ is a satisfying assignment of



q′— which happen just when a′ = 0 9+1 or a′ = 1a

where a is a satisfying assignment of q. At least

one string in ! begins with 5′, namely 5′0 9+1,

so / (5′) > 0. Moreover, / (5′1) > 0 iff q has

any satisfying assignments. Therefore the local

probability ?(1 | 5′) = / (5′1) / / (5′) is defined

(see §2.1), and is > 0 iff Sat(q).

Notice that the formal problem used in the proof

is a version of Sat whose inputs are encoded using

the same prefix-free encoding function enc that

was used by our definition of ! in §3.2. We must

choose this encoding function to be concise in the

sense that 5 , enc(q) can be converted to and

from the conventional encoding of q in polynomial

time. This ensures that our version of Sat is ≤%<-

interreducible with the conventional version and

hence NP-complete. It also ensures that there is

a polynomial function 5 such that |5′ | ≤ 5 ( |5|),

as required by the proof sketch, since there is a

polynomial-time function that maps 5 → q →

q′ → 5′ and the output length of this function is

bounded by its runtime. This is needed to show that

our version of Sat is in P/poly.

Specifically, to show that the existence of

("q,�q) implies Sat ∈ P/poly, we use it to

construct an appropriate pair (",�) such that

(" ()=)) (5) = Sat(q) if |5 | = =. As mentioned in

the proof sketch, we define � by )= = )
q

5 (=)
, and

observe that |)= | ∈ $ (poly(=)) (thanks to compact-

ness of the parameters �q and the fact that 5 is poly-

nomially bounded). Finally, define " ()=) to be a

Turing machine that maps its input5 of length = to 5′

of length ≤ 5 (=), then calls "q()=) = "
q()

q

5 (=)
)

on 5′1 to obtain ?(1 | 5′), and returns true or false

according to whether ?(1 | 5′) > 0. Computing 5′

takes time polynomial in = (thanks to the properties

of enc). Constructing "q() 5 (=) ) and calling it on

5′ each take time polynomial in = (thanks to the

properties of 5 and "q). �

Remark on conditional models. While we fo-

cus on modeling joint sequence probabilities in

this work, we note that in many applications it of-

ten suffices to just model conditional probabilities

(Sutskever et al., 2014). Unfortunately, our proof of

Theorem 1 above implies that ELNCPs do not make

good conditional models either: specifically, there

exists 5 such that deciding whether ?(1 | 5) > 0 is

NP-hard, and thus beyond ELNCP’s capability.

Remark on irrationality. In our definitions of

ECCP andELNCP languages,we implicitly assumed

that the Turing machines that return weights or

probabilities would write them in full on the output

tape, presumably as the ratio of two integers. Such

a Turing machine can only return rational numbers.

But then our formulation of Theorem 1 allows an-

other proof. We could construct ?̃ such that the local

conditional probabilities ?(G | x̂) , / (x̂G)// (x̂)

are sometimes irrational. In this case, they cannot

be output exactly by a Turing machine, implying

that ?̃ is not ELNCP. However, this proof exposes

only a trivial weakness of ELNCPs, namely the fact

that they can only define distributions whose local

marginal probabilities are rational.

We can correct this weakness by formulating

ELNCP languages slightly differently. A real number

is said to be computable if it can be output by a

Turing machine to any desired precision. That Turing

machine takes an extra input 1 which specifies the

number of bits of precision of the output. Similarly,

our definitions of ECCP and ELNCP can be modified

so that their respective Turing machines ?̃= and @=
take this form, are allowed to run in time$ (poly(=+

1)), and have access to the respective parameter

vectors �
p

=+1
and �

q

=+1
. Since some of our results

concern the ability to distinguish zero from small

values (arbitrarily small in the case of Theorem 6),

our modified definitions also require ?̃= and @= to

output a bit indicating whether the output is exactly

zero. For simplicity, we suppressed these technical

details from our exposition.

Relatedly, in §4.3, we claimed that lookup models

can fit any weighted language up to length =. This

is not strictly true if the weights can be irrational.

A more precise statement is that for any weighted

language ?̃, there is a lookup model that maps (x, 1)

to the first 1 bits of ?̃(x). Indeed, this holds even

when ?̃(x) is uncomputable.

Remark on computability. In §2.1 we claimed

that any weighted language ?̃ that has a finite and

strictly positive / can be normalized as ?(x) =
?̃ (x)// . However, / may be uncomputable: that is,

there is no algorithm that takes number of bits of

precision 1 as input, and outputs an approximation

of / within 1 bits of precision. Therefore, even

if ?̃ is computable, ? may have weights that are

not merely irrational but even uncomputable. An

example appears in the proof of Theorem 6 below.

Weighted language classes (e.g. ELNCP) that only

model normalized languages will not be able to

model such languages, simply because the partition

function is uncomputable.



However, our proof of Theorem 1 does not rely

on this issue, because the ?̃ that it exhibits happens

to have a computable / . For any 1, / may be

computed to 1 bits of precision as the explicit sum∑
x: |x | ≤# ?̃(x) for a certain large # that depends on

1.

Remark on RNNs. Our proof of Theorem 1

showed that our problematic language ?̃ is efficiently

computable (though not by any locally normalized

architecture with compact parameters). Because

this paper is in part a response to popular neural

architectures, we now show that ?̃ can in fact be

computed efficiently by a recurrent neural network

(RNN) with compact parameters. Thus, this is an

example where a simple globally normalized RNN

parameterization is fundamentally more efficient

(in runtime or parameters) than any locally normal-

ized parameterization of any architecture (RNN,

Transformer, etc.).

Since we showed that ?̃ is efficiently computable,

the existence of an RNN implementation is es-

tablished in some sense by the ability of finite

rational-weighted RNNs to simulate Turing ma-

chines (Siegelmann and Sontag, 1992), as well as

an extension to Chen et al. (2018, Thm. 11) to a

family of RNNs, where each RNN instance also

takes some formula encoding as input. However, it is

straightforward to give a concrete construction, for

each = ∈ N, for a simple RNN that maps each string

x ∈ B= to ?̃(x). Here ?̃(x) will be either ( 1
3
)=+1 or

0, according to whether x has the form 5a where

5 encodes a 3-CNF-Sat formula q that is satisfied

by a.18 The basic idea is that 5 has 9 ≤ = variables,

so there are only $ (=3) possible 3-CNF clauses.

The RNN allocates one hidden unit to each of these.

When reading 5a, each clause encountered in 5

causes the corresponding hidden unit to turn on,

and then each literal encountered in a turns off the

hidden units for all clauses that would be satisfied

by that literal. If any hidden units remain on after

x has been fully read, then 5 was not satisfied by

a, and the RNN’s final output unit should return 0.

Otherwise it should return ( 1
3
)=+1, which is constant

for this RNN. To obtain digital behaviors such as

turning hidden units on and off, it is most conve-

18The restriction to 3-CNF-Sat formulas is convenient, but
makes this a slightly different definition of ! and ?̃ than we
used in the proofs above. Those proofs can be adjusted to show
that this ?̃, too, cannot be efficiently locally normalized with
compact parameters. The only change is that in the construction
of Theorem 1, q′ must be converted to 3-CNF. The proof then
obtains its contradiction by showing that 3-CNF-Sat ∈ P/poly
(which suffices since 3-CNF-Sat is also NP-complete).

nient to use ramp activation functions for the hidden

units and the final output unit, rather than sigmoid

activation functions. Note that our use of a separate

RNN "RNN
= for each input length = is an example

of using more hidden units for larger problems,

a key idea that we introduced in §2.3 in order to

look at asymptotic behavior. The RNN’s parameter

sequence �
RNN

= {)RNN
= | = ∈ N} is obviously

compact, as )RNN
= only has to store the input length

=. With our alphabet B for ?̃, |)RNN
= | ∈ $ (log =).

Lemma 3. Let ?̃, @̃ be normalizable weighted

languages with support( ?̃) ≠ support(@̃). Then

∃x1, x2 ∈ +∗ such that ?̃(x1) < ?̃(x2) but

@̃(x1) ≥ @̃(x2).

Proof. Suppose that the claim is false, i.e., ?̃ and @̃

have the same ranking of strings. Then the minimum-

weight strings under ?̃ must also be minimum-

weight under @̃. WLOG, there exists x ∈ +∗ with

?̃(x) = 0 and @̃(x) = 2 > 0. Then 2 > 0 is

the minimum weight of strings in @̃. But this is

not possible for a normalizable language @̃, since it

means that /@̃ ,
∑

x′∈+ ∗ @(x
′) ≥

∑
x′∈+ ∗ 2 diverges.

�

Theorem 3. Assuming NP * P/poly, there exists

an efficiently computable normalizable weighted lan-

guage ?̃ such that no ELNCP @̃ with support(@̃) ⊇

support( ?̃) has ?̃(x1) < ?̃(x2) ⇒ @̃(x1) < @̃(x2)

for all x1, x2 ∈ +
∗. Indeed, any such @̃ has a coun-

terexample where ?̃(x1) = 0. Moreover, there is

a polynomial 5@̃ : N → N such that a counterex-

ample exists for every x1 such that ?̃(x1) = 0 and

@̃(x1) > 0, where the x2 in this counterexample

always satisfies |x2 | ≤ 5@̃ ( |x1 |).

Proof. Let ?̃ be the weighted language from The-

orem 2. Given an ELNCP @̃. By Theorem 2,

support(@̃) ≠ support( ?̃), so there must exist a

string x1 that is in one support language but

not the other. With the additional assumption

that support(@̃) ⊇ support( ?̃), it must be that

x1 ∈ support(@̃), so ?̃(x1) = 0 but @̃(x1) > 0.

Given any such x1 with ?̃(x1) = 0 but @̃(x1) > 0,

we must find a x2 of length $ (poly( |x1 |)) with

?̃(x2) > 0 but @̃(x2) ≤ @̃(x1).

To ensure that ?̃(x2) > 0, let us use the structure

of ?̃. For any 9 , we can construct a tautological

formula q over variables �1, . . . � 9 , as q = (�1 ∨

¬�1) ∧ · · · ∧ (� 9 ∨¬� 9). It follows that ?̃(5a) > 0

for any a ∈ B 9 . We will take x2 = 5a for a particular

choice of 9 and a.



Specifically, we choose them to ensure that

@̃(x2) ≤ @̃(x1). Since @̃ is ELNCP, it is normalizable

and hence has a finite / . Thus,
∑

a∈B 9 @̃(5a) ≤ / .

So there must exist some a ∈ B 9 such that

@̃(5a) ≤ //2 9 . We choose that a, after choosing

9 large enough such that //2 9 ≤ @̃(x1). Then

@̃(x2) = @̃(5a) ≤ //2 9 ≤ @̃(x1).

To achieve the last claim of the theorem, we must

also ensure that |x2 | ∈ $ (poly( |x1 |)). Observe that

@̃(x1) can be computed in polytime (with access

to compact parameters), by Lemma 2. But this

means that the representation of @̃(x1) > 0 as

a rational number must have ≤ 6( |x1 |) bits for

some polynomial 6. Then @̃(x1) ≥ 2−6 ( |x1 |)) , and it

suffices to choose 9 = ⌈6( |x1 |) + log2 /⌉ to ensure

that //2 9 ≤ 2−6 |x1 | ≤ @̃(x1) as required above.

But then 9 ∈ $ (poly( |x1 |)). Also, recall that the

encoding function enc used in the construction of ?̃

is guaranteed to have only polynomial blowup (see

the proof of Theorem 2). Thus, |x2 | = |5 | + |a| =

|enc(q) | + 9 ∈ $ (poly( 9)) ⊆ $ (poly( |x1 |)) as

required by the theorem. �

Lemma A.1. The first part of Theorem 4 (without

the modifications (a) and (b)).

We first prove the first part of Theorem 4 (which

is restated in full below). In this case we will use a

distribution ?̃ that does not have support +∗ (so it

does not prove modification (b)).

Proof. We take ?̃ to be the weighted language that

was defined in §3.2, which was already shown to

be efficiently computable. Suppose ("q,�q, _) is

a counterexample to Lemma A.1. Choose integer

: ≥ 1 in a manner (dependent only on _) to be

described at the end of the proof.

Suppose we would like to answer Sat where

q is a formula with variables �1, . . . , � 9 . Define

q′ = (¬�1∧¬�2∧ . . .∧¬� 9 ∧¬� 9+1∧¬� 9+:) ∨

(�1 ∧ Shift(q)). Note that q′ augments q with

: additional variables, namely �1 and � 9+2,..., 9+: .

For : = 1, this is the same construction as in the

proof of Theorem 1. Let = = |5′ | and note that = is

polynomial in the size of q (holding : constant).

The strings in ! = support( ?̃) that begin with 5′

are precisely the strings of the form 5′a′ where a′

is a satisfying assignment of q′. This is achieved

precisely when a′ = 0 9+: or a′ = 1a®1 where a is a

satisfying assignment of q and ®1 ∈ B:−1.

By our definition of ?̃, all strings in ! that begin

with 5′ have equal weight under ?̃. Call this weight

F.19 Clearly / (5′0) = F, and / (5′1) = F · 2:−1 ·

(number of satisfying assignments of q).

Recall that ?(0 | 5′) = / (5′0)/(/ (5′0) +

/ (5′1)). Let us abbreviate this quantity by ?. It

follows from the previous paragraph that if q is

unsatisfiable, then ? = 1, but if q is satisfiable, then

? ≤ 1/(1+2:−1). By hypothesis, ? is approximated

(with error probability < 1/3) by the possibly random

quantity ("q()
q

|5′ |
)) (5′0), which we abbreviate by

@, to within a factor of _. That is, ? ∈ [@/_, _@].

By choosing : large enough20 such that [@/_, _@]

cannot contain both 1 and 1/(1+2:−1), we can use @

to determine whether ? = 1 or ? ≤ 1/(1+2:−1). This

allows us to determine Sat(q) in polynomial time

with error probability < 1/3, since by hypothesis @ is

computable in polynomial time with compact param-

eters. This shows that Sat ∈ BPP/poly = P/poly,

implying NP ⊆ P/poly, contrary to our assumption.

(BPP/poly is similar to P/poly but allows "q to be

a bounded-error probabilistic Turing machine.) �

Theorem 4. Assuming NP * P/poly, there exists

an efficiently computable weighted language ?̃ :

+∗ → R≥0 such that there is no ("q,�q) where

�
q
= {)

q
= | = ∈ N} that satisfies all of the following

properties (similar to §3.1):

• the parameter size |)
q
= | grows only as$ (poly(=))

• "q()
q
=) returns a probabilistic Turing machine

@= in time $ (poly(=))

• there exists _ ≥ 1 such that for each G ∈ + ∪ {$}

and x̂ ∈ +∗ with |x̂| ≤ = and ?(G | x̂) > 0, the

probabilistic computation @= (x̂G) has probability

> 2/3 of approximating ?(G | x̂) to within a factor

of _ (that is, @= (x̂G)/?(G | x̂) ∈ [1/_, _])

• @= runs on those inputs x̂G in time $ (poly(=))

Moreover, the statement above remains true

(a) when the approximation guarantee is

only required to hold for prefixes x̂ where

{x : x̂ � x} is finite (so ?(G | x̂) is computable

by brute force)

(b) or, when support( ?̃) = +∗

Proof. It remains to show that the statement remains

true with modification (a) and with modification

(b). For (a), the proof of Lemma A.1 suffices, since

it reduces Sat to approximate local probability

queries of the stated form. That is, the true local

probabilities ?(G | x̂) that can be computed with

19Specifically, each such string has length = + 9 + : , so ?̃

gives it a weight of F = ( 13 )
=+ 9+:+1.

20It suffices to ensure that 1 + 2:−1 > _2, so take any

: > 1 + log2 (_
2 − 1).



finite summations, thanks to the structure of our

example language ?̃, which guarantees that the

prefix x̂ can only continue with suffixes of a fixed

length that is easily determined from x̂.

For modification (b), again let + = B = {0, 1}.

Choose some n > 0 (any choice will do), and let

?̃1(x) =





( 1
3
) |x+1 | if x = 5a where 5 = enc(q)

and a satisfies q

0 otherwise

?̃2(x) = (
1
9 )
|x+1 | > 0

?̃(x) = ?̃1(x) + n · ?̃2(x)

We use /1, /2, and / respectively to denote nor-

malizing constants of these three weighted lan-

guages. Note that ?̃1 is the weighted language that

was previously used in the proofs of Theorem 1

and Lemma A.1. Our new ?̃ is intended to be very

similar while satisfying the additional condition (b).

It is easy to show that ?̃ is efficiently computable,

much as we showed for ?̃1 in Theorem 1. Also,

?̃ is normalizable, since / = /1 + n · /2, where

/1 ≤ (
1
3 )/(1 −

2
3 ) = 1 and /2 = ( 19 )/(1 −

2
9 ) =

1
7

are both finite.

The proof proceeds as in Lemma A.1, with q′

constructed from q as before. Recall that q has 9

variables, q′ has 9 + : variables, and |5′ | = =. We

may assume WLOG that the encoding function

enc is such that an encoded formula always has at

least as many bits as the number of variables in the

formula, so = ≥ 9 + : .

Notice that /1(5
′) sums over the satisfying as-

signments of q′, and there may be as few as one

of these (if q is unsatisfiable). By contrast, /2(5
′)

sums over an infinite number of continuations with

positive probability. The faster decay rate of 1
9 in ?̃2

was chosen to keep /2(5
′) small relative to /1(5

′)

despite this. Specifically,

/1(5
′0) = ( 13 )

=+ 9+:+1

/1(5
′1) = ( 13 )

=+ 9+:+1 · 2:−1

· (# of satisfying assignments of q)

/2(5
′0) = ( 19 )

= · 1
9 · (

1
9/(1 −

2
9 ))

=
1
7 · (

1
3 )

2(=+1)

< 1
7 · /1(5

′0)

(because 2(= + 1) > = + 9 + : + 1)

/2(5
′1) = /2(5

′0)

As in the proof of Lemma A.1, we will show that

?(0 | 5′) is much larger when q is unsatisfiable.

Recall that / (x̂) = /1(x̂) + n · /2(x̂). When q has

zero satisfying assignments,

?(0 | 5′) =
/ (5′0)

/ (5′0) + / (5′1)

=
/ (5′0)

/1(5
′0) + n · /2(5

′0) + n · /2(5
′1)

>
/ (5′0)

/1(5
′0) + 2 · n7 · /1(5

′0)

whereas if q has at least one satisfying assignment,

then

?(0 | 5′) =
/ (5′0)

/ (5′0) + / (5′1)

<
/ (5′0)

/1(5
′0) + /1(5

′1)

≤
/ (5′0)

/1(5
′0) + 2:−1/1(5

′0)

This rewrites both probabilities in terms of / · (5
′0)

quantities, which do not depend on the number of

satisfying assignments. So now we can see that the

first probability is at least (1 + 2:−1) / (1 + 2n
7 )

times as large as the second probability. Choose :

large enough21 such that [@/_, _@] cannot contain

both probabilities, and complete the proof as in

Lemma A.1. �

Theorem 5. The set { ?̃ : ?̃ is normalizable, ?̃ ∈

EC, ?̃ ∉ ELN} is not empty.

Theorem 5 states that some normalizable EC dis-

tributions cannot be expressed as ELN distributions.

The proof is based on the undecidability of the halt-

ing problem, rather than the assumed inefficiency

of the Boolean satisfiability problem. Thus, unlike

Theorem 1, it does not rely on the assumption that

NP * P/poly, or even on the weaker assumption

that P ≠ NP.

Proof. Given any unweighted language ! ⊆ B∗, we

can define a normalizable weighted language ?̃ with

support ! by ?̃(x) = 1/3 |x |+1 for x ∈ ! and ?̃(x) = 0

otherwise. Moreover, if ! ∈ P, then ?̃ ∈ EC.

For our purposes, we take ! to consist of all

strings of the form x(1)x(2) , for which there ex-

ists a deterministic Turing machine " such that

x(1) = enc(") (where enc is a prefix-free encoding

function) and x(2) encodes an accepting execution

path of " on an empty input. (Such a path may be

represented as a sequence of transitions of " that

21It suffices to ensure that (1 + 2:−1)/(1 + 2n
7 ) > _

2, so

take any : > 1 + log2 (_
2 · (1 + 2n

7 ) − 1).



begins with an initial state and ends at an accepting

state.) Note that any deterministic TM x(1) can be

paired with at most one accepting execution path

x(2) , and cannot be paired with any x(2) if it does

not halt.

Clearly ! ∈ P: given x ∈ B∗, we can decide

whether x ∈ ! by first checking if x can be expressed

as a concatenation of strings x(1) and x(2) of the

required form. Then we build " from x(1) and

simulate it to check the transitions in x(2) on "

step-by-step. This can be done in$ (poly( |x|)) total

time. We conclude that the ?̃ derived from ! is EC.

Now, / (x(1) ) > 0 iff " halts on the empty

input. But this undecidable problem could be de-

cided if there were an ELN weighted language

that had support !, since then / (x(1) ) / / could be

found as a product of local conditional probabilities,
∏ |x(1) |
C=1

?(G
(1)
C | x

(1)
<C ), that could each be computed

by a Turing machine. Therefore ?̃ is not ELN. �

We have shown above that a certain unweighted

language ! is not the support of any ELN distribu-

tion. We conjecture that it is also not the support of

any ELNCP distribution;22 a proof of this would

strengthen Theorem 5 to become an unconditional

version of Theorem 1. However, ELNCP weighted

languages do have more power than ELN weighted

languages, as we now show.

Theorem 6. The set { ?̃ : ?̃ is normalizable, ?̃ ∈

EC, ?̃ ∈ ELNCP, ?̃ ∉ ELN} is not empty.

Theorem 6 justifies why this region is drawn

as non-empty in Figure 2. Again, it does not rely

on the assumption NP * P/poly or P ≠ NP. Note

that Theorem 5 can be regarded as a corollary of

Theorem 6.

Proof. The weighted language ?̃ constructed in

Theorem 5 is not necessarily ELNCP. To fix this,

we modify the construction to obtain a weighted

language ?̃′ with sparse support ! ′. We will again

be able to show that ?̃′ is EC and not ELN. To

show that ?̃′ is also ELNCP, we will rely on the

sparsity of ! ′, meaning that prefixes(! ′) , {x̂′ :

(∃x′ ∈ ! ′) x̂′ � x′} contains at most $ (poly(=))

strings x̂′ of length ≤ = + 1. Thus, we can use

�
q
= to store all of those strings x̂′ in polynomial

22We have not attempted to prove this. Our loose intuition is
that the compact parameters of an ELNCP language may help
it to memorize some small part of !, but the halting problem
would still be undecidable when restricted to the rest of !
(Myasnikov and Rybalov, 2008).

space, along with their / (x̂′) values.23 Notice that

all strings x̂′ ∉ prefixes(! ′) have / (x̂′) = 0, so they

need not be stored. Now for any x̂′ of length ≤ =,

a Turing machine that consults )
q
= can compute

@(G | x̂′) = / ?̃′ (x̂
′G) / / ?̃′ (x̂

′) in time $ (poly(=))

as desired, establishing that ?̃′ is ELNCP.

We may define ?̃′ as follows. Let sparsify(x)

be a version of x with many extra 0 symbols in-

serted: specifically, it inserts 2C copies of 0 imme-

diately before the Cth bit of x, for all 1 ≤ C ≤ |x|.

We construct ?̃′ so that ?̃′(sparsify(x)) = ?̃(x).

Specifically, let ! ′ , sparsify(!). The inverse func-

tion sparsify−1(x′) is defined on exactly x′ ∈ ! ′,

and is unique when defined. For all x′ ∈ B∗, let

?̃′(x′) , ?̃(sparsify−1(x′)) if sparsify−1(x′) is de-

fined, and ?̃′(x′) , 0 otherwise. This can be com-

puted in polytime, so ?̃′ is EC. Also, its support ! ′

is sparse as claimed, so ?̃′ is ELNCP.

Finally, we claim ?̃′ is not ELN. A given deter-

ministic Turing machine " halts on the empty input

iff enc(") ∈ prefixes(!) iff sparsify(enc(")) ∈

prefixes(! ′) iff / ′(sparsify(enc("))) > 0. But

as in the proof of Theorem 5, this would be de-

cidable if ?̃′ were ELN as defined in §3.1, since

then we would have a Turing machine to compute

the local conditional probabilities ?′(ĜC | x̂<C ) for

x̂ = sparsify(enc(")). �

Theorem 8. There exists a light marginalization ?

of an ELN distribution, such that support(?) is an

NP-complete language.

Proof. We will construct ? such that support(?)

is the NP-complete language Sat of all satisfiable

boolean formulas. The idea is to construct an ELN

distribution A that can autoregressively generate

any assignment a followed by any formula q that is

satisfied by a. Thus, if we delete the a prefixes, the

support consists of exactly the satisfiable formulas

q (or more precisely, their encodings 5).

To be more precise, we will have support(A)

be the language ! = {a#5 | a ∈

B∗ and q is a formula satisfied by a}. This is de-

fined similarly to the support language ! in §3.2, but

with the order of 5 and a crucially swapped: A will

now generate the “solution” a before the “problem”

5. The alphabet + of this language contains at least

the symbols {0, 1, #}, where # is a separator symbol,

and any other symbols needed to encode q as 5.

The marginalization operator ` maps a#5 to 5.

23More precisely, the first 1 bits of / (x̂′) ≤ 1 may be stored
in �

q
=+1

, when ELNCP is defined as explained in our “Remark
on irrationality” above.



Let 9 = |a|. As in §3.2, we will require q to

use all of the variables �1, . . . , � 9 (and only those

variables), implying that |5 | ≥ 9 . This ensures

that marginalizing over the 9 + 1 latent symbols

is only light marginalization since 9 + 1 + |5 | ∈

$ (poly( |5 |)). For convenience, we will also require

q to be a CNF formula. These requirements shrink

support(?) but do not affect its NP-completeness.

The remaining challenge is to construct an autore-

gressive distribution A whose support is !. We can

think of this distribution as describing an efficient

procedure for randomly generating a string from left

to right so that the procedure generates the Cth sym-

bol in time $ (poly(C)), terminates with probability

1,24 has positive probability of producing any string

in !, and has zero probability of producing any

string not in !. Below we give such a procedure.25

1. First, the procedure generates a# as a sequence

of random symbols from {0, 1, #}, making a

uniform draw at each step. It stops immediately

after generating # for the first time. The string

generated before # is called a and we let 9 = |a|.

For example, a = 010 and 9 = 3.

2. Second, the procedure must generate the en-

coding 5 of a random CNF formula q that

is satisfied by a, such as (�2 ∨ ¬�3 ∨ ¬�2 ∨

�2) ∧ (¬�1) in our example. This involves

generating a random sequence of 0 or more

satisfied clauses connected by ∧. At each step,

the procedure decides whether to generate a

new clause or end the formula. The probability

of generating a new clause is ordinarily 1/2.

However, this probability is 1 if the previous

clauses do not yet mention all the variables

�1, . . . , � 9 .

How does it generate each satisfied clause?

This involves generating a sequence of literals

connected by ∨, at least one of which must

be true. At each step of this subroutine, it

uniformly chooses an integer 8 ∈ [1, 9], and

then flips a fair coin to decide whether to add

the literal �8 or ¬�8 to the current clause. If

the clause is now satisfied by a (i.e., at least

one of the literals is true), it then flips another

24Phase 1 almost surely terminates after a finite number of
bits. Phase 2 almost surely terminates after a finite number of
clauses, and each clause almost surely terminates after a finite
number of literals. “Almost surely” means “with probability 1.”

25Our presentation here makes use of an infinite alphabet
that includes symbols such as �8 and ¬�8 for all 8 ∈ N>0, as
well as symbols such as 0, 1,∧,∨. We implicitly invoke some
prefix-free encoding scheme to translate each symbol into a
fixed string over the finite alphabet + .

fair coin to decide whether to end the clause.

A is ELN because there exists a Turing ma-

chine that computes from input x̂G— in time

$ (poly( |x̂|))— the probability that the next symbol

generated after the prefix x̂ would be G, under the

above procedure. As discussed in footnote 7, that

probability equals A (G | x̂)— which is what our

Turing machine is required to return — because

the above procedure almost surely terminates (foot-

note 24), ensuring that A is a consistent probability

distribution over +∗ (that is,
∑

x∈+ ∗ A (x) = 1). �

Theorem 9. The following statements are equiva-

lent for any nonempty ! ⊆ +∗:

(a) ! ∈ NP/poly.

(b) ! is the support of a light marginalization of

an ELNCP distribution.

(c) ! is the support of a light marginalization of

an ECCP weighted language.

Proof. (b) implies (c) since any ELNCP distribution

is an ECCP weighted language (Lemma 2). (c)

implies (a) by Lemma A.2 below. Finally, (a) implies

(b) by Lemma A.3 below. �

Lemma A.2. For any ECCP weighted language Ã , if

?̃ is a light marginalization of Ã , then support( ?̃) ∈

NP/poly.

Notice that this lemma concerns the class

NP/poly,notP/poly (see §2.4). The proof is straight-

forward.

Proof. Suppose Ã is ECCP via (" r̃, ) r̃), and `

is the marginalization operator such that ?̃(x) =∑
z:` (z)=x Ã (z). By the light marginalization as-

sumption, there is a polynomial 5 such that |z| ≤

5 ( |`(z) |).

To prove support( ?̃) ∈ NP/poly, we must show

that there exists (",�) such that for all = ≥ 0,

a nondeterministic Turing machine "= can be

constructed as " ()=) in time $ (poly(=)), which

can in turn decide in time $ (poly(=)) whether

?̃(x) > 0 for any x with |x| = =.

Deciding ?̃(x) > 0 means deciding whether

(∃z ∈ +∗) `(z) = x and Ã (z) > 0. But if

|x| = =, the first condition `(z) = x implies

|z| ≤ 5 ( |`(z) |) = 5 ( |x|) = 5 (=). Thus, we need

"= to nondeterministically check only the z of

length up to 5 (=) to see whether `(z) = x and

Ã (z) > 0.

How can "= check a string z of length <? It

can decide the first condition `(z) = x in time

$ (poly(<)), since the marginalization operator ` is



a polytime function. To decide the second condition

Ã (z) > 0, it must construct the (deterministic) Turing

machine" r̃() r̃
<) and then apply it to z to obtain Ã (z):

since Ã is ECCP, both steps take time$ (poly(<)) =

$ (poly( 5 (=))) ⊆ $ (poly(=)) as required.

However, this means that"= = " ()=) must have

access to the parameter vectors ) r̃
< for all< ≤ 5 (=).

We therefore make )= include this collection of

parameter vectors. Each |) r̃
< | ∈ $ (poly(<)) ⊆

$ (poly(=)) since Ã is ECCP. So |)= | ∈ $ (poly(=))

as required. �

Lemma A.3. For any ! ∈ NP/poly, there exists a

light marginalization ? of an ELNCP distribution,

such that support(?) = !.

Lemma A.3 resembles Theorem 8, but it con-

structs distributions for all ! ∈ NP/poly, not just

for one particular ! ∈ NPC. The proof is similar

but more complicated. In both cases, the goal is

to demonstrate how an ELNCP distribution A can

define a left-to-right stochastic string generation

process such that the suffix of the generated string

must be in ! and can be any element of !.

Our string generation process in this case is

inspired by rejection sampling,a widely used method

for sampling from an energy-based model with

support !. The standard scheme is to first sample

a string x from a tractable distribution @ such

that support(@) ⊇ !, then accept the sample with

an appropriate probability, which is 0 if x ∉ !.

The process is repeated until a sample is finally

accepted. There is no guarantee that this standard

scheme will terminate in polynomial time, however.

Fortunately, in our setting, we are not trying to

match our sampling distribution ? to a given energy-

based model, but simply match its support to a

given language !. We make use of the polysize

parameter vectors of ELNCP languages to store

certain ‘fallback strings’ that are guaranteed to

be in the desired language !. Wherever ordinary

rejection sampling would reject a string and try

generating another, we switch to generating a stored

fallback string of an appropriate length. This scheme

places all of the rejected probability mass on the

small set of fallback strings (in contrast to rejection

sampling, which in effect throws away this mass

and renormalizes). The advantage is that it does not

iterate indefinitely. At a high level, A is a distribution

over strings z that record traces of this generative

story we describe above.

Proof. WLOG we assume ! uses the alphabet

+ = {0, 1, #}. In the case where ! is finite, the

result is trivial. We simply define A (x) = 1/|! | for

x ∈ ! and A (x) = 0 otherwise. We then take ? = A

(a trivial marginalization). It is easy to show that

A is ELN, and therefore ELNCP as desired, by

constructing an appropriate Turing machine that

maps x̂G to A (G | x̂) in time $ ( |x̂G |), for any x̂ that

is a prefix of some string in ! and any G ∈ + ∪ {$}.

The finite state table of the Turing machine includes

states that correspond to all possible strings x̂G, with

transitions arranged in a trie. It reads the input string

x̂G from left to right to reach the state corresponding

to x̂G. If it detects the end of the input while in that

state, it writes A (G | x̂) on the output tape.

Now we consider the case where ! is infinite.

For each 9 ∈ N≥0, let the ‘fallback string’ x( 9) be

some string in ! of length ≥ 9 . For definiteness, let

us take it to be the shortest such string, breaking

ties lexicographically. At least one such string does

exist because ! is infinite, so x( 9) is well-defined.

Also, since ! ∈ NP/poly (§2.4), let (",�) be

an ordered pair and 5 be a polynomial such that

" 9 = " (\ 9) nondeterministically accepts a within

≤ 5 ( 9) steps iff a ∈ !.

As in the proof of Theorem 8, we now describe

a procedure for randomly generating a string z

from left to right. z will have the form a#b#2d,

where d ∈ ! and the latent substring a#b#2 will be

removed by the marginalization operator `.

1. First we generate a random string a ∈ B∗

followed by #, just as in the proof of Theorem 8.

Again let 9 = |a|.

2. Next, we must consider whether a ∈ !. We

generate a random computation path b of " 9

on input a until it either accepts (in which case

we then generate #1 to record acceptance of

a) or has run for 5 ( 9) steps without accepting

(in which case we then generate #0 to record

rejection).

3. In the former case (2 = 1) we finish by deter-

ministically generating d , a ∈ !. In the latter

case (2 = 0), a ∉ !, so we fall back and finish

by deterministically generating d , x( 9) ∈ !.

Let A (z) be the probability that the above pro-

cedure generates z. support(A) is then the set of

strings that can be generated by the above procedure.

The marginalized language `(support(A)) keeps

just the d parts of those strings. It consists of all

strings a that are accepted by at least one path b of

" |a | (which are exactly the strings in !) together

with the fallback strings (which form a subset of !).



Thus, `(support(A)) = ! as desired.

We wish to show that A is ELNCP. In other

words, some Turing machine "q efficiently locally

normalizes A with compact parameters �q, as de-

fined in §3.1. The parameters will be used to store

information about the infinite set of fallback strings.

In particular, for each =, )
q
= must have enough

information to construct a Turing machine @= =

"q()
q
=) such that @= (ẑI) returns A (I | ẑ) for all

I ∈ + ∪ {$} and all ẑ with |ẑ| ≤ = and / (ẑ) > 0.

Here / (ẑ) > 0 means that ẑ is a prefix of a string

z = a#b#2d that could be generated by the above

procedure. The computation @= (ẑI) proceeds by

simulating the sequence of choices in the above pro-

cedure that would be required to generate ẑ, and then

returning the probability that the procedure would

generate symbol I next. That probability equals

A (I | ẑ) as desired because the above procedure

almost surely terminates (as explained at the end of

the proof of Theorem 8).

In general, the computation @= (ẑI) may have to

construct " 9 = " (\ 9) and simulate it on a (for 9 =

|a|) if I falls in the b#2 portion of ẑ, and it may have

to look up a character of the fallback string x( 9)$ if I

falls in the d portion of ẑ or terminates that portion

with I = $. Fortunately 9 < =, and fortunately if

the computation looks up the Cth character of x( 9)$

then C < =. Thus, constructing and simulating " 9

can be done in time $ (poly( 9)) ⊆ $ (poly(=)),

and looking up the Cth character of x( 9)$ can be

achieved with access to the first = characters of

each of x(1) , . . . , x(=) , which can be stored by )
q
= in

space $ (=2). It follows that "q can construct and

apply @= in polynomial time with access to compact

parameters �q, so A is ELNCP.

�

B Implementation details of REBMs

B.1 Modeling finite subsets of infinite

languages

The experiments of this paper are conducted on

datasets where we only observe strings that are

finitely long. Given a possibly infinite language !,

we use the notation !≤) = {x | x ∈ !, |x| ≤ )}

for the subset of strings that are most ) symbols

long. Specific values of ) for datasets used in our

experiments are listed in Appendix D.1.

B.2 Design of base models ?0

?0 can be any distribution over !≤) 26 provided that

we can sample from it, and evaluate ?0(x),∀x ∈

!≤) , both in $ (poly( |x|)). In this work, we experi-

ment with two designs of ?0: GRU- and Transformer-

based locally normalized language models. GRU-

based models are used in WikiText and Yelp ex-

periments. The GRU-based ?0’s are parametrized

with 2-layer GRUs with 500 hidden units, and word

embeddings of dimension size 500.

As for Transformer-based ?0’s, we make use

of Grover models (Zellers et al., 2019), which ef-

fectively are GPT-2 models trained on the afore-

mentioned RealNews dataset. In this work, we

experiment with the ‘base’ variant of public avail-

able weights, which are 12-layered Transformers,

with 12 heads, and 768 hidden units.

B.3 Design of discriminators 6)

We formulate 6) (x) as a summation of scores at

positions 1 . . . |x|, passed through an activation

function 5 :

6) (x) = 5

(
|x |∑

8=1

6C (x; ))

)

. (1)

To verify whether lower-bounding 6) would help

with learning, as we discuss in §4.1, we experiment

with two variants of 5 :

• tanh: 5 (G) = 2 · tanh(G)

• softplus: 5 (G) = − log(1 + exp(G + B))

The former one is bounded between (−2, 2), while

the second one has range (−∞, 0). The offset term B

in the softplus activation function determines initial

values of /) . In this paper we set B = 20.

The design of 6C (x; )) follows their base model

counterparts: we use Bi-GRU discriminators for

GRU base models; and bi-directional Transformer

discriminators for Transformer ones. For GRUs

6C (x; )) = hC ·GC , For Transformers 6C (x; )) =
∑

hC
where hC are the hidden states at time step C. In both

cases, the discriminators have access to information

of the whole sequence x at any timestep: the Bi-

GRU discriminators achieve this through the bi-

directional RNNs, and the Transformers through the

attention mechanism without directional masking.

B.4 Training procedure

As we note in §4.1, MLE-based training methods

are generally not feasible for globally normalized

26Note that since ?0 does not have support over !, it has to
assign ?($ | x1...) ) = 1, which is generally not an issue.



models. We therefore opt to train our model using

the ranking variant of noise contrastive estimation

(NCE) (Ma and Collins, 2018), which does not

require samples from ?0 and has a simple form

for residual LMs. Using ?0 as a noise distribution,

NCE training requires minimizing the following

single-sequence loss, in expectation over the true

distribution ?:

Lnce() , x, ?0,  ) = − log

?̃)
?0
(x)

∑ 
:=0

?̃)
?0
(x(:) )

, (2)

where x(0) , x,
?̃)
?0
(x) ,

?̃) (x)
?0 (x)

, and x(1) . . . x( ) ∼

?0. Since ?̃) (x) = ?0(x) · exp 6) (x), we have
?̃)
?0
(x) = exp 6) (x). The NCE minimization ob-

jective (2) now reduces to the simple form

Lnce() , x, ?0,  )

= −6) (x)

+ log(exp 6) (x) +
 ∑

:=1

exp 6) (x
(:) )). (3)

Notice that minimizing the expected loss with

stochastic gradient descent methods Lnce defined

in equation (3) requires only evaluating sequence

probabilities under 6) , and tuning its parameters,

but not the base model ?0. We only need to generate

the noise samples {x(:) ∼ @ | : ∈ [ ]} from ?0.

This way we do not need to backpropagate through

parameters of the base model ?0, which can speed

up training considerably when ?0 is backed by

a huge network. In fact, the training of 6) can be

completely agnostic to the design of ?0, allowing for

the application of finetuning any locally normalized

?0.

Given the same discriminator 6) , the difference

of KL-divergence between the true model ? and

residual language models ?̃′
)
(x) = ?′

0
(x) ·exp 6) (x),

and the KL-divergence between the true model

and ?̃′′
)
(x) = ?′′

0
(x) · exp 6) (x), defined with base

models ?′
0

and ?′′
0

respectively, can be written as

KL[? | |?′)] − KL[? | |?′′) ]

= KL[? | |?′0] − KL[? | |?′′0 ] + log
/ ′

/ ′′
,

(4)

where / ′ = Ex∼?′
0
[exp 6) (x)], and / ′′ is similarly

defined with ?′′
0

. As a direct result of equation (4),

we can see that finding ?′′
0

where KL[? | |?′′
0
] <

KL[? | |?′
0
] implies improvement in KL[? | |?′′

)
] over

KL[? | |?′
)
], under mild conditions:

Theorem B.1. If ∃: > 0 such that
Ex∼?′

0
[exp 6) (x) ]

Ex∼?′′
0
[exp 6) (x) ]

> exp(−:) and KL[? | |?′
0
] −

KL[? | |?′′
0
] > : then KL[? | |?′

)
] > KL[? | |?′′

)
].

Proof.

KL[? | |?′)] − KL[? | |?′′) ]

= E
x∼?
[log ?′′) (x) − log ?′) (x)]

= E
x∼?
[log

?′′
0
(x) exp 6) (x)

∑
x′∈!≤) ?

′′
0
(x) exp 6) (x)

− log
?′

0
(x) exp 6) (x)

∑
x′∈!≤) ?

′
0
(x) exp 6) (x)

]

= E
x∼?
[log

?′′
0
(x) exp 6) (x)

Ex′∼?′′
0
[exp 6) (x)]

− log
?′

0
(x) exp 6) (x)

Ex′∼?′
0
[exp 6) (x)]

]

= E
x∼?
[log ?′′0 (x) − log ?′0(x)]

+ E
x∼?
[log E

x′∼?′
0

[exp 6) (x)] − log E
x′∼?′′

0

[exp 6) (x)]]

= KL[? | |?′0] − KL[? | |?′′0 ]

+ log
Ex′∼?′

0
[exp 6) (x)]

Ex′∼?′′
0
[exp 6) (x)]

. (5)

Plugging assumptions
Ex∼?′

0
[exp 6) (x) ]

Ex∼?′′
0
[exp 6) (x) ]

> exp(−:)

and KL[? | |?′
0
] −KL[? | |?′′

0
] > : into equation (5),

KL[? | |?′
)
] − KL[? | |?′′

)
] > 0. �

Theorem B.1 suggests a training strategy that

we first train the base model ?0, then finetune 6) :

under a roughly uniform 6) (e.g. when ) is newly

initialized), Ex∼?′
0
[exp 6) ]/Ex∼?′′

0
[exp 6) ] ≈ exp(0); so

improvements on the inclusive KL-divergence of

base model KL[? | |?0] will mostly translate to

improvement in KL[? | | ?̃)]. Optimizing the base

model (i.e. finding ?′′
0

such that KL[? | |?′′
0
] <

KL[? | |?′′
0
]) is much easier than directly minimizing

KL[? | |?′
)
]: the former can be done by minimizing

empirical cross entropy, which is computationally

efficient, while the latter involves an intractable

partition function
∑

x∈!≤) ?̃
′
)
(x).

Pseudocode for fine-tuning 6) is listed in Algo-

rithm 1.

B.5 Computing normalized probabilities

The unnormalized probability ?̃) (x) (in equa-

tion (1)) can be evaluated easily, and should suffice

for (re)ranking purposes (e.g. for ASR and MT

applications). However, the normalized probability



Algorithm 1: Pseudocode for training 6)
Input:

• Training/validation corpora D{train,dev}

• base model ?0 : !≤) → [0, 1]

• initial parameter vector )0 ∈ B
3

• noise sample size  ∈ N

Output: unnormalized residual language

model @̃) : !≤) → [0, 1]

) ← )0 ;

/* Lnce is defined in

equation (3) */

while
∑

x∈Ddev
Lnce() , x, ?0,  ) is still

decreasing do

foreach x ∈ shuffle(Dtrain) do

∇)Lnce = ∇)Lnce() , x, ?0,  );

) ← update-gradient() ,∇)Lnce);

end

end

return x ↦→ ?0(x) + exp 6) (x);

@) (x) ,
?̃) (x)∑
x ?̃) (x)

does require computing the parti-

tion function /) . An unbiased importance sampling

estimate of
∑

x∈!≤) ?̃) (x) is

/) =
∑

x∈!≤)

?̃) (x)

=
∑

x∈!≤)

?0(x) exp 6) (x)

= E
x∼?0

[exp 6) (x)]

≈
"∑

<=1

exp 6) (x
(<) )

"
= /̂)" , (6)

where x
(1) . . . x(" ) ∼ @0.

C Comparison between REBMs and

autoregressive models

We evaluate the effectiveness of REBMs on two dif-

ferent neural architectures (GRU- and Transformer-

based) and 3 datasets: WikiText (Merity et al., 2017),

Yelp (Yelp), and RealNews (Zellers et al., 2019),

on the task of modeling sequence probabilities. An

REBM ?̃) has two components, 6) and ?0, and we

would like to see how ?̃) competes against ?0 itself.

We do not further tune ?0 while training ?) . As

a fair comparison, we also see how ?′
0

compares

against ?0, where ?′
0

is simply a version of ?0 that

has been trained as many additional epochs as were

used to train ?) .

?0 models are pretrained on moderately large

corpora (in GRU cases) or a very large corpus

(in the Transformer case).27 We compare residual

energy-based models ?̃) to further-fine-tuned base

models ?′
0
, on conservatively estimated (at the low

end of 95% confidence interval) token perplexity

and bootstrap-sampled log likelihood improvements.

The results are in Table 2. Residual energy-based

models show consistent perplexity improvement

compared to ?′
0

that are trained on the same data

using the same maximum numbers of iterations. Al-

though the improvement in log-likelihood of ?) over

?0 is modest (especially for RealNews experiments,

where ?0 is a very strong baseline), we verify that

these improvements are all statistically significant

(? < 0.05) using bootstrapped test datasets.

We experiment with different designs of the

discriminator 6) , evaluating the effectiveness of

bounding 6) and varying its number of parameters.

We find that in Transformer-based experiments,

bounding 6) considerably helps with performance;

but the opposite happens for GRU-based models.

We speculate that this is due to the base models’

performance: the Transformer base models have

high parameter count and were trained on a lot of

data; and the true distribution ? likely is relatively

similar to ?0, and benefits from a small hypothesis

space — even though we don’t know if the at-most-n

error assumption in §4.1 holds. On the other hand

our GRU-based ?0 has neither the capacity, nor

the huge amount of training data. As a result, the

unbounded variant 6) (and @)) may end up learning

a better approximation of ?.

D Experimental details

D.1 Datasets

Residual language model experiments are conducted

on these datasets:

• Segmented WikiText: we take the standard

WikiText-2 corpus (Merity et al., 2017), and

segment it into sequences at new line breaks.

We discard all empty lines, and any line that

starts with the ‘=’ token. In effect, we obtain

sequences that are mostly entire paragraphs.

We also only keep lines that are shorter than

800 tokens after BPE tokenization. Because of

our preprocessing, Segmented WikiText loses

much interparagraph context information, and

doesn’t have the ‘simple’ header sequences

27In the Transformer case we simply take ?0 to be the Grover
(Zellers et al., 2019) pretrained language model, which is based
on the GPT-2 (Radford et al., 2019) architecture and performs
competitively on news article generation.



Experiment (Architecture) Model Best configuration log likelihood improvement (95% CI) perplexity improvement

RealNews (Transformer) ?) 4-layer, tanh (−0.18, −0.13) , ` = −0.15 .03%
RealNews (Transformer) ?′

0
N/A N/A .00%

WikiText (GRU) ?) 1-layer/500, softplus (−1.85, −1.54) , ` = −1.69 1.44%
WikiText (GRU) ?′

0
N/A N/A .50%

Yelp (GRU) ?) 2-layer/500, softplus (−1.89, −1.67) , ` = −1.80 1.82%
Yelp (GRU) ?′

0
N/A N/A .49%

Table 2: Residual energy-based model ?̃) improvements over autoregressive base models ?0. The perplexity numbers are
per-token, and log likelihood improvements are per sequence (in nats). We only report each dataset’s best model (according to
validation data) in this table. See Appendix D for experimental details.

that were in the original WikiText corpus, and

is much harder to language-model.

• Yelp: the Yelp dataset (Yelp) contains business

reviews. As in Segmented WikiText, We keep

reviews shorter than 800 tokens.

• RealNews: we make use of the standard

RealNews corpus comes from (Zellers et al.,

2019), which contains news articles that are

up to 1, 024 tokens long.

In all experiments we tokenize with BPE tokenizers

derived from the GPT-2 language models: the GRU

models use Huggingface’s implementation28 and the

Transformers use Grover’s29. Number of sequences

in preprocessed datasets are listed in Table 3.

Train Dev Test

RealNews 3, 855 1, 533 6, 158

WikiText 18, 519 878 2, 183

Yelp 10, 951 9, 964 994

Table 3: Number of sequences in preprocessed datasets

(for training and tuning the discriminators 6) , and eval-

uation).

D.2 Pretraining base models ?0

We use a pretrained Grover model as the base model

in RealNews experiments. For GRU-based experi-

ments, we train base models on WikiText and Yelp

datasets using separate training and validation splits

than those of the discriminator 6) (Table 4). The

base models are periodically (every 1, 000 itera-

tions) evaluated on the validation split for early

stopping, where we stop if there is no improvement

on validation perplexity for 10 consecutive eval-

uations. The base models @) achieve 113.98 for

Segmented WikiText, and 110.89 in test set per-

plexity, respectively. Note that these base models

are further fine-tuned on additional datasets in our

28https://github.com/huggingface/

transformers
29https://github.com/rowanz/grover

comparison against residual language models.

Train Dev

WikiText 17, 556 1, 841

Yelp 9, 954 1, 000

Table 4: Number of sequences in preprocessed datasets

(for training and tuning the base model @). Note that we

do not train our own base models for RealNews, but use

one of the pretrained models provided by (Zellers et al.,

2019).

D.3 Metrics

We evaluate the relative performance of residual

language models against autoregressive models

(i.e. fine-tuned base models) on two metrics, log

likelihood and perplexity improvement, which are

approximated as follows:

• Log likelihood improvement: since ?, ?) and

@0 are all distributions over !≤) , we can quan-

titatively evaluate their difference in log like-

lihood. We measure the difference between

KL[? | |?)] and KL[? | |?0]:30

KL[? | |?)] − KL[? | |?0]

= E
x∼?
[log ?) (x) − log ?0(x)]

= E
x∼?
[log ?̃) (x) − log ?0(x)] − log /)

= E
x∼?
[6) (x)] − log /)

≈

∑
x∈Dtest

6) (x)

|Dtest |
− log /̂)" , (7)

where /̂)" is estimated using equation (6).

A negative value of log likelihood difference

indicates that @̃) approximates ? better than

?0 in terms of KL-divergence.

30Note that ?0 here is the base model component of ?̃) .
While comparing between residual language models and
autoregressive models, we also finetune ?0 on additional data
to get a new model @′

0
, which has different parameters than ?0.



• Perplexity improvement: perplexity is a com-

mon language modeling metric. Following

(Rosenfeld et al., 2001), we compute

perplexity improvement of ?)

=

exp
|D | log /̂)"

F (Dtest)

exp
∑

x∈Dtest 6) (x)

F (Dtest)

, (8)

where F(D) is the total token count of dataset

D, and |D| is the number of sequences of D.

/̂)" is ecomputed Appendix B.5

Both evaluation metrics involve estimating the parti-

tion function with /̂)" . For the perplexity improve-

ment metric,we obtain 32 estimates of /̂)" 31,which

are normally distributed, and compute equation (8)

using /̂)" the conservative end of a 95% confidence

level. To account for variance in our test datasets,

we further make use of bootstrapping estimation for

log likelihood improvement: we bootstrap-sample

1, 000 subsamples for each test dataset, and compute

equation (7) for each datapoint in the Cartesian

product (1, 000× 32 in total). We then report results

at the 2.5% and 97.5% percentiles.

D.4 Hyperparameters

Transformer experiments. We train our models

on 64 GPUs across 8 nodes, with a total batch

size of 64 × 8 × 2 = 1, 024, and with 1 noise

sequence ( = 1 in Appendix B.4) per batch. We

use an initial learning rate of 54 − 5. The rest of the

hyperparameters largely follow settings in (Zellers

et al., 2019). Optimization is done with the Grover

implementation of AdaFactor.

GRU experiments. We train our models on 8

GPUs on a single node, with a total batch size of

8 × 2 = 16, and with 25 noise sequences ( = 25 in

Appendix B.4) per batch. We have an initial learning

rate of 14 − 4. Upon no improvement on validation

data, we half the learning rate, with patience =

1. The model parameters are ;2 regularized with

a coefficient of 14 − 5. We also apply dropout

regularization with ? = 0.5. Optimization is done

with PyTorch-supplied Adam.

D.5 Configurations

We study the effects of these configurations:

• Bounding 6) : we note in §4.1 that with the

strong hypothesis that the base model ?0 has

bounded error, 6) will have a bounded range,

31We set " = 512 in this paper.

and leads to a much smaller hypothesis space.

In this work we experiment with both bounded

and unbounded 6)’s, with ranges (−∞, 0) and

(−2, 2) respectively. More details can be found

in Appendix B.3.

• Model capability of 6) : we hypothesize that

the expressiveness of 6) does not need to be

as rich as the parametrization of ?0, since

6) essentially only has to tell whether the se-

quence x comes from ? or ?0. For the GRU

+ WikiText experiments, we experiment with

{1, 2}-layer GRU models of 6) . For 1-layer

models, we additionally experiment with a

setup that has only 250 hidden units. For the

Transformers/RealNews dataset, we experi-

ment with {12, 4}-layer Transformer models.

D.6 Log likelihood improvements under

different configurations

We also see in Table 5 that using tanh as the ac-

tivation function 5 does better than softplus for

Transformers; but performs very poorly for GRUs.

We also observe degeneracy problems. We speculate

that our Transformer-based base models @) have

already learned a good approximation of the true

distribution; and limiting the model capacity of 6)
in exchange of smaller variance results in a favor-

able trade-off, and vice versa for GRUs. Regarding

discriminator capability: we see that performance is

not sensitive to model size. Our best Transformers

run actually is from the smaller-model runs. And

the 1-layer 500-unit GRU models achieve best per-

formance. Overall, results in Table 5 suggests that

performance is sensitive to the choice of model

configuration.



Model Size Activation
log likelihood improvement

95% CI `

RealNews (Transformers)

12-layer softplus (−0.13, 0.08) −0.09

12-layer tanh (−0.14,−0.10) −0.12

4-layer softplus (−0.15, 2.62) −0.02

4-layer tanh (−0.18,−0.13) −0.16

WikiText (GRUs)

2-layer / 500 tanh (−0.00, 0.00) −0.00

2-layer / 500 softplus (−1.32,−0.85) −1.18

1-layer / 500 tanh (−0.79,−0.64) −0.71

1-layer / 500 softplus (−1.85,−1.54) −1.69

1-layer / 250 tanh (−0.02, 0.02) −0.00

1-layer / 250 softplus (−1.85,−1.46) −1.67

Yelp (GRUs)

2-layer / 500 tanh (−0.03, 0.01) −0.02

2-layer / 500 softplus (−1.89,−1.67) −1.80

1-layer / 500 tanh (−0.65,−0.57) −0.61

1-layer / 500 softplus (−2.62,−2.03) −2.43

1-layer / 250 tanh (−0.00, 0.00) −0.00

1-layer / 250 softplus (−2.25,−1.99) −2.13

Table 5: Comparison of different configurations.


