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Abstract. Emerging applications in multiagent environments such as internet-of-things, networked sensing,
autonomous systems, and federated learning, call for decentralized algorithms for finite-sum op-
timizations that are resource efficient in terms of both computation and communication. In this
paper, we consider the prototypical setting where the agents work collaboratively to minimize the
sum of local loss functions by only communicating with their neighbors over a predetermined network
topology. We develop a new algorithm, called DEcentralized STochastic REcurSive gradient meth-
odS (DESTRESS) for nonconvex finite-sum optimization, which matches the optimal incremental
first-order oracle complexity of centralized algorithms for finding first-order stationary points, while
maintaining communication efficiency. Detailed theoretical and numerical comparisons corroborate
that the resource efficiencies of DESTRESS improve upon prior decentralized algorithms over a
wide range of parameter regimes. DESTRESS leverages several key algorithm design ideas includ-
ing stochastic recursive gradient updates with minibatches for local computation, gradient tracking
with extra mixing (i.e., multiple gossiping rounds) for periteration communication, together with
careful choices of hyperparameters and new analysis frameworks to provably achieve a desirable
computation-communication trade-off.
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1. Introduction. The proliferation of multiagent environments in emerging applications
such as internet-of-things (IoT), networked sensing, and autonomous systems, together with
the necessity of training machine learning models using distributed systems in federated learn-
ing, leads to a growing need for developing decentralized algorithms for optimizing finite-sum
problems. Specifically, the goal is to minimize the global objective function,

. 1
(1.1) m;né%;ze f(x):= N %E(m;z),

where & € R? denotes the parameter of interest, {(x; z) denotes the sample loss of the sample
z, M denotes the entire dataset, and N = | M| denotes the number of data samples in the
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entire dataset. Of particular interest to this paper is the nonconvex setting, where ¢(x; z)
is nonconvex with respect to a, due to its ubiquity across problems in machine learning and
signal processing, including but not limited to nonlinear estimation, neural network training,
and so on.

In a prototypical decentralized environment, however, each agent only has access to a
disjoint subset of the data samples, and aims to work collaboratively to optimize f(x), by only
exchanging information with its neighbors over a predetermined network topology. Assuming
the data are distributed equally among all agents,! each agent thus possesses m = N/n
samples, and f(x) can be rewritten as

f@) =3 filw),
=1

where

fi(x) ::% Z Ux; z)

zEM;

denotes the local objective function averaged over the local dataset M; at the ith agent
(1 <i<n)and M = U M;. The communication pattern of the agents is specified
via an undirected graph G = (V, &), where V denotes the set of all agents, and two agents
can exchange information if and only if there is an edge in £ connecting them. Unlike the
server /client setting, the decentralized setting, sometimes also called the network setting, does
not admit a parameter server to facilitate global information sharing, therefore it is much more
challenging to understand and delineate the impact of the network graph.

Roughly speaking, in a typical decentralized algorithm, the agents alternate between (1)
communication, which propagates local information and enforces consensus, and (2) compu-
tation, which updates individual parameter estimates and improves convergence using infor-
mation received from the neighbors. The resource efficiency of a decentralized algorithm can
often be measured in terms of its computation complexity and communication complexity. For
example, communication can be extremely time consuming and become the top priority when
the bandwidth is limited. On the other hand, minimizing computation, especially at resource-
constrained agents (e.g., power-hungry IoT or mobile devices), is also critical to ensure the
overall efficiency. Achieving a desired level of resource efficiency for a decentralized algorithm
often requires careful and delicate trade-offs between computation and communication, as
these objectives are often conflicting in nature.

1.1. Our contributions. The central contribution of this paper lies in the development
of a new resource-efficient algorithm for nonconvex finite-sum optimization problems in a
decentralized environment, dubbed DEcentralized STochastic REcurSive gradient methodS
(DESTRESS). DESTRESS provably finds first-order stationary points of the global objective
function f(x) with the optimal incremental first-order (IFO) oracle complexity, i.e., the com-
plexity of evaluating sample gradients, matching state-of-the-art centralized algorithms, but

11t is straightforward to generalize to the unequal splitting case with a proper reweighting.
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at a much lower communication complexity compared to existing decentralized algorithms
over a wide range of parameter regimes.

To achieve resource efficiency, DESTRESS leverages several key ideas in the algorithm
design. To reduce local computation, DESTRESS harnesses the finite-sum structure of the
empirical risk function by performing stochastic variance-reduced recursive gradient updates
[29, 10, 40, 19, 22, 20, 49]—an approach that is shown to be optimal in terms of IFO complexity
in the centralized setting—in a randomly activated manner to further improve computational
efficiency when the local sample size is limited. To reduce communication, DESTRESS em-
ploys gradient tracking [50] with a few mixing rounds per iteration, which helps accelerate
the convergence through better information sharing [17]; the extra mixing scheme can be im-
plemented using Chebyshev acceleration [2] to further improve the communication efficiency.
In a nutshell, to find an e-approximate first-order stationary point, i.e. E||V f(x®®U%)(]3 < ¢,
where x°U*P't is the output of DESTRESS, and the expectation is taken with respect to the
randomness of the algorithm, DESTRESS requires

e O(m + (m/n)'2L/€) per-agent IFO calls,? which is network-independent; and

. 0(10g((n/m)1/2+2)

e ((mn)Y/? + %)) rounds of communication,

where L is the smoothness parameter of the sample loss, o € [0,1) is the mixing rate of the
network topology, n is the number of agents, and m = N/n is the local sample size.

Comparisons with existing algorithms. Table 1 summarizes the convergence guarantees of
representative stochastic variance-reduced algorithms for finding first-order stationary points
across centralized and decentralized communication settings.

Table 1
The per-agent IFO complexities and communication complexities to find e-approrimate first-order station-
ary points by stochastic variance-reduced algorithms for nonconvex finite-sum problems. The algorithms listed
in the first three rows are designed for the centralized setting, and the remaining D-GET, GT-SARAH, and our
DESTRESS are in the decentralized setting. Here, n is the number of agents, m = N/n is the local sample size,
L is the smoothness parameter of the sample loss, and o € [0,1) is the mizing rate of the network topology.
The big-O notations and logarithmic terms are omitted for simplicity.

Algorithms H Setting ‘ Per-agent IFO Complexity ‘ Communication Rounds
?IV i{i centralized N + @ n/a
SCSG/SVRG+ . N2/3L
[16, 21] centralized N L n/a
SI\I[X(;?G centralized N + %/QL n/a
SARAH/SPIDER/SpiderBoost Ny N1/2L
[29, 10, 40] centralized N ML n/a
SSRGD/ZeroSARAH/PAGE . N1/2L
[19, 22, 20] centralized N ML n/a
E ecentralize m+ —— - m!2L Same as IFO
b [%T d lized iy -
- ecentralize m + max | ——, (2 : , M L Same as IFO
DESTRESS . 1/2
. (m/n)'/2L 1 . 1/2 4 L
(this paper) decentralized m L To)i? ((mn) + < )

>The big-O notation is defined in subsection 1.3.
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e In terms of the computation complexity, the overall IFO complexity of DESTRESS—

when summed over all agents—becomes
n-O(m+ (m/n)l/zL/e) = O(mn + (mn)l/ZL/e) =O(N + N1/2L/e),

matching the optimal IFO complexity of centralized algorithms (e.g., SPIDER [10],
PAGE [20]) and distributed server/client algorithms (e.g., D-ZeroSARAH [22]). How-
ever, the state-of-the-art decentralized algorithm GT-SARAH [44] is not able to achieve
this optimal IFO complexity for all situations (see Table 1). To the best of our knowl-
edge, DESTRESS is the first algorithm to achieve the optimal IFO complexity for the
decentralized setting regardless of network topology and sample size.

e When it comes to the communication complexity, it is observed that the communica-

tion rounds of DESTRESS can be decomposed into the sum of an e-independent term
and an e-dependent term (up to a logarithmic factor), i.e.,

1 1/2 1 L
(1—a)l/? (mn)™= + (1—-a)t/2 €’
e—independent e—dependent

similar decompositions also apply to competing decentralized algorithms. DESTRESS
significantly improves the e-dependent term of D-GET and GT-SARAH by at least
a factor of W, and, therefore, saves more communications over poorly con-
nected networks. Further, the e-independent term of DESTRESS is also smaller than
that of D-GET/GT-SARAH as long as the local sample size is sufficiently large, i.e.,
m = Q(&), which also holds for a wide variety of application scenarios. To gain
further insights in terms of the communication savings of DESTRESS, Table 2 fur-
ther compares the communication complexities of decentralized algorithms for finding

first-order stationary points under three common network settings.

Table 2

Detailed comparisons of the communication complexities of D-GET, GT-SARAH, and DESTRESS under
three graph topologies, where the last two rows delineate the improved factors of DESTRESS over existing

algorithms. The communication savings become significant especially when m = Q(

_n_

1_&). The complezxities are

simplified by plugging the bound on the spectral gap 1 — a from [25, Proposition 5]. Here, n is the number of
agents, m = N/n is the local sample size, L is the smoothness parameter of the sample loss, and o € [0,1) is
the mixing rate of the network topology. The big-O notations and logarithmic terms are omitted for simplicity.

H Erd6s-Rényi graph ‘ 2-dimensional grid graph ‘ Path graph
l1-a 1 B
1 —_ L
(spectral gap) nlogn nz
D’[E;;?T m+ ml:zL m+ ml/ivﬁL m+ ml/jn“L
GT'?ﬁ}*AH ot max {1, (=), (=)} 2 | mtmax {n?, m o023, (2) 2] 2 ma {nt, m o3, ()2 2
DESTRESS 12 , L 1/2 nl/2p 3\1/2 | nL
(this paper) (mn)"/* + 2 mtn 4 (mn®)'/? 4 2t
Improvement factors ma1/2 ml/2 ml/2
for e-independent term (?) ™ 372
Improvement factors max {17 (m)ux’ (m)l/z} max{nS/Q. /316, m1/2} nax {713, m1/3n2/3, m;//;}
for e-dependent term n n n n
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In sum, DESTRESS harnesses the ideas of random client activation, variance reduction,
gradient tracking, and extra mixing in a sophisticated manner to achieve a scalable decentral-
ized algorithm for nonconvex empirical risk minimization that is competitive in both compu-
tation and communication over existing approaches.

1.2. Additional related works. Decentralized optimization and learning have been studied
extensively, with contemporary emphasis on the capabilities to scale gracefully to large-scale
problems — both in terms of the size of the data and the size of the network. For the
conciseness of the paper, we focus our discussions on the most relevant literature and refer
interested readers to recent overviews [30, 45, 42] for further references.

Stochastic variance-reduced methods. Many variants of stochastic variance-reduced gra-
dient based methods have been proposed for finite-sum optimization for finding first-order
stationary points, including but not limited to SVRG [14, 1, 33], SCSG [16], SVRG+ [21],
SAGA [7], SARAH [28, 29], SPIDER [10], SpiderBoost [40], SSRGD [19], ZeroSARAH [22],
and PAGE [20]. SVRG/SVRG+/SCSG/SAGA utilize stochastic variance-reduced gradients
as a corrected estimator of the full gradient, but can only achieve a suboptimal IFO complexity
of O(N + N2/3L/e). Other algorithms such as SARAH, SPIDER, SpiderBoost, SSRGD, and
PAGE adopt stochastic recursive gradients to improve the IFO complexity to O(N+N/2L/e),
which is optimal indicated by the lower bound provided in [10, 20]. DESTRESS also utilizes
the stochastic recursive gradients to perform variance reduction, which results in the optimal
IFO complexity for finding first-order stationary points.

Decentralized stochastic nonconvex optimization. There has been a flurry of recent activity
in decentralized nonconvex optimization in both the server/client setting and the network set-
ting. In the server/client setting, [6] simplifies the approaches in [15] for distributing stochastic
variance-reduced algorithms without requiring sampling extra data. In particular, D-SARAH
[6] extends SARAH to the server/client setting but with a slightly worse IFO complexity and
a sample-independent communication complexity. D-ZeroSARAH [22] obtains the optimal
IFO complexity in the server/client setting. In the network setting, D-PSGD [23] and SGP [3]
extend stochastic gradient descent (SGD) to solve the nonconvex decentralized expectation
minimization problems with suboptimal rates. However, due to the noisy stochastic gradients,
D-PSGD can only use diminishing step size to ensure convergence, and SGP uses a small step
size on the order of 1/K, where K denotes the total iterations. D? [39] introduces a variance-
reduced correction term to D-PSGD, which allows a constant step size and hence reaches a
better convergence rate.

Gradient tracking [50, 32] provides a systematic approach to estimate the global gradi-
ent at each agent, which allows one to easily design decentralized optimization algorithms
based on existing centralized algorithms. This idea is applied in [47] to extend SGD to
the decentralized setting, and in [17] to extend quasi-Newton algorithms as well as sto-
chastic variance-reduced algorithms, with performance guarantees for optimizing strongly
convex functions. GT-SAGA [43] further uses SAGA-style updates and reaches a conver-
gence rate that matches SAGA [7, 34]. However, GT-SAGA requires one to store a vari-
able table, which leads to a high memory complexity. D-GET [38] and GT-SARAH [44]
adopt equivalent recursive local gradient estimators to enable the use of constant step sizes
without extra memory usage. The IFO complexity of GT-SARAH is optimal in the re-
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strictive range m 2> ﬁ, while DESTRESS achieves the optimal IFO over all parameter
regimes.

In addition to variance reduction techniques, performing multiple mixing steps between
local updates can greatly improve the dependence of the network in convergence rates, which
is equivalent to communicating over a better-connected communication graph for the agents,
which in turn leads to a faster convergence (and a better overall efficiency) due to better
information mixing. This technique is applied by a number of recent works including [4,
31, 5, 17, 12, 13, 35, 36, 18, 46, 11, 24], and its effectiveness is verified both in theory and
experiments. Our algorithm also adopts the extra mixing steps, which leads to better IFO
complexity and communication complexity.

1.3. Paper organization and notation. Section 2 introduces preliminary concepts and
the algorithm development, section 3 shows the theoretical performance guarantees for DE-
STRESS, section 4 provides numerical evidence to support the analysis, and section 5 con-
cludes the paper. Proofs and experiment settings are postponed to appendices.

Throughout this paper, we use boldface letters to represent matrices and vectors. We use
| - llop for the matrix operator norm, ® for the Kronecker product, I, for the n-dimensional
identity matrix, and 1,, for the n-dimensional all-ones vector. For two real functions f(-) and
g() defined on R*, we say f(z) = O(g(z)) or f(z) < g(z) if there exists some universal
constant M > 0 such that f(z) < Mg(z). The notation f(z) = Q(g(z)) or f(z) 2 g()
means g(z) = O(f(z)).

2. Preliminaries and proposed algorithm. We start by describing a few useful prelimi-
nary concepts and definitions in subsection 2.1, then present the proposed algorithm in sub-
section 2.2.

2.1. Preliminaries.

Mixing. The information mixing between agents is conducted by updating the local infor-
mation via a weighted sum of information from neighbors, which is characterized by a mixing
(gossiping) matrix. Related to this matrix is an important quantity called the mixing rate,
defined in Definition 2.1.

Definition 2.1 (mixing matrix and mixing rate). The mixing matrix is a matric W = [w;;] €
R™ ™ such that w;; = 0 if agent i and j are not connected according to the communication
graph G. Furthermore, W1, =1, and W', =1,. The mixing rate of a mizing matrizc W
is defined as

(2.1) a:=||W - 11,1,

The mixing rate indicates the speed of information shared across the network. For ex-
ample, for a fully connected network, choosing W = %1711;1r leads to @ = 0. For general
networks and mixing matrices, [25, Proposition 5] provides comprehensive bounds on 1 — a—
also known as the spectral gap—for various graphs. In practice, fastest distributed linear
averaging (FDLA) matrices [41] are more favorable because they can achieve a much smaller
mixing rate, but they usually contain negative elements and are not symmetric. Different
from other algorithms that require the mixing matrix to be doubly stochastic, our analysis
can handle arbitrary mixing matrices as long as their row/column sums equal to one.
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Dynamic average consensus. It has been well understood by now that using a naive mixing
of local information merely, e.g. the local gradients of neighboring agents, does not lead to
fast convergence of decentralized extensions of centralized methods [27, 37]. This is due to
the fact that the quantity of interest in solving decentralized optimization problems is often
iteration varying, which naive mixing is unable to track; consequently, an accumulation of
errors leads to either slow convergence or poor accuracy. Fortunately, the general scheme of
dynamic average consensus [50] proves to be extremely effective in this regard for tracking
the dynamic average of local variables over the course of iterative algorithms, and has been
applied to extend many central algorithms to decentralized settings, e.g., [26, 32, 9, 17]. This
idea, also known as “gradient tracking” in the literature, essentially adds a correction term
to the naive information mixing, which we will employ in the communication stage of the
proposed algorithm to track the dynamic average of local gradients.

Stochastic recursive gradient methods. Stochastic recursive gradients methods [29, 10, 40,
19] achieve the optimal IFO complexity in the centralized setting for nonconvex finite-sum
optimization, which make it natural to adapt them to the decentralized setting with the hope
of maintaining the appealing IFO complexity. Roughly speaking, these methods use a nested
loop structure to iteratively refine the parameter, where (1) a global gradient evaluation is
performed at each outer loop, and (2) a stochastic recursive gradient estimator is used to cal-
culate the gradient and update the parameter at each inner loop. In the proposed DESTRESS
algorithm, this nested loop structure lends itself to a natural decentralized scheme, as will be
seen momentarily.

Additional notation. For convenience of presentation, define the stacked vector & € R™?
and its average over all agents T € R as

1 n
(2.2) T = [xir,...,a:;]—r, m:nz;mz
P

The vectors s, s, u, w, v, and v are defined in the same fashion. In addition, for a stacked
vector & € R™, we introduce the distributed gradient VF(x) € R as

(2.3) VF(x) :=[Vfi(z1)', ..., Via(@a)"]".

2.2. The DESTRESS algorithm. Detailed in Algorithm 2.1, we propose a novel decentral-
ized stochastic optimization algorithm, dubbed DESTRESS, for finding first-order stationary
points of nonconvex finite-sum problems. Motivated by stochastic recursive gradient methods
in the centralized setting, DESTRESS has a nested loop structure:

1. The inner loop refines the parameter estimate w0 = 2(t=1) by performing randomly
activated stochastic recursive gradient updates (2.4), where the stochastic recursive
gradient v(Y* is updated in (2.4b) and (2.4¢) via mixing minibatch stochastic gradients
from activated agents’ local datasets.

2. The outer loop adopts dynamic average consensus to estimate and track the global
gradient VF(z®) at each agent by s®) in (2.5), which allows the next inner loop to
start from a less noisy starting gradient v(tt1-0 = s(*) " A key property of (2.5)—which
is a direct consequence of dynamic average consensus—is that the average of s equals
the dynamic average of local gradients, i.e., 3() = %Zie[n} sgt) =1 > icln] Vfi(azgt)).

T n
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To enable better information sharing and faster convergence, inspired by [17], we allow DE-
STRESS to perform a few rounds of mixing or gossiping whenever communication takes place.
Specifically, DESTRESS performs Kyt and Kj, mixing steps for the outer and inner loops,
respectively, per iteration, which is equivalent to using

Wou = WH  and Wi, = Wh

as mixing matrices, and correspondingly a network with better connectivity; see (2.5), (2.4a),
and (2.4c). Note that Algorithm 2.1 is written in matrix notation, where the mixing steps
are described by Wi, ® I,, or W, ® I, and applied to all agents simultaneously. The extra
mixing steps can be implemented by Chebyshev acceleration [2] with improved communication
efficiency.

Algorithm 2.1 DESTRESS for decentralized nonconvex finite-sum optimization.

1: input: initial parameter Z(©), step size 7, activation probability p, batch size b, number
of outer loops T', number of inner loops S, and number of communication (extra mixing)
steps K, and Koyt.

0 V(@) for all agents 1 < i < n.

2: initialization: set acl(.o) =z and s,
3: fort=1,...,T do
4:  Set inner loop initial parameters w0 = (=1 and v®0 = s(t=1),
5 fors=1,..,5do
6: Each agent ¢ samples a minibatch Zi(t)’s of size b from M; uniformly at random,
)\Et)’s ~ B(p), where B(p) denotes the Bernoulli distribution with parameter p,®> and
then performs the following updates:
(2.4a) ul)s — (Win ® Id)(u(t),sfl _ n,v(t),sfl)j
(t),s )\Z@’S (t),s (t),s—1 (t),s—1
(2.4b) g, = — Z (Vﬁ(ui ;zi) — Vi(u, ;zi)> + v, )
P zZEZi(t) s
(2.4c) v = (Wi, @ Ip)g".
7. end for
Set the new parameter estimate @t = (15
Update the global gradient estimate by aggregated local information and gradient track-
ing:
(2.5) s =(Wou ® I) (s(tfl) + VF(:B(t)) — VF(a:(t*l)))
10: end for

11: output: x°!'Put ~ Uniform({u(t)’sflﬁ € [n],t € [T],s € [S]}).

i

3The stochastic gradients will not be computed if )\Et)’s =0.
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Compared with existing decentralized algorithms based on stochastic variance-reduced
algorithms such as D-GET [38] and GT-SARAH [44], DESTRESS utilizes different gradient
estimators and communication protocols: First, DESTRESS produces a sequence of reference
points {a:(t)} that converge to a global first-order stationary point and corresponding global
gradient estimates {s(t)} that are updated by full gradient computations, so that inner loops
can refine (®) using stochastic recursive gradients based on accurate gradient estimates; sec-
ond, the communication and computation in DESTRESS are paced differently due to the
introduction of extra mixing, which allow more flexible trade-off schemes between different
types of resources; last but not least, the random activation of stochastic recursive gradi-
ent updates further saves local computation, especially when the local sample size is small
compared to the number of agents.

3. Performance guarantees. This section presents the performance guarantees of DE-
STRESS for finding first-order stationary points of the global objective function f(-).

3.1. Assumptions. We first introduce Assumptions 1 and 2, which are standard assump-
tions imposed on the loss function. Assumption 1 implies that all local objective functions
fi(+) and the global objective function f(-) also have Lipschitz gradients, and Assumption 2
guarantees the absence of trivial solutions.

Assumption 1 (lipschitz gradient). The sample loss function ¢(x; z) has L-Lipschitz gradi-
ents for all z € M and & € R%, namely, ||V€(az;z) — Vﬂ(x’;z)H2 < Lz — 2’|z Ve, 2’ € RY,
and z € M.

Assumption 2 (function boundedness). The global objective function f(-) is bounded be-
low, i.e., f* =inf cpa f(x) > —00.

Due to the nonconvexity, first-order algorithms are generally guaranteed to converge to
only first-order stationary points of the global loss function f(-), defined below in Defini-
tion 3.1.

Definition 3.1 (first-order stationary point). A point © € R? is called an e-approzimate
first-order stationary point of a differentiable function f(-) if
2
V()] <e

3.2. Main theorem. Theorem 3.2, whose proof is deferred to Appendix B, shows that
DESTRESS converges in expectation to an approximate first-order stationary point, under
suitable parameter choices.

Theorem 3.2 (first-order optimality). Assume Assumptions 1 and 2 hold. Set p € (0,1],
Kin, Kout, S, b, and 1 to be positive and satisfy

1— Kin)3 1— Kout
(31) aKin <p and 77L < ( @ ) ( @ )

= 10(1 + afmna Ko \/npb) (\/S/(npb) + 1)

The output produced by Algorithm 2.1 satisfies

4

output 2 -
(3.2) E||Vf(x |5 < TS

(ELF@™)] - ).
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If there is only one agent, i.e., n = 1, the mixing rate will be a = 0; we can choose Kj;, =
Kout = p =1, and Theorem 3.2 reduces to [29, Theorem 1], its counterpart in the centralized
setting. For general decentralized settings with arbitrary mixing schedules, Theorem 3.2
provides a comprehensive characterization of the convergence rate, where an e-approximate
first-order stationary point can be found in expectation in a total of

TS — 0 (E[f(w(o))] - f*)

ne

iterations; here, T is the number of outer iterations and S is the number of inner iterations.
Clearly, a larger step size 7, as allowable by (3.1), hints on a smaller iteration complexity, and
hence a smaller IFO complexity.

There are two conditions in (3.1). On one end, Kj, needs to be large enough (i.e., perform
more rounds of extra mixing) to counter the effect when p is small (i.e., we compute fewer sto-
chastic gradients every iteration), or when « is close to 1 (i.e., the network is poorly connected).
On the other end, the step size 1 needs to be small enough to account for the requirement
of the step size in the centralized setting, as well as the effect of imperfect communication
due to decentralization. For well-connected networks, where o < 1, the terms introduced by
the decentralized setting will diminish—indicating the iteration complexity is close to that of
the centralized setting. For poorly connected networks, carefully designing the mixing matrix
and other parameters can ensure a desirable trade-off between convergence speed and com-
munication cost. The following corollary provides specific parameter choices for DESTRESS
to achieve the optimal per-agent IFO complexity. The proof is deferred to Appendix C.

Corollary 3.3 (complexity for finding first-order stationary points).  Under conditions of

Theorem 3.2, set S = [\/mn], b = [\/m/n], p = [\/an;Z}’ Kout = [%L Kin, =
[log(2/p) 1

(1704)1/2]’ N = gior, and implement the mizing steps using Chebyshev’s acceleration [2]. To

reach an e-approzimate first-order stationary point, in expectation, DESTRESS then takes
1/2 1/2
O(m+ M) IFO calls per agent, and O(W - ((mn) Y% + L)) rounds of com-

munication.

As elaborated in section 1.1, DESTRESS achieves a network-independent IFO complexity
that matches the optimal complexity in the centralized setting. In addition, when the accuracy
e < L/(mn)'/?, DESTRESS reaches a communication complexity of O(W : %), which is
independent of the sample size.

It is worthwhile to further highlight the role of the random activation probability p in
achieving the optimal IFO by allowing “fractional” batch size. Note that the batch size is set
as b= [y/m/n], where m is the local sample size, and n is the number of agents.

1. When the local sample size is large, i.e., m > n, we can approximate b ~ \/m/n and
p =~ 1. In fact, Corollary 3.3 continues to hold with p =1 in this regime.

2. However, when the number of agents is large, i.e., n > m, the batch size b = 1 and
p = y/m/n < 1, which mitigates the potential computation waste by only selecting a
subset of agents to perform local computation, compared to the case when we naively
set p=1.
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Therefore, by introducing random activation, we can view pb = y/m/n as the effective batch
size at each agent, which allows fractional values and leads to the optimal IFO complexity in
all scenarios.

4. Numerical experiments. This section provides numerical experiments on real datasets
to evaluate our proposed algorithm DESTRESS with comparisons against two existing base-
lines: DSGD [27, 23] and GT-SARAH [44]. To allow for reproducibility, we fix random
seeds for each experiment, and all code can be found at https://github.com/liboyue/Network-
Distributed-Algorithm.

For all experiments, we shuffle the datasets and normalize the samples by subtracting the
mean and dividing the standard deviation. We set the number of agents n = 20, and split
all datasets uniformly to each agent. In addition, since m > n in all experiments, we set
p = 1 for simplicity. We run each experiment on three communication graphs with the same
data assignment and starting point: Erdés—Rényi graph (the connectivity probability is set
to 0.3), grid graph, and path graph. The mixing matrices are chosen as the symmetric FDLA
matrices [41] generated according to different graph topologies, and the extra mixing steps are
implemented by Chebyshev’s acceleration [2] to save communications as described earlier. To
ensure convergence, DSGD adopts a diminishing step size schedule. All parameters are tuned
manually for the best performance. We defer detailed descriptions of baseline algorithms as
well as parameter choices in Appendix A.

4.1. Logistic regression with nonconvex regularization. To begin with, we employ logis-
tic regression with nonconvex regularization to solve a binary classification problem using the
Gisette dataset.” We split the Gisette dataset into n = 20 agents, where each agent receives
m = 300 training samples. The sample loss function is given as

Uz {f,1})=—llo <1>+(1_l)10 <exp(:1:Tf)>+)\§d:aj?
T & 1 +exp(x' f) 8 1+ exp(z’ f) 1+ a2’

i=1

where {f,[} represents a training tuple, f € R? is the feature vector, and [ € {0,1} is the
label, and A is the regularization parameter. For this experiment, we set A = 0.1.

Figure 1 shows the train gradient norm and testing accuracy for all algorithms. DE-
STRESS significantly outperforms other algorithms both in terms of communication and
computation. It is worth noting that, DSGD converges very fast at the beginning of training,
but cannot sustain the progress due to the diminishing schedule of step sizes. On the contrary,
the variance-reduced algorithms can converge with a constant step size, and hence converge
better overall. Moreover, due to the refined gradient estimation and information mixing de-
signs, DESTRESS can bear a larger step size than GT-SARAH, which leads to the fastest
convergence and best overall performance. In addition, a larger number of extra mixing steps
leads to a better performance when the communication graph is less connected.

4.2. Neural network training. Next, we compare the performance of DESTRESS to
DSGD and GT-SARAH for training a one-hidden-layer neural network with 64 hidden neurons
and sigmoid activations for classifying the MNIST dataset [8]. We evenly split the MNIST

“The dataset can be accessed at https://archive.ics.uci.edu/ml/datasets/Gisette.
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(c) Path graph

Figure 1. The train gradient norm and testing accuracy with respect to the number of communication
rounds (left two panels) and gradient evaluations (right two panels) for DSGD, GT-SARAH, and DESTRESS
when training logistic regression model with nonconvex reqularization on the Gisette dataset. Due to the initial
full-gradient computation, the gradient evaluations of DESTRESS and GT-SARAH do not start from 0.

dataset into n = 20 agents, where each agent receives m = 3,000 training samples. Figure 2
plots the training gradient norm and testing accuracy against the number of communication
rounds and gradient evaluations for all algorithms. DESTRESS significantly outperforms GT-
SARAH in terms of computation and communication costs due to the larger step size and
extra mixing. Differently from the previous experiment, DSGD performs the best for the
Erdos—Rényi graph and grid graph that are well-connected, while it converges slower than
DESTRESS on the path graph.

The last experiment investigates the convergence precision 1/e of DESTRESS with respect
to the number of gradient evaluations. Under the same experimental setup, we conduct 64
different runs where each run starts from a different initial point. The convergence precision
is computed by the inverse of the running average of the squared gradient norms. The results,
including mean and variance, are shown in Figure 3, which numerically validate the linear
relation indicated by Corollary 3.3.
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Figure 2. The train gradient norm and testing accuracy with respect to the number of communication rounds
(left two panels) and gradient evaluations (right two panels) for DSGD, GT-SARAH, and DESTRESS when
training a one-hidden-layer neural network on the MNIST dataset. Due to the initial full-gradient computation,
the gradient evaluations of DESTRESS and GT-SARAH do not start from 0.

3,000 B

2,000
1,000
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| |
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Figure 3. The convergence precision 1/e with respect to the number of total gradient evaluations for neural
network training averaged over 64 exrperiments. The shade shows the variance.
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Algorithm A.1 Decentralized stochastic gradient descent (DSGD).

. input: initial parameter Z(©), initial step size 1y, number of iterations 7T'.
(0) _ —(0)
=z\Y.

: initialization: set x;

1
2
3: fort=1,...,T do
4:  Fach agent ¢ samples a minibatch Zi(t) from M uniformly at random, and then performs

the following updates:
1
g\ = 5 > Vil z).
Z»;EZ,L(t)

5:  Update via local communication: z+Y) = (W ® I,)) (az(t) - %g(t))

6: end for

7. output: zeutrut — (1),

xr

5. Conclusions. In this paper, we proposed DESTRESS for decentralized nonconvex
finite-sum optimization, where both its theoretical convergence guarantees and empirical per-
formances on real-world datasets were presented. In sum, DESTRESS matches the optimal
IFO complexity of centralized SARAH-type methods for finding first-order stationary points,
and improves both computation and communication complexities for a broad range of pa-
rameter regimes compared with existing approaches. A natural and important extension of
this paper is to generalize and develop convergence guarantees of DESTRESS for finding
second-order stationary points. The use of communication compression to further reduce the
communication cost is also of interest [48]. We leave these interesting directions to future
works.

Appendix A. Experiment details. For completeness, we list two baseline algorithms,
DSGD [27, 23] (cf. Algorithm A.1) and GT-SARAH [44] (cf. Algorithm A.2), which are
compared numerically against the proposed DESTRESS algorithm in section 4. Furthermore,
the detailed hyperparameter settings for the experiments in sections 4.1 and 4.2 are listed in
Tables 3 and 4, respectively.

Appendix B. Proof of Theorem 3.2.
For notation simplicity, let
ain j— al(in7 Kout

throughout the proof. In addition, with a slight abuse of notation, we define the global

gradient Vf(z) € R™ of an (nd)-dimensional vector & = [m?, . ,ar:;Lr]T, where x; € R?, as
follows
(B.1) V(@)= [Vf@), ..., V(@) ]

The following fact is a straightforward consequence of our assumption on the mixing
matrix W in Definition 2.1.
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Algorithm A.2 GT-SARAH.

1: input: initial parameter £ step size n, number of outer loops 7', number of inner loops
q.

2: initialization: set v(®) = y(©) = VF(z©).

3: fort=1,...,T do

4:  Update via local communication () = (W ® I;)z®1

— ny(t_l) .

5. if mod (¢,q) = 0 then
6: v® = VF(xz®).
7. else
8: Each agent ¢ samples a minibatch Zi(t) from M; uniformly at random, and then
performs the following updates:
1 _ _
vgt) =3 Z (Vﬁ(mgt);zi) - Vé(mgt 1);zi)) + 'vl(.t b,
ziezi(t)
9:  end if

10:  Update via local communication y*) = (W @ I,y 4+ o®) — (=1,

11: end for

12: output: xoUtPut

=z,
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Table 3
Parameter settings for the experiments on reqularized logistic regression in section 4.1.

Algorithms | DSGD | DESTRESS | GT-SARAH
Parameters [ Mo b [ n p Kin Kouw b S [ n b S
ErdésRenyi [ 1 10 [ 001 1 2 2 10 10 ] 0.001 10 10
Grid 1 10001 1 2 3 10 10 | 0.001 10 10
Path 01 10[001 1 8 8 10 10 ]0.000l 10 10

Table 4
Parameter settings for the experiments on neural network training in section 4.2.

Algorithms DSGD DESTRESS GT-SARAH
Parameters | no b |n p Kin Kou b S n b S
Erdos—Renyi 1 100 | 1 1 2 2 100 10 0.1 100 10
Grid 1 100 | 1 1 3 4 100 10 0.1 100 10
Path 0.1 100 |1 1 8 10 100 10 | 0.0001 100 10
Fact 1. Let x = [:I}I, ... ,:B;LF]T, and T = %Z?:l x;, where x; € R%. For a mizing matric

W € R™"™ gatisfying Definition 2.1, we have
L (S e L)W e e = (217 @ 1)z = =;
2. (Ina— (A1,1)@I)(Wel)=(Weli—(21,1))®@ 1) (Ig— (21,1)) @ 1,).
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To begin with, we introduce a key lemma that upper bounds the norm of the gradient
of the global loss function evaluated at the average local estimates over n agents, in terms
of the function value difference at the beginning and the end of the inner loop, the gradient
estimation error, and the norm of gradient estimates.

Lemma B.1 (inner loop induction). Assume Assumption 1 holds. After S > 1 inner loops,
one has

S—1
S IV < 2 (1) — p@)
5=0

S—1
+ > [Vi@®®) = w0y~ (1 - L) ZHU” I
s=0

Proof of Lemma B.1. The local update rule (2.4a), combined with Lemma 1, yields

ﬁ(t)75+1 — ﬁ(t) (t)7

—no
By Assumption 1, we have
F@Dy = p®s — st
< @) — (V@) 0) + 2|t

27
77 -~ S T] — S
va(u(t% ) — o) H2 <f _ 7) Hv(t),

2

2
29

(B.2) = f(@®®) HVf ult)s

)+

where the last equality is obtained by applying —(a, b) = % (||la—b[j3—|[|a|3—||b]|3). Summing
over s =0,...,5 — 1 finishes the proof. [ ]

Because the output x°“*P't is chosen from {ugt)’s_l\i € [n],t € [T],s € [S]} uniformly at

random, we can compute the expectation of the output’s gradient as follows:

n T S-1

nTSE||V (@) 5= 337 S BV,

i=1 t=1 s=0
T S-1

HO

T
=3 Y B[V O) - Vi1, 0 @) + VL, 9 709)|
<233 (BIVA @) - V(L 0 a2 + |V (L, @ u)|?2)

T
(B.3) <2) Y (LE[u® - 1, 00|+ nE|VF@O)3).
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where (i) follows from the change of notation using (B.1), (ii) follows from the Cauchy—
Schwartz inequality, and (iii) follows from Assumption 1. Then, in view of Lemma B.1, (B.3)
can be further bounded by

T S—1
nTSE| S} < T (Bl - 1) 22230 Y Bful - 1, 0wt
t=1 s=0
T S—-1
(B.4) +2n) (IEHVf(H(t)’ ) =02 = (1 = pL)E[o®||2 )
t=1 s=0

where we use w()? = z®) and f(@®5) > f*.
Next, we present Lemmas B.2 and B.3 to bound the double sum in (B.4), whose proofs
can be found in sections SM1 and SM2, respectively.

Lemma B.2 (sum of inner loop errors). Assume all conditions in Theorem 3.2 hold. For
allt > 0, we can bound the summation of inner loop errors as

S—1 S-1
2L2 ZEH’U,(t),S -1, ®ﬁ(t),SH§ +on Z]Eva(ﬁ(t),S) B 6(”’8“;
s=0

< +1) B2 - 1, 0 V| ;

64L2 (i

1 — ain

S
+202E|[s¢) — 1, @ 50D + gzxews—lug.
s=1

npb

Lemma B.3 (sum of outer loop gradient estimation error and consensus error). Assume all
conditions in Theorem 3.2 hold. We have

T
+1)ZEHw<t>_1nm<t>|¢2+za2ZEHS -1, 050>
t=1

6412 ( S
1—aj, \npdb

T S-1

<3 Y S E

Using Lemma B.2, (B.4) can be bounded as follows:

T 5-1
nTSE|[V f(z®t) % < ?(E[f(m(t)’o)] e 2n(f —nL) 3 S E[5O;
t=1 s=0
64L2 (S = - _
B9 e () S Bl 1020+ 20h Sl - 1,050,
where we bound the sum of inner loop errors L2 ZSS:_&IEHu(t)’S -1, ® ﬂ(t)’ng

and n Zf;ol EHVf(E(t)’S) —g®=

; by the initial value of each inner loop IEH:L'(t) ~1,0z® Hg
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and EHS( -1, ® 302
estimator n 39 E|[o®:s—1 H;
By Lemma B.3, (B.5) can be further bounded as

9 4n 37 T S-1 )
nTSE[V @l < T (BLA@O) - ) - 20(55 - L) 3Bl
t=1 s=0
An (e z(0,0y) _ g
< (BEEO) - 7).

which concludes the proof.

Appendix C. Proof of corollary 3.3.

Without loss of generality, we assume n > 2. Otherwise, the problem reduces to the
centralized setting with a single agent n = 1, and the bound holds trivially. We will confirm
the choice of parameters in Corollary 3.3 in the following paragraphs, and finally obtain the
IFO complexity and communication complexity.

Step size 7. We first assume «;, < % < % and agyr < m < %, which will be proved to
hold shortly, then we can verify the step size choice meets the requirement in (3.1) as

(1 - ain) (1 - O5out) (1/2)4 . 1 _ 1
1 + aKmaKout pn 10L(\/pr + 1) 2 20L 640L

Mixing steps Kj, and Kgu. Using Chebyshev’s acceleration [2] to implement the mixing

steps, it amounts to an improved mixing rate of acpeb < 1 — 1/2(1 — ), when the original

o (A1)

mixing rate « is close to 1. Set K, = [%1 and Koyt = | \/7 We are now

Kin
positioned to examine the effective mixing rate i, = agh and aour = oy, e”b, as follows:

(i) los(vnpb+1) flkig(\/ﬁﬂ) (ii) ﬁlolg(\/nTbH) 1 (iii) 1
_ t Vi—a Qcheb — log Qcheb
Qout = Ccpapy < Ccpep X Qpep S Qe 0 < Jnph + 1 < 5’

ut = (@L (ii) follows from logz < x — 1 Va > 0, and (iii)

follows from n > 1 and b > 1. By a similar argument, we have «;, = ozg1 < ’2’

Complexity. Plugging the selected parameters into (3.2) in Theorem 3.2, we have

where (i) follows from K,

5 (B - 1) = 0(77=).

Eva(moutput)Hz S

Consequently, the outer iteration complexity is T = O<1 + W) With this in place, we

summarize the communication and IFO complexities as follows:
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(mn)1/2log (2(n/m)*/% + 2

l—«

()2 + L)) ,
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SUPPLEMENTARY MATERIALS: DESTRESS: Computation-Optimal and
Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization*

Boyue Lif, Zhize Lif, and Yuejie Chif

SM1. Proof of Lemma B.2. This section proves Lemma B.2. subsection SM1.1 and
SM1.2 bounds the expected inner loop gradient estimation error and consensus errors by their
previous values and the sum of inner loop gradient estimator’s norms, subsection SM1.3 then
creates a linear system to compute the summation of inner loop errors using their initial values
of each inner loop, which concludes the proof.

SM1.1. Sum of inner loop gradient estimation errors. To begin with, note that the
gradient estimation error at the s-th inner loop iteration can be written as

B9 )~ 50

_ ]EH (%1;— 2 Id) (VF(ln gul®)) — ’U(t),s) ‘2

2
- ]EH (%12 ® 1) (VF(1, ©a®*) - VF(u®))
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n

st QEH (%II ® Id) (VE(u®*) — 0

where the first equality follows from (2.3), and the last inequality is due to Assumption 1. To
continue, the expectation of the second term in (SM1.1) can be bounded as
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Here, (i) follows from the expectation with respect to the activating indicator )\E and random

samples Z()5 conditioned on u®*~1 and v®=—1:
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(ii) follows by recursively applying the relation obtained from (i); and (iii) follows from the
property of gradient tracking, i.e.

(SM1.4) (11T®Id)VF vaz (®), Zsz _ 5(t-1) _ 500,

which leads to (%1; ® Id) (VE(u®0) —v®0) = 0.
We now continue to bound each term in (SM1.2), which can be viewed as the variance of
the stochastic gradient, as

EH(llz@)Id)((VF(u(t)’ ) — o) — (VF(u (t)vS—l)_,U(t),s—l))H

nb Z Z ( vfz (t) ) vfi(ul(t),s—l))

2

2
s

=1 z; EZ
(t)s 2
A S s—
_ zp (Vﬂ(ugt)’ L 2i) — Vﬁ(ugt)’ 1; Zi)))
2




SUPPLEMENTARY MATERIALS: DESTRESS SM3
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where (i) follows from the update rules (2.4b) and (2.4c), (ii) follows from the independence
of samples and E[/\(t)’s] = p, (iii) follows from similar argument with (SM1.3), and the last

inequality follows from Assumption 1 and E[(/\(t) 2] = p.
In view of (2.4a), the difference between inner loop variables in (SM1.5) can be bounded

deterministically as
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where (i) and (ii) follow from (Win ® Ig) — Ing)(1, ® ) = 0 and (Wi, ® Iy) — (21,1,]) ®
I d)(ln ® @) = 0 for any mean vector T; and the last inequality follows from the property of
the mixing matrix ||(Win ® Ia) — Inal|,, < 2 and |[(Win ® Ia) = (5151;) ® Lal| o, < in-
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Plugging (SM1.5) and (SM1.6) into (SM1.2), we can further obtain
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Using (SM1.1) and the previous inequality, we can bound the summation of inner loop gradient
estimation errors as
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where the last inequality is obtained by relaxing the upper bound of the summation w.r.t. k
from s —1to .S — 1.
The quantity of interest can be now bounded as
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SM1.2. Sum of inner loop consensus errors. Using the update rule (2.4a), the variable
consensus error can be expanded deterministically as follows:
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1 2
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where (i) follows from the fact
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and the deﬁnitlon of the mlxmg rate. The last inequality follows from the elementary inequal-

1+
ity 2(a,b) < 1+a2 #|all3 + 1o o2 [1b]3, so that [la+ BlI3 < 77 [lal3 + == [b]3.

Furthermore, using the update rules (2.4b) and (2.4c¢), and deﬁning and auxiliary ma-

trix A5 = %diag()\gt)’s, )\gt)’s, cee Aﬁf”s) ® 14, the gradient consensus error can be similarly
expanded as follows:
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where the second term in (i) is obtained by Jensen’s inequality, (ii) follows from Assumption 1
and HA H < <, and (iii) follows from (SM1.6).
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SM1.3. Linear system. Let e = [IEHv“)vS—ln@F(t)*Sll% ], and b =
2a12n2L2

(l_naw[nﬂa”ﬁ?t),s”%]. By taking expectation of (SM1.8) and (SM1.9), we can construct the
following linear system
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where the second inequality is due to 2q4, < 1 + a?n and 1 + a;, > 1. Telescope the above
inequality to obtain
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Thus, the sum of the consensus errors can be bounded by
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where (i) follows by changing the order of summation, (ii) and (iii) follows from the nonnega-
tivity of Gin and b®* respectively. To continue, we begin with the following claim about Gin
which will be proved momentarily.

Claim SM1.1. Under the choice of n in Theorem 3.2, the eigenvalues of Gy, are in (—1,1),
and the Neumann series converges,

0o 2 404%7]2L2
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2,220 . . . , i
85‘?}# |, in view of Claim SM1.1, the summation of consensus erros

Let of = [sct5en
n (SM1.7) can be bounded as
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4am772L2 4am772L2 < 402 )
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where the last inequality is proved by incorporating (3.1) as 0
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Proof of Claim SM1.1. By the definition of Gj, in (SM1.10), the characteristic polynomial
of Gj, is
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Because f(ain) <0, all eigenvalues of Gj, are in (—1, 1), then the Neumann series converges,
yielding
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where (i) and (ii) follow the fact (1—ain)? <1, and (1 —a,n) D —36c)¢|n?72L2 > (1—ajn)p? —
3ol (1= ain)® > (1 — ain)p? — a2 (1 - oz,n)ﬁp2 > (1 — ain)?p? due to (3.1).

SM2. Proof of Lemma B.3. This section proves Lemma B.3. In the following subsec-
tions, subsections SM2.1 and SM2.2 derive induction inequalities for the consensus errors and
subsection SM2.3 creates a linear system of consensus errors to compute the summation.
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SM2.1. Sum of outer loop variable consensus errors. The variable consensus error can
be bounded deterministically as following,
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where (i) uses £ = u()-5_ (ii) uses the update rule (2.4a), and the last two inequalities follow

from similar reasoning as (SM1.8). Apply the same reasoning to 2+a u®5-1_1 @m®o-1 H
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where the last equality follows from z(t~1 = 410,
Take expectation of the previous inequality, by (SM1.12), we can further compute the
summation in (SM2.1) as follows
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The last inequality is obtained by using (3.1) and the fact that 0 < «ajp, < 1 as follows
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SM2.2. Sum of outer loop gradient estimation consensus errors. In view of the update
rule for the gradient tracking term (2.5) and reorganize terms,

|s© =1, @502
- H (Ind - (%1”1”) @ Id)s(t)Hz

= ||(Tua - (%1711; )8 1) (Wow © 1) (s + V(@) ~ VF (™)) H2

2
< 12?‘out Hst D_1, @5t ”2
aout
2 1 2
(SM2.3) + 1_0‘;“§Ut (= CL1) @ L) (VF@Y) - VF@E)) |,

which follows from similar reasonings as (SM1.8). The second term can be further decomposed

(12 Gl e ) (7 -vrE ),
< [7F(e) - vFD)|

)
ngHm —1, @z ) (
= L?||(z"Y -1, @ ") — (

2
2
:l:(t 1) _ 1n ® m(tfl)) + (1n ®f(t) _ 1n ® f(tfl))Hg
2D _ 1, ®E(t—1))H§ + nLQuf(t) _ E(t—l)Hz

2
29

S—1
(SM2.4) < 2L2|z® — 1, @ 20| + 22|z — 1, 0 V|3 + 5202 0 Y |5t
s=0

Where the last line follows from the update rule (2.4a) by identifying zt — gt —
nz o 0 o and Cauchy-Schwartz inequality.
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With (SM2.4), (SM2.3) can be further bounded as follows

2
) _ () 205G,¢ (t—1) _ (t—1) 2%ut ( 2 _ —(t)
)~ 1, 03O} < T2 -1, @30V} + 22 (222 o - 1, 03

S—1

+212]207) — 1, 0 B3+ 5L n Y [50)

< trout] [ — 1, @ 5| + ﬂ(ZLQHm(t) —1, 080
1 — aout

S—-1

(SM2.5) +212]207) — 1, 0 B V|3 4+ 5p212 0 3 [[503).

s=0
Combine with (SM2.2), after taking expectations, (SM2.5) can be further bounded as

E[ls® - 1,039

(t—1) _ (t—1) 4o, L* (t—1) _ (t—1)
<0‘°utEHS 1,®@s HQ 1— o tEH“’ .oz Hz
272  S-1
P BB S o+ e (amﬁuw@-”—1n®w<t-1>ui

4o 2am77 L2 —
+W(EHSH 1, 250 V|2 + nZEHU ))

dag L”  dogn? ) _ (t-1) |12
_ EllstD _ 1 (t-1)
(aout+ 1 — aioyt (1—ain)2 HS n®s HQ
402, L?
4 O‘L(l + ain)E|Jz¢) — 1, @ D2
I — aout

+ ( outS772L2 + 4ac2>utL2 4O‘lnn . 2O‘|n77 L ) EEHU
1 — aput 1 — aout (1 - aln)2 (1 — Qin

(i) 402,.L?  4a2n?
<
(aOUt + 1 — qout (1 — Qlin)?

T _1n®§<m>ug

402 L2

out (t—=1) (t—1)
(L +am JE|= 1, o ztY|?
S—1
(SM2.6) + 1°“_ti77tL nZEHv

where (i) is obtained by applying the condition in (3.1) as follows
dag L*  doqn®  2080°L*  agun*L* 320un°L?

1 — aout (1 a|n)2 (1 - O5|n)p2 B 1 — aout (1 - aln)3p2
outS772L2 32O‘izn(l - ain)G
1 — aout 100(1 - ain)g
< outSTIQLQ

)
1 — aout

\ /\
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where the inequalities are obtained by using S > 1 and 0 < a;, < 1.

25 |l 1,050
SM2.3. Linear system. Defining el := e®?0 L]EHw e D2] and ¥ =
E[[s) 1,550,

8a; 7]4L
oy T3y B[s

], we construct a linear system by putting together (SM2.2) and

Q2 2 2
50‘outS” L S—1 Z5(t),s
2012 s g o

1—aout
(SM2.6) as
v 4ai772L2
n . )2
(sM2.7) eV < |, <1 i) were | €T H B0 = Goyet ) 4 b0,
1- CtzZt(l + ain) Qout + 1- szfxt ' (1Eain)2

::Gout

Then, following the same argument as (SM1.12), we obtain

T
G, (e(O) + Z b'(t)) )
t=1

Before continuing, we state the following claim about Gyt which will be proven momen-

(SM2.8) e <

W
L]

t=1

tarily.

Claim SM2.1. Under the choice of n in Theorem 3.2, the eigenvalues of Gou are in (—1,1),
and the Neumann series converges,

00 2 8a%13172L2
_ 1—oy (1—0(' ) (l—aout)
-G 1 < in in
Z out — out) = 1602, 9
=0 (1 aln)(l aout)2 1—aout

With Claim SM2.1 in hand, and the fact that e(®) = 0, we can bound the summation of
outer loop consensus errors by

6412 (

1 — ain

= Cout Z (t

T
< G (T2 — Goye) ™ (e<0> +y b,m)

T

(SM2.9) = ce(T2 — Gou) ' > _ 0,
t=1

2
where ¢/, = [164' . (i + 1) —12%1 }

m+1)ZE\\m ~L e+ e ZEHst)—l 23?2
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Note that by elementary calculations,

gc—)[Jt(IQ - Goutr1

64 S 2 1—aiq (1=ain)3(1—aout)

< T—a (pr + 1) 2ain:| 9
" _ 16agy 2
(1—=ain) (1—crout)? T—orout

_ [ 64 S . 2 32(1%&3“ 64 S ) 80(%1772[/2 404%
h _1iain <npb + 1) 1*0![,1 + (l_ain)(l_aom)Q liain npb + 1 (l_ain)g(l_aout) + lfaout
@ r 2 2 2

128 (s  edal, oo, dad
< —(l_ai”)2 (npb + 1) T (1_0‘in)(1_a0ut)2 6ain + 1—aout

(11) 128 S 3204.2 agu 100(.2
< [(1_%)2 (npb + 1) T Aan) (I—oon)? 17010“] )

where we use (3.1) to prove (i), and 1/(1 — aj,) > 1 and 1/(1 — aout) > 1 to prove (ii).
Thus, (SM2.9) can be bounded using (3.1) as

80‘i4n774L4
T 1| ez
Cout(IQ - Gout) ! ?E;EU?§$2§2
1—aout
< 128 (i . 1) n 3202 02, 8ait LA 1002 ‘ 3a2,,Sn? L*
o (1 - ain) npb (1 - ain)(l - aout)2 (1 - ain)3p2 1 — aout 1 — aout
_ 10240 ntL* (i ) N 25608 a2,.nt L N 3002 a2,:npb - S/(npb) PL?
(1 - O‘in)g)p2 npb (1 - CVin)A’t(l - O‘out)Qp2 (]- - aout)2
30
<1l n?L? + 308 02,1’ L? + —
100
- 11
25’
which concludes the proof.
. ; . .. 402 n?L2 402
e L. ) - — )2 N P out
Proof of Claim SM2.1. For simplicity, denote ¢ = T and d = =2~ Then Gout can
be written as
Qin c

Gout = d(1+ ain)  aout +cd|’

whose characteristic polynomial is
FA) = (atin — A)(aout + cd — X) — (1 + ain)cd.
First, note that f(1) can be bounded by

f(1) = (qtin — 1) (aout +cd — 1) — (1 + ajn)cd
= (1 - ain)(l - aout) — 2cd > 0,
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where the last inequality is due to the choice of 1, namely,

Cd — 4Oé(?)ut .
1 — aout (1 - ain)2

4()zi2n772L2 < é

(1 — ain)(1 — aout)-

Combined with the trivial fact that f(—1) > 0 and f(«in) < 0, all eigenvalues of G, are
in (—1,1). Consequently, the Neumann series converges, leading to

0o M (1—cin)?(1—cout) 2 —16a2 a2 yn? L2 402 (1—aout)n?L?
Z Giut _ (I2 _ Gout)_l _ (lfain)S(1faou2t)2f32aﬁ]2agutn2L2 (1—ain)3 (1—tout)2—3202 a2, n? L?
4(1—0in)? (1+ain) gy (1—ain)?(1—out)
t=0 _(lfain)g(1faout)2f32aﬁ]agutn2L2 (lfa;n)3(lfaout)2732aﬁ]a§ut772L2
[ 2 8a2n?L?
< T—an (= o) (1=t -
o 160, 2 ’
_(l_o‘in)(l_‘)‘out)2 1—aout

where we use the condition in (3.1) to prove 32a2a2,n*L? < 5‘—020(1 — in)%(1 — aou)? <
%(1 — in)?(1 — aput)? to bound the denominator.
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