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Abstract
Concurrent analysis of composite materials can provide the interaction among scales for better composite design, analysis,
and performance prediction. A data-driven concurrent n-scale modeling approach (FExSCAn-1) is adopted in this paper for
woven composites utilizing a mechanistic reduced order model (ROM) called Self-consistent Clustering Analysis (SCA).
We demonstrated this concurrent multiscale modeling theory with a FExSCA2 approach to study the 3-scale woven carbon
fiber reinforced polymer (CFRP) laminate structure. FExSCA2 significantly reduced expensive 3D nested composite rep-
resentative volume element (RVE) computation for woven and unidirectional (UD) composite structures by developing a
material database. The modeling procedure is established by integrating the material database into a woven CFRP structural
numerical model, formulating a concurrent 3-scale modeling framework. This framework provides an accurate prediction for
the structural performance (e.g., nonlinear structural behavior under tensile load), as well as the woven and UD physics field
evolution. The concurrent modeling results are validated against physical tests that link structural performance to the basic
material microstructures. The proposed methodology provides a comprehensive predictive modeling procedure applicable to
general composite materials aiming to reduce laborious experiments needed.

Keywords Virtual testing · Reduced order modeling · Concurrent modeling · Unidirectional and woven composite

1 Introduction

Numerical methods have been developed in the past few
decades to facilitate modeling and simulations of engineer-
ing materials systems. For example, Finite Element Analysis
(FEA) for vehicle crash simulation has become a stan-
dard procedure in major vehicle manufacturers to virtually
examine vehicle safety under various scenarios. Numerical
models can reduce physical experiments needed and pro-
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vide significant savings in time and resources during the
product development process. However, material physics
linked into multiple length scales need to be considered to
properly model the materials system through any numeri-
cal procedure. Concurrent multiscale modeling provides the
interaction among material length scales that is crucial to
incorporate material physics and build a thorough under-
standing of the materials system.

Composite materials are in general composed of at least
two different phases. For example, the cured unidirectional
(UD) carbon fiber reinforced polymer (CFRP) is made of
continuous carbon fibers and polymer matrix. Prediction
of UD CFRP properties can be carried out using a UD
microstructure model (usually a representative volume ele-
ment (RVE)) for numerical homogenization that is typically
performed through FE or Fast Fourier Transformation (FFT)
methods. Various UD CFRP properties, the elastic, elasto-
plastic, as well as the damage behavior of composites, can
be predicted by the RVEmodel [1–6]. RVE analysis provides
a good estimation of composite material constants and can
be used for hierarchical multiscale modeling where the RVE
output serves as thematerial law for the structural levelmodel
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[7,8]. Such an approach applies to woven composites as well,
as seen in [9–11]. In the macroscale woven laminate, mate-
rial properties can be approximated with mesoscale woven
RVEs, and in eachwoven RVE, the yarn phasematerial prop-
erties can be approximatedwithmicroscaleUDRVEs as each
yarn is a mixture of many carbon fibers and epoxy matrix.
Building a hierarchical multiscale model would allow one
to incorporate mesostructure and microstructure elastic con-
stants into the woven laminate [8,12,13], and hence evaluate
laminate performance with homogenized information, yet
such approach implies simplification on the nonlinear mate-
rial behaviors.

For accurate prediction of engineering structures, one
needs to establish the capability of efficient computation
of CFRP nonlinear material responses. This requires the
development of reduced-order modeling methods so the
RVE model can be effectively embedded into the struc-
tural level model [14–17]. Composite concurrent multiscale
modeling is established based on a reduced order model-
ing approach. Under the concurrent modeling framework,
an RVE is replaced by a compressed RVE database, to
substitute traditional material law approach in compos-
ite structural performance prediction. Two-scale (2-scale)
concurrent modeling for UD and woven composites has
been developed utilizing Self-consistent Cluster Analysis
(SCA), a mechanistic reduced order modeling method, as
reported in [18,19]. However, for 2-scale woven multiscale
modeling, yarn properties are usually assumed to be lin-
ear elastic [4,12,18]. In this paper, a three-scale (3-scale)
concurrent multiscale modeling approach, FExSCA2, is pro-
posed in order to properly capture yarn plasticity (which is
approximated using UD RVEs) during the woven structure
deformation process. The outcomes are two-folded: (1) the
prediction accuracy is improved by incorporating previously
ignored physics, and (2) the history of the plastic strain accu-
mulation in the woven and UD scale is recorded for a better
understanding of microstructure evolution. While a 2-scale
model is computationally preferred over a 3-scale model, a
3-scalemodel can provide further information onmicrostruc-
ture evolution of individualmaterial phases (namely fiber and
matrix for a single yarn in a woven composite). For a 2-scale
model, the required calibration effort to characterize a woven
RVE is high as one has to perform sizable physical testing
such as tensile, shear, and compression tests at that level.
Meanwhile, a 3-scale model only requires calibration on the
constituents’ material phases (fiber and matrix in this case),
which is much more affordable from the experiment point of
view [20].

From the above discussion, clearly there is a need formore
than 2-scales in multiscale modeling to properly capture the
relevant physics of lower scales. However, there exist chal-
lenges on computational efficiency on solving such large
problems. Therefore, to address the challenge of solving

multiscale problems with greater computational efficiency, a
data-driven reduced order computational framework is pre-
sented with examples of woven composites. The outline
of the paper is as follows: Sect. 2 provides materials and
methods for experimentalwovenbias-extension sample tests.
Sect. 3 provides a concurrent n-scale modeling theory for
heterogeneous materials using a mechanistic reduced order
model. A 3-scale model for a 3-point bending test is pre-
sented in Sect. 4. Sect. 5 describes the concurrent multiscale
modeling setup for cured woven tensile samples. Sect. 6
presents key simulation results, findings, and comparisons
with experimental data for the cured woven tensile coupon.
Sect. 7 concludes the paper with possible future directions.

2 Materials andmethods

2.1 Materials and sample geometry

In this work, bias extension tests are performed on cured
woven prepregs with 60◦ yarn angle. First, woven prepregs
with 90◦ yarn angle from Dow Chemical are used to man-
ufacture the 60◦ non-orthogonal samples. Bias extension
tests are performed on the orthogonal prepregs to generate
shear deformation in order to achieve a 60◦ yarn angle. The
bias-extension tests are performed at elevated temperature
to reduce the resistance of uncured resin during shear defor-
mation. The woven prepregs are trimmed and have an initial
length that is at least twice the sample width. The prepregs
with 60◦ yarn angles are then cured to make tensile test sam-
ples. The cured woven samples have overall fiber volume
fractions between 44% and 48% per measurements done
according to ASTM standard D792-01[21]. The 60◦ yarn
angle and the shape of the cured woven sample are visualized
in Fig. 1. Detailed information on performing bias-extension
tests and the curing process can be found in [11].

2.2 Experimental setup

Tensile tests are performed using a hydraulic testingmachine
with a load cell capacity of 100 kN. The curedwoven samples
are loaded on the testingmachine, clamped on top and bottom
ends, and deformed along the y axis denoted in Fig. 1. Axial
strain is recorded by the strain gauge, and the axial loading
force is recorded by the load cell. The data gathered from
the tensile tests are used to generate the force vs. axial strain
plots that are used for validation purposes. The tensile test
is performed on three samples to ensure repeatability and
quality of the force-strain curves.
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Fig. 1 The cured woven bias-extension sample (clamping region hid-
den) after testing, as seen by broken epoxy matrix and exposed yarns.
1 and 2 represent weft and warp yarns for the orthogonal configuration,
90◦ yarn angle. The sample has a tailored yarn angle of 60◦ represented
by 1 and 2

′

2.3 Computational model development

The woven composite structure is a good demonstration of
the length scales of composite materials. To model a woven
composite structure, we first took a 3-point bending woven
composite laminate and attempt to develop a computational
framework that can be applicable to the woven tensile sam-
ple. The computational complexity of 3-point bending of a
woven composite laminate is shown in Fig. 2. Woven com-
posite laminates can be modeled at part scale with multiple
plies using FEA. Each material point of the laminate can
be represented by a mesoscale woven RVE (4x4 twill here)
having multiple yarns. A zoomed in view of the yarn reveals
a UD structure at the microscale. To fully model the lam-
inate concurrently, one would need to solve approximately
1018 degrees of freedom (as shown in the figure), which is
not computationally feasible. Therefore, an efficient multi-
scale theory is required to model multiple scales together.
Utilizing the data-driven techniques of mechanistic reduce
order modeling, this problem becomes tractable with a desk-
top computer. This type of multiscale model is necessary
to properly capture the materials physics at multiple length

scales. Solely using a 2-scale model for the woven composite
laminate is not able to consider the plasticity from the UD
yarn structure. Moreover, the overall fiber volume fractions
can be captured more accurately if more scales are consid-
ered.

3 Concurrent theory for n-scale materials
modeling

3.1 General n-scale theory

Composites are heterogeneousmaterialswithmultiple length
scales. Fig. 3 shows a compositematerial systemwith n num-
ber of scales. Each scale has heterogeneity that can be further
analyzed in a finer scale as shown in the figure. This gen-
eral multiscale boundary value problem can be expressed
using the equilibrium, compatibility equations with neces-
sary boundary conditions and material law as given in Eq. 1
for n-scales.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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u

σ n(Xn) =

⎧
⎪⎨

⎪⎩

1
�n+1

∫

�n+1 σ n+1(Xn+1)�n+1,

i f Xn has microstructure, n = 2, ..., N
f n(εn), n = 1

∇ · σ n = 0, n = 2, ..., N
εn(Xn) = 1

2 (∇un(Xn) + (∇un(Xn))T ),∀Xn ∈ �n, n = 2, 3, ..., N

(1)

where σ 1 is the macroscale stress tensor and b1 is the
macroscale body force, t and u are the applied Dirichlet
boundary conditions, and σ n(Xn) and εn(Xn) are stress and
strain tensors at each lower scale n integration point Xn .

In equation set 1, the first three equations describe the
macroscopic problem, where Dirichlet boundary conditions
are applied to define displacement or the applied force at
the boundaries of the structure. The fourth equation defines
the constitutive behavior for material points in scale n. If
microstructure information needs to be captured, mean field
homogenization is applied on scale n + 1 to obtain effective
stress responses for scale n. If microstructure is not needed,
then the standard material constitutive law can be applied on
n. For finer scales where n > 1, microstructure responses
are resolved assuming periodic displacement field and anti-
periodic traction boundary condition, as described by the last
two equations in Eq. 1. Details on the solution approach are
provided in 1, and interested readers are referred to [22] and
[14] for further discussions.

Most modern engineering applications, such as vehicle
crash simulations, are modeled at the macro or part scale.
Finite Element Method (FEM) can be applied to solve
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Fig. 2 Macroscale FE model of a woven laminate under 3-point bend-
ing is shown on the top panel. Each material point in the macroscale
laminate is represented by amesoscale woven RVE shown in themiddle
panel, and a material point in the yarns (weft yarn shown) is represented

by a microscale UD RVE shown in the bottom panel. An estimate of
the overall fiber volume fraction captured through these three scales is
shown

Fig. 3 A general illustration of the N-scale multiscale problem. n = 1
is the macroscale, and n> 1 are finer scales representing the underneath
heterogeneity [22]

macroscale problems easily due to its generality in describ-
ing complex geometries [23–25]. Other methods, such as
Isogeometric Analysis [26,27] and meshfree methods [28–
30] are also applicable. However, a one-scale analysis means
microstructure information cannot be directly captured, and
that the simulation process requires effective material laws
[31]. Applying a concurrent multiscale approach can cap-
ture lower scales physics such as damage evolution, among
others, which makes the part-scale prediction more accurate.

3.2 Reduced order model for concurrent analysis

From the general concurrent n-scale equations presented in
Eq. 1, each scale needs to be solved simultaneously. As
shown in Fig. 2, considering three scales requires solving
approximately 1018 degrees of freedom, which is not com-
putationally feasible. At each lower scale, RVE responses are
evaluated assuming periodic boundary conditions to ensure
convergence by alleviating the size effect. Each mesoscale
and microscale RVE are given an effective strain increment
during the concurrent analysis. The RVE model then com-
putes its effective RVE stress increment using a numerical
homogenization technique, such as FFT. The effective stress
increment is passed back to the higher scale in order to
continue the concurrent analysis. However, direct RVE cal-
culation is very expensive, as each RVE contains millions
of voxel elements. To counteract this issue, a mechanistic
reduced order modeling method, Self-consistent Clustering
Analysis (SCA) [14], is leveraged. Details of the method are
given in 1. Reduced-order models (ROMs) of RVEs are built
to replace original high fidelity RVEs as shown in Fig. 4. The
ROMs are built using a high performance computing (HPC)
cluster - computing node equipped with 24 cores at 2.5 GHz
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Table 1 Elastic material constants for fiber (transversely isotropic elas-
tic) and epoxy (isotropic elastic)

Fiber Values Matrix Values

E11 245 GPa E 3.8 GPa

E22 = E33 19.8 GPa ν 0.39

G12 = G13 29.2 GPa

G23 5.92 GPa

ν12 = ν13 0.28

ν23 0.32

and maximum random-access memory of 64 GB. The UD
RVE computation takes 12 hrs for the elastic responses, 0.25
hr for the K-means clustering, and 2 hrs for computing the
interaction tensor. The woven RVE computation takes 3 hrs
for the elastic responses, 0.1 hr for the K-means clustering,
and 0.06 hr for computing the interaction tensors.

4 3-scale model setup for 3-point bending
test of a woven laminate

A common material testing procedure for determining the
structural level properties under combined loading of com-
posites laminates is the flexural test. The flexural test can be
performed either as a 3-point or 4-point bending test [32,33].
Theflexural test canbeused to investigate the elastic response
of the composite laminate (such as flexural modulus), as well
as the flexural strength if needed. To perform the virtual 3-
point bending test, a macroscale woven laminate model is
constructed. The 3-point bending test woven laminate struc-
ture is adopted from [33], depicted in Fig. 2. The laminate
has a length of 80 mm (70 mm between two rigid supports),
a width of 25 mm, and a thickness of 1.5 mm. The two cir-
cular supports have diameters of 10 mm, separated 70 mm
apart from each other, as shown in the Macroscale section
of Fig. 2. A loading nose or impactor of equal size as the
two supports pushes the laminate downwards in the negative
y direction. Carbon fiber and epoxy material properties are
given in Table 1, though epoxy plasticity is not considered as
the purpose of the test is to investigate the flexural modulus
of the laminate structure.

In the concurrent model, the woven laminate is consid-
ered the macroscale. One material point of the macroscale
laminate is modeled with a woven RVE at the mesoscale.
The mesoscale woven RVE is depicted in Fig. 5 a), with a
yarn width of 0.39 mm, length of 1.6 mm, and thickness
of 0.165 mm. The woven yarn volume fraction is 71%. The
woven RVE containing 1,997,120 voxel elements is replaced
by a ROM containing 4 clusters for the matrix phase and 16
clusters for the yarn phase. A fiber volume fraction of 51%
is assumed for the yarn phase, and each cluster of the yarn

phase is represented by a microscale UD RVE depicted in
Fig. 5 b). The UD RVE containing 93,312,000 elements is
replaced by a ROM that has 4 clusters for the matrix phase
and 2 clusters for the fiber phase. It is worth noting that
the SCA ROM is not limited to two-phase materials (e.g.,
fiber and matrix) only. Any arbitrary number of phases can
be included as an additional material phase in the RVE. For
instance, the interphase among the fiber and matrix in a UD
structure or a hybrid composite with more than one fiber can
be modeled in such a fashion. Previous studies on UD CFRP
[19] and filled rubber [34] have demonstrated such approach
by adding the additional material phase, which can be easily
extended for the current study.

The information passed in the 3-point bending concurrent
modeling simulation is given in Fig. 2. Under this setup, at
each integration point in the laminate model, a woven ROM
is used to compute the material response at that integration
point. For all yarns in the woven ROM, UD ROMs are used
to compute the yarn responses. The prediction of the flexural
modulus is compared with the theoretical value, as shown
in Table 2. The flexural modulus follows the equation given
below [35]:

E = L3m

4wh3
(2)

where m is the slope of the force-deflection curve computed
from simulation, L is the length between two supports, and
w and h are the width and height of the woven laminate.
The theoretical value is computed from the woven RVE by
applying loading along the local 1 (or 2) direction. Since the
flexural modulus is one way to evaluate a woven laminate’s
tensile behavior, a good match is observed.

The flexural modulus represents only the macroscopic
property of the woven laminate. Another important feature
of the 3-scale concurrent model is to provide microstructure
physical fields (such as von Mises stress) evolution in the
mesoscale and microscale, as shown in 1. A movie for the
concurrent evolution of the stress field in the 3-point bend-
ing sample and the RVEs at different scales is provided as
Supplementary material (S1).

The 3-point bending example shows how 3-scale mul-
tiscale concurrent modeling can be used to predict both
macroscopic flexural modulus and microstructure evolution.
This establishes the baseline for conducting a virtual test
for a woven laminate structure. For practical usage, realistic
woven andUDmicrostuctures can be used as input to provide
a microstructure driven prediction of structural performance.
Alongside structural performance, microstructure evolution
can be used to identify weak spots in both the mesoscale and
microscale, and guide further design iterations for enhancing
structural performance and integrity. Such virtual design pro-
cess reduces the number of experimental trials needed, and
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Fig. 4 ROMs construction for UD and Woven RVEs, where voxel ele-
ments’ boundary lines are hidden for clarity. Each RVE undergoes a
three step data compression process (through unsupervised learning) in
order to build the ROM. After the data compression process, the UD
RVE is replaced with a ROM with 8 clusters (6 in the matrix phase and

2 in the fiber phase), and the woven RVE is replaced with a ROM with
40 clusters for the woven bias-extension tensile coupon modeling (8 in
the matrix phase and 32 in the yarn phase). Same colored voxels belong
to the same cluster within each ROM RVE

Fig. 5 Geometric specification
for a) woven RVE; b) UD RVE

Table 2 Comparison of
theoretical (given by equation 2)
and multiscale model prediction
of flexural modulus

Theoretical value Multiscale model prediction Difference

Flexural modulus 48.77 GPa 47.31 GPa 3.0%

provides a trustworthy approach for obtaining the structural
performance of composites.

5 Concurrent modeling of cured woven
tensile sample

In this section, the concurrent multiscale model development
for the woven bias extension sample is described. The woven
extension test sample is considered as a 3-scale problem
where the macro scale is the sample itself, and meso- and
micro-scale are the woven and UD composite scales, respec-
tively, as shown in Fig. 4. The UD RVE is replaced with a
ROMwith 8 clusters (6 in the matrix phase and 2 in the fiber
phase), and the woven RVE is replaced with a ROM with 40
clusters (8 in the matrix phase and 32 in the yarn phase). The
macroscopic test sample itself is modeled with a single layer
solid FE mesh at a resolution of 19 by 51 elements in the xy
plane. Using a conventional pre-calibrated material model
one can compute woven composites responses at each mate-

rial point for the macroscale model; however, ad-hoc nature
of such models limit predictability.

In this work, instead of using amaterials law for thewoven
structural analysis, woven RVEs are deployed at each mate-
rial point which compute woven material responses on the
fly. An important issue that needs to be addressed in the
concurrent modeling of the woven composite is the yarn
material properties. As the yarn phase is essentially a mix-
ture of long fibers and epoxy matrix, it can be assumed to
behave similarly to a UD composite. With this assumption,
the yarn behavior can be computed using UD RVEs. Cou-
pling the macroscale model, mesoscale woven RVEs, and
microscale UD RVEs, one arrives at a 3-scale multiscale
model for woven structures. This 3-scale model requires one
to resolve several woven andUDRVEs. Such 3-scale concur-
rent model can be computationally prohibitive considering
RVE models usually contain millions of integration points.
Therefore, in the current work, we adopt a 3-scale concurrent
multiscalemodeling approachwith a reduced ordermodeling
method, FExSCA2, that alleviates the drastic computational
cost brought byRVEs.Under this 3-scale concurrent scheme,
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responses of all RVEs are evaluated during the deformation
process of the tensile sample. In the modeling process, first
we construct ROMs for the woven and UD RVE, and later
these precomputed ROMs are used for concurrent analysis
of the multiscale model. Note unless otherwise clarified, all
microstructure RVEs are built for cured composite materi-
als. Carbon fiber and epoxy matrix are considered for the
materials and the properties are taken from Table 1. The
epoxymatrix is assumed to have elasto-plastic behaviormod-
eled with isotropic hardening following the yielding curve
σ̄ = 30 + 50ε̄0.15, stress unit in MPa. The hardening yield-
ing curve is calibrated using Hollomon equation [36] against
experimental tensile test data available for epoxy[37].

In the 3-scale concurrentmodel, themesoscalemodel pro-
vides material responses in each macroscale material point.
In a similar fashion, the microscale model provides material
responses in each mesoscale yarn material point. Here, the
mesoscale model and the microscale model are identified as
the woven RVE and the UD RVE, respectively. Modeling of
two RVEs lays down the foundation of 3-scale concurrent
modeling.

The woven RVE model is constructed in TexGen [38]. As
shown in Fig. 6 (a), the yarn width is defined as 0.36 mm.
Four weft and four warp yarns are considered in the woven
RVE model. The warp yarns are rotated 30◦ in the clock-
wise direction on the 1-2 plane to setup the 60◦ yarn angle
(denoted by 1 and 2’). The overall thickness of the RVE is
0.12 mm, with a yarn volume fraction of 85%. The woven
RVE contains 149 voxels along the 1 direction, 129 voxels
along the 2 direction, and 13 voxels along the 3 direction. The
woven RVE can be used to compute woven material behav-
ior once the basic constitutive laws are integrated. Here the
epoxy material is assumed to be isotropic with J2 plasticity
following material properties given in Sect. 4 and hardening
properties above. For the yarn phase, themicroscaleUDRVE
model is needed in order to replace its constitutive law.

The UD RVE is generated following the methodology
described in [19]. The methodology utilizes a Monte Carlo
approach to pack a square domain with circles, forming the
cross section of theUDRVE. The fiber volume fraction needs
to be given in order to perform the packing procedure. In
the physical woven sample preparation process, the overall
carbon fiber volume fraction was measured to be between
44% and 48%. This means one needs to back-calculate the
UDfiber volume fraction using the aforementioned numbers.
Note that the overall fiber volume fraction is simply defined
as the product of (fiber volume fraction in UD RVE)×(yarn
volume fraction in woven RVE). Two UDRVEs are modeled
with 51% and 56% fiber volume fractions. One of the UD
RVEs is shown in Fig. 6(b). Each UD RVE contains 3603

voxels.
The overall 3-scale modeling framework is shown in

Fig. 7, where the macroscopic material responses are pro-

vided by woven RVE with yarn angle of 60◦. In Fig. 7, the
macroscale test sample is modeled as a FE model with the
same geometric specifications as the real coupon. The upper
side of the sample is pulled upwards (as denoted by the red
arrow), and the bottom side is fixed in all directions. The FE
model is constructed in LS-DYNA [39], and contains 19 ele-
ments in the x direction, 53 elements in the y direction, and
1 element in the z direction. The model is meshed with solid
elements, and each element contains one integration point. At
each integration point, its material responses are computed
using a 60◦ woven RVE in the 3-scale concurrent multiscale
modeling framework, as illustrated. Since the overall fiber
volume fraction measured for the physical test samples was
between 44% and 48%, two woven tensile 3-scale models
are generated: one with overall fiber volume fraction of 44%
and one with fiber volume fraction of 48%. Recalling that
the overall fiber volume fraction is defined as the product of
yarn volume fraction and UD fiber volume fraction, this is
done through fixing the yarn volume fraction and assigning
two different UD RVEs: one with 51% fiber volume fraction
and one with 56% fiber volume fraction. These two cured
woven tensile test models are expected to predict the lower
bound and upper bound of the force vs. axial strain curves,
forming a band that encompasses all experimental data.

6 Results and discussion

As described in the previous section a three-scale concurrent
multiscale model, FExSCA2, is set up for the non-orthogonal
wovenbias extension sample. From the concurrentmultiscale
analysis in LS-DYNA, the loading force along the y direc-
tion and axial strain are outputted for the entire loading, to
be compared with experimental data. The numerical predic-
tion is plotted along with the experimental data obtained for
three samples, identified as samples 1, 2, and 3. Those three
samples all have the same geometry and are used to ensure
the repeatability of the tensile test. As shown in Fig. 8, the
three force vs. axial strain curves of the three tensile test sam-
ples show the same trend and are very close to each other,
suggesting a good repeatability of the cured woven bias-
extension test. From the figure it is clear that considering
UD microstructure to approximate yarn responses is neces-
sary to properly match the experimental data. At this point,
it has been shown that a UD RVE with only elastic mate-
rial laws for the fiber and matrix can be used to compute the
effective stiffness (an elastic property) of the UDRVE. In the
3-scale model, the UD RVE has a matrix phase with elasto-
plastic material behavior. Assuming the matrix phase in the
UD RVE behaves elastically degenerates the 3-scale model
to a 2-scale model. 2-scale and 3-scale concurrent multiscale
simulations at 48% fiber volume fraction are performed, and
the force vs. axial strain curve is also shown in Fig. 8.
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Fig. 6 (a) Mesoscale woven
RVE with 60◦ yarn angle. The
matrix phase is hidden for
clarity so yarns can be
observed.UD RVE with 44%
fiber volume fraction. The
dimension of the RVE is 84 μm
by 84 μm by 84 μm

Fig. 7 3-scale concurrent
multiscale model for the cured
60◦ woven tensile test. The
cluster distributions for
mesoscale woven ROM of the
woven RVE (yarn phase) and
microscale UD ROM of the UD
RVE(fiber and matrix phase) are
depicted. Two different UD
RVEs are used to capture
sample fiber volume fraction
upper and lower bounds

Fig. 8 Loading force vs. axial strain plots for 2-scale and 3-scale con-
current multiscale predictions and experimental data. The sample fails
after 0.016 axial strain

The 3-scale prediction agrees well and captures the trend
of the experimental data. However, the results from the
2-scale model, which ignores matrix plasticity, diverge dras-

tically from the test data when the axial strain is larger than
0.004. The flat curve indicates that the 2-scalemodel behaves
elastically throughout the entire virtual tensile test and fails
to correctly predict the woven tensile sample response. The
results suggest the matrix plasticity in the UD RVE matrix
phase has a significant contribution to the nonlinear behav-
ior of the woven tensile sample. Therefore, the 60◦ woven
tensile sample has to be constructed using a 3-scale model
so that the material responses can be properly captured. Two
cured bias extension models are built in order to examine
the effect of overall fiber volume fraction in the sample. The
predictions made by the 3-scale model with 44% and 48%
fiber volume fraction are visualized in Fig. 8 . Both predic-
tions agree well with the test data. To be specific, the sample
with 48% draws the upper bound for the test data, and the
sample with 44% draws the lower bound, succesfully draw-
ing a band that captures all three experimental data curves.
The results suggest the present methodology can potentially
replace partial experimental trial (constituent experimental
data is all that is needed for the model), and provide a high
quality prediction of woven composite responses (in this
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Fig. 9 Visualization at axial strain of 0.006: Cured woven bias-extension sample von Mises stress contour, mesoscale yarn and matrix von Mises
stress contour, and microscale von Mises stress and effective plastic strain contours

case, tensile responses). Note that by utilizing UD RVEs
at the lowest scale, the yarn behavior is computed on-the-fly
and thus reducing certain calibration efforts compared to uti-
lizing a phenomenological material law. Moreover, the UD
RVEs provides a convenient way to store microstructure evo-
lution on-the-fly that can be visualized as shown in Fig. 9 to
Fig. 11, enabling observation of local stress and strain dis-
tributions. A movie for the concurrent evolution of the stress
and strain field in the curedwoven bias-extension sample and
the RVE’s at different scales is provided as Supplementary
material (S2).

The deformed cured woven bias-extension simulation
sample and the local yarn-UD plastic strain distributions are
visualized in Figs. 9–11 at axial strains of 0.006, 0.01, and
0.016, respectively. In each figure, mesoscale woven RVEs
at two boxed locations are visualized. For both woven RVEs,
part of the woven RVE, including one weft and one warp
yarns, is visualized in order to examine the local shear defor-
mation. On each yarn, one integration point is picked out
and its underneath UD RVE is visualized to examine the
yarn plastic strain accumulation through out the entire defor-
mation process.

In Fig. 9, the axial strain has reached 0.006 and one can see
stress starts to concentrate in themiddle due to 60◦ yarn angle.

There is aX shaped stress band in the sample, showing higher
stress magnitude than the rest of the sample. The woven RVE
in the stress concentration region is shown on the right of
Fig. 9; its yarn and matrix phase both demonstrate higher
stress magnitude than those from the woven RVE, shown on
the left, outside the stress concentration region. Moreover,
by taking cross sections of both yarns on two woven RVEs,
microscale UD stress and effective plastic strain (ε̄p) evolu-
tion are revealed. The stress magnitude of UD RVEs shown
right is higher than RVEs shown left, corroborating with the
trend observed on thewovenRVEs. The ε̄p contour shows the
UD RVE undergoes plastic deformation, which is the source
of the nonlinearity observed in Fig. 8. In addition, the ε̄p
contours shown right show higher magnitude than contours
shown left.

Figure 10 shows detailed evolution of those physical fields
introduced in the previous figure once the axial strain reaches
0.01. Here, on the right the stress contours of the two UD
RVEs are very close to each other, but the ε̄p contours suggest
the UD RVE in the yarn along the 2 direction suffers larger
deformation as shown by higher ε̄p magnitude. On the left,
one can see the two UD RVEs have less ε̄p than those shown
right. The difference in the stress contours for yarns along
the 2 direction is less obvious. This suggests that the capture
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Fig. 10 Visualization at axial strain of 0.01: Cured woven bias-extension sample von Mises stress contour, mesoscale yarn and matrix von Mises
stress contour, and microscale von Mises stress and effective plastic strain contours

of microscale ε̄p can play an important role in governing
yarn failure, providing a possible alternative to stress-based
failure criteria in the multiscale models.

Finally, as the axial strain reaches 0.016, Fig. 11 shows
that the difference in woven RVE stress contours is almost
negligible. However, the contrast in UD RVE ε̄p can be used
to quantify the difference. Most of the matrix phase on the
right reaches ε̄p of 0.16, while the matrix phase on the left
shows ε̄p of around 0.12, a 33% difference.

In terms of computational time, the study case shown
here was performed on a HPC cluster using two nodes, each
node having 24 processors. The entire computation takes 40
hours, and the physics over 969 woven RVEs (one in each
macroscale integration point) and 15504 UD RVEs (one in
each yarn cluster) are revealed simultaneously. Comparing
to an estimated full scale model with a voxel mesh for woven
and UD RVEs, the speedup achieved by the ROM is in the
order of 108.

To further accelerate the computational efficiency for large
structures, the precomputed microstructure database can be
leveraged. In a previous paper of the authors [7], the idea
of estimating material microstructure behavior using Neu-
ral Networks (NN) is illustrated. This means there can be
an offline stage where the material microstructure behav-

ior is pre-computed using ROMs under different loading
conditions and load-paths, and NN are used to establish
the material response, feeding the macroscopic FEM with
the material responses. Since the NN evaluation is almost
instantaneous, the computational cost can be further reduced,
though this means all the microstructure evolution informa-
tion cannot be stored on-the-fly during the macroscopic FE
simulation.

The 3-scale bias extensionmodel successfully reproduced
the nonlinear stress and strain curve observed in experiments.
The detailed physics revealed by the 3-scale model provides
convenience in analyzing nonlinear behavior of the woven
composite structure. Such details provided by the 3-scale
model make it possible to capture local matrix plastic strain
concentration in determining matrix failure. This concurrent
multiscale tool can be useful for the design and analysis of
different architectured composites such aswoven andbraided
structures.

7 Conclusion

In this paper, a 3-scale concurrent multiscale modeling the-
ory is adopted with a demonstration of a woven composite
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Fig. 11 Visualization at axial strain of 0.016: Cured woven bias-extension sample von Mises stress contour, mesoscale yarn and matrix von Mises
stress contour, and microscale von Mises stress and effective plastic strain contours

laminate under 3-point bending and cured woven bias exten-
sion test. Theproposed concurrentmultiscale theory captured
the extra plasticity in the mesoscale woven RVE yarn phase
by modeling the yarn with microscale UD RVEs. Without
accounting for the extra plastic deformation in the yarn phase,
the force-axial strain curve predicted by the 2-scale model
diverges far away from the test data. The 3-scale model, on
the other hand, is able to capture the correct trend of the
loading force history with reasonable accuracy. On top of
that, by modeling the yarn phase with UD RVEs at different
fiber volume fractions, the upper and lower bounds of the
force-strain curve can be captured. This makes the 3-scale
model a powerful tool for modeling woven composite struc-
tures with the consideration of the fabrication tolerance in
the UD fiber volume fraction. Such capability can help build
a better understanding of the woven structural performance,
accelerating the search for the optimal composite fiber vol-
ume fraction in the woven composite structure by avoiding
excessive experimental trial and error. In the future, failure
criteria for the 3-scale models can be added to expand the
capability of the concurrent modeling theory in predicting
failure behavior, such as composite delamination.
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tary material available at https://doi.org/10.1007/s00466-022-02199-
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Appendix A: Formulation of the reduced
order modelingmethod

The reduced order modeling method utilized the incremental
form of the Lippmann-Schwinger equation given in Eq. A.1,
of which the FFT method was based on.

�ε(x) = �εM −
∫

�

�0(x, x′) : (�σ(x′)

−C0 : �ε(x′))dx′ (A.1)

where �ε(x) is the RVE voxel-wise incremental strain ten-
sor, �σ(x) is the RVE voxel-wise incremental stress tensor,
C0 is the stiffness tensor of the elastic referencematerial, and
�0 is the isotropic Green’s function based on reference mate-
rial C0, x represents integration point within each cluster.
�εM is the strain increment passed in from the macroscale
calculation. Note that the stress tensor at each integration
point can be computed using elastic and elasto-platicmaterial
laws. In this work, isotropic elasticity, transversely isotropic
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elasticity, and J2 plasticity are used to evaluate the stress
tensor at each integration point.

For each RVE, assuming its voxels can be classified into
a limited number of clusters, where each cluster share the
same strain and stress increment, it is possible to arrive at the
following discretized Lippmann-Schwinger equation in Eq.
A.2

1

cI |�|
∫

�

χ I (x)�ε(x)dx = �εM

− 1

cI |�|
∫

�

∫

�

χ I (x)�0(x, x′) : (�σ(x′)

−C0 : �ε(x′))dx′dx (A.2)

where |�|I is the domain volume of cluster I , cI is the vol-
ume fraction of cluster I in the RVE domain, and |�| is the
RVE domain volume. The χ(x) function equals 1 when x is
in the cluster I , otherwise it will be 0. This allows one to fur-
ther simplify the discretized Lippmann-Schwinger equation
to Eq. A.3

�ε I = �εM −
K∑

J=1
[

1

cI |�|
∫

�

∫

�

χ I (x)χ J (x′)�0(x, x′)dx′dx : (�σ J − C0 : �ε J )

]

(A.3)

One should notice that in Eq. A.3, the Green’s function
can be separated out, forming a constant interaction tensor
for the ROM. The interaction tensor is defined in Eq. A.4

D I J = 1

cI |�|
∫

�

∫

�

χ I (x)χ J (x′)�0(x, x′)dx′dx (A.4)

Finally, the discretized Lippmann-Schwinger equation
can bewritten as Eq. A.5, which can be solvedwithNewton’s
method. Comparing Eq. A.5 to Eq. A.1, only K strain tensors
needs to be evaluated, and K is much less than the number of
voxels in the original RVE. Therefore, the ROM can signif-
icantly reduce the overall computational cost of the 3-scale
concurrent model, while allowing one to track the RVE strain
and stress evolution.

�ε I = �εM −
K∑

J=1

[
D I J : (�σ J − C0 : �ε J )

]
(A.5)

To solve the lower-scales a multiresolution clustering
analysis [22] approach can be adopted. Interested readers
can find the details of the multiresolution clustering analysis
formulation by Yu et al. [22] which has the following matrix
form for the lower two scales.

⎡
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=

⎧
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(A.6)

where M is the Jacobian matrix and P j
i means the phase i ,

of scale j . For example, for a three-scale woven composite,
scale 1 is the macro-scale, scale 2 in the woven scale and
scale 3 is the UD scale. For woven scale 2, the matrix phase
is denoted by P2

1 , and the yarn phase is denoted by P2
2 . For

UD scale 3, the matrix phase is denoted by P3
1 , and the fiber

phase is denoted by P2
2 . ε and r are the strain and the residual

matrix, respectively.

Appendix B: Concurrent stress evolution in
three-point bending test of woven laminate

In Fig. 12 a) to c) the vonMises stress fields evolution for the
macroscale woven laminate, mesoscale woven microstruc-
tures, and microscale UD microstructures are visualized.
Fig. 12 a), b), and c) are taken at impactor displacements
of 0.16 mm, 0.32 mm, and 0.48 mm, respectively. Note that
woven RVEs for all 6 plies (through the thickness), at the
outermost region in the middle of the woven laminate, are
plotted. The two UD RVEs depicted represent two yarns,
one in the first ply and one in the third ply.

As the impactor gradually bends the laminate, the von
Mises stress magnitude of the laminate increases. To be
specific, the top and bottom layer are experiencing compres-
sion and tension stresses, respectively. The neutral surface
of the laminate, which is between the third and fourth ply,
shows very little increase in von Mises stress, as expected.
Fig. 12 shows the von Mises stress of the top and bottom
layer increasing rapidly, whereas plies in the middle expe-
rience a very small increase. For further illustration, the
yarn microstructure responses are captured by UD RVEs.
The fiber phase in the UD RVE representing the yarn in
the first woven ply experiences a much higher increase in
von Mises stress magnitude, whereas the fiber phase in the
third ply bares much less stress. The laminate bending causes
bending stress along the x direction of the laminate, which
coincides with the 1 direction in the yarn. Therefore, one
can see at the mesoscale, yarns in the 1 direction are the
primary load-carrying constituents. As the yarn responses
are approximated by the UD RVE, and the UD fiber direc-
tion coincides with the woven 1 direction, the fiber phase in
the UD RVE carries the load, as expected. Therefore, afore-
mentioned evolution of the von Mises stress across all three
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Fig. 12 Three snapshots to illustrate the macroscale (woven laminate),
mesocale (woven RVEs) and microscale (UD RVEs) stress evolution

scales is physical, and it reveals underneath microstructure
evolution in the woven laminate structure only enabled by
the 3-scale concurrent modeling.
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