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ARTICLE INFO ABSTRACT
Keywords: We present a mechanistic data science (MDS) framework capable of building a composite knowledge database
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for composite materials design. The MDS framework systematically leverages data science to extract mechanistic
knowledge from composite materials system. The composite response database is first generated for three matrix

Materials design
Mechanistic features
Dimension reduction

and four fiber combinations using a physics-based mechanistic reduced-order model. Next, the mechanistic fea-
tures of the composites are identified by mechanistically analyzing the composites stress—strain responses. A rela-
tionship between the composite properties and the constituents’ material features are established through a me-
chanics constrained data science-based learning process after representing materials in latent space, following a
dimension reduction technique. We demonstrate the capability of predicting a composite materials system for
target properties (material elastic properties, yield strength, resilience, toughness, and density) from the MDS
created knowledge database. The MDS model is predictive with reasonable accuracy, and capable of identifying
the materials system along with the tuning required to achieve desired composite properties. Development of
such MDS framework can be exploited for fast materials system design, creating new opportunity for perfor-
mance guided materials design.

1. Introduction

Fiber reinforced polymer (FRP) composites have become ubiquitous
in industry due to their strong, stiff, and lightweight properties. Rang-
ing from the frame of the Boeing 787 comprising of nearly 50 % ad-
vanced composites by weight [1] to utilization in repair and reinforce-
ment of infrastructure [2], structural applications of FRPs [3] are now
widespread. However, design of composite materials, including FRPs,
remains a challenge. With various parameters to consider — constituent
combinations, volume fraction, meso/micro/nano structure, tempera-
ture — performing in-lab experiments to determine mechanical proper-
ties necessary to make design choices calls for expensive equipment and
significant time. Even computational methods, such as the Finite Ele-
ment Method (FEM), are time consuming, computationally costly, and
often rely on data from physical experiments for validation.

The heightened interest in Machine Learning (ML) along with the
availability of necessary computational hardware has facilitated the
widespread use of data science. Recently, ML techniques have gained
popularity in the materials design space [4-9]. Application of ML tech-
niques range in scale from molecular [4,5] to macro design [8]. For ex-
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ample, the Accelerated Metallurgy project used ML techniques, includ-
ing neural network models, to rapidly suggest new alloy compositions,
drastically decreasing development time [10].

Similar ML techniques have begun to be applied to composite mate-
rial systems [11,12]. The applications of the ML techniques for compos-
ites vary greatly in scope, some aiming at the prediction of path depen-
dent constitutive response [13] and optimal manufacturing processing
parameters [14] through neural networks, and others aiming at reduc-
ing the computational cost of multiscale simulations through reduced-
order models [3,15-18]. Most applications focus on efficiently predict-
ing specific properties of a composite, such as the compressive strength
of concrete [19], elastic stiffness of unidirectional fiber composites
[20], effective thermal conductivity [21], interfacial shear strength
[22], among others. These predictions largely focus on the forward
problem, determining composite properties based on constituent infor-
mation and micro/nano structure. There exists a gap in attempting to
solve inverse problems [23], i.e., determining constituent information
and micro/nano structure based on desired composite properties.
Herein lies the opportunity to extend ML techniques for prediction of
the inverse problem.
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One of the major pitfalls of ML techniques is their data hungry na-
ture, often requiring the collection or generation of extensive data to
train a model. Even when such copious amounts of data are collected, it
becomes cumbersome to extract meaningful features from the data.
Previously, researchers have demonstrated machine learning models
with a lower amount of data and no simulated data at all [24-27]. To
ameliorate parts of these data collection challenges, we propose utiliz-
ing Self-Consistent Clustering Analysis (SCA) [28-30], a reduced-order
modeling approach orders of magnitude faster than FEM, for data gen-
eration and Principal Component Analysis (PCA) for data reduction.
Coupling data science techniques with scientific knowledge, we pro-
pose a Mechanistic Data Science (MDS) [31,32] framework for guiding
the materials design process in FRP composites.

The paper is organized as follows: First, the paper will describe the
key steps of the MDS framework: multimodal data generation and col-
lection, mechanistic feature extraction, knowledge driven dimension
reduction, mechanistic learning through regression, reduced-order sur-
rogate model, and system and design. Then, each step will be expanded
upon, particularly addressing how the data was generated and the
methods of the data reduction and neural network surrogate modeling
for composite materials design. Further, representative examples of the
capability of the MDS framework for guiding the design of process of
FRP composites for lightweight, high stiffness, and high toughness will
be demonstrated. Finally, a conclusion is provided with possible future
directions.

2. Overview of mechanistic data science framework

In this work, a mechanistic data science (MDS) frameworKk is used to
solve the inverse problem of composite materials design which does not
solve the traditional inverse problem; instead, it focuses on “training the
inverse relations”. MDS is a general framework that can deal with three
types of problems encountered in science and engineering [32]. Based
on the available data and underlying physics, MDS tackles three types
of problems: i) problems with inadequate physics but abundant data, ii)
problems with limited physical understanding that have sufficient data
for a highly accurate solution, iii) problems with well-known physics
requiring minimal data for an acceptable solution.

To address these three types of problems, a MDS framework (see
Fig. 1) is proposed that combines existing scientific knowledge, data
science techniques, and engineering modeling to make informed deci-
sions based on the problem scope [32]. The MDS framework follows six
steps: i) multimodal data generation and collection, ii) mechanistic fea-
ture extraction, iii) knowledge-driven dimension reduction, iv) re-
duced-order model, v) mechanistic learning through regression and
classification, and vi) system and design. Through these six steps, a sys-
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tematic approach analyzes the available data to extract mechanistic
knowledge of a system using data science tools and build a knowledge
database. Not every problem will require all six steps, and the steps
need not always follow a specific order. It is expected that the steps will
closely interact with each other to build a knowledge database. We
briefly introduce the six steps below, which will be further expanded
with specific details in section 3 for the composite design problem.

e Multimodal data generation & collection: In this step, data can
be gathered from existing databases, conclusive research, or can
be produced from experimentation or simulation. This step also
involves deciding where and how to sample data. Like other fields
(e.g., finance, biology, etc.), data is not available in great extent
for science and engineering problems. Experiments generate data
in the form of images and sensor readings, which tend to be
expensive and incomplete. Modeling and simulations can help
generate new data to complement the incomplete dataset from
experimentation. After the data is collected, it requires further
processing such as formatting, cleansing, and wrangling to use it
for feature extraction.

e Mechanistic feature extraction: After the data generation and
collection process, mechanistic features [33] are extracted from
the data using mathematical tools such as Fast-Fourier Transform
(FFT), Short-time Fourier Transform (STFT), Wavelet Transform,
etc. These mechanistic feature extraction step provides an efficient
way for data management by discarding the unnecessary features
of the problem. The feature extraction techniques are problem
dependent, and it requires a domain expert knowledge to decide
what mechanistic features can be extracted from the available data
to solve the problem.

e Knowledge-driven dimension reduction: Design problems are
often very high-dimensional as there are many design parameters
to play with. Understanding the mechanistic features and further
reducing them can reduce the problem size in reasonable way to
handle it. Two common ways of dimension reduction are
clustering and principal component analysis (PCA). Clustering
represents similar datapoints as a single point or value. PCA takes
highly correlated features and expresses them as a reduced feature
on a linear basis.

e Mechanistic learning: In the mechanistic learning for regression
or classification step, the functional relationships of the input and
output features are established. Several machine learning
techniques can be used for this step such as neural network,
support vector machine, and Gaussian process regression to name
a few. Neural networks are a versatile tool with universal
approximation capability and can be customized to integrate the
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Fig. 1. Mechanistic data science framework with the six steps to create a knowledge database for materials design.
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physics of the problem [26,34,35]. Using such customized neural
networks can reduce both the data required and training time,
while providing better predictions.

Reduced-order model: Instead of solving the expensive full-scale
model, a reduced-order model can be developed that can provide a
faster solution with less computation effort. Such reduced-order
models can be either mechanistic or surrogate type, which takes
different design parameters as input and predicts the system
response as output. In this work, we demonstrated the use of
mechanistic reduced-order model Self-consistent Clustering
Analysis (SCA) to generate the data for further analysis.

System and design: Lastly, system and design is the real-world
application of the model. In this step, the efficacy of the model in
meeting the original design objectives is tested [36]. This may
include testing the model against known data or using the model
to make a prediction that can be tested experimentally. As a
system and design problem, we aim to solve an inverse design
problem where composite materials system is predicted for a
given set of target properties. Previously, Thomas et al. [37,38]
and Chuaqui et al. [39] have studied machine learning methods
such as Bayesian framework for inverse design of the short
reinforced composite materials for prediction of elastic properties
with good accuracy.

3. Knowledge database creation using mechanistic data science
steps

The six steps of the MDS framework described in the previous sec-
tion build a knowledge database that can be used for design of compos-
ite materials system. In this section, the steps are described in detail to
show how the framework works for a composite design problem.

3.1. System and design problem description

For a set of desired properties of polymer matrix composite, choos-
ing the right combination of the fiber and polymer matrix is a challeng-
ing problem, as the design space or choice is unbounded. There is no
unique solution of the material combinations; however, the most im-
portant consideration is whether the combinations closely satisfy the
design requirement. If a relationship between the composite property
space (e.g., elastic modulus, yield strength, resilience, toughness) and
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the matrix and fiber individual properties and microstructure design
space (e.g., fiber volume fractions) can be established or “trained” using
a deep-learning neural network, it can guide the designer to choose ap-
propriate materials for a set of composite target properties. For in-
stance, football helmets are made of composite materials that reduce
weight significantly. However, for safety purposes, a designer needs to
ensure the stiffness and toughness of the materials so that it can absorb
the energy during impacts and reduce injury from a concussion [40]. In
this work, we will use this example as a motivation to find materials
that are lightweight, but have high stiffness, and high toughness prop-
erties. Using the steps of MDS, a knowledge database will be created to
find the appropriate combination of three matrices—Polyamide-imides
(PAI), Polycarbonate (PC), Polymethyl methacrylate (PMMA)—and
four fibers—Carbon, E-Glass, Kevlar, S-Glass—at different fiber volume
fractions and temperatures to satisfy a design requirement. Through
this MDS framework, a hidden relationship of the composite properties
and the constituent’s matrix and fiber will be established for designing
a new materials system with target properties. This idea will signifi-
cantly reduce the experimental trial-and-error process to choose a ma-
terials system with less intuition.

3.2. Multimodal data generation and collection

As described in the problem description, the primary goal of this
MDS demonstration is to find a composite material system having low
weight, high stiffness, and high toughness. Thus, we need to build a
composite materials response database by varying different fibers, ma-
trices, volume fractions, and temperatures. The materials response
database consists of the tensile stress—strain response along the trans-
verse of fiber directions of unidirectional composite microstructures.
For the design of experiment, three matrices (PAI, PC, PMMA) and four
fibers (Carbon, E-Glass, Kevlar, and S-Glass) are chosen with a volume
fraction varying from 1 to 50 % at five different temperatures ranging
from 213 to 393 K for different matrices. Five different realizations of
each microstructure descriptor (volume fraction of fiber) are consid-
ered to study the statistical variations in the response. This design of ex-
periments gives us a total of 15,000 tensile simulations that have been
performed using Self-consistent Clustering Analysis (SCA).

A schematic of the data generation process through SCA has been
depicted in Fig. 2. Material microstructure and the properties of the
fiber and matrix are taken as inputs of the SCA model to calculate the
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Fig. 2. Unidirectional fiber composites tensile data generation and collection process using the SCA method. (a) Local strain response, (b) clustering of fiber and ma-
trix phase, (c) interaction tensor calculation steps of the offline stage are shown in the right panel of the figure. SCA outputs the stress-strain response of the compos-

ites as shown in bottom left.
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transverse mechanical response of the UD composites. Transverse load-
ing is a critical loading mode for the fiber reinforced composites, where
the matrix damage plays a critical role and very important to consider
for the practical design purpose [41,42]. To model the temperature-
dependent stress—strain behavior, the following assumptions have been
made on the constituent’s materials properties: i) matrix properties
(elastic modulus, Poisson’s ratio, and the hardening properties) change
with temperature, ii) fiber properties variation are negligible as temper-
ature changes and remains mostly constant [43], iii) matrix-fiber inter-
face is perfectly bonded (no interphase) and temperature effects are not
included. The fibers and temperature-dependent matrices properties
are collected from the literatures [44,45] and the properties are given
in supplementary information (Table S1).

SCA is a mechanistic reduced-order model that has offline database
computation and an online prediction stage as shown in the Fig. 2. In
the offline stage, the material microstructure is elastically loaded, and
the local strain response is collected. Based on this strain distribution
the materials are clustered using an unsupervised learning algorithm
(K-means) [46]. This clustering reduces the problem domain degree of
freedom from millions to hundreds. Once the clustering is done, the
fiber—fiber, matrix-matrix, and fiber-matrix interaction tensor is com-
puted and stored in an offline database. In this work, 32 clusters are
used for the matrix phase, and 32 clusters are used for the fiber phase,
which reduces the 4 million voxels of the original microstructure do-
main to 64 clusters. In the online stage, the offline database is used to
solve Lipmann-Schwinger equation [47] for each cluster and their in-
teractions, which gives the local stress—strain response for any arbitrary
loading. The local stress—strain field is further homogenized, and an ef-
fective stress—strain response is recorded. A continuum damage model
[29] has been adopted within the SCA model to capture the strain soft-
ening behavior of the materials (see section S2 of the supplementary
information). Here, we loaded the microstructure in the fiber transverse
direction only to obtain the stress-strain response curve as shown in
Fig. 2. The details of the SCA method [28], damage model [29] and the
material properties are provided in sections S1, S2, and S3 of the
supplementary information.

A previous study showed that SCA is very efficient and accurate in
predicting the homogenized response [3], with a speed up of around
5,000 times in the online stage. It is to be noted that the offline cluster-
ing does not change when the temperature is varied with the same mi-
crostructure. Therefore, the online steps only needed to be performed to
enrich our database for different temperatures. This greatly accelerates
the database generation process and allows us to study the parametric
space of the design problem. These SCA-computed stress—strain data for
different fiber and matrix combinations are stored in the knowledge
database.

3.3. Mechanistic feature extraction

From the SCA generated stress—strain curves, several mechanistic
features such as elastic modulus, yield strength, resilience, and modulus
of toughness (up to strain of 0.1) of the composite response are ex-
tracted. The feature extraction process from a sample transverse load-
ing stress—strain curve is shown in Fig. 3. The modulus of elasticity is
the stiffness of a material and is defined by the slope of the linear re-
gion. The 0.2 % strain offset method is used to calculate the yield
strength of the composites. Resilience is the total energy a material can
absorb before experiencing permanent deformation and comprises of
the area under the elastic curve. The modulus of toughness is the energy
absorbed by a material, and it is determined as the area under the
stress—strain curve to a strain value of 0.1 for this work. The transverse
modulus of elasticity (E7), yield-strength (o)), resilience (Ug), and mod-
ulus of toughness (Ur) are the composite properties as a function of
their matrix and fibers combinations, and their ranges for the present
work are given in Table 1.

Computational Materials Science xxx (xxxx) 111703

T T
@, = 258.1 MPa 0.2% offset
] ]
Toughness

NN\ Resilience
200 | [—195% Confidence Interval

Ey = 3431 MPa

100 y

Uy =15.89 21
Up =10.05% & my

/
|

0 0.02 0.04 0.06 0.08 0.1
Strain «

Fig. 3. An illustrative example of mechanistic feature extraction from the
stress—strain response of 40 % volume fraction of E-Glass in PMMA at 233 K.
Confidence intervals are calculated from the five realizations of the same mi-
crostructure volume fractions.

Table 1

Range of matrix and fiber properties taken as an input for SCA simulations
and composite properties features extracted in mechanistic feature extraction
step.

Materials structure Min  Max Composite property Min Max
features features
Volume fraction ¢ 0.01  0.50 Composite density Ac 1183 2015
(kg/m?)
Matrix density #m (kg/m3) 1180 1490  Composite elastic 1089 8035
modulus (MPa)
Fiber density 7y (kg/m®) 1470 2540  Composite yield 51 302

strength (MPa)

Matrix modulus of 1076 2743  Resilience (MJ/ m?) 0.40 13.17
elasticity (kg/m3)

Matrix Poisson’s ratio 0.36 0.38 Toughness (MJ/ m3) 1.42 16.14

Matrix yield strength 43 252
(MPa)

Matrix hardening 0.23  0.55
parameter

Fiber modulus of 75, 220,
elasticity 1 (MPa) 000 000

Fiber modulus of 4200 8500
elasticity 2 (MPa)

Fiber modulus of 4200 8500
elasticity 3 (MPa)

Fiber Poisson’s ratio 1 0.20 0.35

Fiber Poisson’s ratio 2 0.20 0.35

Fiber Poisson’s ratio 3 0.22 0.35

Fiber modulus of shear 1~ 2900 36,
(MPa) 000

Fiber modulus of shear 2 2900 36,
(MPa) 000

Fiber modulus of shear 3 1500 36,
(MPa) 000

Temperature 7 (K) 213 393

3.4. Knowledge-driven dimension reduction

The data generation and feature extraction resulted in a 15,000-
tensile-test-sample database. This quantity was reduced by taking the
average results (mean) of all five realizations, leading to a database
with only 3,000 tensile samples cases. The averaging of the five realiza-
tions is done to reduce the data points having same microstructural de-
scriptors. To define the input of matrix and fiber properties used for
SCA simulations, 17 features are identified as inputs (see Table 1).
Transverse modulus of elasticity, yield strength, resilience, and modu-
lus of toughness are the output features extracted by analyzing the
mechanistic features of SCA-generated stress—strain curves. Composite
density (p.) is another important property of the composite that is de-
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rived by applying the simple rule of mixture using the following expres-
sion,
/’c = pf¢ + pm (1 - ¢)7#(1)

where ¢ is the volume fractions of the fiber, and #» and #r are ma-
trix and fiber densities, respectively.

The matrix and fiber features as shown in Fig. 4 can be reduced fur-
ther to represent the materials combination in a reduced feature space
using Principal Component Analysis (PCA). The steps of the PCA analy-
sis are described in Supplementary section S4. Fig. 4 summarizes how
the fourteen materials features were reduced using principal compo-
nent analysis [46]. Fig. 4a show that 91.0 % of the dataset can be ex-
plained with just four principal components (following an elbow
method to select number of PCA components); therefore, the original
14 materials features could be reduced to four principal components.
These principal components will be referred to as Ly, L,, L3, and L4 in
which L; explains the component with the greatest eigenvalue. The
eigenvalues of the principal components are summarized in Fig. 4b, in
which it is apparent that a couple of principal components dominate the
dataset. The space created by these four principal components is identi-
fied as the latent material feature space (see Fig. 5).

Once PCA is performed, we visualize the latent materials structure
space and interpret what different principal components physically rep-
resent. The visualization identifies some materials cluster in the re-
duced space as shown in Fig. 5. Clearly, the problem dimension reduces
significantly in the latent space with known (three matrices and four
fibers we have chosen) and unknown material systems. The latent space
shown in the figure manifests that L, and L, depend on the fibers, L3
represents the temperature variations and L4 represent the matrix ma-
terials in reduced space. The clustering nature and interpretability of
the latent space variables enable us with new materials design capabil-
ity by altering the fiber and matrix properties.

3.5. Mechanistic learning through regression

With the reduced representation of the matrix and fibers features, a
relationship with the composite property space can be established
through a neural network. The mapping of the latent material features
and the microstructure features to the composite properties features is
done here using a feed forward neural network (FFNN) [48]. The inputs
of the FFNN are the composite properties feature (transverse modulus
of elasticity, yield strength, resilience, modulus of toughness, and com-
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posite density), and the targets are the latent space materials features
(L1,Ly, L3, and Ly), along with volume fraction and the matrix and fiber
density as shown in the Fig. 6a. FFNN are deep neural networks (DNN)
with n hidden layers and can be described with the following standard

equations.
u=b+Wpa_,
a=8 (Zl)

Y= bn+1 + Wn+1an; (2)

where, b; and W, are the bias vector and weight matrix of hidden
layer J, g is the activation function, 4 and Z; are intermediate vector
values at each layer, and Y is the output feature—in our case, the latent
space material features: fiber volume fraction, fiber density, and matrix
density.

Several neural network architectures with different activation func-
tions are tested for the dataset and the details of these tests are summa-
rized in the supplementary materials S5 of the paper. Based on our
analysis, a final model having 2 hidden layers comprising 45 neurons in
each layer, sigmoid as the hidden activation function, tangent sigmoid
as the output activation function, and a dropout rate of 0.1 is chosen for
the final neural network model. Coefficient of determination, g2 is used
as an accuracy measure of the neural network. The model uses 70 % of
the data for training, 15 % for validation and 15 % for testing. Mean
squared error has been set as the loss function of the neural network,
and Adam optimizer is used as the optimization algorithm. No overfit-
ting is ensured considering a simple neural network architecture with
only two hidden layers. We test the g2 value for the individual output
and overall output vector. A plot of the neural network training loss and
R? of the individual components of the reduced structure feature is
shown in Fig. 6b. An overall root mean squared error of the testing set
has been obtained as 0.0142 and value of R2 predicted is 0.90, which
means the model is good enough to predict the latent material features
for a given new property set. For the individual component of the re-
duced space structure features we obtained g2 as 0.98, 0.99, 0.98, 0.97
for Ly,Ly,Ls, and L4 respectively (see Fig. 6¢). The neural network
model is a part of the knowledge database.

As mentioned earlier, the outputs of the FFNN are the latent materi-
als structure features obtained through the PCA. Thus, inverse PCA
needs to be performed on the FENN outputs to get the materials features
in the original space. However, this makes finding a specific material
that matches all the properties exactly in the original space with 14 fea-
tures difficult. Therefore, the designer might need to engineer the exist-
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Fig. 5. Clustering pattern of the materials combination in the latent property
space.

ing matrix and fibers to tune their properties or add more materials in
the database to match closely with an existing material.

3.6. Knowledge database

The knowledge database consists of the stress—strain response data
generated using SCA, the extracted mechanistic features, reduced rep-
resentation using PCA in the dimension reduction process, and the
trained neural network in the mechanistic regression step. Now, this
knowledge database can be used to identify the specific material system
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for the target properties of composites. A workflow of the use of the
knowledge database is shown in Fig. 7. First, the trained neural network
will take the composite properties as input and output the latent space
material features. Inverse PCA can be applied to the output latent space
materials features from the neural network and the materials (matrix,
fibers) properties can be identified in the original space. Further, they
can be searched into the materials response database to find the devia-
tion with the existing materials and propose the closest material sys-
tems that show similar properties.

4, Results and discussion

As shown in the previous section, MDS framework can build a
knowledge database for the composite materials and further used in the
material system prediction. In this section, we first validate the MDS
framework predicted materials with the physics-based simulation and
further explore design of the new materials system.

4.1. Validation of MDS prediction with physics-based model

As the data used for the MDS framework is generated using the SCA
method discussed in section 3.2, it is reasonable to use SCA to validate
the output of an MDS-predicted material system. To avoid bias in the
MDS prediction, the material system chosen was not used in the train-
ing process. First, we choose a set of materials properties as an input for
the SCA as given in Table 2. Following the stress—strain data generation
and mechanistic feature extraction, the composite properties are calcu-
lated (refer to the SCA calculation in Table 3). Later, these composite
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Table 2 ent materials features and the composite properties features has been
Materials properties input to the SCA simulation. conducted and shown in Fig. 8. From Fig. 8, we can see the composite
MDS Matrix/Fiber Properties Values density and stiffness are positively correlated with the fiber volume
fractions, whereas composite toughness is negatively correlated with
Volume Fraction 0.45 the fiber volume fractions. It is also apparent from Fig. 8 that for trans-
Matrix density (kg/m?) 1490.00 verse loading cases, the matrix material is mostly indicative of the com-
Matrix modulus of elasticity (MPa) 1839.66 posite’s stiffness and toughness while the fiber choice is important for
Matrix Poisson's ratio 0.38 , . . . .
Matrix yield strength (MPa) 85.82 making the composite lightweight (Fig. 9).
Matrix hardening parameter 0.35 To understand the interplay between stiffness and toughness, the
Temperature (K) 322.32 transverse modulus and the modulus of toughness are plotted against
Fiber density (kg/m?%) 1772.83 different volume fractions of the fibers (see
Fiber modulus of elasticity 1 (MPa) 192122.21 Fig. 9). All the properties shown in the Fig. 9 are in room temper-
Fiber modulus of elasticity 2 (MPa) 1251331 ature conditions (298 K). The property space for the different com-
Fiber modulus of elasticity 3 (MPa) 12513.31 . . . s o .
Fiber Poisson’s ratio 1 *. posites is a complex function and optimizing all the three criteria
Fiber Poisson’s ratio 2 0.20 (lightweight, high strength and toughness) is not straightforward. For
Fiber Poisson’s ratio 3 0.24 example, composites with PAI as the matrix material show higher
Fiber modulus of shear 1 (MPa) 7175.45 toughness and stiffness properties than PC; however, composites with
Fiber modulus of shear 2 (MPa) 7175.45 PC as the matrix material have lower densities and toughness. The
Fiber modulus of shear 3 (MPa) 3760.30 stiffness, toughness, and density can be altered by changing the fiber
volume fractions for all materials systems, in which increasing the
Table 3 volume fraction is typically positively correlated with stiffness but
Comparison of the composite properties calculated by SCA and MDS. negatively with the toughness.
Composite Material SCA MDS Difference To understand the effect of the temperatures, we identified the ma-
Properties calculation prediction (%) terials systems showing lowest composite density, high stiffness, and
- - high toughness. To evaluate the tradeoffs between stiffness, toughness,
Coml.’ osite density (kg/m?) 1521729 b " 6.29 and density, and define the “best” mechanical properties, we found the
Elastic modulus (MPa) 5237.31 4795.92 8.43 EnU
Yield strength (MPa) 117.86 117.70 0.14 material system that maximized the ratio 2{1 L The identified material
Resilience (MJ/m?) 1.53 1.65 7.76 system at room temperature is PMMA/Kevlar at 50 % volume fraction.
Toughness (MJ/m?) 3.17 3.09 2.65 The result of varying temperature and volume fraction are shown in

properties are used as an input to the MDS framework. Using the knowl-
edge database, the materials features developed in the previous section
are predicted. However, it is not fair to compare the features of these
materials directly with the Table 2 properties, as there is no unique so-
lution to this inverse problem. We use these MDS predicted materials
properties as the input properties for a new SCA calculation to compute
the composite properties. These properties are referred to as the MDS
prediction in Table 3. All the composite properties predicted by MDS
are within 8 % difference with the SCA calculation, which demon-
strates that the MDS approach has reasonable predictive capability of
the inverse problem.

4.2. Lightweight, high stiffness and high toughness composite search
As mentioned in section 3.1, the system and design problem consid-

ered in this work is to find materials combination for low weight, high
strength, and high toughness applications. A correlation between differ-

Fig. 10. Because the correlation matrix in Fig. 8 shows that the compos-
ite properties have a high correlation with the matrix material but low
correlation with the fiber material (as the loading direction is trans-
verse), the effect of temperature variance are also shown for PAI/Kevlar
and PC/Kevlar in Fig. 10.

4.3. Materials system identification from a design specification

One of the major capabilities of the MDS built knowledge database
is the inverse problem solving to identify the materials system from a
given set of target properties. Here, we demonstrate this capability by
setting the target properties as the system with the maximal combina-
tion of low composite density with high stiffness and toughness. A set of
target properties with such attributes are shown in Table 4. For these
set of target properties, the MDS predicted materials features are shown
in Table 5. We also compare the MDS prediction with the existing data-
base which shows that PMMA/Kevlar composites with 47 % volume
fraction at 298 K temperature is the closest materials system to the MDS
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Fig. 9. Variation of composites transverse elastic modulus and modulus of toughness with fiber density for all matrix and fiber combinations in the dataset.

prediction. Using these PMMA/Kevlar properties we calculated the ma-
terials target properties as closest materials system using SCA as shown
in Table 4 with the percentage difference in target properties if the pre-
dicted PMMA/Kevlar combinations are used. Notice that while the filler

properties and even some of the matrix properties are very different
from the target properties, the corresponding composite properties (ob-
tained by running SCA on the closest matric/filler properties) are less
than 10 % different than the target composite properties. If Kevlar is
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Fig. 10. Effect of temperature on transverse modulus and the modulus of toughness of composite materials varying matrix materials with Kevlar as the fiber material.

Table 6
Additional materials in the dataset that are close to the MDS prediction.

Table 4
Target properties for application in football helmet materials.
Composite Material Target Closest properties %
Properties properties (SCA) Difference
Composite density 1325.0 1316.3 0.66
(kg/m?)
Elastic modulus (MPa) 6833.47 6260.74 8.38
Yield strength (MPa) 123.16 121.90 1.02
Resilience (MJ/m3) 1.294 1.375 6.26
Toughness (MJ/m?3) 3.860 3.999 3.60

Table 5

Comparison of the MDS predicted materials features with the closest materi-
als system in our database. The closest dataset material is 47% volume frac-
tion PMMA Kevlar at 298 K.

Materials input properties MDS Prediction Closest dataset material

Volume Fraction 0.47 0.47
Matrix density (kg/m?) 1179.79 1180.00
Matrix modulus of elasticity (MPa) 2102.49 2448.77
Matrix Poisson's ratio 0.36 0.36
Matrix yield strength (MPa) 130.52 106.56
Matrix hardening parameter 0.41 0.44
Temperature (K) 287.79 298.00
Fiber density (kg/m?3) 1482.24 1470.00
Fiber modulus of elasticity 1 (MPa)  171788.20 150000.00
Fiber modulus of elasticity 2 (MPa) 5465.43 4200.00
Fiber modulus of elasticity 3 (MPa) 5465.43 4200.00
Fiber Poisson’s ratio 1 0.35 0.35
Fiber Poisson’s ratio 2 0.35 0.35
Fiber Poisson’s ratio 3 0.36 0.35
Fiber modulus of shear 1 (MPa) 4402.29 2900.00
Fiber modulus of shear 2 (MPa) 4402.29 2900.00
Fiber modulus of shear 3 (MPa) 2243.48 1500.00

chosen as the fiber material, its materials properties need to tune up to
attain the target properties of the composites. Therefore, materials de-
signers can take Kevlar as an initial guess from the MDS analysis and
engineer its properties to achieve the desired target properties. It is evi-
dent that there is not just one “best” material system. Other materials in
the database can also be compared to the neural network output to find
a material that has the desired performance. The next two “closest” ma-
terials are shown in Table 6, which are PMMA-Carbon and PMMA E-
Glass, both at 298 K and 47% volume fraction.

The MDS framework opens new avenues for materials design (not
limited to composites). Currently, it can predict only the materials sys-
tem, within its database, but increasing the materials system in the

Materials input properties PMMA Carbon 298 K PMMA E-Glass 298 K

Volume Fraction 0.47 0.47
Matrix density (kg/m?3) 1180 1180
Matrix modulus of elasticity (MPa) 2448.77 2448.77

Matrix Poisson's ratio 0.36 0.36
Matrix yield strength (MPa) 106.5574 106.5574
Matrix hardening parameter 0.444529 0.444529
Temperature (K) 298 298

Fiber density (kg/m?3) 1770 2540
Fiber modulus of elasticity 1 (MPa) 220,000 75,000
Fiber modulus of elasticity 2 (MPa) 14,000 75,000
Fiber modulus of elasticity 3 (MPa) 14,000 75,000
Fiber Poisson’s ratio 1 0.2 0.2
Fiber Poisson’s ratio 2 0.2 0.2
Fiber Poisson’s ratio 3 0.25 0.22
Fiber modulus of shear 1 (MPa) 9000 30,000
Fiber modulus of shear 2 (MPa) 9000 30,000
Fiber modulus of shear 3 (MPa) 4600 30,000

database will improve its capability and make it further predictive.
Also, the accuracy of the prediction depends on the accuracy of gener-
ated and collected data, extracted features, dimension reduction accu-
racy, neural network predictability. Having accurate individual step is
important and it needs some prior experience to set all those different
tools together. The knowledge database can be easily interfaced with
commercial codes. That makes the MDS approach a powerful tool to
solve other science and engineering problems.

5. Conclusion

A composite knowledge database creation process using an MDS
framework is presented in this work. The MDS framework utilized the
mechanistic reduced-order model SCA to generate the composites re-
sponse database for different matrices (PAI, PC, PMMA) and fibers (Car-
bon, E-Glass, Kevlar, S-glass) combinations at varied temperatures at a
significantly reduced computational time compared to experiments or
numerical models. Mechanistic features are extracted from the gener-
ated composite data and further reduced using mechanistic relations of
rule of mixture. A high dimensional material features space has been re-
duced using principal component analysis. Deep neural networks are
further used to learn the relation of the constituent materials features
and composite properties through regression. A knowledge database in-
tegrates all these mechanistic knowledges obtained through mechanis-
tic feature extraction, dimension reduction, and deep neural network
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regression. Through a workout example, the predictive capability of the
MDS presented shows reasonable accuracy with the physics-based sim-
ulation. Additionally, with a limited number of material systems, a
composite materials system with low weight, high stiffness and high
toughness has been identified. MDS can also be useful to solve the in-
verse problem of materials design to find the materials combination for
assesment of target properties.

It is expected that MDS can reduce the experimental trial and error
process and provide design guidelines to the materials designer. The
MDS framework can also be used for design of other materials system
and not limited to composite materials design only. MDS framework
can open new avenues in the materials design paradigm that will cut
down the materials development to deployment time significantly.

CRediT authorship contribution statement

Hannah Huang : Conceptualization,
ware, Validation, Formal analysis, Investigation,
tion, Visualization, Writing - original draft. Satyajit Mo-
jumder : Conceptualization, Methodology, Software, Formal
analysis, Data curation, Visualization, Writing - original
draft, Writing - review & editing. Derick Suarez : Soft-
ware, Methodology, Formal analysis, Data curation, Writing -
original draft, Writing — review & editing. Abdullah Al Amin
: Writing - original draft, Writing — review & editing. Mark
Fleming : Conceptualization, Writing - review & editing, Su-
pervision. Wing Kam Liu : Conceptualization, Writing - re-
view & editing, Supervision, Funding acquisition.

Methodology, Soft-
Data cura-

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Data availability

The SCA generated composites stress-strain dataset and the codes

are available on: https://github.com/hannahhuang00/MDS Composite

Acknowledgments

H.H. would like to acknowledge the NSF REU program under the
Grant No. MOMS/CMMI-1762035. S.M. and W. K. L. thankfully ac-
knowledge the support provided by AFOSR (FA9550-18-1-0381). D.S.,
A.A.A., and W.K.L. acknowledge the support of the United States Na-
tional Science Foundation (NSF) under Grant No. MOMS/CMMI-
1762035. D.S. also gratefully acknowledges the Walter P. Murphy fel-
lowship provided to first-year graduate students at Northwestern Uni-
versity.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.commatsci.2022.111703.

References
[1] V. Giurgiutiu, Structural Health Monitoring of Aerospace Composites, Academic

Press, 2015.

H.-C. Wu, C.D. Eamon, 2 - Fiber-reinforced polymer composites, in: H.-C. Wu,

C.D. Eamon (Eds.), Strengthening of Concrete Structures using Fiber Reinforced

Polymers (FRP), Woodhead Publishing, 2017, pp. 11-17, doi: 10.1016,/B978-0-08-

100636-8.00002-8.

J. Gao, M. Shakoor, G. Domel, M. Merzkirch, G. Zhou, D. Zeng, X. Su, W.K. Liu,

Predictive multiscale modeling for Unidirectional Carbon Fiber Reinforced

Polymers, Compos. Sci. Technol. 186 (2020) 107922, https://doi.org/10.1016/

[2]

[3]

10

[4]

[5]

[61

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Computational Materials Science xxx (xxxx) 111703

j.compscitech.2019.107922.

L. Tao, G. Chen, Y. Li, Machine learning discovery of high-temperature polymers,
Patterns 2 (4) (2021) 100225, https://doi.org/10.1016/j.patter.2021.100225.
K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning
for molecular and materials science, Nature 559 (2018) 547-555, https://doi.org/
10.1038/541586-018-0337-2.

J.E. Gubernatis, T. Lookman, Machine learning in materials design and
discovery: examples from the present and suggestions for the future, Phys. Rev.
Mater. 2 (2018) 120301, https://doi.org/10.1103/PhysRevMaterials.2.120301.
T. Zhou, Z. Song, K. Sundmacher, Big Data creates new opportunities for
materials research: a review on methods and applications of machine learning for
materials design, Engineering 5 (2019) 1017-1026, https://doi.org/10.1016/
j.eng.2019.02.011.

K. Guo, Z. Yang, C.-H. Yu, M.J. Buehler, Artificial intelligence and machine
learning in design of mechanical materials, Mater. Horiz. 8 (2021) 1153-1172,
https://doi.org/10.1039/DOMHO01451F.

R. Vasudevan, G. Pilania, P.V. Balachandran, Machine learning for materials
design and discovery, J. Appl. Phys. 129 (7) (2021) 070401, https://doi.org/
10.1063/5.0043300.

Y. Liu, T. Zhao, W. Ju, S. Shi, Materials discovery and design using machine
learning, J. Materiomics 3 (2017) 159-177, https://doi.org/10.1016/
j.jmat.2017.08.002.

C.-T. Chen, G.X. Gu, Machine learning for composite materials, MRS Commun. 9
(2019) 556-566, https://doi.org/10.1557/mrc.2019.32.

P. Pattnaik, A. Sharma, M. Choudhary, V. Singh, P. Agarwal, V. Kukshal, Role of
machine learning in the field of Fiber reinforced polymer composites: a preliminary
discussion, Mater. Today:. Proc. 44 (2021) 4703-4708, https://doi.org/10.1016/
j-matpr.2020.11.026.

M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, M.A. Bessa, Deep
learning predicts path-dependent plasticity, PNAS 116 (2019) 26414-26420,
https://doi.org/10.1073/pnas.1911815116.

Robbany F, Pramujati B, Suhardjono, Effendi MK, Soepangkat BOP, Norcahyo R.
Multi response prediction of cutting force and delamination in carbon fiber
reinforced polymer using backpropagation neural network-genetic algorithm. AIP
Conf. Proc. 2114 (2019) 030012, doi: 10.1063/1.5112416.

X. Han, J. Gao, M. Fleming, C. Xu, W. Xie, S. Meng, W.K. Liu, Efficient multiscale
modeling for woven composites based on self-consistent clustering analysis,
Comput. Methods Appl. Mech. Eng. 364 (2020) 112929.

C. He, J. Ge, J. Gao, J. Liu, H. Chen, W.K. Liu, D. Fang, From microscale to
mesoscale: the non-linear behavior prediction of 3D braided composites based on
the SCA2 concurrent multiscale simulation, Compos. Sci. Technol. 213 (2021)
108947, https://doi.org/10.1016/j.compscitech.2021.108947.

J. Gao, S. Mojumder, W. Zhang, H. Li, D. Suarez, C. He, J. Cao, W.K. Liu,
Concurrent n-scale modeling for non-orthogonal woven composite, Comput. Mech.
1 (2022) 14, https://doi.org/10.1007/500466-022-02199-2.

S. Mojumder, J. Gao, W.K. Liu, Self-consistent clustering analysis for modeling of
theromelastic heterogeneous materials, AIP Conf. Proc. 2324 (2021) 030029,
https://doi.org/10.1063/5.0038297.

F. Khademi, M. Akbari, S.M. Jamal, M. Nikoo, Multiple linear regression,
artificial neural network, and fuzzy logic prediction of 28 days compressive
strength of concrete, Front. Struct. Civ. Eng. 11 (2017) 90-99, https://doi.org/
10.1007/511709-016-0363-9.

M.V. Pathan, S.A. Ponnusami, J. Pathan, R. Pitisongsawat, B. Erice, N. Petrinic, et
al., Predictions of the mechanical properties of unidirectional fibre composites by
supervised machine learning, Sci. Rep. 9 (2019) 13964, https://doi.org/10.1038/
$41598-019-50144-w.

Q. Rong, H. Wei, X. Huang, H. Bao, Predicting the effective thermal conductivity
of composites from cross sections images using deep learning methods, Compos.
Sci. Technol. 184 (2019) 107861, https://doi.org/10.1016/
j.compscitech.2019.107861.

A. Rahman, P. Deshpande, M.S. Radue, G.M. Odegard, S. Gowtham, S. Ghosh,
A.D. Spear, A machine learning framework for predicting the shear strength of
carbon nanotube-polymer interfaces based on molecular dynamics simulation data,
Compos. Sci. Technol. 207 (2021) 108627.

L. Lu, M. Dao, P. Kumar, U. Ramamurty, G.E. Karniadakis, S. Suresh, Extraction
of mechanical properties of materials through deep learning from instrumented
indentation, PNAS 117 (2020) 7052-7062, https://doi.org/10.1073/
pnas.1922210117.

R. Eggersmann, L. Stainier, M. Ortiz, S. Reese, Model-free data-driven
computational mechanics enhanced by tensor voting, Comput. Methods Appl.
Mech. Eng. 373 (2021) 113499, https://doi.org/10.1016/j.cma.2020.113499.

S. Karumuri, R. Tripathy, I. Bilionis, J. Panchal, Simulator-free solution of high-
dimensional stochastic elliptic partial differential equations using deep neural
networks, J. Comput. Phys. 404 (2020) 109120, https://doi.org/10.1016/
j.jcp.2019.109120.

M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686-707,
https://doi.org/10.1016/j.jcp.2018.10.045.

M.A. Nabian, H. Meidani, A deep learning solution approach for high-
dimensional random differential equations, Probab. Eng. Mech. 57 (2019) 14-25,
https://doi.org/10.1016/j.probengmech.2019.05.001.

Z. Liu, M.A. Bessa, W.K. Liu, Self-consistent clustering analysis: an efficient
multi-scale scheme for inelastic heterogeneous materials, Comput. Methods Appl.
Mech. Eng. 306 (2016) 319-341, https://doi.org/10.1016/j.cma.2016.04.004.

Z. Liu, M. Fleming, W.K. Liu, Microstructural material database for self-


https://doi.org/10.1016/j.commatsci.2022.111703
https://doi.org/10.1016/j.commatsci.2022.111703
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0005
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0005
https://doi.org/10.1016/j.compscitech.2019.107922
https://doi.org/10.1016/j.compscitech.2019.107922
https://doi.org/10.1016/j.patter.2021.100225
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1103/PhysRevMaterials.2.120301
https://doi.org/10.1016/j.eng.2019.02.011
https://doi.org/10.1016/j.eng.2019.02.011
https://doi.org/10.1039/D0MH01451F
https://doi.org/10.1063/5.0043300
https://doi.org/10.1063/5.0043300
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1557/mrc.2019.32
https://doi.org/10.1016/j.matpr.2020.11.026
https://doi.org/10.1016/j.matpr.2020.11.026
https://doi.org/10.1073/pnas.1911815116
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0075
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0075
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0075
https://doi.org/10.1016/j.compscitech.2021.108947
https://doi.org/10.1007/s00466-022-02199-2
https://doi.org/10.1063/5.0038297
https://doi.org/10.1007/s11709-016-0363-9
https://doi.org/10.1007/s11709-016-0363-9
https://doi.org/10.1038/s41598-019-50144-w
https://doi.org/10.1038/s41598-019-50144-w
https://doi.org/10.1016/j.compscitech.2019.107861
https://doi.org/10.1016/j.compscitech.2019.107861
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0110
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0110
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0110
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0110
https://doi.org/10.1073/pnas.1922210117
https://doi.org/10.1073/pnas.1922210117
https://doi.org/10.1016/j.cma.2020.113499
https://doi.org/10.1016/j.jcp.2019.109120
https://doi.org/10.1016/j.jcp.2019.109120
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.probengmech.2019.05.001
https://doi.org/10.1016/j.cma.2016.04.004

H. Huang et al.

[30]

[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

consistent clustering analysis of elastoplastic strain softening materials, Comput.
Methods Appl. Mech. Eng. 330 (2018) 547-577, https://doi.org/10.1016/
j-cma.2017.11.005.

M.A. Bessa, R. Bostanabad, Z. Liu, A. Hu, D.W. Apley, C. Brinson, W. Chen, W.
Liu, A framework for data-driven analysis of materials under uncertainty:
countering the curse of dimensionality, Comput. Methods Appl. Mech. Eng. 320
(2017) 633-667.

S. Mojumder, L. Tao, Y. Li, W.K. Liu, Mechanistic data science for modeling and
design of aerospace composite materials, arXiv preprint arXiv:2112.00968.

W.K. Liu, Z. Gan, M. Fleming (Eds.), Mechanistic Data Science for STEM
Education and Applications, Springer International Publishing, Cham, 2021.
W.K. Liu, Z. Gan, M. Fleming, in: Mechanistic Data Science for STEM Education
and Applications, Springer International Publishing, Cham, 2021, pp. 89-129.

Z. Zhang, G.X. Gu, Physics-informed deep learning for digital materials, Theor.
Appl. Mech. Lett. 11 (1) (2021) 100220, https://doi.org/10.1016/
j-taml.2021.100220.

S. Saha, Z. Gan, L. Cheng, J. Gao, O.L. Kafka, X. Xie, H. Li, M. Tajdari, H.A. Kim,
W.K. Liu, Hierarchical Deep Learning Neural Network (HiDeNN): An artificial
intelligence (AI) framework for computational science and engineering, Comput.
Methods Appl. Mech. Eng. 373 (2021) 113452, https://doi.org/10.1016/
j-cma.2020.113452.

W.K. Liu, Z. Gan, M. Fleming, System and design, in: W.K. Liu, Z. Gan, M.
Fleming (Eds.), Mechanistic Data Science for STEM Education and Applications,
Springer International Publishing, Cham, 2021, pp. 215-66, doi: 10.1007/978-3-
030-87832-0_7.

A.J. Thomas, E. Barocio, R.B. Pipes, A machine learning approach to determine
the elastic properties of printed fiber-reinforced polymers, Compos. Sci. Technol.
220 (2022) 109293, https://doi.org/10.1016/j.compscitech.2022.109293.

A.J. Thomas, E. Barocio, I. Bilionis, R.B. Pipes, Bayesian inference of fiber
orientation and polymer properties in short fiber-reinforced polymer composites,
Compos. Sci. Technol. 228 (2022) 109630, https://doi.org/10.1016/
j.compscitech.2022.109630.

T.R.C. Chuaqui, A.T. Rhead, R. Butler, C. Scarth, A data-driven Bayesian
optimisation framework for the design and stacking sequence selection of increased

11

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Computational Materials Science xxx (xxxx) 111703

notched strength laminates, Compos. B Eng. 226 (2021) 109347, https://doi.org/
10.1016/j.compositesb.2021.109347.

D.W. Sproule, E.T. Campolettano, S. Rowson, Football helmet impact standards
in relation to on-field impacts, Proc. IMechE 231 (4) (2017) 317-323.

R. Cai, T. Jin, The effect of microstructure of unidirectional fibre-reinforced
composites on mechanical properties under transverse loading: A review, J. Reinf.
Plast. Compos. 37 (2018) 1360-1377, https://doi.org/10.1177/
0731684418796308.

V.I. Kushch, S.V. Shmegera, P. Brondsted, L. Mishnaevsky, Numerical simulation
of progressive debonding in fiber reinforced composite under transverse loading,
Int. J. Eng. Sci. 49 (1) (2011) 17-29.

F. Zhou, J. Zhang, S. Song, D. Yang, C. Wang, Effect of temperature on material
properties of carbon fiber reinforced polymer (CFRP) tendons: experiments and
model assessment, Materials 12 (2019) 1025, https://doi.org/10.3390/
mal2071025.

J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang, R.R. Adharapurapu, Influence of
temperature and strain rate on the mechanical behavior of three amorphous
polymers: characterization and modeling of the compressive yield stress, Int. J.
Solids Struct. 43 (2006) 2318-2335, https://doi.org/10.1016/
j.ijsolstr.2005.06.040.

Composite Materials and Structures (n.d.). Available from: <http://
www.ae.iitkgp.ac.in/ebooks/chapter4.html > (accessed April 29, 2022).

W.K. Liu, Z. Gan, M. Fleming, Knowledge-driven dimension reduction and
reduced order surrogate models, in: W.K. Liu, Z. Gan, M. Fleming (Ed.),
Mechanistic Data Science for STEM Education and Applications, Springer
International Publishing, Cham, 2021, pp. 131-170, doi: 10.1007/978-3-030-
87832-0.5.

H. Moulinec, P. Suquet, A numerical method for computing the overall response
of nonlinear composites with complex microstructure, Comput. Methods Appl.
Mech. Eng. 157 (1998) 69-94, https://doi.org/10.1016/50045-7825(97)00218-1.
W.K. Liu, Z. Gan, M. Fleming, Deep learning for regression and classification, in:
W.K. Liu, Z. Gan, M. Fleming (Eds.), Mechanistic Data Science for STEM Education
and Applications, Springer International Publishing, Cham, 2021, pp. 171-214,
doi: 10.1007/978-3-030-87832-0_6.


https://doi.org/10.1016/j.cma.2017.11.005
https://doi.org/10.1016/j.cma.2017.11.005
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0150
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0150
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0150
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0150
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0160
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0160
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0165
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0165
https://doi.org/10.1016/j.taml.2021.100220
https://doi.org/10.1016/j.taml.2021.100220
https://doi.org/10.1016/j.cma.2020.113452
https://doi.org/10.1016/j.cma.2020.113452
https://doi.org/10.1016/j.compscitech.2022.109293
https://doi.org/10.1016/j.compscitech.2022.109630
https://doi.org/10.1016/j.compscitech.2022.109630
https://doi.org/10.1016/j.compositesb.2021.109347
https://doi.org/10.1016/j.compositesb.2021.109347
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0200
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0200
https://doi.org/10.1177/0731684418796308
https://doi.org/10.1177/0731684418796308
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0210
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0210
http://refhub.elsevier.com/S0927-0256(22)00426-8/h0210
https://doi.org/10.3390/ma12071025
https://doi.org/10.3390/ma12071025
https://doi.org/10.1016/j.ijsolstr.2005.06.040
https://doi.org/10.1016/j.ijsolstr.2005.06.040
https://doi.org/10.1016/S0045-7825(97)00218-1

	Knowledge database creation for design of polymer matrix composite
	1. Introduction
	2. Overview of mechanistic data science framework
	3. Knowledge database creation using mechanistic data science steps
	3. Knowledge database creation using mechanistic data science steps
	3.1. System and design problem description
	3.2. Multimodal data generation and collection
	3.3. Mechanistic feature extraction
	3.4. Knowledge-driven dimension reduction
	3.5. Mechanistic learning through regression
	3.6. Knowledge database

	4. Results and discussion
	4.1. Validation of MDS prediction with physics-based model
	4.2. Lightweight, high stiffness and high toughness composite search
	4.3. Materials system identification from a design specification

	5. Conclusion
	
	Acknowledgments
	References


	fld77: 
	fld78: 
	fld99: 
	fld112: 
	fld133: 
	fld154: 
	fld169: 
	fld170: 
	fld190: 
	fld198: 
	fld199: 
	fld208: 


